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CBN | arbitrary terms arbitrary terms

CBV | values values

CBNd | values arbitrary terms
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Unifying frameworks

Languages that subsume other languages as special cases.

Examples
» The parametric A-calculus Della Rocca & Paolini
» Call-by-push-value Levy
> The Bang Calculus Ehrhard & Guerrieri
Motivations

» Explanation of operational mechanisms through simpler primitives.
» Logical justification for operational mechanisms.

» Tackle questions in a uniform and methodical way.
What is the right notion of strong CBNd?
What is the right notion of classical CBNd?
What is the right quantitative type system for strong CBNd?

» Generalize the metatheory to prove theorems only once.

The frameworks above subsume CBN and CBV but not CBNd.
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Linear logic and reduction strategies

Embeddings of intuitionistic into linear logic correspond to notions of
reduction.
Folklore; made precise by Mackie (1994), Wadler et al. (1995)

Girard's "standard” translation

(A= B)N = (1AN) — BN

Sound and complete for CBN. t—hs iff N = sY
Girard's “boring” translation

(A= B)Y = I(AY - BY)
Sound (but not complete) for CBV.  t =¥ s  implies tV —;, sV

Completeness fails: (idts)Y —7;, (ts)V.
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Linear logic and reduction strategies

A call-by-need translation
Wadler et al. also studied a CBNd translation:

(A— BN = 1(AN — BNd)

Same as the CBV translation
But the target language is an affine rather than a linear A-calculus.

Arbitrary terms may be erased, even if they are not “values” yet.

Sound (but not complete) for CBNd.

t —ngs  implies Nd

tNd x5
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Goal of this work

Diagnosis
The exponential modalities confuse two different notions:
1. Ability to make copies of shared subterms.
2. Ability to duplicate and erase references to shared subterms.

duplicating a reference # copying

Goal

1. Refine Linear Logic to distinguish between these two notions.
2. Derive a term calculus unifying CBN, CBV, and CBNd.
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MELL
Ai=a|a | A9A| ABA|IA|?A

FILA A AL
N

FT,A FA,B FT,A B N FMAL
® !
FT,AA®B  FTLA®B  FM,IA

FT FT,7A,7A FTLA
W c d
FT,7A FI,7A FT,7A

Structural rules have two possible computational interpretations.

These interpretations are not equivalent if one is interested in sharing.
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Computational interpretation of structural rules

The cloning interpretation

Contraction: duplicate box

1 [ ]
74 74 fL 74 A JL
L e |
A q) A
)lA 1AL o 1A+ o

10



Computational interpretation of structural rules

The cloning interpretation

Dereliction: unbox

A Al A AL
09—t
74 1A+ T
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Computational interpretation of structural rules

The sharing interpretation

Consider a generalized notion of cut:

A At 7A ... 7A 1A+

o’

A cutx node connects n > 0 proofs of ?A and a shared proof of IA+.
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Computational interpretation of structural rules

The sharing interpretation

Weakening: erase a reference to a shared box
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Computational interpretation of structural rules

The sharing interpretation

Contraction: duplicate a reference to a shared box
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Computational interpretation of structural rules

The sharing interpretation
Dereliction: copy box (duplicate & unbox)

|
A AL
l
A
24 .. 74 74 1A+ o
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Computational interpretation of structural rules

The sharing interpretation

Garbage collection: erase box

1A+ 2T ks

12



Computational interpretation of structural rules

Summary
Cloning Sharing
Weakening erase box erase reference
Contraction duplicate box  duplicate reference
Dereliction unbox copy box (duplicate & unbox)
(Garbage collection) erase box
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Computational interpretation of structural rules

Summary
Cloning Sharing
Weakening erase box erase reference
Contraction duplicate box  duplicate reference
Dereliction unbox copy box (duplicate & unbox)
(Garbage collection) erase box

CBNd cannot copy arbitrary shared subterms.

To understand CBNd:
» We adopt the point of view of sharing.

» To restrict duplication of boxes:
we consider a variant of MELL with restricted dereliction.

13
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Linear sharing logic (MELL,)

14



MELL,

Formulae are extended with two operators e and o.
Ai=a|a|AQA | ABA|IA|2A | oA | oA
(sA)" =oA"  (oA): = A"

15



MELL,

Formulae are extended with two operators e and o.

