Reescritura, Cálculo- λ y Tipos

Departamento de Computación, FCEyN, UBA

2023c2 — RECUPERATORIO DEL SEGUNDO PARCIAL

1	2	3	4	Nota

Ejercicio 1. Determinar si la siguiente afirmación es verdadera o falsa y justificar: si $ts =_{\beta} I$ entonces existe un término t' tal que $t =_{\beta} \lambda x. t'$.

Ejercicio 2. Si t es un término del cálculo- λ sin tipos y $n \in \mathbb{N}$, escribimos t^n para la operación definida recursivamente del siguiente modo:

$$t^n \stackrel{\text{def}}{=} \begin{cases} t & \text{si } n = 1\\ t^{n-1} t & \text{si } n > 1 \end{cases}$$

Por ejemplo, $t^3 = t t t$. Demostrar que existe un término t tal que para todo $n \in \mathbb{N}$ se tiene que $t =_{\beta} t^n$.

Ejercicio 3. Decimos que un tipo A está habitado si existe un término t tal que vale $\vdash t : A$ (bajo el contexto vacío). Decimos que un tipo está deshabitado si no está habitado. Demostrar que si A_1, \ldots, A_n son tipos habitados y B es un tipo deshabitado entonces no existe un término s tal que $x_1 : A_1, \ldots, x_n : A_n \vdash s : B$.

Ejercicio 4. Sean t y s términos tales que:

$$t \to_{\beta}^* x s$$
 y $s \to_{\beta}^* y t$

Demostrar que t no es tipable.