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The λ-calculus — some questions

The λ-calculus can express all computable functions.

The End ?
Can we implement β-reduction efficiently?

Evaluation strategies, abstract machines, optimal reduction, sharing, ...

Can we statically guarantee dynamic properties of λ-terms?
Type systems: polymorphic/dependent/refinement/intersection/... types

Can we measure complexity directly in the λ-calculus?
Implicit computational complexity, cost semantics, useful reduction, ...

. . .
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Reasonable cost models

Van Emde Boas’ Invariance Thesis
There is a standard class of machine models that are able to simulate
each other with

polynomial overhead in time

constant overhead in space

These are called reasonable models of computation.

Reasonable models include Turing machines and RAMs.

Is the λ-calculus reasonable?
Lawall, Mairson, Asperti, Guerrini, Dal Lago, Accattoli, . . .

(In this talk: we focus on time complexity).
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What does this mean?
I In Turing machines, space can grow at most linearly with time.

I So TMs cannot simulate β-reduction with polynomial overhead...

...as long as one represents λ-terms naively as trees.

I But one can use better representations for λ-terms.
Accattoli, Dal Lago, et al.’s work

More to come...



5

Is the λ-calculus reasonable?

Can n steps of β-reduction be simulated in O(nk) time?

The size explosion problem
Terms may grow exponentially with β-reduction.

What does this mean?
I In Turing machines, space can grow at most linearly with time.
I So TMs cannot simulate β-reduction with polynomial overhead...

...as long as one represents λ-terms naively as trees.
I But one can use better representations for λ-terms.

Accattoli, Dal Lago, et al.’s work
More to come...



5

Is the λ-calculus reasonable?

Can n steps of β-reduction be simulated in O(nk) time?

The size explosion problem
Terms may grow exponentially with β-reduction.

What does this mean?
I In Turing machines, space can grow at most linearly with time.
I So TMs cannot simulate β-reduction with polynomial overhead...

...as long as one represents λ-terms naively as trees.
I But one can use better representations for λ-terms.

Accattoli, Dal Lago, et al.’s work
More to come...



6

Evaluation strategies

The number of steps to normal form depends on the evaluation strategy.

Example

I def
= λx . x

Call-by-name takes 4 steps to evaluate (λx . x x) (I I)

(λx . x x) (I I)→ I I (I I)→ I (I I)→ I I→ I

Call-by-value takes only 3 steps

(λx . x x)(I I)→ (λx . x x) I→ I I→ I

To measure the time cost of evaluating a λ-term we must fix a strategy.
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General long-term objective
Develop tools to reason about the complexity of evaluating λ-terms.

State of the art
I Reasoning about the complexity of functional programs is hard.
I This is specially true for open and strong reduction.

(Used by proof assistants such as Coq, Agda, Lean, etc.).
I Typical implementation techniques are not reasonable.
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Goal of this work

Specific objectives
Study a notion of evaluation: useful open call-by-value.

Accattoli & Sacerdoti Coen (2015)
Accattoli & Guerrieri (2017)

CBV is the most widely used strategy in PL implementations.
Open reduction is essential to implement evaluation in proof assistants.
Useful evaluation is the key to show that strategies are reasonable.

Main goal
Formulate a quantitative type system for useful call-by-value.
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How to avoid size explosion?
The key to obtain a reasonable cost model is to avoid size explosion.

Sharing subterms
Represent λ-terms using directed acyclic graphs instead of trees.

@

@ @

@ @ @ @

a b a b a b a b

@

@

@

a b

Two representations of a b (a b) (a b (a b)).

The shared representation can be written using explicit substitutions:

(x x)[x/y y ][y/a b]
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The Linear Substitution Calculus Accattoli & Kesner (∼2010)

t, s, . . . ::= x | λx . t | t s | t[x/s]︸ ︷︷ ︸
explicit substitution

Distant beta (λx . t)L s → t[x/s]L

Linear substitution (...x ...)[x/t] → (...t...)[x/t]

L stands for an arbitrary list of explicit substitutions.
Variables are substituted one occurrence at a time.

Example
(λx . x x) I → (x x)[x/I]

→ (I x)[x/I]
→ y [y/x ][x/I]
→ y [y/I][x/I]
→ I[y/I][x/I]
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Useful reduction
To avoid size explosion, we must perform substitution carefully.

A substitution step is useful if it contributes to creating a beta-redex:

(x x)[x/I] → (I x)[x/I]

Substituting x by I creates a redex I x .

(x x)[x/I] → (x I)[x/I] (Not useful)

A substitution step may indirectly contribute to creating a beta-redex:

(x x)[x/y ][y/I] → (y x)[x/y ][y/I] → (I x)[x/y ][y/I]

Performing only useful substitution steps indeed avoids size explosion.