Ac=a |a| AQA| ABA|IA|2A | A | oA

(eA) =oAL (cA)t = oAt

Two new rules:
FT,A FT,A
[ ]

FT eA FT,0A

) )

o

15



MELL,

Formulae are extended with two operators e and o.
Ac=a |a| AQA| ABA|IA|2A | A | oA
(eA) =oAL (cA)t = oAt
Two new rules: A A
FT,eA * FT,0A

)

o

The dereliction rule is replaced by:
FT,0A
—d
FT,70A

(¢]

15



MELL,

Formulae are extended with two operators e and o.
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(eA) =oAL (cA)t = oAt
Two new rules: A A
FT,eA * FT,0A

)

o

The dereliction rule is replaced by:
FT,0A
—d
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(¢]

Example

FA0AL  FAT0AL 1A 720AL
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Ac=a |a| AQA| ABA|IA|2A | A | oA

(sA)" =oA"  (oA): = A"
Two new rules:
T, A T, A
[ ]
FT,eA FT,0A

)

o

The dereliction rule is replaced by:
FT,0A
FT,70A

do

Example
FA AL FAT0AT  HIA 70AL K AAL
A oo eA but 1A oo e A

KA AL
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MELL,

Formulae are extended with two operators e and o.
Ac=a |a| AQA| ABA|IA|2A | A | oA
(eA) =oAL (cA)t = oAt
Two new rules: A A
FT,eA * FT,0A

)

o

The dereliction rule is replaced by:
FT,0A
—F—d
FT,70A

(¢]

Example
FA AT FA AN FIA70AY K ATAL KFIAPAL
A oo oA but 1A oto le A I 'and ? are not monotonic

15



Intuition: a box may be copied only if there is a ® node immediately
next to the promotion node.

70A ... 70A 7A leA+ 7T

16



MELL,

Theorem (Cut elimination)

For any MELL, proof there is a cut-free proof of the same conclusion.
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MELL,

Theorem (Cut elimination)
For any MELL, proof there is a cut-free proof of the same conclusion.
Proof.

1. Extend MELL, with the (admissible) cut* rule.

2. Prove cut + cut* elimination.

17



MELL,

Theorem (Conservative extension)

F T holds in MELL  if and only if  FT* holds in MELL,

where [* :=T{! — lo, 7 70}.

18



MELL,

Theorem (Conservative extension)

F T holds in MELL  if and only if  FT* holds in MELL,
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MELL,

Theorem (Conservative extension)

F T holds in MELL  if and only if  FT* holds in MELL,

where [* :=T{! — lo, 7 70}.

Proof.
(=) The following rules are admissible in MELL,:
F 7ol A FT FT,70A, 70A FIA

le Tow ?0¢ ?0d
F 70l leA FT,70A FT,70A FT,70A

(<) Any MELL, proof is valid in MELL erasing e and o.

MELL, refines MELL.

18
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The linear sharing A-calculus (\°)
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The linear sharing A-calculus

MELL, suggests the definition of a term
1. Many linear A-calculi
2. The Linear Substitution Calculus
3. The Bang Calculus

calculus, inspired also by:
Lafont, Wadler, Pfenning, ...
Accattoli & Kesner

Ehrhard & Guerrieri
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The linear sharing A-calculus

MELL, suggests the definition of a term calculus, inspired also by:

1. Many linear A-calculi Lafont, Wadler, Pfenning, ...
2. The Linear Substitution Calculus Accattoli & Kesner
3. The Bang Calculus Ehrhard & Guerrieri

Syntax of terms

t = a | x (linear vs. unrestricted variables)
| Xa.t | ts (abstractions bind linear variables)
| ot | o(t)
| e | t[x\s] (ESs bind unrestricted variables)

20



The linear sharing A-calculus — Type system

Types and typing judgments

Ai=a|A—B|eA|lA

(1) Types in A are implicitly prefixed by le. (2) I is treated linearly.
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(1) Types in A are implicitly prefixed by le. (2) I is treated linearly.

Typing rules
ax der
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The linear sharing A-calculus — Type system

Types and typing judgments

Ai=a|A—B|eA|lA

(1) Types in A are implicitly prefixed by le. (2) I is treated linearly.

Typing rules
ax der
A;a:Aka: A A x: A -Fx:eA
A;T,a:AFt: B ATiHFt:A—B A;l+-s:B
—oi —oe
A;THXNat:A—oB ATy, ToFts: B

ATHE:A A;THELE:eA
oi oc
A;THet:eA A;THo(t): A

A -Ft: A Ax:ATiFt:B A;Tr,Es:leA
i lee

A1t 1A ATy, Ta - t[x\s]: B

21
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Substitution contexts

L:=0|L[x\¢] tL plugs t in L

Reduction rules (without “L" contexts)

(Aa.t)s —ean  t{a\s}
o(et) —eopen t
Cix)x\let] =5 Clot)[x\let]
tix\!s] —egc if x ¢ fv(t)
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The linear sharing A-calculus — Reduction
Substitution contexts
L :=0|L[x\¢] tL plugs t in L

