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First-order terms

s = X

| f(s1,.--,5n)

First-order proof terms
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variables
applied function symbols
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Proof terms denote rewrites between terms.
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Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I6] : c — d
f(c)
a(c)
g(c,c) f(B)
g(d,c) g(c,d) f(d)

a(d)

g(d.d)

Projection

a(c) /£(B8) = a(d)



Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom, 2002)
Building on previous work by Lévy, Huet, Meseguer, ...
The following are equivalent:

1. Permutation equivalence: p ~ o.

2. Projection equivalence: p/o and o/p are empty.
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Higher-order proof terms

p

0 X

P1 P2
« rule symbols

|
| Ax.p
|
|
| P12 sequential composition
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Well-formed proof terms

(a:s—=t)eR p:s—t

X:X—>X C:C—>C a:s-—t AX.p 1 AX.s — Ax.t

prist—ti priSHy—>ty pP1:S1—>S pP2.SH—*>S3

pLp2:S1S2 >ttt P15 P25 > S3

s=gys p:s—=t t'=p,t

p:s—>t

If p:s—tthen: poe &g et Ly

> Setting: orthogonal HRSs (in Nipkow's sense).
» Proof terms are simply-typed. (We omit the details in this talk).
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A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) " mean?

?

(Mx.p)o =~ p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 x X — X

Ax.(x 5 x AX.X —  AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

But (p ; p) is not well-formed, as p cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;") only at
the toplevel.
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Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

P p

p; e
(p3o)sT
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Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

pSI’C ; /)

PP
(p3o)s7
(Ax.p) 5 (Ax.0)
(p1p2) 5 (0102)
(Ax.s)p
(Ax.p)s
AX.p X

AR XX N N

p
p

pi(osT)

Mx.(p ;o)

(p15 01)(p2 5 02)
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Permutation equivalence for higher-order proof terms

With these axioms, we can prove:

(Axp)o = p{x\e™}; 08 {x\o} ~ p"{x\o};p{x\c*}
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Flattening

Definition (Flattening)

M(pio) B (xp); (Ax.o)
(P50 i 5 (pp™) s (o p)
w(pio) > (up)s (o)
(p5p)(e1502) > (o3 02)079) 5 (0 (015 2))
(em)y S pfx\v}
AX. L X A L if x & fv(p)

u, v, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

» Any proof term can be converted to a proof term in Bruggink's
sense (with compositions only at the toplevel).

» Auxiliary tool to relate permutation and projection equivalence.
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Flat permutation equivalence

Definition (Flat permutation equivalence)

A notion of permutation equivalence between flat proof terms can be
defined as follows:

(pso)sT ~ psi(os7)
u ~ misms o i pe s
where 1 < 1 5 p2 is a ternary relation meaning that the multistep 1 can

be “split” as the composition of the multisteps 11 and po.

Theorem (Permutation equivalence through flattening)

p ~ o if and only if p* ~ ¢®
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Projection

A notion of projection can be defined for multi-steps (without
composition):

X[Jx=x cffc=c

wlv = § pffri =&  jpffre =&
A ) Ax.v = Ax.€ o ffrive = & &

affa=a®  affa”=a o fla= o'
Projection can be extended to flat proof terms:
wp = e if v = ¢
plosT) = (p)o))
(pso))T = (o)) s ()(7)p))

And finally, to arbitrary proof terms, by flattening first:

adéf e
p/ i 15



Projection equivalence

Theorem (Permutation equivalence through projection)
p~oifand only if p/o and o/p are empty.
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Projection equivalence

Theorem (Permutation equivalence through projection)
p~oifand only if p/o and o/p are empty.

Corollary
Permutation equivalence is decidable.

16
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Conclusion

We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:
1. p=o
2. PP ~o?

3. p/o and o/p are empty
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We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. p=o
2. PP ~o?

3. p/o and o/p are empty

Future work
» Formulate a standardization procedure.
» Study labeling equivalence.
» Study 2-categorical models (Hirschowitz, 2013).
» Develop tools to manipulate reductions in higher-order rewriting.
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