Práctica 4: Cálculo- λ sin tipos

- Dado un ARS (A, \rightarrow) , decimos que un objeto $a \in A$ está en \rightarrow -forma normal si no existe $b \in A$ tal que $a \rightarrow b$.
- Decimos que a tiene \rightarrow -forma normal si existe un objeto $b \in A$ tal que $a \twoheadrightarrow b$ y b está en \rightarrow -forma normal.

Ejercicio 1. Demostrar las siguientes propiedades del operador de sustitución:

- a) Si $x \notin fv(t)$ entonces $t\{x := s\} = t$.
- b) Si $x \notin fv(u)$ y $y \notin fv(s)$ entonces $t\{x := s\}\{y := u\} = t\{y := u\}\{x := s\}$.
- c) Si $x \notin fv(u)$ entonces $t\{x := s\}\{y := u\} = t\{y := u\}\{x := s\{y := u\}\}$. Este ítem generaliza al anterior.
- d) Dar un ejemplo en el que no valga la igualdad probada en el ítem anterior si se elimina la hipótesis " $x \notin fv(u)$ ".

Ejercicio 2. Normalizar el término SSSSSS, donde $S = \lambda x y z . x z (y z)$.

Ejercicio 3. El grafo de reducción de un objeto a en un ARS (A, \rightarrow) es un grafo dirigido cuyos vértices están dados por el conjunto $\{b \in A \mid a \twoheadrightarrow b\}$ y (b_1, b_2) es una arista si y sólo si $b_1 \to b_2$. Dibujar el grafo de \to_{β} -reducción de $(\lambda f, f(fx))(IE)$ donde $I = \lambda x. x$ y $E = \lambda x. z$.

Ejercicio 4. Demostrar que $(\lambda y. \lambda x. t) s =_{\beta} \lambda x. (\lambda y. t) s.$

Ejercicio 5. Demostrar que si $t =_{\beta} t'$ y $s =_{\beta} s'$ entonces $t\{x := s\} =_{\beta} t'\{x := s'\}$. Sugerencia: usar el hecho de que $t\{x := s\} =_{\beta} (\lambda x. t) s$.

Ejercicio 6. Demostrar que:

- a) Si $t \to_{\beta} t'$ entonces $fv(t) \supseteq fv(t')$.
- b) Si $t \to_{\beta} t'$ entonces $t\{x := s\} \to_{\beta} t'\{x := s\}$.
- c) Si $s \to_{\beta} s'$ entonces $t\{x := s\} \twoheadrightarrow_{\beta} t\{x := s'\}$.

Ejercicio 7. El conjunto $\Lambda^I \subseteq \Lambda$ se define inductivamente del siguiente modo:

$$\frac{1}{x \in \Lambda^I} \quad \frac{t \in \Lambda^I \quad x \in \mathsf{fv}(t)}{\lambda x. \, t \in \Lambda^I} \quad \frac{t \in \Lambda^I \, s \in \Lambda^I}{t \, s \in \Lambda^I}$$

Dicho de otro modo, un término está en el conjunto Λ^I si las variables ligadas por λ -abstracciones aparecen al menos una vez en el cuerpo. Demostrar que el conjunto Λ^I es cerrado por β -reducción, es decir, que si $t \in \Lambda^I$ y $t \to_{\beta} s$ entonces $s \in \Lambda^I$. El cálculo- λI es la restricción del cálculo- λ a términos dentro del conjunto Λ^I .

Ejercicio 8. Sea $n \in \mathbb{N}_0$. Definir términos $\langle t_1, \dots, t_n \rangle$ y $\pi_i(t)$ de tal modo que para todo $i \in 1..n$ se verifique:

$$\pi_i(\langle t_1,\ldots,t_n\rangle) \twoheadrightarrow_\beta t_i$$

Ejercicio 9. Usando la codificación de números naturales como numerales de Church, $\underline{n} \stackrel{\text{def}}{=} \lambda f z$. $f^n z$:

- 1. Definir un término Succ tal que $Succ \underline{n} \rightarrow_{\beta} n + 1$.
- 2. Definir un término Zero? tal que Zero? $\underline{0} \twoheadrightarrow_{\beta} \mathsf{true} = \lambda x \, y. \, x \, y \, Zero$? $(\underline{n+1}) \twoheadrightarrow_{\beta} \mathsf{false} = \lambda x \, y. \, y.$
- 3. Definir un término Add tal que $Add \underline{n} \underline{m} \rightarrow_{\beta} n + m$.
- 4. Definir un término Mul tal que $Mul \, n \, m \rightarrow_{\beta} n * m$.
- 5. Definir un término Pow tal que $Pow \underline{n} \underline{m} \twoheadrightarrow_{\beta} \underline{n}^{\underline{m}}$.
- 6. Definir un término Pred tal que Pred $(n+1) \rightarrow_{\beta} \underline{n}$.

