
1

Proof Terms

for Higher-Order Rewriting

and Their Equivalence
October 28th, 2022

Pablo Barenbaum Eduardo Bonelli
Universidad Nacional de Quilmes (CONICET) Stevens Institute of Technology

Universidad de Buenos Aires

Argentina USA



2

First-order proof terms



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) :

add(zero, x) _ x

ϑ(x , y) :

add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



3

Proof terms for first-order rewriting

A well-known first-order term rewriting system

ϱ(x) : add(zero, x) _ x
ϑ(x , y) : add(suc(x), y) _ suc(add(x , y))

Some first-order proof terms

ϑ(zero, suc(zero)) : add(suc(zero), suc(zero)) _ suc(add(zero, suc(zero)))

suc(ϱ(suc(zero))) : suc(add(zero, suc(zero))) _ suc(suc(zero))

ϑ(zero, suc(zero)) ; suc(ϱ(suc(zero)))
: add(suc(zero), suc(zero)) _ suc(suc(zero))



4

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

ρ ::= c(ρ1, . . . , ρn) congruence c is any n-ary function symbol
| ϱ(ρ1, . . . , ρn) rule application ϱ is any n-ary rule symbol
| ρ1 ; ρ2 composition

Rewriting judgment

. . . ρi : si _ ti . . .

c(ρ1, . . . , ρn) : c(s1, . . . , sn) _ c(t1, . . . , tn)

(ϱ(x1, . . . , xn) : s → t) ∈ R . . . ρi : si _ ti . . .

ϱ(ρ1, . . . , ρn) : s{xi\si}i∈1..n _ t{xi\ti}i∈1..n

ρ : s1 _ s2 σ : s2 _ s3

ρ ; σ : s1 _ s3



4

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

ρ ::= c(ρ1, . . . , ρn) congruence c is any n-ary function symbol
| ϱ(ρ1, . . . , ρn) rule application ϱ is any n-ary rule symbol
| ρ1 ; ρ2 composition

Rewriting judgment

. . . ρi : si _ ti . . .

c(ρ1, . . . , ρn) : c(s1, . . . , sn) _ c(t1, . . . , tn)

(ϱ(x1, . . . , xn) : s → t) ∈ R . . . ρi : si _ ti . . .

ϱ(ρ1, . . . , ρn) : s{xi\si}i∈1..n _ t{xi\ti}i∈1..n

ρ : s1 _ s2 σ : s2 _ s3

ρ ; σ : s1 _ s3



5

Permutation equivalence of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)

ϱ(ϑ)

mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

g(c,ϑ)

$$
g(ϑ,ϑ)

g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)

g(ϑ,d)

zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ) ≈ ϱ(c) ; g(ϑ, ϑ) ≈ ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))



5

Permutation equivalence of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)
mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

$$
g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ) ≈ ϱ(c) ; g(ϑ, ϑ) ≈ ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))



6

Permutation equivalence of reductions (important remark)

▶ If ρ ≈ σ then ρ and σ have the same source and target:

ρ : s _ t and σ : s _ t

▶ But the converse does not hold, for instance, if:

ϱ(x) : f(x) _ x

then:
f(f(c))

f(ϱ(c))

vv
ϱ(f(c))

((
f(c)

and f(ϱ(c)) ̸≈ ϱ(f(c)).



7

Projection of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)
mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

$$
g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ)/ϱ(c) = g(ϑ, ϑ) ϱ(c)/ϱ(ϑ) = g(d,d)
ϱ(ϑ)/(ϱ(c) ; g(c, ϑ)) = g(ϑ,d)
ϱ(ϑ)/(ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))) = g(d,d)



7

Projection of reductions (example)

ϱ(x) : f(x) _ g(x , x)
ϑ : c _ d

f(c)
ϱ(c)

zz f(ϑ)

$$

ϱ(ϑ)
mm

g(c, c)
g(ϑ,c)

zz

g(c,ϑ)

$$
g(ϑ,ϑ)

��

g(d, c)

g(d,ϑ) $$

g(c,d)

g(ϑ,d)zz

f(d)

ϱ(d)

qqg(d,d)

