
1

Una lógica constructiva

con pruebas y refutaciones clásicas

3er encuentro FunLeP

Fundamentos de Lenguajes de Programación

18–19 de mayo de 2023

Pablo Barenbaum1,2 Teodoro Freund1

1 Facultad de Ciencias Exactas y Naturales 2 Universidad Nacional de Quilmes
Universidad de Buenos Aires Argentina

Argentina

2

Outline

3

The BHK Interpretation ({∧,∨,¬} fragment)

(A ∧ B)+ ' A+ × B+

(A ∨ B)+ ' A+] B+

(¬A)+ ' A+ ⇒ 0

A+ = “proofs of A”

4

Nelson’s Strong Negation (Nelson, 1949)

(A ∧ B)+ ' A+ × B+

(A ∨ B)+ ' A+] B+

(¬A)+ ' A−

(A ∧ B)− ' A−] B−

(A ∨ B)− ' A− × B−

(¬A)− ' A+

A+ = “proofs of A” A− = “refutations of A”

5

Starting point: a BHK interpretation for classical logic

Can we recover classical logic by extending Nelson’s system as follows?

A⊕
?' A− ⇒ A+ A	

?' A+ ⇒ A−

A+ = “strong proofs of A” A− = “strong refutations of A”

A⊕ = “classical proofs of A” A	 = “classical refutations of A”

I From the strictly logical point of view,

this gives us classical logic.

I From the point of view of proof normalization,

it is not clear how to normalize a cut A⊕ / A	.

Our approach is based on the (mutually recursive!) equations:

A⊕ ' A	 ⇒ A+ A	 ' A⊕ ⇒ A−

5

Starting point: a BHK interpretation for classical logic

Can we recover classical logic by extending Nelson’s system as follows?

A⊕
?' A− ⇒ A+ A	

?' A+ ⇒ A−

A+ = “strong proofs of A” A− = “strong refutations of A”

A⊕ = “classical proofs of A” A	 = “classical refutations of A”

I From the strictly logical point of view,

this gives us classical logic.

I From the point of view of proof normalization,

it is not clear how to normalize a cut A⊕ / A	.

Our approach is based on the (mutually recursive!) equations:

A⊕ ' A	 ⇒ A+ A	 ' A⊕ ⇒ A−

5

Starting point: a BHK interpretation for classical logic

Can we recover classical logic by extending Nelson’s system as follows?

A⊕
?' A− ⇒ A+ A	

?' A+ ⇒ A−

A+ = “strong proofs of A” A− = “strong refutations of A”

A⊕ = “classical proofs of A” A	 = “classical refutations of A”

I From the strictly logical point of view,

this gives us classical logic.

I From the point of view of proof normalization,

it is not clear how to normalize a cut A⊕ / A	.

Our approach is based on the (mutually recursive!) equations:

A⊕ ' A	 ⇒ A+ A	 ' A⊕ ⇒ A−

6

Starting point: a BHK interpretation for classical logic

(A ∧ B)+ ' A⊕ × B⊕

(A ∨ B)+ ' A⊕] B⊕

(¬A)+ ' A	

A⊕ ' A	 ⇒ A+

(A ∧ B)− ' A] B	

(A ∨ B)− ' A	 × B	

(¬A)− ' A⊕

A	 ' A⊕ ⇒ A−

A+ = “strong proofs of A” A− = “strong refutations of A”

A⊕ = “classical proofs of A” A	 = “classical refutations of A”

7

Outline

8

Natural Deduction

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

Propositions P ::= A+ strong affirmation

Example rules

Γ ` A+ Γ ` B+

I∧+
Γ ` (A ∧ B)+

Γ ` A− Γ ` B−

I∨−
Γ ` (A ∨ B)−

Γ ` (A1 ∧ A2)+

E∧+i
Γ ` Ai

+

Γ ` (A1 ∧ A2)+

E∧+i
Γ ` Ai

+

..

8

Nelson’s strong negation

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

Propositions P ::= A+ strong affirmation
| A− strong denial

Example rules

Γ ` A+ Γ ` B+

I∧+
Γ ` (A ∧ B)+

Γ ` A− Γ ` B−

I∨−
Γ ` (A ∨ B)−

Γ ` (A1 ∧ A2)+

E∧+i
Γ ` Ai

+

Γ ` (A1 ∨ A2)−

E∨−i
Γ ` Ai

−

..

