Proof Terms

for Higher-Order Rewriting and Their Equivalence

October 28th, 2022

Pablo Barenbaum
Universidad Nacional de Quilmes (CONICET)
Universidad de Buenos Aires
Argentina

First-order proof terms

Proof terms for first-order rewriting

A well-known first-order term rewriting system

$$
\begin{aligned}
& \operatorname{add}(\mathbf{z e r o}, x) \rightarrow x \\
& \boldsymbol{\operatorname { a d d } (\operatorname { s u c } (x) , y)} \rightarrow \\
& \operatorname{suc}(\boldsymbol{\operatorname { a d d }}(x, y))
\end{aligned}
$$

Proof terms for first-order rewriting

A well-known first-order term rewriting system

$$
\begin{array}{llrll}
\varrho(x) & : & \operatorname{add}(\text { zero }, x) & \rightarrow & x \\
\vartheta(x, y) & : & \operatorname{add}(\operatorname{suc}(x), y) & \rightarrow & \operatorname{suc}(\boldsymbol{\operatorname { a d d }}(x, y))
\end{array}
$$

Proof terms for first-order rewriting

A well-known first-order term rewriting system

$$
\begin{array}{llrll}
\varrho(x) & : & \operatorname{add}(\text { zero }, x) & \rightarrow & x \\
\vartheta(x, y) & : & \operatorname{add}(\operatorname{suc}(x), y) & \rightarrow & \operatorname{suc}(\boldsymbol{\operatorname { a d d }}(x, y))
\end{array}
$$

Some first-order proof terms
$\vartheta($ zero, $\operatorname{suc}($ zero $)): \operatorname{add}(\operatorname{suc}(z e r o), \operatorname{suc}(z e r o)) \rightarrow \operatorname{suc}($ add(zero, $\operatorname{suc}(z e r o)))$

Proof terms for first-order rewriting

A well-known first-order term rewriting system

$$
\begin{array}{llrll}
\varrho(x) & : & \operatorname{add}(\text { zero }, x) & \rightarrow & x \\
\vartheta(x, y) & : & \operatorname{add}(\operatorname{suc}(x), y) & \rightarrow & \operatorname{suc}(\boldsymbol{\operatorname { a d d }}(x, y))
\end{array}
$$

Some first-order proof terms

$$
\begin{aligned}
& \vartheta(\text { zero, } \operatorname{suc}(\text { zero })): \operatorname{add}(\operatorname{suc}(\text { zero }), \operatorname{suc}(\text { zero })) \rightarrow \operatorname{suc}(\operatorname{add}(\text { zero, } \operatorname{suc}(\text { zero }))) \\
& \operatorname{suc}(\varrho(\operatorname{suc}(\text { zero }))): \operatorname{suc}(\operatorname{add}(\text { zero, } \operatorname{suc}(\text { zero }))) \rightarrow \operatorname{suc}(\operatorname{suc}(\text { zero }))
\end{aligned}
$$

Proof terms for first-order rewriting

A well-known first-order term rewriting system

$$
\begin{array}{llrll}
\varrho(x) & : & \operatorname{add}(\text { zero }, x) & \rightarrow & x \\
\vartheta(x, y) & : & \operatorname{add}(\operatorname{suc}(x), y) & \rightarrow & \operatorname{suc}(\boldsymbol{\operatorname { a d d }}(x, y))
\end{array}
$$

Some first-order proof terms

```
\vartheta(zero, suc(zero)) : add(suc(zero), suc(zero)) }->\mathrm{ suc(add(zero, suc(zero)))
suc}(\varrho(\operatorname{suc}(zero))):\operatorname{suc}(\mathbf{add}(zero, suc(zero))) -> suc(suc(zero))
\vartheta(zero, suc(zero)); suc(\varrho(suc(zero)))
    : add(suc(zero), suc(zero)) }->\mathrm{ suc(suc(zero))
```


Proof terms for first-order rewriting

First-order proof terms (formal syntax)

$\rho::=$	$\mathbf{c}\left(\rho_{1}, \ldots, \rho_{n}\right)$
	congruence
$\varrho\left(\rho_{1}, \ldots, \rho_{n}\right)$	rule application
$\rho_{1} ; \rho_{2}$	is any n-ary function symbol
ϱ is any n-ary rule symbol	

