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First-order proof terms
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Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) :

add(zero, x) _ x

ϑ(x , y) :

add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



4

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

ρ ::= c(ρ1, . . . , ρn) congruence c is any n-ary function symbol
| ϱ(ρ1, . . . , ρn) rule application ϱ is any n-ary rule symbol
| ρ1 ; ρ2 composition

Rewriting judgment

. . . ρi : si _ ti . . .

c(ρ1, . . . , ρn) : c(s1, . . . , sn) _ c(t1, . . . , tn)

(ϱ(x1, . . . , xn) : s → t) ∈ R . . . ρi : si _ ti . . .

ϱ(ρ1, . . . , ρn) : s{xi\si}i∈1..n _ t{xi\ti}i∈1..n

ρ : s1 _ s2 σ : s2 _ s3

ρ ; σ : s1 _ s3
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Permutation equivalence of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)

ϱ(ϑ)

mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

g(c,ϑ)

$$
g(ϑ,ϑ)

g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)

g(ϑ,d)

zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ) ≈ ϱ(c) ; g(ϑ, ϑ) ≈ ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))
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Permutation equivalence of reductions (important remark)

▶ If ρ ≈ σ then ρ and σ have the same source and target:

ρ : s _ t and σ : s _ t

▶ But the converse does not hold, for instance, if:

ϱ(x) : f(x) _ x

then:
f(f(c))

f(ϱ(c))

vv
ϱ(f(c))

((
f(c)

and f(ϱ(c)) ̸≈ ϱ(f(c)).
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Projection of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)
mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

$$
g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ)/ϱ(c) = g(ϑ, ϑ) ϱ(c)/ϱ(ϑ) = g(d,d)
ϱ(ϑ)/(ϱ(c) ; g(c, ϑ)) = g(ϑ,d)
ϱ(ϑ)/(ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))) = g(d,d)
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Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:

1. Permutation equivalence: ρ ≈ σ.

2. Projection equivalence: ρ/σ and σ/ρ are empty.
Here “empty” means that it contains no rule symbols.

Basic historical notes
▶ Permutation equivalence and projection equivalence had been

studied and shown equivalent by Jean-Jacques Lévy (∼1978).
(But without proof terms).

▶ Proof terms were introduced in the work of José Meseguer.
(∼1992; keyword: “rewriting logic”).

▶ Proof terms were extensively studied by Roel de Vrijer and Vincent
van Oostrom (∼2002) to study notions of equivalence between
reductions, including also standardization equivalence and
labeling equivalence. (See e.g. the Terese book, Chapter 8).
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Higher-order proof terms
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Higher-order rewriting systems (à la Nipkow)

A well-known higher-order rewriting system

app (lam f ) x _ f x

The object language is encoded in higher-order abstract syntax:

▶ First-order terms become simply-typed λ-terms:

app : ι → ι → ι lam : (ι → ι) → ι f : ι → ι x : ι

▶ Terms are considered up to βη-equivalence.

▶ In HRSs, left-hand sides of rules must be patterns.

▶ HRSs strictly generalize first-order term rewriting systems.

▶ We work with orthogonal HRSs: left-linear, no critical pairs.

▶ Orthogonal HRSs are confluent.

▶ HRSs were introduced by Tobias Nipkow (∼1991).
There are other flavors of HORSs (e.g. Klop’s CRSs).
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Proof terms for higher-order rewriting

Example

β : λf .λx . app (lam f ) x _ λf .λx . f x : (ι → ι) → ι → ι

The reduction step of the object language:

λx .(λz .z (z x)) I → λx .I (I x)

can be encoded as the higher-order proof term:

lam (λx .β (λz .app z (app z x))︸ ︷︷ ︸
ι→ι

(lam(λx .x))︸ ︷︷ ︸
ι

) : s _ t

with

s = lam (λx .app (lam (λz .app z (app z x))) (lam(λx .x)))
t = lam (λx .(λz .app z (app z x)) (lam(λx .x)))

=βη lam (λx .app (lam(λx .x)) (app (lam(λx .x)) x))
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Proof terms for higher-order rewriting
Higher-order proof terms (formal syntax)

ρ ::= x variable
| c constant
| ϱ rule symbol
| λx .ρ abstraction
| ρ1 ρ2 application
| ρ1 ; ρ2 composition

Rewriting judgment

x : x _ x c : c _ c

(ϱ : s _ t) ∈ R

ϱ : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t
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A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.
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Permutation equivalence for higher-order proof terms

Definition

ρsrc ; ρ ≈ ρ
ρ ; ρtgt ≈ ρ

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ)
(λx .ρ) ; (λx .σ) ≈ λx .(ρ ; σ)
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2)

(λx .s) ρ ≈ s{x\\ρ}
(λx .ρ) s ≈ ρ{x\s}
λx .ρ x ≈ ρ if x /∈ fv(ρ)

▶ ρsrc and ρtgt denote the source and the target term of ρ.