Ejercicio 10. Demostrar que un término $t \in \Lambda$ está en \rightarrow_{β} -forma normal si y sólo si se puede producir con la siguiente gramática donde $n, k \geq 0$:

$$N ::= \lambda x_1 \dots x_n \cdot y \, N_1 \dots N_k$$

Por ejemplo, $\lambda x. x (y y) (\lambda z. x)$ está en \rightarrow_{β} -forma normal y se puede producir con la gramática de arriba.

Ejercicio 11. Usando el hecho de que el cálculo- λ_{β} es confluente, demostrar que si $x t_1 \dots t_n =_{\beta} y s_1 \dots s_m$ entonces $x = y, n = m, y t_i =_{\beta} s_i$ para todo $i \in 1..n$.

Ejercicio 12. El objetivo de este ejercicio es probar que, si se agregaran ciertas igualdades a la teoría ecuacional del λ_{β} -cálculo, la teoría dejaría de ser consistente.

- a) Asumiendo que $\lambda x. \lambda y. x =_{\beta} \lambda x. \lambda y. y$, probar que $t =_{\beta} s$ para todo $t, s \in \Lambda$.
- b) Asumiendo que $\lambda x. x =_{\beta} \lambda x. \lambda y. y. x$ probar que $t =_{\beta} s$ para todo $t, s \in \Lambda$.

Ejercicio 13. Demostrar que:

- a) Si $t\{x:=s\}$ está en \to_{β} -forma normal entonces t está en \to_{β} -forma normal.
- b) Si $t\{x:=s\}$ tiene \to_{β} -forma normal entonces t no necesariamente tiene \to_{β} -forma normal.
- c) Existen términos $t, s \in \Lambda$ tales que ni t ni s tienen \to_{β} -forma normal pero t s tiene \to_{β} -forma normal.

Ejercicio 14. (Eta reducción) Considerar la siguiente regla de reescritura, conocida como η -reducción:

$$\lambda x. t x \to_{\eta} t$$
 si $x \notin \mathsf{fv}(t)$

Por ejemplo, $\lambda x. I x \to_{\eta} I$ pero no vale $\lambda x. I x x \to_{\eta} I x$ porque $x \in \mathsf{fv}(I x)$. Igual que en el caso de \to_{β} , la relación \to_{η} se clausura por contextos arbitrarios, es decir, si $t \to_{\eta} t'$ entonces también $t s \to_{\eta} t' s$ y $s t \to_{\eta} s t'$ y $\lambda x. t \to_{\eta} \lambda x. t'$.

- a) Demostrar que existen términos $t, s \in \Lambda$ tales que $t =_{\eta} s$ pero no vale $t =_{\beta} s$. Usar el hecho de que la β -reducción es confluente.
- b) Demostrar que si t es un término de la forma $\lambda y. t'$ y $x \notin \mathsf{fv}(t)$ entonces $\lambda x. t x =_{\beta} t.$
- c) Demostrar que \rightarrow_{η} es SN.
- d) Anteriormente en la materia estudiamos la noción de par crítico para TRSs. El cálculo- λ no es un TRS porque sus términos no son términos de primer orden. La noción de par crítico se puede generalizar a sistemas de reescritura de orden superior como el cálculo- λ . Demostrar que es posible cerrar todos los pares críticos del sistema de reescritura que se obtiene al juntar las reglas $\rightarrow_{\beta} y \rightarrow_{\eta}$. Hay dos pares críticos, uno dado por $(\lambda x. tx) s$ con $x \notin \mathsf{fv}(t) y$ el otro dado por $\lambda x. (\lambda y. t) x$ con $x \notin \mathsf{fv}(\lambda y. t)$.
- e) Demostrar que \to_{η} se puede postponer después de \to_{β} , es decir que $\twoheadrightarrow_{\beta\eta} \subseteq \twoheadrightarrow_{\beta} \twoheadrightarrow_{\eta}$. Para ello, demostrar como lema auxiliar que si $t \to_{\eta} s \Rightarrow_{\beta} u$ entonces existe un término s' tal que $t \Rightarrow_{\beta} s' \twoheadrightarrow_{\eta} u$, donde \Rightarrow_{β} es la reducción en simultáneo.

