Proof Terms
for Higher-Order Rewriting

and Their Equivalence

February 14, 2023

Pablo Barenbaum Eduardo Bonelli
CONICET / Universidad Nacional de Quilmes Stevens Institute of Technology

ICC, Universidad de Buenos Aires
Argentina USA

Outline

First-order proof terms

Proof terms for first-order rewriting

First-order terms

s = X variables
| f(s1,.--,5n) applied function symbols

Proof terms for first-order rewriting

First-order terms

s = X

| f(s1,...,Sn)

First-order proof terms

p o= X
| f(pla"'7pn)
; N

P15 P2

variables
applied function symbols

applied rule symbols
sequential composition

Proof terms for first-order rewriting

First-order terms

s = X

| f(s1,.--,5n)

First-order proof terms

p = X
| f(pla"wpn)
| alpr,- - pn)
| P15 02

variables
applied function symbols

applied rule symbols
sequential composition

Proof terms denote rewrites between terms.

Proof terms for first-order rewriting

alx) f(x

g(x,x)
I3 : c d

—>
—>

Proof terms for first-order rewriting

alx) f(x

g(x,x)
I3 : c d

—>
—>

f(c)

Proof terms for first-order rewriting

a(x) : f(x

g(x, x)
I3 : c d

—>
—>

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I3 : c — d
f(c)
a(c)
g(c,c) v

f(d)

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I3 : c — d
f(c)
a(c)
g(c,c) v

g(d,c) g(c,d) f(d)

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I3 : c — d
f(c)
o(c)
g(c, c) f(8)

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I6] : c — d
f(c)
a(c)
g(c,c)
g(Bc) ﬁvﬂ)
g(d, c) g6 g(c,d) f(d)

g(d,B) A)

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I3 : c — d
f(c)
a(c)
f(8)
g(c.c)
g(8.¢)
g(d,c) g(c.d) f(d)
a(d)
g(d.B)
g(d,d)

Permutation equivalence

a(c) ;5 g(B;c) 5 g(d,) = £(B) 5 a(d)

Proof terms for first-order rewriting

alx) @ f(x) — g(x,x)
I6] : c — d
f(c)
a(c)
g(c,c) f(B)
g(d,c) g(c,d) f(d)

a(d)

g(d.d)

Projection

a(c) /£(B8) = a(d)

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom, 2002)
Building on previous work by Lévy, Huet, Meseguer, ...
The following are equivalent:

1. Permutation equivalence: p ~ o.

2. Projection equivalence: p/o and o/p are empty.

Outline

Higher-order proof terms

Proof terms for higher-order rewriting

Higher-order terms

s = X variables
| ¢ constants
| Ax.s abstractions

s s, applications

Proof terms for higher-order rewriting

Higher-order terms

s = X variables
| ¢ constants
| Ax.s abstractions

s s, applications

Higher-order proof terms

p

0 X

P1 P2
« rule symbols

|
| Ax.p
|
|
| P12 sequential composition

Well-formed proof terms

(a:s—=t)eR p:s—t

X:X—>X C:C—>C a:s-—t AX.p 1 AX.s — Ax.t

prist—ti priSHy—>ty pP1:S1—>S pP2.SH—*>S3

pLp2:S1S2 > titr P15 P25 > S3

s=gys p:s—=t t'=p,t

p:s—>t

Well-formed proof terms

(a:s—=t)eR p:s—t

X:X—>X C:C—>C a:s-—t AX.p 1 AX.s — Ax.t

prist—ti priSHy—>ty pP1:S1—>S pP2.SH—*>S3

pLp2:S1S2 > titr P15 P25 > S3

s=gys p:s—=t t'=p,t

p:s—>t

def 1ot def
pE =

If p:s—t then: PP = s t.

Well-formed proof terms

(a:s—=t)eR p:s—t

X:X—>X C:C—>C a:s-—t AX.p 1 AX.s — Ax.t

prist—ti priSHy—>ty pP1:S1—>S pP2.SH—*>S3

pLp2:S1S2 >ttt P15 P25 > S3

s=gys p:s—=t t'=p,t

p:s—>t

If p:s—tthen: poe &g et Ly

> Setting: orthogonal HRSs (in Nipkow's sense).
» Proof terms are simply-typed. (We omit the details in this talk).

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) o” mean?

?

(Mx.p)o = p{x\c}

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) o” mean?

?

(Mx.p)o = p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) o” mean?

?

(Mx.p)o = p{x\c}
As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X DX —
X3 X DX —

x X

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) o” mean?

?

(Mx.p)o = p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

b Y —- X
X3 X Y —- X
Ax.(x 5 x) DOAXX — Ax.x

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) " mean?

?

(Mx.p)o =~ p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 X X —- X

Ax.(x 5 x TOAX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) " mean?

?

(Mx.p)o =~ p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 x X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) o” mean?

?

(Mx.p)o = p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 x X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

But (p ; p) is not well-formed, as p cannot be composed with itself.

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p) " mean?

?

(Mx.p)o =~ p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 x X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

But (p ; p) is not well-formed, as p cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;") only at
the toplevel.

