Proof Terms

for Higher-Order Rewriting and Their Equivalence

February 14, 2023

Pablo Barenbaum

CONICET / Universidad Nacional de Quilmes ICC, Universidad de Buenos Aires

Argentina

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

2

Proof terms for first-order rewriting

First-order terms

$$
\begin{array}{rlrl}
s::= & x & \text { variables } \\
& \mid & \mathbf{f}\left(s_{1}, \ldots, s_{n}\right) & \\
\text { applied function symbols }
\end{array}
$$

Proof terms for first-order rewriting

First-order terms

$$
\begin{array}{rlrl}
s::= & x & & \text { variables } \\
& & \mathbf{f}\left(s_{1}, \ldots, s_{n}\right) & \\
\text { applied function symbols }
\end{array}
$$

First-order proof terms

$$
\begin{aligned}
& \rho::= x \\
& \left\lvert\, \begin{array}{l}
\mid \\
\\
\\
\\
\\
\\
\alpha\left(\rho_{1}, \ldots, \rho_{n}\right) \\
\left.\rho_{1} ; \rho_{2}, \ldots, \rho_{n}\right)
\end{array}\right.
\end{aligned}
$$

applied rule symbols sequential composition

Proof terms for first-order rewriting

First-order terms

$$
\begin{array}{rlrl}
s::= & x & & \text { variables } \\
& \mid & \mathbf{f}\left(s_{1}, \ldots, s_{n}\right) & \\
\text { applied function symbols }
\end{array}
$$

First-order proof terms

$$
\begin{aligned}
& \rho::= x \\
& \left\lvert\, \begin{array}{l}
\mid \\
\\
\\
\\
\\
\\
\alpha\left(\rho_{1}, \ldots, \rho_{n}\right) \\
\left.\rho_{1} ; \rho_{1}, \ldots, \rho_{n}\right)
\end{array}\right.
\end{aligned}
$$

Proof terms denote rewrites between terms.

Proof terms for first-order rewriting

$$
\begin{array}{llrll}
\alpha(x) & : & \mathbf{f}(x) & \rightarrow & \mathbf{g}(x, x) \\
\beta & : & \mathbf{C} & \rightarrow \mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\left.\begin{array}{rl}
\alpha(x) & : \quad \mathbf{f}(x) \\
\beta & \rightarrow \mathbf{g}(x, x) \\
& : \mathbf{c}
\end{array}\right)
$$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : \mathbf{f}(x) & \rightarrow & \mathbf{g}(x, x) \\
\beta & : & \mathbf{C} & \rightarrow \mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : \mathbf{f}(x) & \rightarrow & \mathbf{g}(x, x) \\
\beta & : & \mathbf{C} & \rightarrow \mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : & \mathbf{f}(x) & \rightarrow \\
\beta & : & \mathbf{C} & \rightarrow \\
\mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : & \mathbf{f}(x) & \rightarrow \\
\beta & : & \mathbf{C}(x, x) \\
\beta & \rightarrow \mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : & \mathbf{f}(x) & \rightarrow \\
\beta & : & \mathbf{C}(x, x) \\
\beta & \rightarrow \mathbf{d}
\end{array}
$$

Proof terms for first-order rewriting

$$
\begin{array}{rlrl}
\alpha(x) & : \mathbf{f}(x) & \rightarrow \mathbf{g}(x, x) \\
\beta & : & \mathbf{C} & \rightarrow \mathbf{d}
\end{array}
$$

Permutation equivalence
$\alpha(\mathbf{c}) ; \mathbf{g}(\beta, \mathbf{c}) ; \mathbf{g}(\mathbf{d}, \beta) \approx \mathbf{f}(\beta) ; \alpha(\mathbf{d})$

Proof terms for first-order rewriting

$$
\begin{array}{llll}
\alpha(x) & : & \mathbf{f}(x) & \rightarrow \\
\beta & : & \mathbf{C}(x, x) \\
\beta & \rightarrow \mathbf{d}
\end{array}
$$