8

System prk

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ classical affimation
| A	 classical denial

Example rules

Γ ` A⊕ Γ ` B⊕

I∧+
Γ ` (A ∧ B)+

Γ ` A	 Γ ` B	

I∨−
Γ ` (A ∨ B)−

Γ ` (A1 ∧ A2)+

E∧+i
Γ ` Ai

⊕

Γ ` (A1 ∨ A2)−

E∨−i
Γ ` Ai

	

..

8

System prk

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ classical affimation
| A	 classical denial

Example rules

Γ ` A⊕ Γ ` B⊕

I∧+
Γ ` (A ∧ B)+

Γ ` A	 Γ ` B	

I∨−
Γ ` (A ∨ B)−

Γ ` (A1 ∧ A2)+

E∧+i
Γ ` Ai

⊕

Γ ` (A1 ∨ A2)−

E∨−i
Γ ` Ai

	

A strong affirmation A+ is canonically proved with an introduction rule.

9

System prk – Noteworthy rules

Absurdity Negation

Γ ` A+ Γ ` A−

Abs
Γ ` P

Γ ` A	

I¬+
Γ ` (¬A)+

Γ ` A⊕

I¬−
Γ ` (¬A)−

Γ ` (¬A)+

E¬+
Γ ` A	

Γ ` (¬A)−

E¬−
Γ ` A⊕

Classical formulas

Γ,A	 ` A+

I#+

Γ ` A⊕

Γ,A⊕ ` A−

I#−
Γ ` A	

Γ ` A⊕ Γ ` A	

E#+

Γ ` A+

Γ ` A	 Γ ` A⊕

E#−
Γ ` A−

A classical affirmation A⊕ is canonically proved by assuming A	 and
proving A+.

9

System prk – Noteworthy rules

Absurdity Negation

Γ ` A+ Γ ` A−

Abs
Γ ` P

Γ ` A	

I¬+
Γ ` (¬A)+

Γ ` A⊕

I¬−
Γ ` (¬A)−

Γ ` (¬A)+

E¬+
Γ ` A	

Γ ` (¬A)−

E¬−
Γ ` A⊕

Classical formulas

Γ,A	 ` A+

I#+

Γ ` A⊕

Γ,A⊕ ` A−

I#−
Γ ` A	

Γ ` A⊕ Γ ` A	

E#+

Γ ` A+

Γ ` A	 Γ ` A⊕

E#−
Γ ` A−

A classical affirmation A⊕ is canonically proved by assuming A	 and
proving A+.

10

System prk – Admissible rules

Weakening Cut Substitution

Γ ` P

Γ,Q ` P

Γ,P ` Q Γ ` P

Γ ` Q

Γ ` Q

Γ[α :=A] ` Q[α :=A]

General absurdity Contraposition Strengthening

Γ ` P Γ ` P∼

Γ ` Q

Γ,P ` Q P classical

Γ,Q∼ ` P∼

Γ,P∼ ` P P classical

Γ ` P

Where:

(A+)∼
def
= A− (A−)∼

def
= A+ (A⊕)∼

def
= A	 (A)∼

def
= A⊕

11

System prk – Properties

Theorem (Embedding + conservative extension)

` A holds classically if and only if ` A⊕ holds in prk

Strong propositions behave constructively

The classical excluded middle ` (A ∨ ¬A)⊕ always holds.

The strong excluded middle ` (A ∨ ¬A)+ does not hold in general.

12

Outline

13

The calculus λprk

We assign explicit witnesses to proofs:

t, s, u, . . . ::= x variable
| t ��P s absurdity
| 〈t, s〉± ∧+ / ∨− introduction
| π±i (t) ∧+ / ∨− elimination
| in±i (t) ∨+ / ∧− introduction
| case±t [x :P .s][y :Q .u] ∨+ / ∧− elimination
| ν±t ¬+ / ¬− introduction
| µ±t ¬+ / ¬− elimination
| #±(x :P). t classical introduction

| t •± s classical elimination

14

The calculus λprk

Type system (excerpt)

Γ ` t : A+ Γ ` s : A−

Abs
Γ ` t ��P s : P

. . .
Γ ` t : A	 Γ ` s : B	

I∨−
Γ ` 〈t, s〉− : (A ∨ B)−

Γ, x : A	 ` t : A+

I#+

Γ ` #+
(x :A). t : A⊕

. . .
Γ ` t : A⊕ Γ ` s : A	

E#+

Γ ` t •+ s : A+

15

The calculus λprk

Reduction rules

π±i (〈t1, t2〉±)
β+
∧ / β

−
∨−−−−−→ ti

case±(in±i (t)) [x .s1][x .s2]
β+
∨ / β

−
∧−−−−−→ si [x := t]