ϱ(ϑ)/ϱ(c) = g(ϑ, ϑ) ϱ(c)/ϱ(ϑ) = g(d,d)
ϱ(ϑ)/(ϱ(c) ; g(c, ϑ)) = g(ϑ,d)
ϱ(ϑ)/(ϱ(c) ; (g(c, ϑ) ; g(ϑ,d))) = g(d,d)



8

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:

1. Permutation equivalence: ρ ≈ σ.

2. Projection equivalence: ρ/σ and σ/ρ are empty.
Here “empty” means that it contains no rule symbols.

Basic historical notes
▶ Permutation equivalence and projection equivalence had been

studied and shown equivalent by Jean-Jacques Lévy (∼1978).
(But without proof terms).

▶ Proof terms were introduced in the work of José Meseguer.
(∼1992; keyword: “rewriting logic”).

▶ Proof terms were extensively studied by Roel de Vrijer and Vincent
van Oostrom (∼2002) to study notions of equivalence between
reductions, including also standardization equivalence and
labeling equivalence. (See e.g. the Terese book, Chapter 8).



8

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:

1. Permutation equivalence: ρ ≈ σ.

2. Projection equivalence: ρ/σ and σ/ρ are empty.
Here “empty” means that it contains no rule symbols.

Basic historical notes
▶ Permutation equivalence and projection equivalence had been

studied and shown equivalent by Jean-Jacques Lévy (∼1978).
(But without proof terms).

▶ Proof terms were introduced in the work of José Meseguer.
(∼1992; keyword: “rewriting logic”).

▶ Proof terms were extensively studied by Roel de Vrijer and Vincent
van Oostrom (∼2002) to study notions of equivalence between
reductions, including also standardization equivalence and
labeling equivalence. (See e.g. the Terese book, Chapter 8).



9

Higher-order proof terms



10

Higher-order rewriting systems (à la Nipkow)

A well-known higher-order rewriting system

app (lam f ) x _ f x

The object language is encoded in higher-order abstract syntax:

▶ First-order terms become simply-typed λ-terms:

app : ι → ι → ι lam : (ι → ι) → ι f : ι → ι x : ι

▶ Terms are considered up to βη-equivalence.

▶ In HRSs, left-hand sides of rules must be patterns.

▶ HRSs strictly generalize first-order term rewriting systems.

▶ We work with orthogonal HRSs: left-linear, no critical pairs.

▶ Orthogonal HRSs are confluent.

▶ HRSs were introduced by Tobias Nipkow (∼1991).
There are other flavors of HORSs (e.g. Klop’s CRSs).



11

Proof terms for higher-order rewriting

Example

β : λf .λx . app (lam f ) x _ λf .λx . f x : (ι → ι) → ι → ι

The reduction step of the object language:

λx .(λz .z (z x)) I → λx .I (I x)

can be encoded as the higher-order proof term:

lam (λx .β (λz .app z (app z x))︸ ︷︷ ︸
ι→ι

(lam(λx .x))︸ ︷︷ ︸
ι

) : s _ t

with

s = lam (λx .app (lam (λz .app z (app z x))) (lam(λx .x)))
t = lam (λx .(λz .app z (app z x)) (lam(λx .x)))

=βη lam (λx .app (lam(λx .x)) (app (lam(λx .x)) x))



12

Proof terms for higher-order rewriting
Higher-order proof terms (formal syntax)

ρ ::= x variable
| c constant
| ϱ rule symbol
| λx .ρ abstraction
| ρ1 ρ2 application
| ρ1 ; ρ2 composition

Rewriting judgment

x : x _ x c : c _ c

(ϱ : s _ t) ∈ R

ϱ : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t



12

Proof terms for higher-order rewriting
Higher-order proof terms (formal syntax)

ρ ::= x variable
| c constant
| ϱ rule symbol
| λx .ρ abstraction
| ρ1 ρ2 application
| ρ1 ; ρ2 composition

Rewriting judgment

x : x _ x c : c _ c

(ϱ : s _ t) ∈ R

ϱ : s _ t

ρ : s _ t

λx .ρ : λx .s _ λx .t

ρ1 : s1 _ t1 ρ2 : s2 _ t2

ρ1 ρ2 : s1 s2 _ t1 t2

ρ1 : s1 _ s2 ρ2 : s2 _ s3

ρ1 ; ρ2 : s1 _ s3

s =βη s ′ ρ : s ′ _ t ′ t ′ =βη t

ρ : s _ t



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x

x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x

λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x

(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t

(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (∼2008).