> Projection
> $\alpha(\mathbf{c}) / \mathbf{f}(\beta)=\alpha(\mathbf{d})$

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom, 2002)
Building on previous work by Lévy, Huet, Meseguer, ...
The following are equivalent:

1. Permutation equivalence: $\rho \approx \sigma$.
2. Projection equivalence: ρ / σ and σ / ρ are empty.

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

6

Proof terms for higher-order rewriting

Higher-order terms

$s::=$| x | variables |
| :--- | :--- |
| | \mathbf{c} |
| | |
| $\lambda x . s$ | constants |
| | $s_{1} s_{2}$ | abstractions | applications |
| :--- |

Proof terms for higher-order rewriting

Higher-order terms

$s::=$| x | variables |
| :--- | :--- |
| c | constants |
| | $\lambda x . s$ |
| | abstractions |
| $s_{1} s_{2}$ | applications |

Higher-order proof terms

rule symbols
sequential composition

Well-formed proof terms

$$
\begin{aligned}
& \overline{x: x}_{x \rightarrow x} \quad \underset{\mathbf{c}: \mathbf{c} \rightarrow \mathbf{c}}{ } \quad \frac{(\alpha: s \rightarrow t) \in \mathcal{R}}{\alpha: s \rightarrow t} \quad \frac{\rho: s \rightarrow t}{\lambda x . \rho: \lambda x . s \rightarrow \lambda x . t} \\
& \frac{\rho_{1}: s_{1} \rightarrow t_{1} \quad \rho_{2}: s_{2} \rightarrow t_{2}}{\rho_{1} \rho_{2}: s_{1} s_{2} \rightarrow t_{1} t_{2}} \quad \frac{\rho_{1}: s_{1} \rightarrow s_{2} \quad \rho_{2}: s_{2} \rightarrow s_{3}}{\rho_{1} ; \rho_{2}: s_{1} \rightarrow s_{3}} \\
& \begin{array}{c}
s={ }_{\beta \eta} s^{\prime} \quad \rho: s^{\prime} \rightarrow t^{\prime} \quad t^{\prime}={ }_{\beta \eta} t \\
\rho: s \rightarrow t
\end{array}
\end{aligned}
$$

Well-formed proof terms

$$
\begin{aligned}
& {\underset{x: x \rightarrow x}{ } \quad \underset{\mathbf{c}: \mathbf{c} \rightarrow \mathbf{c}}{ } \quad \frac{(\alpha: s \rightarrow t) \in \mathcal{R}}{\alpha: s \rightarrow t} \quad \frac{\rho: s \rightarrow t}{\lambda x . \rho: \lambda x . s \rightarrow \lambda x . t}}^{x \rightarrow t} \\
& \frac{\rho_{1}: s_{1} \rightarrow t_{1} \quad \rho_{2}: s_{2} \rightarrow t_{2}}{\rho_{1} \rho_{2}: s_{1} s_{2} \rightarrow t_{1} t_{2}} \quad \frac{\rho_{1}: s_{1} \rightarrow s_{2} \quad \rho_{2}: s_{2} \rightarrow s_{3}}{\rho_{1} ; \rho_{2}: s_{1} \rightarrow s_{3}} \\
& \begin{array}{c}
s={ }_{\beta \eta} s^{\prime} \quad \rho: s^{\prime} \rightarrow t^{\prime} \quad t^{\prime}={ }_{\beta \eta} t \\
\rho: s \rightarrow t
\end{array} \\
& \text { If } \rho: s \rightarrow t \text { then: } \quad \rho^{\text {src }} \stackrel{\text { def }}{=} s \quad \rho^{\text {tgt }} \stackrel{\text { def }}{=} t \text {. }
\end{aligned}
$$

