Práctica 8: Algoritmos sobre palabras

Aclaración: se usan como sinónimos los términos "string", "palabra", "cadena", "texto" y "cadena de texto". Una palabra no es otra cosa que una lista símbolos de algún alfabeto. Los símbolos a veces también se llaman "letras" o "caracteres".

Ejercitación básica

Ejercicio 1. (Árboles digitales). Consideremos el alfabeto $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ de los dígitos decimales. Dado un número entero $n \geq 0$, podemos pensarlo como una palabra sobre el alfabeto Σ si lo escribimos en su representación decimal, sin 0s a la izquierda.

Diseñar e implementar en Python un diccionario cuyas claves sean números enteros no negativos, con las siguientes operaciones:

- a) Insertar una clave numérica, asociándola a un valor.
- b) Buscar una clave numérica, determinando si está presente y encontrando el valor que tiene asociado, si lo hay.

El diccionario debe estar implementado sobre un **trie** sobre el alfabeto Σ . ¿Cuáles son las complejidades de las operaciones? ¿Cómo se relacionan con los costos de insertar y buscar en un AVL?

Ejercicio 2. Se tiene un texto fijo de longitud n sobre el que se quieren hacer muchas consultas. Cada consulta consiste en buscar una palabra de longitud entre 1 y 10 para determinar si aparece o no en el texto. Proponer una estructura de datos que permita:

- a) Preprocesar el texto, construyendo una estructura de datos auxiliar en tiempo O(n) en peor caso.
- b) Consultar si una palabra aparece en el texto, aprovechando la estructura de datos auxiliar, en tiempo O(1) en peor caso.

Ejercicio 3. Diseñar e implementar en Python un algoritmo que reciba como entrada un diccionario representado sobre un trie, y devuelva como salida la lista de todas las claves definidas en el diccionario.

Ejercicio 4. Sean Σ^* un alfabeto y $w_1, \ldots, w_n \in \Sigma^*$ palabras sobre ese alfabeto. Escribimos |w| para denotar la longitud de una palabra w. Llamamos L a la longitud total del texto, es decir $L = \sum_{i=1}^{n} |w_i|$. Diseñar un algoritmo para determinar si hay palabras repetidas en la lista con complejidad temporal O(L) en peor caso.

Ejercitación adicional

Ejercicio 5. Se quiere diseñar una estructura de datos que represente un diccionario cuyas claves son strings. Las operaciones de inserción, búsqueda y eliminación son las usuales. Se desea agregar una operación $\verb|#mayores|(d,w)$ que, dado un diccionario d y una palabra w, determine la cantidad de claves del diccionario d que son estrictamente más grandes que x. Las palabras se comparan de acuerdo con el orden lexicográfico, es decir, el orden usual del diccionario. Por ejemplo:

Si el diccionario d contiene como claves a las 5 palabras de arriba, entonces #mayores(d, "verbo") = 2. Proponer una modificación en la estructura del trie y en los algoritmos que permitan implementar la operación #mayores(d, w) en tiempo O(m) en peor caso, donde m = |w| es la longitud de la palabra en cuestión.

Ejercicio 6. Se tiene una lista de palabras fija $\{w_1, \ldots, w_k\}$ sobre la que se quieren hacer muchas consultas. Sabemos que cada palabra es de longitud entre 1 y 10. Cada consulta consiste en recibir un texto de longitud n y determinar si **alguna** de las palabras de la lista w_1, \ldots, w_k aparece en el texto al menos una vez. Proponer una estructura de datos que permita:

- a) Preprocesar la lista de palabras, construyendo una estructura de datos auxiliar en tiempo O(k).
- b) Recibir un texto de longitud n y determinar si alguna de las palabras aparece en el texto, usando la estructura de datos auxiliar, en tiempo O(n) en peor caso.

Ejercicio 7. Considerar la siguiente variante del ejercicio anterior: dado un texto de longitud n, se quiere determinar ahora si **todas** las palabras de la lista w_1, \ldots, w_k aparecen en el texto al menos una vez. Mostrar que es posible hacerlo con las mismas complejidades del ejercicio anterior.