Reduction rules

(MAa.t)Ls —eap  t{a\s}L
o((et)L) —recpen L
C{x)[x\(!(®t)L1)La] —eis C{(et)L1)[x\!(et)L1]Lo
txX\('s)L] —egc  tL if x & fv(t)
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The linear sharing A-calculus — Reduction

Substitution contexts

L :=0|L[x\¢] tL plugs t in L
Reduction rules

(MAa.t)Ls —eap  t{a\s}L
o((et)L) —recpen L
C{x)[x\(!(®t)L1)La] —eis C{(et)L1)[x\!(et)L1]Lo
txX\('s)L] —egc  tL if x & fv(t)

Example
o(x[x\'ey]) —eis o((ey)[x\!®y]) —ecpen y[x\!oy] —agc ¥

z[x\y] and x[x\!y] are normal forms

22



Basic properties

Proposition (Soundness wrt MELL,)
If A:TF t: Athen - 20AL, T, A in MELL,.
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Basic properties

Proposition (Soundness wrt MELL,)
If A:TF t: Athen - 20AL, T, A in MELL,.

Proposition (Subject reduction)
fFA;THt:Aand t — s then A;T Fs: A

23
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Confluence

Harder than we expected.

First attempt
Apply Tait—Martin-L&f’s technique. (= C=C ="+ 0(=)
Defining an inductive notion of simulatenous reduction = is very difficult.

Second attempt

Use techniques based on residuals (Lévy, Huet, Melliés). FD + PERM
PERM fails:

2ZDA\ly]\(let)L] —> z[x\let][y\let]L

.gcjl Ogci/

z[y\('et)L] z[y\let]L

4



Confluence

Definition (Structural equivalence)

Structural equivalence is the congruence generated by:

tx\sly\r]] = thx\s][y\r]

Lemma (Strong bisimulation)
(==)C (==

Theorem (Confluence)
A® is CR up to =: FD + PERM

IO\

4 5

t3 = t}

25
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Fact. Simply typed LSC is SN.  (db-expansion + SN of STLC + PSN)
Idea. From t; —¢ t2 —> ... obtain [t1] —sc [22] —isc - - --
Problem: mismatch between —, and — .. reduction

x[x\('et)L] —o¢ (ot)[x\!ot]L
x[x\tL] —ise  (tL)[x\tL] = t[x\t]L
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Normalization of typable terms
The Linear Substitution Calculus (LSC)
(Ax. t)Ls —gp t[X\S]L  C(x)[x\t] —=s C(t)[x\t]
th\s] —gc t (x & fv(t))
Fact. Simply typed LSC is SN.  (db-expansion + SN of STLC + PSN)
Idea. From t; —¢ t2 —> ... obtain [t1] —sc [22] —isc - - --
Problem: mismatch between —, and — .. reduction

x[x\('et)L] —o¢ (ot)[x\!ot]L
x[x\tL] —ise  (tL)[x\tL] = ¢t[x\t]L

Definition (Fusion)

t\slx\s] = t{y\x}[x\s]
ctl\sl) = c(t)x\s]

Lemma (Postponement)
(3—>Isc) g (_>Isc3)

26



Normalization of typable terms

Theorem (Strong normalization)
The typed A®-calculus is SN.
Proof.
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Normalization of typable terms

Theorem (Strong normalization)
The typed A®-calculus is SN.
Proof. Translate typable \*® terms to typable LSC terms:

[A— B] :=[A] — [B] [eA] =% — [A]l ['Al = [Al
[a] = a x] = x
[Aa.t] = Aa.[t] [ts] = T[tllsl
[et] := Xz.[t] (z fresh) [e()] = [t
['d = [ [tb\sIl = [e]DALST]

1. Map an infinite t; —¢ t2 —e ... to [t1] —1sc= [t2] —1sc= - -
2. Postpone = to obtain an infinite reduction sequence in LSC.

(Strictly speaking, we also need to postpone —egc).

27
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Notions of reduction

A zoo of rewriting rules
Values v := Ax.t Lax values v':=x|Ax.t

(/\X. t)L S —db t[X\S]L
b\ e (o
C{x)[x\VL] —ie  C{v)[x\V]L
C(x)[x\Vv'L] —sv+ C(v")[x\v']L
C(x)[X\VL] —svx C(vL)[x\VvL]
tlx\s] —gc t if x ¢ fv(t)
t[x\v'L] —gev+ tL if x ¢ fv(t)



Notions of reduction

A zoo of rewriting rules
Values v := Ax.t Lax values v':=x|Ax.t

(Ax.t)Ls —ap  t[x\s]L
Cix)x\t] —us c(t)[x\t]

C(x)[x\VL] —sv  C(v)[x\V]L
C(x)[x\Vv'L] —sv+ C(v")[x\v']L
C{x)[x\VL] —isvx C(VL)[x\VvL]
tlx\s] —gc t if x ¢ fv(t)
tix\v'L] —gevs tL if x ¢ fv(t)

