
1

Proof Terms

for Higher-Order Rewriting

and Their Equivalence
February 14, 2023

Pablo Barenbaum Eduardo Bonelli
CONICET / Universidad Nacional de Quilmes Stevens Institute of Technology

ICC, Universidad de Buenos Aires

Argentina USA

2

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

3

Proof terms for first-order rewriting

First-order terms

s ::= x variables
| f(s1, . . . , sn) applied function symbols

First-order proof terms

ρ ::= x
| f(ρ1, . . . , ρn)
| α(ρ1, . . . , ρn) applied rule symbols
| ρ1 ; ρ2 sequential composition

Proof terms denote rewrites between terms.

3

Proof terms for first-order rewriting

First-order terms

s ::= x variables
| f(s1, . . . , sn) applied function symbols

First-order proof terms

ρ ::= x
| f(ρ1, . . . , ρn)
| α(ρ1, . . . , ρn) applied rule symbols
| ρ1 ; ρ2 sequential composition

Proof terms denote rewrites between terms.

3

Proof terms for first-order rewriting

First-order terms

s ::= x variables
| f(s1, . . . , sn) applied function symbols

First-order proof terms

ρ ::= x
| f(ρ1, . . . , ρn)
| α(ρ1, . . . , ρn) applied rule symbols
| ρ1 ; ρ2 sequential composition

Proof terms denote rewrites between terms.

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

g(c, c)

g(d, c) g(c,d) f(d)

g(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

g(c, c)

g(d, c) g(c,d) f(d)

g(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz
g(c, c)

g(d, c) g(c,d) f(d)

g(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

g(c, c)

g(d, c) g(c,d)

f(d)

g(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

g(c, c)

g(β,c)

zz

g(c,β)

$$
g(d, c) g(c,d) f(d)

g(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

g(c, c)

g(β,c)

zz

g(c,β)

$$
g(d, c)

g(d,β) $$

g(c,d)

g(β,d)zz

f(d)

α(d)

qqg(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

α(β)
mm

g(c, c)

g(β,c)

zz

g(c,β)

$$
g(β,β)

��

g(d, c)

g(d,β) $$

g(c,d)

g(β,d)zz

f(d)

α(d)

qqg(d,d)

Permutation equivalence Projection
α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d) α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

α(β)
mm

g(c, c)

g(β,c)

zz

g(c,β)

$$
g(β,β)

��

g(d, c)

g(d,β) $$

g(c,d)

g(β,d)zz

f(d)

α(d)

qqg(d,d)

Permutation equivalence

Projection

α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d)

α(c) / f(β) = α(d)

4

Proof terms for first-order rewriting

α(x) : f(x) _ g(x , x)
β : c _ d

f(c)

α(c)

zz f(β)

$$

α(β)
mm

g(c, c)

g(β,c)

zz

g(c,β)

$$
g(β,β)

��

g(d, c)

g(d,β) $$

g(c,d)

g(β,d)zz

f(d)

α(d)

qqg(d,d)

Permutation equivalence

Projection

α(c) ; g(β, c) ; g(d, β) ≈ f(β) ; α(d)

α(c) / f(β) = α(d)

5

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom, 2002)
Building on previous work by Lévy, Huet, Meseguer, . . .

The following are equivalent:

1. Permutation equivalence: ρ ≈ σ.

2. Projection equivalence: ρ/σ and σ/ρ are empty.

6

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

7

Proof terms for higher-order rewriting

Higher-order terms

s ::= x variables
| c constants
| λx .s abstractions
| s1 s2 applications

Higher-order proof terms

ρ ::= x
| c
| λx .ρ
| ρ1 ρ2
| α rule symbols
| ρ1 ; ρ2 sequential composition

7

Proof terms for higher-order rewriting

Higher-order terms

s ::= x variables
| c constants
| λx .s abstractions
| s1 s2 applications

Higher-order proof terms

ρ ::= x
| c
| λx .ρ
| ρ1 ρ2
| α rule symbols
| ρ1 ; ρ2 sequential composition

8

Well-formed proof terms

x : x _ x c : c _ c

(α : s _ t) ∈ R

α : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t

If ρ : s _ t then: ρsrc
def
= s ρtgt

def
= t.

I Setting: orthogonal HRSs (in Nipkow’s sense).

I Proof terms are simply-typed. (We omit the details in this talk).

8

Well-formed proof terms

x : x _ x c : c _ c

(α : s _ t) ∈ R

α : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t

If ρ : s _ t then: ρsrc
def
= s ρtgt

def
= t.

I Setting: orthogonal HRSs (in Nipkow’s sense).

I Proof terms are simply-typed. (We omit the details in this talk).

8

Well-formed proof terms

x : x _ x c : c _ c

(α : s _ t) ∈ R

α : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t

If ρ : s _ t then: ρsrc
def
= s ρtgt

def
= t.

I Setting: orthogonal HRSs (in Nipkow’s sense).

I Proof terms are simply-typed. (We omit the details in this talk).

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x

x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x

λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x

(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t

(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

9

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s _ t is such that s 6= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But (ρ ; ρ) is not well-formed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.