Ejercicio 15. Exhibir términos con las características pedidas:

- a) Un λ -término $B \in \Lambda$ tal que $B f g t \rightarrow_{\beta} f (g t)$ para todo $f, g, t \in \Lambda$.
- b) Un combinador $B \in \mathcal{C}$ tal que $B f g t \rightarrow_{CL} f (g t)$ para todo $f, g, t \in \mathcal{C}$.
- c) Un λ -término $C \in \Lambda$ tal que $C f t s \rightarrow_{\beta} f s t$ para todo $f, t, s \in \Lambda$.
- d) Un combinador $C \in \mathcal{C}$ tal que $C f t s \rightarrow_{CL} f s t$ para todo $f, t, s \in \mathcal{C}$.

Ejercicio 16. Sean $I := \lambda x. x$ y $K := \lambda x. y. x$. Exhibir un término $F \in \Lambda$ tal que $F I =_{\beta} x$ y $F K =_{\beta} y$.

Ejercicio 17. Demostrar que el λ -término $\Theta := (\lambda x. \lambda y. y (x x y))(\lambda x. \lambda y. y (x x y))$ es un combinador de punto fijo, es decir, que vale $t(\Theta t) =_{\beta} \Theta t$ para todo $t \in \Lambda$.

Ejercicio 18. Exhibir un término $t \in \Lambda$ tal que $x \notin fv(t)$ y $t =_{\beta} \lambda x. x t$.

Ejercicio 19. El teorema de punto fijo "simple" afirma que para todo $t \in \Lambda$ hay una solución a la ecuación $t \mathbf{X} =_{\beta} \mathbf{X}$, es decir, existe $s \in \Lambda$ tal que $t s =_{\beta} s$. Generalizar el teorema de punto fijo simple a la versión "múltiple", probando que para todo $t_1, \ldots, t_n \in \Lambda$ existen $s_1, \ldots, s_n \in \Lambda$ tales que $t_i s_1 \ldots s_n =_{\beta} s_i$ para todo $i \in 1..n$. Para ello usar el teorema de punto fijo simple para encontrar un término s que sea solución a la siguiente ecuación y definir s_i como $\pi_i(s)$:

$$X =_{\beta} \langle t_1 \pi_1(X) \dots \pi_n(X), \dots, t_n \pi_1(X) \dots \pi_n(X) \rangle$$

Ejercicio 20. Demostrar el teorema de punto fijo para lógica combinatoria, es decir, demostrar que para todo $a \in \mathcal{C}$ existe $b \in \mathcal{C}$ tal que $ab =_{\text{CL}} b$.

Ejercicio 21. Usando el hecho de que el cálculo- λ_{β} es confluente, demostrar que:

- a) No puede existir un término M tal que para todo $t, s \in \Lambda$ se tenga que $M(ts) =_{\beta} t$.
- b) No puede existir un término M tal que para todo $t, s \in \Lambda$ se tenga que $M(ts) = \beta s$.

Ejercicio 22. Demostrar la simulación del cálculo- λ en lógica combinatoria y viceversa usando las traducciones a_{λ} y t_{CL} definidas en clase. Más precisamente:

- a) Demostrar que si $a \to_{\text{CL}} b$ entonces $a_{\lambda} \twoheadrightarrow_{\beta} b_{\lambda}$.
- b) Demostrar que si $t \to_{\beta} s$ es un paso de reducción que se deriva sin usar la regla ξ (es decir, el redex no se encuentra bajo una λ -abstracción) entonces $t_{\text{CL}} \twoheadrightarrow_{\text{CL}} s_{\text{CL}}$.
- c) Dar un ejemplo en el que $t \to_{\beta} s$ pero no valga $t_{\text{CL}} \twoheadrightarrow_{\text{CL}} s_{\text{CL}}$.