Outline

This work

10

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

P p

p; e
(p3o)sT
(Ax.p) 5 (Ax.0)
(p1p2) 5 (0102)
(Ax.s)p
(Ax.p)s

AX.p X

araaaaa

p
p

pi(osT)

Ax.(p s 0)

(p15 01)(p2 5 02)
s{x\\n}

p{x\s}

p

if x ¢ fv(p)

11

Permutation equivalence for higher-order proof terms

Definition (Permutation equivalence)

pSI’C ; /)

PP
(p3o)s7
(Ax.p) 5 (Ax.0)
(p1p2) 5 (0102)
(Ax.s)p
(Ax.p)s
AX.p X

AR XX N N

p
p

pi(osT)

Mx.(p ;o)

(p15 01)(p2 5 02)

s{x\n}

plx\s}

p if x & fv(p)

11

Permutation equivalence for higher-order proof terms

With these axioms, we can prove:

(Axp)o = p{x\e™}; 08 {x\o} ~ p"{x\o};p{x\c*}

12

Flattening

Definition (Flattening)

M(pio) B (xp); (Ax.o)
(P50 i 5 (pp™) s (o p)
w(pio) > (up)s (o)
(p5p)(e1502) > (o3 02)079) 5 (0 (015 2))
(em)y S pfx\v}
AX. L X A Iz if x & fv(p)

u, v, etc. stand for multisteps.

13

Flattening

Definition (Flattening)

M(pio) B (xp); (Ax.o)
(p30)n = (pr™); (o p)
w(pio) > (up)s (o)
(pr302) (01302) 5 (o135 p2) 07) 5 (P (01 5 02))
(ep)v = p{x\v}
AX. L X A I

u, v, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

if x & fv(p)

13

Flattening

Definition (Flattening)

M(pio) B (xp); (Ax.o)
(P50 i 5 (pp™) s (o p)
w(pio) > (up)s (o)
(p5p)(e1502) > (o3 02)079) 5 (0 (015 2))
(em)y S pfx\v}
AX. L X A L if x & fv(p)

u, v, etc. stand for multisteps.

Theorem
Flattening is confluent and strongly normalizing.

» Any proof term can be converted to a proof term in Bruggink's
sense (with compositions only at the toplevel).

» Auxiliary tool to relate permutation and projection equivalence.

13

Flat permutation equivalence

Definition (Flat permutation equivalence)

A notion of permutation equivalence between flat proof terms can be
defined as follows:

(pso)sT ~ psi(os7)
u ~ misms o i pe s
where 1 < 1 5 p2 is a ternary relation meaning that the multistep 1 can

be “split” as the composition of the multisteps 11 and po.

Theorem (Permutation equivalence through flattening)

p ~ o if and only if p* ~ ¢®

14

Projection

A notion of projection can be defined for multi-steps (without
composition):

xf/x=x cfflc=c

wllv=§ pffri =& paffva =&
A Ax.v = Ax.& o ffrive = & &

affa=a® affa =a ”fla= o't

15

Projection

A notion of projection can be defined for multi-steps (without
composition):

xf/x=x cfflc=c

whlv = § pffri =& ppffre =&
A Ax.v = Ax.€ o ffrrive = & &

affa=a® affa” =>a o fla= o'

o a asc

>
k4 k4
@ ¢ e}
tgt « tgt
B « B [e3
v,

15

Projection
A notion of projection can be defined for multi-steps (without

composition):

X[Jx=x cffc=c

wlv = § pffri =& jpffre =&
A) Ax.v = Ax.€ o ffrive = & &

affa=a® affa =a o”fla= a8

Projection can be extended to flat proof terms:
def .
pwp = e if uffv = ¢

plos7) £ (pfo))r
(p30)) € (o)) (@) (r)p))

15

Projection

A notion of projection can be defined for multi-steps (without
composition):

X[Jx=x cffc=c

wlv = § pffri =& jpffre =&
A) Ax.v = Ax.€ o ffrive = & &

affa=a® affa”=a o fla= o'
Projection can be extended to flat proof terms:
wp = e if v = ¢
plosT) = (p)o))
(pso))T = (o)) s ()(7)p))

And finally, to arbitrary proof terms, by flattening first:

adéf e
p/ i 15

Projection equivalence

Theorem (Permutation equivalence through projection)
p~oifand only if p/o and o/p are empty.

16

Projection equivalence

Theorem (Permutation equivalence through projection)
p~oifand only if p/o and o/p are empty.

Corollary
Permutation equivalence is decidable.

16

Outline

Conclusion

17

Conclusion

We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:
1. p=o
2. PP ~o?

3. p/o and o/p are empty

18

Conclusion

We have proposed a notion of proof terms for higher-order rewriting
that allows to freely use the composition operator.

We have characterized permutation equivalence in three equivalent ways:

1. p=o
2. PP ~o?

3. p/o and o/p are empty

Future work
» Formulate a standardization procedure.
» Study labeling equivalence.
» Study 2-categorical models (Hirschowitz, 2013).
» Develop tools to manipulate reductions in higher-order rewriting.

18

	First-order proof terms
	Higher-order proof terms
	This work
	Conclusion