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

$$
\begin{aligned}
\rho::= & \mathbf{c}\left(\rho_{1}, \ldots, \rho_{n}\right) \\
& \varrho\left(\rho_{1}, \ldots, \rho_{n}\right)
\end{aligned} \quad \begin{aligned}
& \text { congruence } \\
& \text { rule application }
\end{aligned} \quad \mathbf{c} \text { is any } n \text {-ary function symbol }
$$

Rewriting judgment

$$
\begin{gathered}
\frac{\ldots \rho_{i}: s_{i} \rightarrow t_{i} \ldots}{\mathbf{c}\left(\rho_{1}, \ldots, \rho_{n}\right): \mathbf{c}\left(s_{1}, \ldots, s_{n}\right) \rightarrow \mathbf{c}\left(t_{1}, \ldots, t_{n}\right)} \\
\frac{\left(\varrho\left(x_{1}, \ldots, x_{n}\right): s \rightarrow t\right) \in \mathcal{R} \quad \ldots \rho_{i}: s_{i} \rightarrow t_{i} \ldots}{\varrho\left(\rho_{1}, \ldots, \rho_{n}\right): s\left\{x_{i} \backslash s_{i}\right\}_{i \in 1 . . n} \rightarrow t\left\{x_{i} \backslash t_{i}\right\}_{i \in 1 . . n}} \\
\frac{\rho: s_{1} \rightarrow s_{2} \quad \sigma: s_{2} \rightarrow s_{3}}{\rho ; \sigma: s_{1} \rightarrow s_{3}}
\end{gathered}
$$

Permutation equivalence of reductions

Permutation equivalence of reductions

Permutation equivalence of reductions (important remark)

- If $\rho \approx \sigma$ then ρ and σ have the same source and target:

$$
\rho: s \rightarrow t \quad \text { and } \quad \sigma: s \rightarrow t
$$

- But the converse does not hold, for instance, if:

$$
\varrho(x): f(x) \rightarrow x
$$

then:

and $\mathbf{f}(\varrho(\mathbf{c})) \not \approx \varrho(\mathbf{f}(\mathbf{c}))$.

Projection of reductions

Projection of reductions

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:

1. Permutation equivalence: $\rho \approx \sigma$.
2. Projection equivalence: ρ / σ and σ / ρ are empty. Here "empty" means that it contains no rule symbols.

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)

The following are equivalent:

1. Permutation equivalence: $\rho \approx \sigma$.
2. Projection equivalence: ρ / σ and σ / ρ are empty. Here "empty" means that it contains no rule symbols.

Basic historical notes

- Permutation equivalence and projection equivalence had been studied and shown equivalent by Jean-Jacques Lévy (~ 1978). (But without proof terms).
- Proof terms were introduced in the work of José Meseguer. (~1992; keyword: "rewriting logic").
- Proof terms were extensively studied by Roel de Vrijer and Vincent van Oostrom (~ 2002) to study notions of equivalence between reductions, including also standardization equivalence and labeling equivalence. (See e.g. the Terese book, Chapter 8).

Higher-order proof terms

Higher-order rewriting systems

(à la Nipkow)

A well-known higher-order rewriting system

$$
\operatorname{app}(\operatorname{lam} f) x \rightarrow f x
$$

The object language is encoded in higher-order abstract syntax:

- First-order terms become simply-typed λ-terms:

$$
\text { app }: \iota \rightarrow \iota \rightarrow \iota \quad \text { lam }:(\iota \rightarrow \iota) \rightarrow \iota \quad f: \iota \rightarrow \iota \quad x: \iota
$$

- Terms are considered up to $\beta \eta$-equivalence.
- In HRSs, left-hand sides of rules must be patterns.
- HRSs strictly generalize first-order term rewriting systems.
- We work with orthogonal HRSs: left-linear, no critical pairs.
- Orthogonal HRSs are confluent.
- HRSs were introduced by Tobias Nipkow (~1991).

There are other flavors of HORSs (e.g. Klop's CRSs).