Definition: notions of CBN, CBV, and CBNd

=N = —db U s U —gc
—v = —db U sy U —gev+ —v+ 1= —db U sy U —gev+

—Nd ‘= —db U sy U g —Ndx ‘= —db U isux U —gc

29



Embedding CBN, CBV, CBNd

CBN

CBV*

CBvV

CBNd*

CBNd

leA — B

leA — leB

leA — leB

leA — B
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Embedding CBN, CBV, CBNd

CBN CBV* CBV CBNd* | CBNd
A— B | leA—oB | leA—leB | leA-—oleB | leA—eB -
X o(x) leo(x) Ix X -
Ax.t || Aa.t[x\a] | leda. t[x\a] | lera. t[x\a] | eAa. t[x\a] -
ts t(les) o(x)[x\t]s | o(x)[x\t]s | oft)(!s) -
t[x\s] t[x\les] t[x\s] t[x\s] t[x\!s] -
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Embedding CBN, CBV, CBNd

CBN CBV* CBV CBNd* | CBNd
A— B | leA—oB | leA—leB | leA-—oleB | leA—eB -
X o(x) leo(x) Ix X -
Ax.t || Aa.t[x\a] | leda. t[x\a] | lera. t[x\a] | eAa. t[x\a] -
ts t(les) o(x)[x\t]s | o(x)[x\t]s | oft)(!s) -
t[x\s] t[x\les] t[x\s] t[x\s] t[x\!s] -

Theorem (Soundness/completeness)

The above embeddings are:

CBN
CBV*
CBV
CBNd*
CBNd

Sound and complete for reduction.

Sound for reduction but not complete.
Sound for reduction and complete for equality.
Sound and complete for reduction.
(Does not seem possible)



Embedding the Bang calculus
The Bang Calculus (Bucciarelli et al.’s Al with linear subst.)
Ai=al|lA|'/A= B tu=x|Ax.t]ts]|!t]der(t)] t[x\s]

(Ax.t)Ls —qp t[x\s]L
Cx)x\('s)L] —is  C{s)[x\!s]L
tix\(!s)L] —ga tL if x ¢ fu(t)
der((!t)L) —d! tL
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Embedding the Bang calculus

The Bang CEIICU'US (Bucciarelli et al.’s Al with linear subst.)
Ai=al|lA|'/A= B tu=x|Ax.t]ts]|!t]der(t)] t[x\s]
(Ax.t)Ls —qp t[x\s]L
Cx)x\('s)L] —is  C{s)[x\!s]L
tix\(!s)L] —ga tL if x ¢ fu(t)
der((!t)L) —d! tL

Theorem
The following embedding is sound and complete for reduction, up to
identifying der(t) = x[x\t]:

1A — le A
IA—-B +— leA—oB
X — o(x)
Ax.t = da tx\4]
ts — ts
It —> lot
t[x\s] t[x\s]
der(t) +— o(x)[x\¢]
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Strategies

The embeddings above are for calculi. We are also working on
embedding strategies.

32



Strategies

The embeddings above are for calculi. We are also working on
embedding strategies.

|dea
t[x\s] ~> evaluate inside s until the outermost !... appears
t[x\!s] ~> evaluate t until x is needed

(..x..)[x\!s] ~» evaluate inside s until the outermost e... appears

(...x...)[x\les] ~- perform the substitution

32



Strategies

The embeddings above are for calculi. We are also working on
embedding strategies.

|dea
t[x\s] ~> evaluate inside s until the outermost !... appears
t[x\!s] ~> evaluate t until x is needed

(..x..)[x\!s] ~» evaluate inside s until the outermost e... appears

(...x...)[x\les] ~- perform the substitution

CBN CBvV CBNd*
t[x\'es] t[x\s] t[x\!s]
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Outline

Conclusion
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Conclusion

Summary
» MELL,: a variant of MELL with restricted dereliction.

» )\°*: a derived linear A-calculus with controlled sharing.
» Embeddings of CBN, CBV, CBNd, Bang calculus.
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Conclusion

Summary
» MELL,: a variant of MELL with restricted dereliction.

» )\°*: a derived linear A-calculus with controlled sharing.
» Embeddings of CBN, CBV, CBNd, Bang calculus.

Ongoing/future work

» Embeddings of families of strategies: weak, head, open, strong, etc.

» MELL,: proof nets.
In this talk, proof nets were used just for intuition.
Cut elimination in sequent calculus MELL, does not actually share.

» MELL,: models.
E.g. adapting phase or coherence semantics is not obvious.

» Theory of \*: confluence, standardization, solvability, etc.
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