PRÁCTICA 1: REESCRITURA ABSTRACTA

Muchas propiedades de un ARS $\mathcal{A} = (A, \to)$ se pueden expresar como inclusiones entre relaciones. Por ejemplo, la propiedad del diamante se puede expresar como la siguiente inclusión: $\longleftrightarrow \subseteq \to \leftarrow$. Esta inclusión afirma que para todo par de objetos $b, c \in A$ para los cuales existe un objeto $a \in A$ tal que $b \leftarrow a \rightarrow c$ se tiene que debe existir un objeto $d \in A$ tal que $b \rightarrow d \leftarrow c$. Esto se puede representar gráficamente con el diagrama:

Recordemos las siguientes definiciones sobre un ARS $\mathcal{A} = (A, \rightarrow)$, expresadas de esta manera:

- \rightarrow tiene la propiedad del diamante (\Diamond) si y sólo si $\longleftrightarrow \subseteq \to \leftarrow$.
- \rightarrow es localmente confluente ó débilmente Church-Rosser (WCR) si y sólo si $\leftarrow \rightarrow \subseteq \rightarrow \leftarrow$.
- \rightarrow es subconmutativa (WCR $^{\leq 1}$) si y sólo si $\leftarrow \rightarrow \subseteq \rightarrow^{=} \leftarrow^{=}$.
- \rightarrow es confluente si y sólo si $\longleftrightarrow \rightarrow \longleftrightarrow$.
- \rightarrow es Church-Rosser (CR) si y sólo si $\stackrel{*}{\leftrightarrow} \subseteq \twoheadrightarrow \leftarrow$.
- \rightarrow es creciente (Inc) si existe una función $|\cdot|:A\rightarrow\mathbb{N}$ tal que $a\rightarrow b$ implica |a|<|b| para todo $a,b\in A$.
- \rightarrow es decreciente (Dec) si existe una función $||\cdot||:A\rightarrow\mathbb{N}$ tal que $a\rightarrow b$ implica ||a||>||b|| para todo $a,b\in A$.
- \rightarrow es inductiva (Ind) sii para toda secuencia (finita o infinita) $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \dots$ existe un a tal que $a_i \twoheadrightarrow a$ para todo i.
- \mathcal{A} es de ramificación finita (FB) sii para todo $a \in A$ el conjunto $\{b \in A \mid a \to b\}$ es finito.
- \mathcal{A} es globalmente finito (GF) sii para todo $a \in A$ el conjunto $\{b \in A \mid a \twoheadrightarrow b\}$ es finito.
- \rightarrow es débilmente normalizante (WN) si para todo objeto $a \in A$ existe un $b \in A$ en forma normal tal que $a \twoheadrightarrow b$.
- \rightarrow es fuertemente normalizante (SN) si no existe una secuencia infinita $a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \dots$
- \rightarrow tiene la propiedad de forma normal (NF) si para todo par de objetos $a, b \in A$ tales que si $a \stackrel{*}{\leftrightarrow} b$ con b en forma normal se tiene que $a \twoheadrightarrow b$.
- \rightarrow tiene la propiedad de *única forma normal* (UN) si para todo par de objetos $a, b \in A$ tales que si $a \stackrel{*}{\leftrightarrow} b$ con a, b en forma normal se tiene que a = b.

.....

Ejercicio 1. Sea $A = (A, \rightarrow)$ un ARS. Demostrar:

- $a) \rightarrow = = \rightarrow$
- b) $\rightarrow * = \rightarrow$
- c) Si $\rightarrow_1 \subseteq \rightarrow_2$ entonces $\twoheadrightarrow_1 \subseteq \twoheadrightarrow_2$.
- d) $(\rightarrow^{=})^{*} = \rightarrow$
- $e) \rightarrow \gg = \gg$

Ejercicio 2. Sea $\mathcal{A} = (A, \to)$ un ARS. Dada una relación binaria $R \subseteq A \times A$, probar que son equivalentes:

a)
$$R = \bigcup_{n \ge 0} \xrightarrow{n}$$

- b) R es la relación reflexiva—transitiva más chica¹ que incluye a \rightarrow .
- c) R es la intersección de todas las relaciones reflexivas y transitivas que incluyen a \rightarrow .

Nota: se pueden probar resultados análogos para las clausuras transitiva (\to^+) , reflexiva (\to^-) , simétrica (\leftrightarrow) , etc.

Ejercicio 3. Demostrar que:

- a) $CR \implies NF$
- b) $CR \implies UN$
- c) $UN \wedge WN \implies CR$
- d) $UN \wedge WN \implies Ind$
- e) Ind \wedge Inc \Longrightarrow SN

Ejercicio 4. Demostrar que las siguientes implicaciones no valen en general para ARSs.

- a) $WN \wedge WCR \implies CR$
- b) WN \wedge CR \Longrightarrow SN

Ejercicio 5. Demostrar que:

- a) $\Diamond(\to) \implies CR(\twoheadrightarrow)$.
- b) $CR(\rightarrow) \iff CR(\rightarrow)$.

Ejercicio 6. Demostrar que la propiedad de confluencia es equivalente a la propiedad de Church-Rosser. Para la implicación "confluente \implies CR", observar que $a \stackrel{*}{\leftrightarrow} b$ si y sólo si $a \stackrel{n}{\leftrightarrow} b$ para algún $n \in \mathbb{N}_0$ y proceder por inducción en n.