Well-formed proof terms

$$
\begin{gathered}
\begin{array}{l}
x: x \rightarrow x \\
\frac{\rho_{1}: \mathbf{c} \rightarrow \mathbf{c}}{x}: s_{1} \rightarrow t_{1} \quad \rho_{2}: s_{2} \rightarrow t_{2} \\
\rho_{1} \rho_{2}: s_{1} s_{2} \rightarrow t_{1} t_{2}
\end{array} \frac{(\alpha: s \rightarrow t) \in \mathcal{R}}{\alpha: s \rightarrow t} \quad \frac{\rho: s \rightarrow t}{\lambda x . \rho: \lambda x . s \rightarrow \lambda x . t} \\
\frac{\rho_{1}: s_{1} \rightarrow s_{2} \quad \rho_{2}: s_{2} \rightarrow s_{3}}{\rho_{1} ; \rho_{2}: s_{1} \rightarrow s_{3}} \rho: s^{\prime} \rightarrow t^{\prime} \quad t^{\prime}={ }_{\beta \eta} t \\
\rho: s \rightarrow t \\
\text { If } \rho: s \rightarrow t \text { then: } \quad \rho^{\text {src }} \stackrel{\text { def }}{=} s \quad \rho^{\text {tgt }} \stackrel{\text { def }}{=} t .
\end{gathered}
$$

- Setting: orthogonal HRSs (in Nipkow's sense).
- Proof terms are simply-typed. (We omit the details in this talk).

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
x \quad: x \quad \rightarrow x
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow
$x ; x$	$:$	x	\rightarrow

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow	x
$x ; x$	$:$	x	\rightarrow	x
$\lambda x .(x ; x)$	$:$	$\lambda x . x$	\rightarrow	$\lambda x \cdot x$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow	x
$x ; x$	$:$	x	\rightarrow	x
$\lambda x .(x ; x)$	$:$	$\lambda x \cdot x$	\rightarrow	$\lambda x \cdot x$
$(\lambda x .(x ; x)) \rho$	$:$	$(\lambda x \cdot x) s$	\rightarrow	$(\lambda x \cdot x) t$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow	x
$x ; x$	$:$	x	\rightarrow	x
$\lambda x .(x ; x)$	$:$	$\lambda x \cdot x$	\rightarrow	$\lambda x \cdot x$
$(\lambda x .(x ; x)) \rho$	$:$	$(\lambda x \cdot x) s$	\rightarrow	$(\lambda x \cdot x) t$
$(\lambda x .(x ; x)) \rho$	$:$	s	\rightarrow	t

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
\begin{array}{lllll}
x & : & x & \rightarrow & x \\
x ; x & \vdots & x & \rightarrow & x \\
\lambda x .(x ; x) & : & \lambda x \cdot x & \rightarrow & \lambda x \cdot x \\
(\lambda x .(x ; x)) \rho & : & (\lambda x \cdot x) s & \rightarrow & (\lambda x \cdot x) t \\
(\lambda x .(x ; x)) \rho & : & s & \rightarrow & t
\end{array}
$$

But ($\rho ; \rho$) is not well-formed, as ρ cannot be composed with itself.

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
\begin{array}{lllll}
x & : & x & \rightarrow & x \\
x ; x & : & x & \rightarrow & x \\
\lambda x \cdot(x ; x) & : & \lambda x \cdot x & \rightarrow & \lambda x \cdot x \\
(\lambda x .(x ; x)) \rho & : & (\lambda x \cdot x) s & \rightarrow & (\lambda x \cdot x) t \\
(\lambda x \cdot(x ; x)) \rho & : & s & \rightarrow & t
\end{array}
$$

But $(\rho ; \rho)$ is not well-formed, as ρ cannot be composed with itself.
Bruggink sidesteps the problem by allowing compositions (";") only at the toplevel.