Proof terms for higher-order rewriting

Example

$$
\beta: \lambda f . \lambda x . \operatorname{app}(\operatorname{lam} f) x \rightarrow \lambda f . \lambda x . f x:(\iota \rightarrow \iota) \rightarrow \iota \rightarrow \iota
$$

The reduction step of the object language:

$$
\lambda x .(\lambda z . z(z x)) I \rightarrow \lambda x . I(I x)
$$

can be encoded as the higher-order proof term:

$$
\operatorname{lam}(\lambda x \cdot \beta \underbrace{(\lambda z \cdot \mathbf{a p p} z(\operatorname{app} z x))}_{\iota \rightarrow \iota} \underbrace{(\operatorname{lam}(\lambda x \cdot x))}_{\iota}): s \rightarrow t
$$

with

$$
\begin{aligned}
s & =\operatorname{lam}(\lambda x \cdot \operatorname{app}(\operatorname{lam}(\lambda z \cdot \operatorname{app} z(\operatorname{app} z x)))(\operatorname{lam}(\lambda x \cdot x))) \\
t & =\operatorname{lam}(\lambda x \cdot(\lambda z \cdot \operatorname{app} z(\operatorname{app} z x))(\operatorname{lam}(\lambda x \cdot x))) \\
& ={ }_{\beta \eta} \operatorname{lam}(\lambda x \cdot \mathbf{a p p}(\operatorname{lam}(\lambda x \cdot x))(\operatorname{app}(\operatorname{lam}(\lambda x \cdot x)) x))
\end{aligned}
$$

Proof terms for higher-order rewriting

Higher-order proof terms (formal syntax)

$\rho::=$| ρ | |
| :--- | :--- |
| | \mathbf{c} |
| ϱ | variable |
| $\lambda x . \rho$ | constant |
| $\rho_{1} \rho_{2}$ | abstraction |
| $\rho_{1} ; \rho_{2}$ | application |
| composition | |

Proof terms for higher-order rewriting

Higher-order proof terms (formal syntax)

$\rho::=$| x | variable |
| :--- | :--- |
| | |
| | \mathbf{c} |
| ϱ | constant |
| $\lambda x . \rho$ | rule symbol |
| $\rho_{1} \rho_{2}$ | abstraction |
| $\rho_{1} ; \rho_{2}$ | application |
| | |

Rewriting judgment

$$
\begin{aligned}
& \overline{x: ~}_{x \rightarrow x} \quad \underset{\mathbf{c}: \mathbf{c} \rightarrow \mathbf{c}}{ } \quad \frac{(\varrho: s \rightarrow t) \in \mathcal{R}}{\varrho: s \rightarrow t} \quad \frac{\rho: s \rightarrow t}{\lambda x . \rho: \lambda x . s \rightarrow \lambda x . t} \\
& \frac{\rho_{1}: s_{1} \rightarrow t_{1} \quad \rho_{2}: s_{2} \rightarrow t_{2}}{\rho_{1} \rho_{2}: s_{1} s_{2} \rightarrow t_{1} t_{2}} \quad \frac{\rho_{1}: s_{1} \rightarrow s_{2} \quad \rho_{2}: s_{2} \rightarrow s_{3}}{\rho_{1} ; \rho_{2}: s_{1} \rightarrow s_{3}} \\
& s={ }_{\beta \eta} s^{\prime} \quad \rho: s^{\prime} \rightarrow t^{\prime} \quad t^{\prime}={ }_{\beta \eta} t \\
& \rho: s \rightarrow t
\end{aligned}
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008). What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
x \quad: x \rightarrow x
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow
$x ; x$	$:$	x	\rightarrow

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow	x
$x ; x$	$:$	x	\rightarrow	x
$\lambda x .(x ; x)$	$:$	$\lambda x . x$	\rightarrow	$\lambda x \cdot x$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
\begin{array}{lllll}
x & : & x & \rightarrow & x \\
x ; x & : & x & \rightarrow & x \\
\lambda x \cdot(x ; x) & : & \lambda x \cdot x & \rightarrow & \lambda x \cdot x \\
(\lambda x \cdot(x ; x)) \rho & : & (\lambda x \cdot x) s & \rightarrow & (\lambda x \cdot x) t
\end{array}
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
\begin{array}{lllll}
x & : & x & \rightarrow & x \\
x ; x & \vdots & x & \rightarrow & x \\
\lambda x .(x ; x) & : & \lambda x \cdot x & \rightarrow & \lambda x \cdot x \\
(\lambda x .(x ; x)) \rho & : & (\lambda x \cdot x) s & \rightarrow & (\lambda x \cdot x) t \\
(\lambda x .(x ; x)) \rho & : & s & \rightarrow & t
\end{array}
$$

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

$$
\begin{array}{lllll}
x & : & x & \rightarrow & x \\
x ; x & : & x & \rightarrow & x \\
\lambda x \cdot(x ; x) & : & \lambda x \cdot x & \rightarrow & \lambda x \cdot x \\
(\lambda x .(x ; x)) \rho & : & (\lambda x \cdot x) s & \rightarrow & (\lambda x \cdot x) t \\
(\lambda x \cdot(x ; x)) \rho & : & s & \rightarrow & t
\end{array}
$$

But ρ; ρ is not well-typed, as ρ cannot be composed with itself.

