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Unifying frameworks
Languages that subsume other languages as special cases.

Examples
I The parametric λ-calculus Della Rocca & Paolini

I Call-by-push-value Levy

I The Bang Calculus Ehrhard & Guerrieri

Motivations
I Explanation of operational mechanisms through simpler primitives.
I Logical justification for operational mechanisms.
I Tackle questions in a uniform and methodical way.

What is the right notion of strong CBNd?
What is the right notion of classical CBNd?

What is the right quantitative type system for strong CBNd?
I Generalize the metatheory to prove theorems only once.

The frameworks above subsume CBN and CBV but not CBNd.
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Linear logic and reduction strategies

Embeddings of intuitionistic into linear logic correspond to notions of
reduction.

Folklore; made precise by Mackie (1994), Wadler et al. (1995)

Girard’s “standard” translation

(A→ B)N := (!AN)( BN

Sound and complete for CBN. t →∗N s iff tN →∗Lin sN

Girard’s “boring” translation

(A→ B)V := !(AV ( BV)

Sound (but not complete) for CBV. t →∗V s implies tV →∗Lin sV

Completeness fails: (id t s)V →∗Lin (t s)V.
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Linear logic and reduction strategies

A call-by-need translation
Wadler et al. also studied a CBNd translation:

(A→ B)Nd := !(ANd ( BNd)

Same as the CBV translation
But the target language is an affine rather than a linear λ-calculus.

Arbitrary terms may be erased, even if they are not “values” yet.

Sound (but not complete) for CBNd.
t →∗Nd s implies tNd →∗Aff sNd
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Goal of this work

Diagnosis
The exponential modalities confuse two different notions:
1. Ability to make copies of shared subterms.
2. Ability to duplicate and erase references to shared subterms.

duplicating a reference 6= copying

Goal
1. Refine Linear Logic to distinguish between these two notions.
2. Derive a term calculus unifying CBN, CBV, and CBNd.
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MELL

A ::= α | α | A⊗ A | A` A | !A | ?A

ax
` A,A⊥

` Γ,A ` ∆,A⊥

cut
` Γ,∆

` Γ,A ` ∆,B
⊗

` Γ,∆,A⊗ B

` Γ,A,B `
` Γ,A` B

` ?Γ,A
!

` ?Γ, !A

` Γ
w

` Γ, ?A

` Γ, ?A, ?A
c

` Γ, ?A

` Γ,A
d

` Γ, ?A

Structural rules have two possible computational interpretations.

These interpretations are not equivalent if one is interested in sharing.
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Computational interpretation of structural rules

The cloning interpretation
Weakening: erase box
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Computational interpretation of structural rules

The cloning interpretation
Contraction: duplicate box
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Computational interpretation of structural rules

The cloning interpretation
Dereliction: unbox
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Computational interpretation of structural rules

The sharing interpretation

Consider a generalized notion of cut:

A cut∗ node connects n ≥ 0 proofs of ?A and a shared proof of !A⊥.



12

Computational interpretation of structural rules

The sharing interpretation
Weakening: erase a reference to a shared box
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Computational interpretation of structural rules

The sharing interpretation
Contraction: duplicate a reference to a shared box



12

Computational interpretation of structural rules

The sharing interpretation
Dereliction: copy box (duplicate & unbox)
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Computational interpretation of structural rules

The sharing interpretation
Garbage collection: erase box
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Computational interpretation of structural rules

Summary
Cloning Sharing

Weakening erase box erase reference

Contraction duplicate box duplicate reference

Dereliction unbox copy box (duplicate & unbox)

(Garbage collection) erase box

CBNd cannot copy arbitrary shared subterms.

To understand CBNd:
I We adopt the point of view of sharing.
I To restrict duplication of boxes:

we consider a variant of MELL with restricted dereliction.
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MELL•
Formulae are extended with two operators • and ◦.

A ::= α | α | A⊗ A | A` A | !A | ?A | •A | ◦A

(•A)⊥ = ◦A⊥ (◦A)⊥ = •A⊥

Two new rules:
` Γ,A

•
` Γ, •A

` Γ,A
◦

` Γ, ◦A

The dereliction rule is replaced by:

` Γ, ◦A
d◦

` Γ, ?◦A

Example

` A, ◦A⊥ ` A, ?◦A⊥ ` !A, ?◦A⊥ 0 A, ?A⊥ 0 !A, ?A⊥

A ˛ •A but !A „ !•A ! and ? are not monotonic
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Intuition: a box may be copied only if there is a • node immediately
next to the promotion node.
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MELL•

Theorem (Cut elimination)
For any MELL• proof there is a cut-free proof of the same conclusion.