10

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

11

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

ρsrc ; ρ ≈ ρ
ρ ; ρtgt ≈ ρ

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ)
(λx .ρ) ; (λx .σ) ≈ λx .(ρ ; σ)
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2)

(λx .s) ρ ≈ s{x\\ρ}
(λx .ρ) s ≈ ρ{x\s}
λx .ρ x ≈ ρ if x /∈ fv(ρ)

11

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

ρsrc ; ρ ≈ ρ
ρ ; ρtgt ≈ ρ

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ)
(λx .ρ) ; (λx .σ) ≈ λx .(ρ ; σ)
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2)

(λx .s) ρ ≈ s{x\\ρ}
(λx .ρ) s ≈ ρ{x\s}
λx .ρ x ≈ ρ if x /∈ fv(ρ)

12

Permutation equivalence for higher-order proof terms

With these axioms, we can prove:

(λx .ρ)σ ≈ ρ{x\σsrc} ; ρtgt{x\\σ} ≈ ρsrc{x\\σ} ; ρ{x\σtgt}

13

Flattening

Definition (Flattening)

λx .(ρ ; σ)
[7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
[7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
[7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
[7→ ((ρ1 ; ρ2)σsrc

1) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
[7→ µ{x\ν}

λx .µ x
[7→ µ if x /∈ fv(µ)

µ, ν, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

I Any proof term can be converted to a proof term in Bruggink’s
sense (with compositions only at the toplevel).

I Auxiliary tool to relate permutation and projection equivalence.

13

Flattening

Definition (Flattening)

λx .(ρ ; σ)
[7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
[7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
[7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
[7→ ((ρ1 ; ρ2)σsrc

1) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
[7→ µ{x\ν}

λx .µ x
[7→ µ if x /∈ fv(µ)

µ, ν, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

I Any proof term can be converted to a proof term in Bruggink’s
sense (with compositions only at the toplevel).

I Auxiliary tool to relate permutation and projection equivalence.

13

Flattening

Definition (Flattening)

λx .(ρ ; σ)
[7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
[7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
[7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
[7→ ((ρ1 ; ρ2)σsrc

1) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
[7→ µ{x\ν}

λx .µ x
[7→ µ if x /∈ fv(µ)

µ, ν, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

I Any proof term can be converted to a proof term in Bruggink’s
sense (with compositions only at the toplevel).

I Auxiliary tool to relate permutation and projection equivalence.

14

Flat permutation equivalence

Definition (Flat permutation equivalence)
A notion of permutation equivalence between flat proof terms can be
defined as follows:

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ)
µ ∼ µ[1 ; µ

[
2 if µ⇔ µ1 ; µ2

where µ⇔ µ1 ; µ2 is a ternary relation meaning that the multistep µ can
be “split” as the composition of the multisteps µ1 and µ2.

Theorem (Permutation equivalence through flattening)
ρ ≈ σ if and only if ρ[∼ σ[

15

Projection
A notion of projection can be defined for multi-steps (without
composition):

x///x ⇒ x c///c⇒ c

µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

α///α⇒ αtgt α///αsrc ⇒ α αsrc///α⇒ αtgt

Projection can be extended to flat proof terms:

if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

And finally, to arbitrary proof terms, by flattening first:

ρ/σ
def
= ρ[//σ[

15

Projection
A notion of projection can be defined for multi-steps (without
composition):

x///x ⇒ x c///c⇒ c

µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

α///α⇒ αtgt α///αsrc ⇒ α αsrc///α⇒ αtgt

α

��

α //

αtgt

??

αsrc

��

α //

α

??
α

��

αsrc
//

αtgt

??

Projection can be extended to flat proof terms:

µ[//ν[
def
= ξ[if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

And finally, to arbitrary proof terms, by flattening first:

ρ/σ
def
= ρ[//σ[

15

Projection
A notion of projection can be defined for multi-steps (without
composition):

x///x ⇒ x c///c⇒ c

µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

α///α⇒ αtgt α///αsrc ⇒ α αsrc///α⇒ αtgt

Projection can be extended to flat proof terms:

µ[//ν[
def
= ξ[if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

And finally, to arbitrary proof terms, by flattening first:

ρ/σ
def
= ρ[//σ[

15

Projection
A notion of projection can be defined for multi-steps (without
composition):

x///x ⇒ x c///c⇒ c

µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

α///α⇒ αtgt α///αsrc ⇒ α αsrc///α⇒ αtgt

Projection can be extended to flat proof terms:

µ[//ν[
def
= ξ[if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

And finally, to arbitrary proof terms, by flattening first:

ρ/σ
def
= ρ[//σ[

16

Projection equivalence

Theorem (Permutation equivalence through projection)
ρ ≈ σ if and only if ρ/σ and σ/ρ are empty.

Corollary
Permutation equivalence is decidable.

16

Projection equivalence

Theorem (Permutation equivalence through projection)
ρ ≈ σ if and only if ρ/σ and σ/ρ are empty.

Corollary
Permutation equivalence is decidable.

17

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

18

Conclusion

We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. ρ ≈ σ
2. ρ[∼ σ[

3. ρ/σ and σ/ρ are empty

Future work
I Formulate a standardization procedure.

I Study labeling equivalence.

I Study 2-categorical models (Hirschowitz, 2013).

I Develop tools to manipulate reductions in higher-order rewriting.

18

Conclusion

We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. ρ ≈ σ
2. ρ[∼ σ[

3. ρ/σ and σ/ρ are empty

Future work
I Formulate a standardization procedure.

I Study labeling equivalence.

I Study 2-categorical models (Hirschowitz, 2013).

I Develop tools to manipulate reductions in higher-order rewriting.

	First-order proof terms
	Higher-order proof terms
	This work
	Conclusion