Theorem Accattoli–Dal Lago

The number of leftmost-outermost β-reduction steps to normal form is a
reasonable time cost model.
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Plotkin’s call-by-value

Terms Values
t, s, . . . ::= x | λx . t | t s v ::= λx . t

(λx . t) v →βv t{x := v}

How should CBV be extended for open terms?
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Open CBV — first variant

“Naive” open call-by-value
Extend the set of values to allow variables:

v ::= λx . t | x

Well-known problem: adequacy fails
Let δ = λx . x x .

The term (λx . δ) (z z) δ is stuck.
(Because z z is not a value.)

But it is unsolvable.
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Open CBV — second variant

The fireball calculus
Grégoire & Leroy, Della Rocca & Paolini, Accattoli & Sacerdoti Coen

Fireballs Inert terms
f ::= λx . t | i i ::= x f1 . . . fn (n ≥ 0)

(λx . t) f →βf
t{x := f }

Recovers adequacy X

Problem: still exhibits size explosion
It cannot be used as a cost model.

Taking the same example as before:

t0
def
= z tn+1

def
= ∆ tn where ∆

def
= λx . x x
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Open CBV — third variant
To avoid size explosion, use explicit substitutions:

The value-substitution calculus Accattoli & Paolini (2012)

Terms Values
t, s, . . . ::= x | λx . t | t s | t[x/s] v ::= λx . t | x

Distant beta (λx . t)L s → t[x/s]L

Value substitution t[x/vL] → t{x := v}L

Problem: substitution is not linear
All occurrences of x are substituted at once.

(x x)[x/I]

))

useful //

not useful
��

(I x)[x/I]

(x I)[x/I] I I
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Linear and Useful CBV

Starting point
The value-substitution calculus with linear substitution.

In this work
We study two notions of reduction:

t
◦−→ s Linear CBV substitution steps are unrestricted

t
•−→ s Useful CBV substitution steps must be useful

They are strategies for open (but not strong) CBV evaluation.

These notions have been studied before.
Accattoli, Sacerdoti Coen, Guerrieri, ...

As part of our work, we reformulate them as inductive predicates.
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Linear CBV

Linear CBV – formal definition
Reduction rules:

db◦
(λx . t)L s ◦−→db t[x/s]L

sub◦
x
◦−→sub(x,v)

v

t
◦−→sub(x,v)

t ′

lsv◦
t[x/vL]

◦−→lsv t ′[x/v ]L

Congruence rules:

t
◦−→ρ t

′

appL◦
t s
◦−→ρ t

′ s

s
◦−→ρ s

′

appR◦
t s
◦−→ρ t s

′

t
◦−→ρ t

′

esL◦
t[x/s]

◦−→ρ t
′[x/s]

s
◦−→ρ s

′

esR◦
t[x/s]

◦−→ρ t[x/s ′]

(No congruence rule for abstraction)
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Useful CBV

To determine whether a substitution step is useful, we need to know:

1. Whether a variable is in an applied position or not.

(x z)[x/I]
useful−−−→ (I z)[x/I] x [x/I]

not useful−−−−−−→ I[x/I]

x →sub(x,I) I is useful iff x is applied

2. Whether a variable is (indirectly) bound to an abstraction or not.

(x z)[x/y ][y/I]
useful−−−→ (y z)[x/y ][y/I] (x z)[x/y ]

not useful−−−−−−→ (y z)[x/y ]

x →sub(x,y)
y is useful iff x is applied and

y is indirectly bound to an abstraction
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Useful CBV
The Useful CBV reduction relation is indexed by parameters:
1. A set A of variables assumed to be hereditary abstractions.
2. A set S of variables assumed to be structures.
3. A positional flag µ ∈ {@, 6@}.

Hereditary abstractions
Abstractions or variables bound to hereditary abstractions (with ESs).

(λx . y)[y/z ] ∈ HAbsA
x [x/y ][y/I] ∈ HAbsA
x [x/y ] ∈ HAbsA ⇐⇒ y ∈ A

Structures
“Rigid” terms that are headed by a free variable in S.

(x y)[y/z ] ∈ StS ⇐⇒ x ∈ S
x [x/y z ] z ∈ StS ⇐⇒ y ∈ S
(x y)[x/I] /∈ StS
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Useful CBV

Useful CBV – formal definition
Reduction rules:

db•
(λx . t)L s •−→db,A,S,µ t[x/s]L

t
•−→sub(x,v),A∪{x},S,µ t ′ vL ∈ HAbsA

lsv•
t[x/vL]

•−→lsv,A,S,µ t ′[x/v ]L

sub•
x
•−→sub(x,v),A∪{x},S,@ v

The substituted variable must be an hereditary abstraction and in an
applied position.



23

Useful CBV

Useful CBV – formal definition
Reduction rules:

db•
(λx . t)L s •−→db,A,S,µ t[x/s]L

t
•−→sub(x,v),A∪{x},S,µ t ′ vL ∈ HAbsA

lsv•
t[x/vL]

•−→lsv,A,S,µ t ′[x/v ]L

sub•
x
•−→sub(x,v),A∪{x},S,@ v

The substituted variable must be an hereditary abstraction and in an
applied position.