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does " $(\lambda x . \rho) \sigma$ " mean?

$$
(\lambda x . \rho) \sigma \stackrel{?}{\approx} \rho\{x \backslash \sigma\}
$$

As noted by Bruggink, this is not sound
Suppose that $\rho: s \rightarrow t$ is such that $s \neq t$. Then:

x	$:$	x	\rightarrow	x
$x ; x$	$:$	x	\rightarrow	x
$\lambda x \cdot(x ; x)$	$:$	$\lambda x \cdot x$	\rightarrow	$\lambda x \cdot x$
$(\lambda x \cdot(x ; x)) \rho$	$:$	$(\lambda x \cdot x) s$	\rightarrow	$(\lambda x \cdot x) t$
$(\lambda x \cdot(x ; x)) \rho$	$:$	s	\rightarrow	t

But ρ; ρ is not well-typed, as ρ cannot be composed with itself.
Bruggink sidesteps the problem by allowing compositions (";") only at the toplevel.

Permutation equivalence for higher-order proof terms

Definition

$$
\begin{array}{rlr}
\rho^{\text {src }} ; \rho & \approx \rho \\
\rho ; \rho^{\mathrm{tgt}} & \approx \rho \\
(\rho ; \sigma) ; \tau & \approx \rho ;(\sigma ; \tau) & \\
(\lambda x . \rho) ;(\lambda x . \sigma) & \approx \lambda x \cdot(\rho ; \sigma) & \\
\left(\rho_{1} \rho_{2}\right) ;\left(\sigma_{1} \sigma_{2}\right) & \approx\left(\rho_{1} ; \sigma_{1}\right)\left(\rho_{2} ; \sigma_{2}\right) & \\
(\lambda x . s) \rho & \approx s\{x \backslash \rho\} & \\
(\lambda x . \rho) s & \approx \rho\{x \backslash s\} & \\
\lambda x . \rho x & \approx \rho & \text { if } x \notin \operatorname{fv}(\rho)
\end{array}
$$

- $\rho^{\text {scc }}$ and $\rho^{\text {tgt }}$ denote the source and the target term of ρ.
- $s\{x \backslash \backslash \rho\}$ substitutes a variable in a λ-term for a proof term (yielding a proof term).
- $\rho\{x \backslash s\}$ substitutes a variable in a proof term for a λ-term
(yielding a proof term).

Permutation equivalence for higher-order proof terms

Example

$$
\left.\begin{array}{l:rl}
\varrho & : & \lambda z . \mathbf{m u} z
\end{array} \rightarrow \lambda z . z(\mathbf{m u z}): \quad(\iota \rightarrow \iota) \rightarrow \iota, \quad: \quad \iota \rightarrow \iota\right)
$$

Then:

$$
\varrho \vartheta: \mathbf{m u} \mathbf{f} \rightarrow \mathbf{g}(\mathbf{m u g})
$$

And:

$$
\begin{array}{rll}
& \varrho \vartheta & \\
\approx(\varrho ;(\lambda z . z(\mathbf{m u z}))) \vartheta & \text { as } \lambda z . z(\mathbf{m u} z) \text { is the target of } \varrho \\
\approx(\varrho ;(\lambda z . z(\mathbf{m u z})))(\mathbf{f} ; \vartheta) & \text { as } \mathbf{f} \text { is the source of } \vartheta \\
\approx \varrho \mathbf{f} ;(\lambda z . z(\mathbf{m u z})) \vartheta & \text { by the application rule } \\
\approx \varrho \mathbf{f} ; \vartheta(\mathbf{m u} \vartheta) & \text { by the term/rewrite } \beta \text {-like rule }
\end{array}
$$

Permutation equivalence for higher-order proof terms

Example

$$
\begin{array}{lcll}
\varrho & : & \lambda z . \mathbf{m u z} & \rightarrow \lambda z . z(\mathbf{m u z}) \\
\vartheta & : & \mathbf{f} \rightarrow \mathbf{g} & (\iota \rightarrow \iota) \rightarrow \iota \\
& : \quad \iota \rightarrow \iota
\end{array}
$$

