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Syntax of propositions (aka types)

In previous work.

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak
A⊕

denial A− A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



3

Syntax of propositions (aka types)

In previous work.

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak

pure types A

A⊕

denial A− A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



3

Syntax of propositions (aka types)

In previous work.

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak

affirmation A+

A⊕

denial A−

A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



3

Syntax of propositions (aka types)

In previous work.

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak
affirmation A+ A⊕

denial A− A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



3

Syntax of propositions (aka types)

In previous work.

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A

| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak
affirmation A+ A⊕

denial A− A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



3

Syntax of propositions (aka types)

Pure propositions A ::= α | A ∧ A | A ∨ A | ¬A
| A→ A | An A | ∀α.A | ∃α.A In this work.

strong weak
affirmation A+ A⊕

denial A− A	

Propositions P ::= A+ strong affirmation
| A− strong denial
| A⊕ weak affirmation
| A	 weak denial



4

Typing rules of system PRK

I Most rules are derived mechanically from standard typing rules.

I Introduction rules have weak premises and strong conclusions.

I Elimination rules have strong premises and weak conclusions.

I Dual pairs of connectives are (∧/∨), (→ /n), (∀/∃).

Example: rules for conjunction
Standard rule

+ weak/strong distinction + affirmation/denial distinction.

Γ ` t : A Γ ` s : B
I∧

Γ ` 〈t, s〉 : (A ∧ B)

Γ ` t : A	 Γ ` s : B	

I−∨
Γ ` 〈t, s〉− : (A ∧ B)−

Γ ` t : (A1 ∧ A2)
E∧i

Γ ` πi (t) : Ai

Γ ` t : (A1 ∨ A2)−

E−∨i
Γ ` πi−(t) : Ai
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Typing rules of system PRK
Typing rules for ∧,∨,→,n,∀,∃ are derived mechanically from System F.

Absurdity rule (cut)

Γ ` t : A+ Γ ` s : A−

Γ ` t �� s : P

Weak introduction and elimination
Typing rules for weak propositions are based on the following informal
equations.

A⊕ ' (A	 → A+) A	 ' (A⊕ → A−)

Γ, x : A	 ` t : A+

I+◦
Γ ` #+

x . t : A⊕

Γ, x : A⊕ ` t : A−

I−◦
Γ ` #−x . t : A	

Γ ` t : A⊕ Γ ` s : A	

E+
◦

Γ ` t •+ s : A+

Γ ` t : A	 Γ ` s : A⊕

E−◦
Γ ` t •− s : A−
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Reduction rules

Simplification of intro./elim. pairs (Natural deduction-like)

In previous work:

(#±x . t) •± s
β+
◦ / β

−
◦−−−−−→ t{x := s}

π±i (〈t1, t2〉±)
β+
∧ / β

−
∨−−−−−→ ti

δ±(in±i (t)) [x .s1][x .s2]
β+
∨ / β

−
∧−−−−−→ si{x := t}

M±(N±t)
β+
¬ / β

−
¬−−−−−→ t

New rules:

(λ±x .t)@±s
β+
→ / β−n−−−−−→ t{x := s}

%±(t ;±s)[x ;y .u]
β+
n / β−→−−−−−→ u{x := t}{y := s}

(λ±α . t)@±A
β+
∀ / β

−
∃−−−−−→ t{α := A}

∇± 〈A, t〉±[(α,x).s]
β+
∃ / β

−
∀−−−−−→ s{α := A}{x := t}
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Reduction rules

Simplification of intro./intro. cuts (Sequent calculus-like)

In previous work:

〈t1, t2〉+ �� ini
−(s)

��∧−−→ (ti •+ s) �� (s •− ti )

ini
+(t) �� 〈s1, s2〉−

��∨−−→ (t •+ si ) �� (si •− t)

(N+t) �� (N−s)
��¬−−→ (s •+ t) �� (t •− s)

New rules:

λ+x .t �� (s ;−u)
��→−−−→ (t{x := s} •+ u) �� (u •− t{x := s})

(t ;+s) �� λ−x .u
��n−−→ (s •+ u{x := t}) �� (u{x := t} •− s)

(λ+α . t) �� 〈A, s〉− ��∀−−→ (t{α := A} •+ s) �� (s •− t{α := A})
〈A, t〉+ �� (λ−α . s)

��∃−−→ (t •+ s{α := A}) �� (s{α := A} •− t)
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Main properties

Theorem (Classical refinement)
The following are equivalent:

I A1, . . . ,An ` B holds in classical second-order logic.

I There is a witness of A⊕1 , . . . ,A
⊕
n ` B⊕ in PRK.

But ` (A ∨ ¬¬A)+ does not hold.

Theorem (Symmetry)

1. Γ ` t : P if and only if Γ⊥ ` t⊥ : P⊥

2. t → s if and only if t⊥ → s⊥

where −⊥ flips all the signs and exchanges dual connectives.

Theorem (Convergence)
PRK enjoys subject reduction, confluence, and strong normalization.

This provides a computational interpretation for classical logic.
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Strong normalization

In previous work

We proved SN of the {∧,∨,¬} fragment by translating PRK to
Mendler’s extension of System F with non-strictly positive recursion.

The proof does not extend to second-order PRK.

In this work

We prove SN of the {∧,∨,¬,→,n,∀,∃} fragment by constructing a
reducibility model, adapting Mendler’s proof.

The interesting part is the interpretation of the mutually recursive
equations:

A⊕ ' (A	 → A+) A	 ' (A⊕ → A−)

respectively as a fixpoint/co-fixpoint in a complete lattice of
reducibility candidates.
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Intuitionistic fragment
We have identified an intuitionistic fragment of PRK.

A subterm is useless if it lies inside the argument of the elimination of a
positive weak proposition:

π1
...

Γ ` t : A⊕

π2
...

Γ ` s : A	

E+
◦

Γ ` t •+ s : A+

A term is intuitionistic if:

1. Negative eliminations of ∧, →, ∀, and ¬ are useless.

2. In any subterm #+
x . t, free occurences of x in t are useless.

Theorem (Intuitionistic refinement)
The following are equivalent:

I A1, . . . ,An ` B holds in intuitionistic second-order logic.

I There is an intuitionistic witness of A⊕1 , . . . ,A
⊕
n ` B⊕ in PRK.
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Conclusion

I We have extended system PRK to second-order logic.

I The good logical and computational properties remain.

I To prove SN we adapted Mendler’s reducibility model.

I We identified an intuitionistic subset of PRK.

I The paper also explores Böhm–Berarducci encodings and canonicity
results.

Future work
I Study decidability results for fragments of PRK.

I Can PRK be related with existing classical calculi?
(Parigot, Barbanera–Berardi, Curien–Herbelin, . . .)

I Can PRK be understood through translations to linear logic?

I Can these ideas be extended to a dependently typed setting?
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