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

10

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

$$
\begin{array}{rlr}
\rho^{\text {src }} ; \rho & \approx \rho \\
\rho ; \rho^{\operatorname{tgt}} & \approx \rho \\
(\rho ; \sigma) ; \tau & \approx \rho ;(\sigma ; \tau) & \\
(\lambda x . \rho) ;(\lambda x . \sigma) & \approx \lambda x \cdot(\rho ; \sigma) & \\
\left(\rho_{1} \rho_{2}\right) ;\left(\sigma_{1} \sigma_{2}\right) & \approx\left(\rho_{1} ; \sigma_{1}\right)\left(\rho_{2} ; \sigma_{2}\right) & \\
(\lambda x . s) \rho & \approx s\{x \backslash \rho\} & \\
(\lambda x . \rho) s & \approx \rho\{x \backslash s\} & \\
\lambda x . \rho x & \approx \rho & \text { if } x \notin \operatorname{fv}(\rho)
\end{array}
$$

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

$$
\begin{array}{rll}
\rho^{\text {src }} ; \rho & \approx \rho \\
\rho ; \rho^{\operatorname{tgt}} & \approx \rho \\
(\rho ; \sigma) ; \tau & \approx \rho ;(\sigma ; \tau) & \\
(\lambda x . \rho) ;(\lambda x \cdot \sigma) & \approx \lambda x \cdot(\rho ; \sigma) & \\
\left(\rho_{1} \rho_{2}\right) ;\left(\sigma_{1} \sigma_{2}\right) & \approx\left(\rho_{1} ; \sigma_{1}\right)\left(\rho_{2} ; \sigma_{2}\right) & \\
(\lambda x . s) \rho & \approx s\{x \backslash \backslash \rho\} & \\
(\lambda x . \rho) s & \approx \rho\{x \backslash s\} & \\
\lambda x \cdot \rho x & \approx \rho & \text { if } x \notin \operatorname{fv}(\rho)
\end{array}
$$

Permutation equivalence for higher-order proof terms

With these axioms, we can prove:

$$
(\lambda x \cdot \rho) \sigma \approx \rho\left\{x \backslash \sigma^{\mathrm{src}}\right\} ; \rho^{\operatorname{tgt}}\{x \backslash \sigma\} \approx \rho^{\operatorname{src}}\{x \backslash \sigma\} ; \rho\left\{x \backslash \sigma^{\mathrm{tgt}}\right\}
$$

Flattening

Definition (Flattening)

$$
\begin{aligned}
& \lambda x .(\rho ; \sigma) \stackrel{b}{\mapsto} \\
&(\rho ; \sigma) \mu(\lambda x \cdot \rho) ;(\lambda x \cdot \sigma) \\
& \mu(\rho ; \sigma) \stackrel{b}{\mapsto} \\
&\left(\mu \mu^{\text {sc c }}\right) ;(\sigma \mu) ;\left(\mu^{\text {tgt }} \sigma\right) \\
&\left(\rho_{1} ; \rho_{2}\right)\left(\sigma_{1} ; \sigma_{2}\right) \stackrel{b}{b}\left(\left(\rho_{1} ; \rho_{2}\right) \sigma_{1}^{\text {sic }}\right) ;\left(\rho_{2}^{\operatorname{tgt}}\left(\sigma_{1} ; \sigma_{2}\right)\right) \\
&(\lambda x \cdot \mu) \nu \stackrel{\mapsto}{\mapsto} \mu\{x \backslash \nu\} \\
& \lambda x \cdot \mu x \mapsto
\end{aligned} \mu
$$

$$
\text { if } x \notin \operatorname{fv}(\mu)
$$

μ, ν, etc. stand for multisteps.

