1a	1b	2a	2b	3	Nota

Ejercicio 1. En el cálculo- λ sin tipos, decidir si cada una de las siguientes afirmaciones es verdadera o falsa y justificar:

- a) Existe un término $t \in \Lambda$ tal que para todo $s \in \Lambda$ se tiene que $t = \beta s t$.
- b) Existe un término $t \in \Lambda$ tal que para todo $s \in \Lambda$ se tiene que $t =_{\beta} s t$.

Ejercicio 2. En el cálculo- λ simplemente tipado, decidir si cada una de las siguientes afirmaciones es verdadera o falsa y justificar:

- a) Existe un término cerrado de tipo $(\alpha \to \alpha \to \alpha) \to \alpha$.
- b) Existe un término cerrado de tipo $((\alpha \to \alpha) \to \alpha) \to \alpha$.

Nota. La letra α denota un tipo atómico.

Ejercicio 3. Considerar la siguiente familia de términos $(t_n)_{n\in\mathbb{N}}$ definida inductivamente:

$$t_0 = z$$
 $t_{n+1} = (\lambda f. f(f t_n)) F$

donde $F = \lambda x. K x x y K = \lambda x. \lambda y. x$. Probar que t_n es SN para todo $n \in \mathbb{N}_0$.

Sugerencia. Usar algún teorema que asegure la propiedad de SN, sin recurrir a una medida explícita de terminación.