What does “(λx .ρ)σ” mean?

(λx .ρ)σ
?
≈ ρ{x\σ}

As noted by Bruggink, this is not sound
Suppose that ρ : s → t is such that s ̸= t. Then:

x : x _ x
x ; x : x _ x
λx .(x ; x) : λx .x _ λx .x
(λx .(x ; x)) ρ : (λx .x) s _ (λx .x) t
(λx .(x ; x)) ρ : s _ t

But ρ ; ρ is not well-typed, as ρ cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;”) only at
the toplevel.



14

Permutation equivalence for higher-order proof terms

Definition

ρsrc ; ρ ≈ ρ
ρ ; ρtgt ≈ ρ

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ)
(λx .ρ) ; (λx .σ) ≈ λx .(ρ ; σ)
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2)

(λx .s) ρ ≈ s{x\\ρ}
(λx .ρ) s ≈ ρ{x\s}
λx .ρ x ≈ ρ if x /∈ fv(ρ)

▶ ρsrc and ρtgt denote the source and the target term of ρ.

▶ s{x\\ρ} substitutes a variable in a λ-term for a proof term
(yielding a proof term).

▶ ρ{x\s} substitutes a variable in a proof term for a λ-term
(yielding a proof term).



15

Permutation equivalence for higher-order proof terms

Example

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then:
ϱ ϑ : mu f _ g (mug)

And:

ϱ ϑ
≈ (ϱ ; (λz .z (mu z)))ϑ as λz .z (mu z) is the target of ϱ
≈ (ϱ ; (λz .z (mu z))) (f ; ϑ) as f is the source of ϑ
≈ ϱ f ; (λz .z (mu z))ϑ by the application rule
≈ ϱ f ; ϑ (muϑ) by the term/rewrite β-like rule

Proposition

(λx .ρ)σ ≈ ρ{x\σsrc} ; ρtgt{x\\σ} ≈ ρsrc{x\\σ} ; ρ{x\σtgt}



15

Permutation equivalence for higher-order proof terms

Example

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then:
ϱ ϑ : mu f _ g (mug)

And:

ϱ ϑ
≈ (ϱ ; (λz .z (mu z)))ϑ as λz .z (mu z) is the target of ϱ
≈ (ϱ ; (λz .z (mu z))) (f ; ϑ) as f is the source of ϑ
≈ ϱ f ; (λz .z (mu z))ϑ by the application rule
≈ ϱ f ; ϑ (muϑ) by the term/rewrite β-like rule

Proposition

(λx .ρ)σ ≈ ρ{x\σsrc} ; ρtgt{x\\σ} ≈ ρsrc{x\\σ} ; ρ{x\σtgt}



16

Flattening

Definition
We have proposed a flattening relation between higher-order proof terms:

λx .(ρ ; σ)
♭7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
♭7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
♭7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
♭7→ ((ρ1 ; ρ2)σ

src
1 ) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
♭7→ µ{x\ν}

λx .µ x
♭7→ µ if x /∈ fv(µ)

where µ, ν, . . . stand for multisteps, that is, multisteps without
occurrences of the composition operator “;”.

Theorem
Flattening is confluent and strongly normalizing.

The normal forms are called flat proof terms.
Compositions only appear at the toplevel, as in Bruggink’s work.



16

Flattening

Definition
We have proposed a flattening relation between higher-order proof terms:

λx .(ρ ; σ)
♭7→ (λx .ρ) ; (λx .σ)

(ρ ; σ)µ
♭7→ (ρµsrc) ; (σ µ)

µ (ρ ; σ)
♭7→ (µρ) ; (µtgt σ)

(ρ1 ; ρ2) (σ1 ; σ2)
♭7→ ((ρ1 ; ρ2)σ

src
1 ) ; (ρtgt2 (σ1 ; σ2))

(λx .µ) ν
♭7→ µ{x\ν}

λx .µ x
♭7→ µ if x /∈ fv(µ)

where µ, ν, . . . stand for multisteps, that is, multisteps without
occurrences of the composition operator “;”.