Flattening

Definition (Flattening)

$$
\begin{aligned}
& \lambda x \cdot(\rho ; \sigma) \stackrel{b}{\mapsto} \\
&(\rho ; \sigma) \mu(\lambda x \cdot \rho) ;(\lambda x \cdot \sigma) \\
& \mu(\rho ; \sigma) \stackrel{b}{\mapsto} \\
&\left(\mu \mu^{\text {scc }}\right) ;(\sigma \mu) ;\left(\mu^{\text {tgt }} \sigma\right) \\
&\left(\rho_{1} ; \rho_{2}\right)\left(\sigma_{1} ; \sigma_{2}\right) \stackrel{b}{\mapsto}\left(\left(\rho_{1} ; \rho_{2}\right) \sigma_{1}^{\text {src }}\right) ;\left(\rho_{2}^{\operatorname{tgt}}\left(\sigma_{1} ; \sigma_{2}\right)\right) \\
&(\lambda x \cdot \mu) \nu \stackrel{\mapsto}{\mapsto} \mu\{x \backslash \nu\} \\
& \lambda x \cdot \mu x \mapsto
\end{aligned} \mu
$$

$$
\text { if } x \notin \operatorname{fv}(\mu)
$$

μ, ν, etc. stand for multisteps.
Theorem
Flattening is confluent and strongly normalizing.

Flattening

Definition (Flattening)

$$
\text { if } x \notin \operatorname{fv}(\mu)
$$

μ, ν, etc. stand for multisteps.
Theorem
Flattening is confluent and strongly normalizing.

- Any proof term can be converted to a proof term in Bruggink's sense (with compositions only at the toplevel).
- Auxiliary tool to relate permutation and projection equivalence.

$$
\begin{aligned}
& \lambda x .(\rho ; \sigma) \xrightarrow{b} \quad(\lambda x . \rho) ;(\lambda x . \sigma) \\
& (\rho ; \sigma) \mu \xrightarrow{\mapsto}\left(\rho \mu^{\mathrm{src}}\right) ;(\sigma \mu) \\
& \mu(\rho ; \sigma) \xrightarrow{b} \quad(\mu \rho) ;\left(\mu^{\mathrm{tgt}} \sigma\right) \\
& \left(\rho_{1} ; \rho_{2}\right)\left(\sigma_{1} ; \sigma_{2}\right) \stackrel{b}{\mapsto}\left(\left(\rho_{1} ; \rho_{2}\right) \sigma_{1}^{\text {src }}\right) ;\left(\rho_{2}^{\text {tgt }}\left(\sigma_{1} ; \sigma_{2}\right)\right) \\
& (\lambda x . \mu) \nu \stackrel{b}{\mapsto} \mu\{x \backslash \nu\} \\
& \lambda x . \mu x \xrightarrow{b} \mu
\end{aligned}
$$

Flat permutation equivalence

Definition (Flat permutation equivalence)
A notion of permutation equivalence between flat proof terms can be defined as follows:

$$
\begin{array}{ll}
(\rho ; \sigma) ; \tau & \sim \rho ;(\sigma ; \tau) \\
\mu & \sim \mu_{1}^{b} ; \mu_{2}^{b}
\end{array} \quad \text { if } \mu \Leftrightarrow \mu_{1} ; \mu_{2}
$$

where $\mu \Leftrightarrow \mu_{1} ; \mu_{2}$ is a ternary relation meaning that the multistep μ can be "split" as the composition of the multisteps μ_{1} and μ_{2}.

Theorem (Permutation equivalence through flattening) $\rho \approx \sigma$ if and only if $\rho^{b} \sim \sigma^{b}$

Projection

A notion of projection can be defined for multi-steps (without composition):

$$
\begin{gathered}
\overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \\
\frac{\mu / / / \nu \Rightarrow \xi}{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x \cdot \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}} \\
\overline{\alpha / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}} \overline{\alpha / / / \alpha^{\mathrm{src}} \Rightarrow \alpha} \quad \overline{\alpha^{\mathrm{src}} / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}}
\end{gathered}
$$