µ±(ν±t)
β+
¬ / β

−
¬−−−−−→ t

(#±x . t) •± s
β+
◦ / β

−
◦−−−−−→ t[x :=s]

〈t1, t2〉+ �� ini
−(s)

��∧−−→ (ti •+ s) �� (s •− ti)

ini
+(t) �� 〈s1, s2〉−

��∨−−→ (t •+ si) �� (si •− t)

(ν+t) �� (ν−s)
��¬−−→ (s •+ t) �� (t •− s)

#±x . (t •± x)
η◦−→ t if x /∈ fv(t)

16

The calculus λprk

Theorem (Subject Reduction)
If Γ ` t : P and t → s then Γ ` s : P.

Theorem (Duality)

1. Γ ` t : P if and only if Γ⊥ ` t⊥ : P⊥

2. t → s if and only if t⊥ → s⊥

where −⊥ flips all the signs and exchanges dual connectives (∧,∨).

Theorem (Convergence)
λprk is confluent and strongly normalizing.

I The main difficulty in the SN proof is how to deal with the mutually
recursive types A⊕ ' A	 ⇒ A+ and A	 ' A⊕ ⇒ A−.

I The SN proof is via a translation to System F with non-strictly
positive recursive types, relying on a result by Mendler.

16

The calculus λprk

Theorem (Subject Reduction)
If Γ ` t : P and t → s then Γ ` s : P.

Theorem (Duality)

1. Γ ` t : P if and only if Γ⊥ ` t⊥ : P⊥

2. t → s if and only if t⊥ → s⊥

where −⊥ flips all the signs and exchanges dual connectives (∧,∨).

Theorem (Convergence)
λprk is confluent and strongly normalizing.

I The main difficulty in the SN proof is how to deal with the mutually
recursive types A⊕ ' A	 ⇒ A+ and A	 ' A⊕ ⇒ A−.

I The SN proof is via a translation to System F with non-strictly
positive recursive types, relying on a result by Mendler.

16

The calculus λprk

Theorem (Subject Reduction)
If Γ ` t : P and t → s then Γ ` s : P.

Theorem (Duality)

1. Γ ` t : P if and only if Γ⊥ ` t⊥ : P⊥

2. t → s if and only if t⊥ → s⊥

where −⊥ flips all the signs and exchanges dual connectives (∧,∨).

Theorem (Convergence)
λprk is confluent and strongly normalizing.

I The main difficulty in the SN proof is how to deal with the mutually
recursive types A⊕ ' A	 ⇒ A+ and A	 ' A⊕ ⇒ A−.

I The SN proof is via a translation to System F with non-strictly
positive recursive types, relying on a result by Mendler.

17

The calculus λprk

There have been many computational interpretations of classical logic:

1. Parigot’s λµ.

2. Barbanera and Berardi’s symmetric λ-calculus.

3. Curien and Herbelin’s λ̄µµ̃.

4. Krivine’s λc .

5. . . .

λprk provides a new computational interpretation for classical logic.

18

The calculus λprk

Example: conjunction
Taking:

〈t, s〉 def
= #+

(:(A∧B)). 〈t, s〉
+

πi (t)
def
= #+

(x :Ai
). π

+
i (t •+#−(:(A1∧A2)⊕)

. ini
−(x)) •+ x

Classical introduction and elimination of conjunction can be derived:

Γ ` t : A⊕ Γ ` s : B⊕

Γ ` 〈t, s〉 : (A ∧ B)⊕

Γ ` t : (A1 ∧ A2)⊕

Γ ` πi (t) : Ai
⊕

The standard computation rule for projection can be recovered:

πi (〈t1, t2〉)→∗ ti

19

The calculus λprk

A more interesting example: implication
In classical logic, implication is derivable from negation and disjunction.
This can be extended to the computational level.

Let (A→ B)
def
= (¬A ∨ B).