Proof.
1. Extend MELL• with the (admissible) cut* rule.
2. Prove cut + cut* elimination.
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MELL•

Theorem (Conservative extension)

` Γ holds in MELL if and only if ` Γ• holds in MELL•

where Γ• := Γ{! 7→ !•, ? 7→ ?◦}.

Proof.
(⇒) The following rules are admissible in MELL•:

` ?◦Γ,A
!•

` ?◦Γ, !•A

` Γ
?◦w

` Γ, ?◦A

` Γ, ?◦A, ?◦A
?◦c

` Γ, ?◦A

` Γ,A
?◦d

` Γ, ?◦A

(⇐) Any MELL• proof is valid in MELL erasing • and ◦.

MELL• refines MELL.
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The linear sharing λ-calculus

MELL• suggests the definition of a term calculus, inspired also by:
1. Many linear λ-calculi Lafont, Wadler, Pfenning, ...

2. The Linear Substitution Calculus Accattoli & Kesner

3. The Bang Calculus Ehrhard & Guerrieri

Syntax of terms

t ::= a | x (linear vs. unrestricted variables)
| λa. t | t s (abstractions bind linear variables)
| •t | o(t)
| !t | t[x\s] (ESs bind unrestricted variables)
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The linear sharing λ-calculus — Type system

Types and typing judgments

A ::= α | A( B | •A | !A ∆; Γ ` t : A

(1) Types in ∆ are implicitly prefixed by !•. (2) Γ is treated linearly.

Typing rules
ax

∆; a : A ` a : A
der

∆, x : A; · ` x : •A

∆; Γ, a : A ` t : B
(i

∆; Γ ` λa. t : A( B

∆; Γ1 ` t : A( B ∆; Γ2 ` s : B
(e

∆; Γ1, Γ2 ` t s : B

∆; Γ ` t : A
•i

∆; Γ ` •t : •A
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The linear sharing λ-calculus — Reduction

Substitution contexts

L ::= � | L[x\t] tL plugs t in L

Reduction rules

Example
o(x [x\!•y ])→•ls o((•y)[x\!•y ])→•open y [x\!•y ]→•gc y

z [x\y ] and x [x\!y ] are normal forms
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Basic properties

Proposition (Soundness wrt MELL•)
If ∆; Γ ` t : A then ` ?◦∆⊥, Γ⊥,A in MELL•.

Proposition (Subject reduction)
If ∆; Γ ` t : A and t → s then ∆; Γ ` s : A.
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Confluence

Harder than we expected.

First attempt
Apply Tait–Martin-Löf’s technique. (→ ⊆⇒ ⊆→∗) + ♦(⇒)
Defining an inductive notion of simulatenous reduction ⇒ is very difficult.

Second attempt
Use techniques based on residuals (Lévy, Huet, Melliès). FD + PERM
PERM fails:

z[x\!y ][y\(!•t)L] •ls //

•gc
��

z[x\!•t][y\!•t]L
•gc
��

z[y\(!•t)L] z[y\!•t]L
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Confluence

Definition (Structural equivalence)
Structural equivalence is the congruence generated by:

t[x\s[y\r ]] ≡ t[x\s][y\r ]

Lemma (Strong bisimulation)
(≡→) ⊆ (→≡)

Theorem (Confluence)
λ• is CR up to ≡: FD + PERM

t

{{{{ ## ##
t1

�� ��

t2

����
t3 ≡ t ′3
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Normalization of typable terms

The Linear Substitution Calculus (LSC)
(λx . t)L s →db t[x\s]L C〈x〉[x\t]→ls C〈t〉[x\t]

t[x\s]→gc t (x /∈ fv(t))

Fact. Simply typed LSC is SN. (db-expansion + SN of STLC + PSN)
Idea. From t1 →• t2 →• . . . obtain [[t1]]→lsc [[t2]]→lsc . . ..

Problem: mismatch between →• and →lsc reduction
x [x\(!•t)L] →• (•t)[x\!•t]L
x [x\tL] →lsc (tL)[x\tL]

V t[x\t]L

Definition (Fusion)
t[y\s][x\s] V t{y\x}[x\s]
C〈t[x\s]〉 V C〈t〉[x\s]

Lemma (Postponement)
(V→lsc) ⊆ (→lscV)
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Normalization of typable terms

Theorem (Strong normalization)
The typed λ•-calculus is SN.
Proof.