Theorem
Flattening is confluent and strongly normalizing.

The normal forms are called flat proof terms.
Compositions only appear at the toplevel, as in Bruggink’s work.



17

Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be
defined as follows:

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ)
µ ∼ µ♭

1 ; µ
♭
2 if µ ⇔ µ1 ; µ2

where µ ⇔ µ1 ; µ2 is a ternary relation meaning that the multistep µ can
be “split” as the composition of the multisteps µ1 and µ2.

Example
If, as before:

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then, for example:

ϱ ϑ ∼ ϱ f ; ϑ (muϑ) since ϱ ϑ ⇔ ϱ f ; (λz .z (mu z))ϑ

Theorem (Flat permutation equivalence)
ρ ≈ σ if and only if ρ♭ ∼ σ♭.



17

Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be
defined as follows:

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ)
µ ∼ µ♭

1 ; µ
♭
2 if µ ⇔ µ1 ; µ2

where µ ⇔ µ1 ; µ2 is a ternary relation meaning that the multistep µ can
be “split” as the composition of the multisteps µ1 and µ2.

Example
If, as before:

ϱ : λz .mu z _ λz .z (mu z) : (ι → ι) → ι
ϑ : f _ g : ι → ι

Then, for example:

ϱ ϑ ∼ ϱ f ; ϑ (muϑ) since ϱ ϑ ⇔ ϱ f ; (λz .z (mu z))ϑ

Theorem (Flat permutation equivalence)
ρ ≈ σ if and only if ρ♭ ∼ σ♭.



18

Projection
A notion of projection can be defined for multisteps (no composition):

x///x ⇒ x c///c ⇒ c ϱ///ϱ ⇒ ϱtgt ϱ///ϱsrc ⇒ ϱ

ϱsrc///ϱ ⇒ ϱtgt
µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

This can be extended to flat proof terms in a typical way:

if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

Finally, it can be extended to arbitrary proof terms by flattening first:

ρ/σ
def
= ρ♭//σ♭



18

Projection
A notion of projection can be defined for multisteps (no composition):

x///x ⇒ x c///c ⇒ c ϱ///ϱ ⇒ ϱtgt ϱ///ϱsrc ⇒ ϱ

ϱsrc///ϱ ⇒ ϱtgt
µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

This can be extended to flat proof terms in a typical way:

µ♭//ν♭
def
= ξ♭ if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

(The first equation uses pattern matching against LHSs of rewrite rules).

Finally, it can be extended to arbitrary proof terms by flattening first:

ρ/σ
def
= ρ♭//σ♭



18

Projection
A notion of projection can be defined for multisteps (no composition):

x///x ⇒ x c///c ⇒ c ϱ///ϱ ⇒ ϱtgt ϱ///ϱsrc ⇒ ϱ

ϱsrc///ϱ ⇒ ϱtgt
µ///ν ⇒ ξ

λx .µ///λx .ν ⇒ λx .ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

This can be extended to flat proof terms in a typical way:

µ♭//ν♭
def
= ξ♭ if µ///ν ⇒ ξ

ρ//(σ ; τ)
def
= (ρ//σ)//τ

(ρ ; σ)//τ
def
= (ρ//τ) ; (σ//(τ//ρ))

(The first equation uses pattern matching against LHSs of rewrite rules).

Finally, it can be extended to arbitrary proof terms by flattening first:

ρ/σ
def
= ρ♭//σ♭



19

Projection equivalence

Theorem (Projection equivalence)
ρ ≈ σ if and only if ρ/σ and σ/ρ are empty.

Again, “empty” means that it contains no rule symbols.



20

Future work

▶ Formulate a standardization procedure.

▶ Study labeling equivalence.

▶ Relate with 2-categorical models (Hirschowitz, 2013).