Ejercicio 7. Demostrar la implicación $WCR^{\leq 1} \implies CR$.

Ejercicio 8. (Confluencia por interpretación) Sean $\mathcal{A} = (A, \to_1)$ y $\mathcal{B} = (B, \to_2)$ sistemas de reescritura abstractos tales que \mathcal{B} es CR, $B \subseteq A$ y $\to_2 \subseteq \to_1$. Sea $[\cdot]: A \to B$ una función (llamada "función de interpretación") tal que $a \to_1 [a]$ para todo objeto $a \in A$, y tal que $a \to_1 a'$ implica $[a] \to_2 [a']$ para todo par de objetos $a, a' \in A$. Demostrar que \mathcal{A} es CR.

Ejercicio 9. (Lema de Newman). En un ARS $\mathcal{A} = (A, \rightarrow)$ un objeto $a \in A$ se dice *ambiguo* si reduce a dos formas normales distintas, es decir, si existen $b, c \in A$ en forma normal tales que $b \neq c$ y además $a \rightarrow b$ y $a \rightarrow c$.

- a) Suponiendo que \mathcal{A} es WCR y SN, demostrar que todo objeto ambiguo tiene un reducto ambiguo, es decir, si $a \in A$ es ambiguo existe $a' \in A$ ambiguo tal que $a \to a'$.
- b) Concluir que si \mathcal{A} es WCR y SN no pueden existir objetos ambiguos.
- c) Concluir que si \mathcal{A} es WCR y SN debe ser necesariamente CR.

Este teorema se resume: "SN+WCR \implies CR".

Ejercicio 10. (Klop-Nederpelt) En este ejercicio suponemos que trabajamos en un ARS \mathcal{A} que es débilmente normalizante (WN), localmente confluente (WCR) y creciente (Inc).

- a) Demostrar que para todo $a,b,c\in A$ tales que $a\twoheadrightarrow b$ y $a\twoheadrightarrow c$, donde b está en forma normal, se tiene que $c\twoheadrightarrow b$.
- b) Usando el ítem anterior, probar que \mathcal{A} es decreciente (Dec).
- c) Concluir que \mathcal{A} es SN.
- d) Usando el lema de Newman, concluir que \mathcal{A} es también CR.

¹ "Más chica" en el sentido de la inclusión.

Este resultado se atribuye a Klop y Nederpelt y se resume: "WN+WCR+Inc \implies SN+CR".

Ejercicio 11. Demostrar que en un ARS \mathcal{A} los dos siguientes principios son equivalentes:

i) Principio de inducción bien fundada:

$$\frac{\forall a \in A. \ (\forall b \in A. \ a \to b \implies P(b)) \implies P(a)}{\forall a \in A. \ P(a)}$$

ii) Principio de inducción bien fundada "global":

$$\frac{\forall a \in A. (\forall b \in A. \ a \to^+ b \implies P(b)) \implies P(a)}{\forall a \in A. \ P(a)}$$

Ejercicio 12. (Lema de König) Demostrar que si un ARS \mathcal{A} es fuertemente normalizante (SN) y de ramificación finita (FB) entonces es globalmente finito (GF). Este lema a veces se enuncia del siguiente modo: "En todo árbol infinito de ramificación finita debe existir una rama infinita".

Concluir que si un ARS \mathcal{A} es SN y FB entonces para todo objeto $a \in A$ el conjunto $\{n \in \mathbb{N}_0 \mid \exists b \in A.\ a \to^n b\}$ está acotado superiormente.

Ejercicio 13. Sean $\to_1, \to_2 \subseteq A \times A$ relaciones binarias en A tales que $\twoheadrightarrow_2 \to_1 \subseteq \to_1^+ \twoheadrightarrow_2$. (Es decir, si cada vez que se tiene $a \twoheadrightarrow_2 b \to_1 c$ existe un $d \in A$ tal que $a \to_1^+ d \twoheadrightarrow_2 c$). Demostrar que si $\to_1 y \to_2$ son SN entonces $(\to_1 \cup \to_2)$ es SN.

Ejercicio 14. Demostrar que si la composición $\rightarrow_1 \rightarrow_2$ tiene la propiedad del diamante entonces $\rightarrow_{12} := \rightarrow_1 \cup \rightarrow_2$ es confluente.

Ejercicio 15. Sean \rightarrow_1 y \rightarrow_2 tales que $\leftarrow_1 \rightarrow_2 \subseteq \stackrel{*}{\leftrightarrow}_2 \leftarrow_1$.

- a) Demostrar que $\leftarrow_1 \stackrel{*}{\leftrightarrow}_2 \subseteq \stackrel{*}{\leftrightarrow}_2 \leftarrow_1$. Sugerencia: proceder por inducción en la cantidad de pasos de " \leftarrow_1 ".
- b) Suponiendo que $CR(\to_1)$ y $CR(\to_2)$, demostrar que $CR(\to_{12})$, donde $\to_{12} := \to_1 \cup \to_2$. Sugerencia: demostrar que la composición $\to_1 \to \to_2$ tiene la propiedad del diamante y usar el resultado ya probado anteriormente.