Projection

A notion of projection can be defined for multi-steps (without composition):

$$
\begin{aligned}
& \overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \\
& \frac{\mu / / / \nu \Rightarrow \xi}{\lambda x . \mu / / / \lambda x . \nu \Rightarrow \lambda x . \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1} \quad \mu_{2} / / / \nu_{2} \Rightarrow \xi_{2}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}} \\
& \overline{\alpha / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}} \\
& \overline{\alpha / / / \alpha^{\mathrm{src}} \Rightarrow \alpha} \quad \overline{\alpha^{\mathrm{src}} / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}} \\
& \alpha \left\lvert\, \xrightarrow{\frac{\alpha}{3}}\right.
\end{aligned}
$$

Projection

A notion of projection can be defined for multi-steps (without composition):

$$
\begin{gathered}
\overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \\
\frac{\mu / / / \nu \Rightarrow \xi}{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x \cdot \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}} \\
\overline{\alpha / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}} \overline{\alpha / / / \alpha^{\text {src }} \Rightarrow \alpha} \quad \overline{\alpha^{\text {src }} / / / \alpha \Rightarrow \alpha^{\text {tgt }}}
\end{gathered}
$$

Projection can be extended to flat proof terms:

$$
\begin{array}{rll}
\mu^{b} / / \nu^{b} & \stackrel{\text { def }}{=} \xi^{b} & \text { if } \mu / / \nu \Rightarrow \xi \\
\rho / /(\sigma ; \tau) & \stackrel{\text { def }}{=} & (\rho / / \sigma) / / \tau \\
(\rho ; \sigma) / / \tau & \stackrel{\text { def }}{=} & (\rho / / \tau) ;(\sigma / /(\tau / / \rho))
\end{array}
$$

Projection

A notion of projection can be defined for multi-steps (without composition):

$$
\begin{gathered}
\overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \\
\frac{\mu / / / \nu \Rightarrow \xi}{\overline{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x . \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}}} \begin{array}{c}
\mu_{2} / / / \nu_{2} \Rightarrow \xi_{2} \\
\overline{\alpha / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}} \overline{\alpha / / / \alpha^{\text {src }} \Rightarrow \alpha} \quad \overline{\alpha^{\text {src }} / / / \alpha \Rightarrow \alpha^{\mathrm{tgt}}}
\end{array}
\end{gathered}
$$

Projection can be extended to flat proof terms:

$$
\begin{array}{rll}
\mu^{b} / / \nu^{b} & \stackrel{\text { def }}{=} \xi^{b} & \text { if } \mu / / / \nu \Rightarrow \xi \\
\rho / /(\sigma ; \tau) & \stackrel{\text { def }}{=} & (\rho / / \sigma) / / \tau \\
(\rho ; \sigma) / / \tau & \stackrel{\text { def }}{=}(\rho / / \tau) ;(\sigma / /(\tau / / \rho)) &
\end{array}
$$

And finally, to arbitrary proof terms, by flattening first:

$$
\rho / \sigma \stackrel{\text { def }}{=} \rho^{b} / / \sigma^{b}
$$

Projection equivalence

Theorem (Permutation equivalence through projection) $\rho \approx \sigma$ if and only if ρ / σ and σ / ρ are empty.

Projection equivalence

Theorem (Permutation equivalence through projection) $\rho \approx \sigma$ if and only if ρ / σ and σ / ρ are empty.

Corollary
Permutation equivalence is decidable.

Outline

First-order proof terms

Higher-order proof terms

This work

Conclusion

17

Conclusion

We have proposed a notion of proof terms for higher-order rewriting that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. $\rho \approx \sigma$
2. $\rho^{b} \sim \sigma^{b}$
3. ρ / σ and σ / ρ are empty

Conclusion

We have proposed a notion of proof terms for higher-order rewriting that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. $\rho \approx \sigma$
2. $\rho^{b} \sim \sigma^{b}$
3. ρ / σ and σ / ρ are empty

Future work

- Formulate a standardization procedure.
- Study labeling equivalence.
- Study 2-categorical models (Hirschowitz, 2013).
- Develop tools to manipulate reductions in higher-order rewriting.