24

Useful CBV
Useful CBV – formal definition
Congruence rules:

t
•−→ρ,A,S,@ t ′

appL•
t s
•−→ρ,A,S,µ t ′ s

t ∈ StS s
•−→ρ,A,S,6@ s ′

appR•
t s
•−→ρ,A,S,µ t s ′

s
•−→ρ,A,S,6@ s ′

esR•
t[x/s]

•−→ρ,A,S,µ t[x/s ′]

t
•−→ρ,A∪{x},S,µ t ′ s ∈ HAbsA

esLAbs•
t[x/s]

•−→ρ,A,S,µ t ′[x/s]

t
•−→ρ,A,S∪{x},µ t ′ s ∈ StS

esLStruct•
t[x/s]

•−→ρ,A,S,µ t ′[x/s]

In t[x/s], evaluate s until an hereditary abstraction or a structure.
Keep track of whether variables are hereditary abstractions or structures.
This leads to complex invariants in the proofs.
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Rewriting properties of Useful CBV
Theorem
Useful CBV computes the same normal forms as Linear CBV,
up to performing some (useless) substitution steps.

Example

(λx . x x) I • // //
◦

++ ++

y [y/x ][x/I]

◦����
I[y/I][x/I]

Theorem
Useful CBV is not deterministic but enjoys the diamond property:

t
~~   

t1
��

t2
��

t ′

(t1 6= t2)

Note: all reductions to normal form have the same length.
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Intersection types

Γ ` t : τ Γ ` t : σ
Γ ` t : τ ∩ σ

Coppo & Dezani-Ciancaglini (1978)

I These systems enjoy both subject reduction and subject expansion.
They can be interpreted as semantic models.

I These systems characterize notions of normalization.
A term is typable if and only if it is normalizing.
Typability is undecidable.
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Non-idempotent intersection types

The intersection type constructor becomes non-idempotent:

τ ∩ τ �Z= τ

Gardner (1994), De Carvalho (2007)

I Notation: A1 ∩ . . . ∩ An can be written as a multiset [A1, . . . ,An].
I Each expression is given as many types as times it is “used”.

f : [(Int→ Int), (Int→ Int)] ` f (f 1) : Int

I These systems still characterize notions of normalization.
(Weak, strong, CBN, CBV, CBNeed, classical calculi, effects, etc.)

I Typing derivations provide upper bounds for reduction lengths.
I They have been refined to provide exact bounds.

Accattoli, Kesner & Lengrand (2018)
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Quantitative type system for Useful CBV

Arrow types τ ::= M? →M
Types M ::= n︸︷︷︸

structures

| [τk ]k∈K︸ ︷︷ ︸
hereditary abstractions

Optional types M? ::= none | M

Judgments : x1 :M?
1, . . . , xn :M?

n `(m,e) t :M

Typing rules
n = #(M)

var
x : M `(0,n) x : M

(Γi ; x : M?
i `(mi ,ei ) t : Ni )i∈I

abs
+i∈IΓi `(+i∈Imi ,+i∈I ei ) λx . t : [M?

i → Ni ]i∈I

Γ `(m,e) t : n ∆ `(m′,e′) s : tt
appPersistent

Γ + ∆ `(m+m′,e+e′) t s : n

Γ `(m,e) t : [M? → N ] M? C M ∆ `(m′,e′) s : M
appConsuming

Γ + ∆ `(1+m+m′,e+e′) t s : N

Γ; x : M? `(m,e) t : N M? C M ∆ `(m′,e′) s : M
es

Γ + ∆ `(m+m′,e+e′) t[x/s] : N
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Quantitative type system for Useful CBV

Example

x : [[ ]→ [ ]] `(0,1) x : [[ ]→ [ ]] x : [ ] `(0,0) x : [ ]

x : [[ ]→ [ ]] `(1,1) x x : [ ]

y : [ ] `(0,0) y : [ ]

`(0,0) I : [[ ], [ ]→ [ ]]

`(1,1) (x x)[x/I] : [ ]
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Quantitative type system for Useful CBV

Theorem (Soundness and completeness)
The following are equivalent:
1. There is a tight derivable typing judgment Γ `(m,e) t : τ .
2. t normalizes in exactly m beta steps and e substitution steps

(in the Useful CBV strategy).

The proof follows the already well-known strategies:
I Soundness (1⇒ 2): substitution lemma, subject reduction.
I Completeness (2⇒ 1): anti-substitution lemma, subject expansion.

(But it is very intricate).
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Conclusion

Summary
I Compositional specifications of Linear CBV and Useful CBV.
I Useful CBV is reasonable and implements Linear CBV.
I A sound and complete quantitative type system for Useful CBV.

Surprisingly simple (relative to the complex operational semantics).

Future work
I Capture further optimizations used by abstract machines.

Accattoli & Guerrieri (2017)

I Extend to strong CBV/CBNeed.
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