Then:

$$
\varrho \vartheta: \mathbf{m u} \mathbf{f} \rightarrow \mathbf{g}(\mathbf{m u g})
$$

And:

$$
\begin{array}{rll}
& \varrho \vartheta & \\
\approx & (\varrho ;(\lambda z . z(\mathbf{m u} z))) \vartheta & \text { as } \lambda z . z(\mathbf{m u} z) \text { is the target of } \\
\approx & (\varrho ;(\lambda z . z(\mathbf{m u} z)))(\mathbf{f} ; \vartheta) & \text { as } \mathbf{f} \text { is the source of } \vartheta \\
\approx & \varrho \mathbf{f} ;(\lambda z . z(\mathbf{m u} z)) \vartheta & \text { by the application rule } \\
\approx \quad \varrho \mathbf{f} ; \vartheta(\mathbf{m u} \vartheta) & \text { by the term/rewrite } \beta \text {-like rule }
\end{array}
$$

Proposition

$$
(\lambda x . \rho) \sigma \approx \rho\left\{x \backslash \sigma^{\mathrm{src}}\right\} ; \rho^{\mathrm{tgt}}\{x \backslash \sigma\} \approx \rho^{\mathrm{src}}\{x \backslash \sigma\} ; \rho\left\{x \backslash \sigma^{\mathrm{tgt}}\right\}
$$

Flattening

Definition

We have proposed a flattening relation between higher-order proof terms:

$$
\begin{array}{rll}
\lambda x \cdot(\rho ; \sigma) & \stackrel{b}{\mapsto}(\lambda x \cdot \rho) ;(\lambda x \cdot \sigma) & \\
(\rho ; \sigma) \mu & \stackrel{b}{\mapsto}\left(\rho \mu^{\mathrm{src}}\right) ;(\sigma \mu) & \\
\mu(\rho ; \sigma) & \stackrel{b}{\mapsto}(\mu \rho) ;\left(\mu^{\mathrm{tgt}} \sigma\right) & \\
\left(\rho_{1} ; \rho_{2}\right)\left(\sigma_{1} ; \sigma_{2}\right) & \stackrel{b}{\mapsto}\left(\left(\rho_{1} ; \rho_{2}\right) \sigma_{1}^{\mathrm{src}}\right) ;\left(\rho_{2}^{\mathrm{tgt}}\left(\sigma_{1} ; \sigma_{2}\right)\right) & \\
(\lambda x \cdot \mu) \nu & \stackrel{b}{\mapsto} \mu\{x \backslash \nu\} & \text { if } x \notin \mathrm{fv}(\mu)
\end{array}
$$

where μ, ν, \ldots stand for multisteps, that is, multisteps without occurrences of the composition operator ";".

Flattening

Definition

We have proposed a flattening relation between higher-order proof terms:

$$
\begin{array}{rlll}
\lambda x \cdot(\rho ; \sigma) & \xrightarrow{b} & (\lambda x \cdot \rho) ;(\lambda x \cdot \sigma) & \\
(\rho ; \sigma) \mu & \xrightarrow{\mapsto} & \left(\rho \mu^{\operatorname{src}}\right) ;(\sigma \mu) & \\
\mu(\rho ; \sigma) & \mapsto & \mapsto & (\mu) ;\left(\mu^{\operatorname{tgt}} \sigma\right) \\
\left(\rho_{1} ; \rho_{2}\right)\left(\sigma_{1} ; \sigma_{2}\right) & \stackrel{b}{b} & \left(\left(\rho_{1} ; \rho_{2}\right) \sigma_{1}^{\text {src }}\right) ;\left(\rho_{2}^{\operatorname{tgt}}\left(\sigma_{1} ; \sigma_{2}\right)\right) & \\
(\lambda x \cdot \mu) \nu & \xrightarrow{\mapsto} \mu\{x \backslash \nu\} & \text { if } x \notin \operatorname{fv}(\mu)
\end{array}
$$

where μ, ν, \ldots stand for multisteps, that is, multisteps without occurrences of the composition operator ";".

Theorem
Flattening is confluent and strongly normalizing.
The normal forms are called flat proof terms.
Compositions only appear at the toplevel, as in Bruggink's work.