Translate typable λ• terms to typable LSC terms:

[[A( B]] := [[A]]→ [[B]] [[ • A]] :=F→ [[A]] [[!A]] := [[A]]

[[a]] := a [[x ]] := x
[[λa. t]] := λa. [[t]] [[t s]] := [[t]] [[s]]

[[ • t]] := λz . [[t]] (z fresh) [[o(t)]] := [[t]] ∗
[[!t]] := [[t]] [[t[x\s]]] := [[t]][x\[[s]]]

1. Map an infinite t1 →• t2 →• . . . to [[t1]]→lscV [[t2]]→lscV . . ..
2. Postpone V to obtain an infinite reduction sequence in LSC.

(Strictly speaking, we also need to postpone →•gc).
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Notions of reduction

A zoo of rewriting rules

Values v ::= λx . t Lax values v+ ::= x | λx . t

(λx . t)L s →db t[x\s]L
C〈x〉[x\t] →ls C〈t〉[x\t]

C〈x〉[x\vL] →lsv C〈v〉[x\v]L
C〈x〉[x\v+L] →lsv+ C〈v+〉[x\v+]L
C〈x〉[x\vL] →lsv× C〈vL〉[x\vL]

t[x\s] →gc t if x /∈ fv(t)
t[x\v+L] →gcv+ tL if x /∈ fv(t)

Definition: notions of CBN, CBV, and CBNd

→N :=→db ∪ →ls ∪ →gc

→V :=→db ∪ →lsv ∪ →gcv+ →V+ :=→db ∪ →lsv+ ∪ →gcv+

→Nd :=→db ∪ →lsv ∪ →gc →Nd× :=→db ∪ →lsv× ∪ →gc
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Embedding CBN, CBV, CBNd

CBN CBV+ CBV CBNd× CBNd

A→ B !•A( B !•A( !•B !•A( !•B !•A( •B –

x o(x) !•o(x) !x x –
λx . t λa. t[x\a] !•λa. t[x\a] !•λa. t[x\a] •λa. t[x\a] –
t s t (!•s) o(x)[x\t] s o(x)[x\t] s o(t) (!s) –

t[x\s] t[x\!•s] t[x\s] t[x\s] t[x\!s] –

Theorem (Soundness/completeness)
The above embeddings are:

CBN Sound and complete for reduction.
CBV+ Sound for reduction but not complete.
CBV Sound for reduction and complete for equality.
CBNd× Sound and complete for reduction.
CBNd (Does not seem possible)
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Embedding the Bang calculus
The Bang Calculus (Bucciarelli et al.’s λ! with linear subst.)

A ::= α | !A | !A→ B t ::= x | λx . t | t s | !t | der(t) | t[x\s]

(λx . t)L s →db t[x\s]L
C〈x〉[x\(!s)L] →ls! C〈s〉[x\!s]L

t[x\(!s)L] →gc! tL if x /∈ fv(t)
der((!t)L) →d! tL

Theorem
The following embedding is sound and complete for reduction, up to
identifying der(t) ≡ x [x\t]:

!A 7→ !•A
!A→ B 7→ !•A( B

x 7→ o(x)
λx . t 7→ λa. t[x\a]
t s 7→ t s
!t 7→ !•t

t[x\s] 7→ t[x\s]
der(t) 7→ o(x)[x\t]
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Strategies

The embeddings above are for calculi. We are also working on
embedding strategies.

Idea

t[x\s]  evaluate inside s until the outermost !... appears

t[x\!s]  evaluate t until x is needed

(...x ...)[x\!s]  evaluate inside s until the outermost •... appears

(...x ...)[x\!•s]  perform the substitution

CBN CBV CBNd×

t[x\!•s] t[x\s] t[x\!s]
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Conclusion

Summary
I MELL•: a variant of MELL with restricted dereliction.
I λ•: a derived linear λ-calculus with controlled sharing.
I Embeddings of CBN, CBV, CBNd, Bang calculus.

Ongoing/future work
I Embeddings of families of strategies: weak, head, open, strong, etc.
I MELL•: proof nets.

In this talk, proof nets were used just for intuition.
Cut elimination in sequent calculus MELL• does not actually share.

I MELL•: models.
E.g. adapting phase or coherence semantics is not obvious.

I Theory of λ•: confluence, standardization, solvability, etc.
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