Abstraction and application can be defined with their expected types:

λx . t
def
= #+

(y :(A⇒B))
. in2

+(t[x :=Xy])

Xy
def
= #+

(z:A)
. (µ−(X′y,z •−#+

(:(¬A))
. ν+z)) •+ z

X′y,z
def
= π+

1 (y •−#+
(:(A⇒B))

. in1
+(#+

(:(¬A))
. ν+z))

t @ s
def
= IC+

(x :B)
.

case+ (t •+#−
(:(A→B)⊕)

. 〈(#−
(:(¬A)⊕)

. ν−s), x〉−)
[(y :(¬A)⊕).s ./B+ µ−(y •+#−

(:(¬A)⊕)
. ν−x)]

[(z:B⊕).z •+ x]

The standard β-reduction rule can be recovered:

(λx . t) @ s →∗ t[x :=s]

20

Outline

21

Kripke Semantics

A Kripke model for prk is a structure M = (W,≤,V+,V−).
(Enjoying appropriate technical conditions).

Forcing (excerpt)

M,w α+ ⇐⇒ α ∈ V+
w

M,w α− ⇐⇒ α ∈ V−w
...
M,w (A ∨ B)− ⇐⇒ M,w A	 and M,w B	

...
M,w A⊕ ⇐⇒ M,w ′ 1 A− for all w ′ ≥ w
...

Theorem (Soundness and Completeness)

Γ ` P if and only if Γ P

22

Outline

23

Further Extensions

Second Order λprk

We have extended λprk with implication, co-implication, and
second-order quantifiers:

Pure propositions A ::= . . . | A→ A | An A | ∀α.A | ∃α.A

I All of the previous results can be extended to this setting.

I The SN proof requires a completely different strategy, using
reducibility candidates.

Intuitionistic λprk

We have identified an intuitionistic subset of λprk.
The key is, essentialy, to identify A⊕ with A+ rather than with A	 → A+.

24

Outline

25

Contributions

I We studied an extension of the BHK interpretation.

Key idea: A⊕ ' A	 ⇒ A+

A classical proof of A is a transformation that converts
classical refutations of A into strong proofs of A.

I This interpretation motivates the logical system prk.
prk is a conservative extension of classical logic.

I Propositions-as-types.
prk corresponds to a confluent and terminating calculus λprk.
It has been extended to second-order logic.
An intuitionistic fragment of λprk has been identified.

I Kripke semantics.
prk is sound and complete w.r.t. a notion of Kripke model.

25

Contributions

I We studied an extension of the BHK interpretation.

Key idea: A⊕ ' A	 ⇒ A+

A classical proof of A is a transformation that converts
classical refutations of A into strong proofs of A.

I This interpretation motivates the logical system prk.
prk is a conservative extension of classical logic.

I Propositions-as-types.
prk corresponds to a confluent and terminating calculus λprk.
It has been extended to second-order logic.
An intuitionistic fragment of λprk has been identified.

I Kripke semantics.
prk is sound and complete w.r.t. a notion of Kripke model.

25

Contributions

I We studied an extension of the BHK interpretation.

Key idea: A⊕ ' A	 ⇒ A+

A classical proof of A is a transformation that converts
classical refutations of A into strong proofs of A.

I This interpretation motivates the logical system prk.
prk is a conservative extension of classical logic.

I Propositions-as-types.
prk corresponds to a confluent and terminating calculus λprk.
It has been extended to second-order logic.
An intuitionistic fragment of λprk has been identified.

I Kripke semantics.
prk is sound and complete w.r.t. a notion of Kripke model.

25

Contributions

I We studied an extension of the BHK interpretation.

Key idea: A⊕ ' A	 ⇒ A+

A classical proof of A is a transformation that converts
classical refutations of A into strong proofs of A.

I This interpretation motivates the logical system prk.
prk is a conservative extension of classical logic.

I Propositions-as-types.
prk corresponds to a confluent and terminating calculus λprk.
It has been extended to second-order logic.
An intuitionistic fragment of λprk has been identified.

I Kripke semantics.
prk is sound and complete w.r.t. a notion of Kripke model.

25

Contributions

I We studied an extension of the BHK interpretation.

Key idea: A⊕ ' A	 ⇒ A+

A classical proof of A is a transformation that converts
classical refutations of A into strong proofs of A.

I This interpretation motivates the logical system prk.
prk is a conservative extension of classical logic.

I Propositions-as-types.
prk corresponds to a confluent and terminating calculus λprk.
It has been extended to second-order logic.
An intuitionistic fragment of λprk has been identified.

I Kripke semantics.
prk is sound and complete w.r.t. a notion of Kripke model.

26

Future Work

I Relate λprk with existing classical calculi.

I Extend λprk with dependent types.

I In System F, {∃,∧,∨,⊥,>,¬} can be derived from {∀,→} .
This is not true in second-order prk (!)
Can we identify subsets of “computationally adequate” connectives?