▶ s{x\\ρ} substitutes a variable in a λ-term for a proof term
(yielding a proof term).

▶ ρ{x\s} substitutes a variable in a proof term for a λ-term
(yielding a proof term).
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Permutation equivalence for higher-order proof terms

Example

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then:
ϱ ϑ : mu f _ g (mug)

And:

ϱ ϑ
≈ (ϱ ; (λz .z (mu z)))ϑ as λz .z (mu z) is the target of ϱ
≈ (ϱ ; (λz .z (mu z))) (f ; ϑ) as f is the source of ϑ
≈ ϱ f ; (λz .z (mu z))ϑ by the application rule
≈ ϱ f ; ϑ (muϑ) by the term/rewrite β-like rule

Proposition

(λx .ρ)σ ≈ ρ{x\σsrc} ; ρtgt{x\\σ} ≈ ρsrc{x\\σ} ; ρ{x\σtgt}
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Flattening

Definition
We have proposed a flattening relation between higher-order proof terms:

λx .(ρ ; σ)
♭7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
♭7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
♭7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
♭7→ ((ρ1 ; ρ2)σ

src
1 ) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
♭7→ µ{x\ν}

λx .µ x
♭7→ µ if x /∈ fv(µ)

where µ, ν, . . . stand for multisteps, that is, multisteps without
occurrences of the composition operator “;”.

Theorem
Flattening is confluent and strongly normalizing.

The normal forms are called flat proof terms.
Compositions only appear at the toplevel, as in Bruggink’s work.
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Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be
defined as follows:

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ)
µ ∼ µ♭

1 ; µ
♭
2 if µ ⇔ µ1 ; µ2

where µ ⇔ µ1 ; µ2 is a ternary relation meaning that the multistep µ can
be “split” as the composition of the multisteps µ1 and µ2.

Example
If, as before:

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then, for example:

ϱ ϑ ∼ ϱ f ; ϑ (muϑ) since ϱ ϑ ⇔ ϱ f ; (λz .z (mu z))ϑ

Theorem (Flat permutation equivalence)
ρ ≈ σ if and only if ρ♭ ∼ σ♭.



17

Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be
defined as follows:

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ)
µ ∼ µ♭

1 ; µ
♭
2 if µ ⇔ µ1 ; µ2

where µ ⇔ µ1 ; µ2 is a ternary relation meaning that the multistep µ can
be “split” as the composition of the multisteps µ1 and µ2.

Example
If, as before:

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then, for example:

ϱ ϑ ∼ ϱ f ; ϑ (muϑ) since ϱ ϑ ⇔ ϱ f ; (λz .z (mu z))ϑ

Theorem (Flat permutation equivalence)
ρ ≈ σ if and only if ρ♭ ∼ σ♭.



18

Projection
A notion of projection can be defined for multisteps (no composition):

x///x ⇒ x c///c ⇒ c ϱ///ϱ ⇒ ϱtgt ϱ///ϱsrc ⇒ ϱ

ϱsrc///ϱ ⇒ ϱtgt
µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

This can be extended to flat proof terms in a typical way:

if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

Finally, it can be extended to arbitrary proof terms by flattening first:

ρ/σ
def
= ρ♭//σ♭
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µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

This can be extended to flat proof terms in a typical way:

µ♭//ν♭
def
= ξ♭ if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

(The first equation uses pattern matching against LHSs of rewrite rules).

Finally, it can be extended to arbitrary proof terms by flattening first:

ρ/σ
def
= ρ♭//σ♭
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Projection equivalence

Theorem (Projection equivalence)
ρ ≈ σ if and only if ρ/σ and σ/ρ are empty.

Again, “empty” means that it contains no rule symbols.
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Future work

▶ Formulate a standardization procedure.

▶ Study labeling equivalence.

▶ Relate with 2-categorical models (Hirschowitz, 2013).