Flat permutation equivalence

A notion of permutation equivalence between flat proof terms can be defined as follows:

$$
\begin{array}{lll}
(\rho ; \sigma) ; \tau & \sim \rho ;(\sigma ; \tau) \\
\mu & \sim \mu_{1}^{b} ; \mu_{2}^{b}
\end{array} \quad \text { if } \mu \Leftrightarrow \mu_{1} ; \mu_{2}
$$

where $\mu \Leftrightarrow \mu_{1} ; \mu_{2}$ is a ternary relation meaning that the multistep μ can be "split" as the composition of the multisteps μ_{1} and μ_{2}.
Example
If, as before:

$$
\begin{array}{rcl}
\varrho & : \quad \lambda z \cdot \mathbf{m u z} & \rightarrow \lambda z . z(\mathbf{m u z}) \\
\vartheta & : & (\iota \rightarrow \iota) \rightarrow \iota \\
\mathbf{f} \rightarrow \mathbf{g} & : \iota \rightarrow \iota
\end{array}
$$

Then, for example:

$$
\varrho \vartheta \sim \varrho \mathbf{f} ; \vartheta(\mathbf{m u} \vartheta) \quad \text { since } \varrho \vartheta \Leftrightarrow \varrho \mathbf{f} ;(\lambda z . z(\mathbf{m u} z)) \vartheta
$$

Flat permutation equivalence

A notion of permutation equivalence between flat proof terms can be defined as follows:

$$
\begin{array}{ll}
(\rho ; \sigma) ; \tau & \sim \rho ;(\sigma ; \tau) \\
\mu & \sim \mu_{1}^{b} ; \mu_{2}^{b}
\end{array} \quad \text { if } \mu \Leftrightarrow \mu_{1} ; \mu_{2}
$$

where $\mu \Leftrightarrow \mu_{1} ; \mu_{2}$ is a ternary relation meaning that the multistep μ can be "split" as the composition of the multisteps μ_{1} and μ_{2}.
Example
If, as before:

$$
\begin{aligned}
& \varrho: \lambda z \cdot \mathbf{m u z} \rightarrow \lambda z . z(\mathbf{m u z}): \quad(\iota \rightarrow \iota) \rightarrow \iota \\
& \vartheta: \quad \mathbf{f} \rightarrow \mathbf{g} \quad: \quad \iota \rightarrow \iota
\end{aligned}
$$

Then, for example:

$$
\varrho \vartheta \sim \varrho \mathbf{f} ; \vartheta(\mathbf{m u} \vartheta) \quad \text { since } \varrho \vartheta \Leftrightarrow \varrho \mathbf{f} ;(\lambda z . z(\mathbf{m u} z)) \vartheta
$$

Theorem (Flat permutation equivalence) $\rho \approx \sigma$ if and only if $\rho^{b} \sim \sigma^{b}$.

Projection

A notion of projection can be defined for multisteps (no composition):

$$
\begin{aligned}
\overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \quad \overline{\varrho / / / \varrho \Rightarrow \varrho^{\mathrm{tgt}}} \quad \overline{\varrho / / / \varrho^{\mathrm{src}} \Rightarrow \varrho} \\
\overline{\varrho^{\mathrm{src}} / / / \varrho \Rightarrow \varrho^{\mathrm{tgt}}} \quad \frac{\mu / / \nu \Rightarrow \xi}{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x . \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1} \quad \mu_{2} / / / \nu_{2} \Rightarrow \xi_{2}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}}
\end{aligned}
$$

Projection

A notion of projection can be defined for multisteps (no composition):

$$
\begin{aligned}
& \overline{x / / / x \Rightarrow x} \quad \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \quad \overline{\varrho / / / \varrho \Rightarrow \varrho^{\text {tgt }}} \quad \overline{\varrho / / / \varrho^{\text {src }} \Rightarrow \varrho} \\
& \overline{\varrho^{\text {scc }} / / / \varrho \Rightarrow \varrho^{\mathrm{tgt}}} \frac{\mu / / / \nu \Rightarrow \xi}{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x . \xi} \quad \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1} \quad \mu_{2} / / / \nu_{2} \Rightarrow \xi_{2}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}}
\end{aligned}
$$

This can be extended to flat proof terms in a typical way:

$$
\begin{array}{rll}
\mu^{b} / / \nu^{b} & \stackrel{\text { def }}{=} \xi^{b} & \text { if } \mu / / \nu \Rightarrow \xi \\
\rho / /(\sigma ; \tau) & \stackrel{\text { def }}{=}(\rho / / \sigma) / / \tau & \\
(\rho ; \sigma) / / \tau & \stackrel{\text { def }}{=}(\rho / / \tau) ;(\sigma / /(\tau / / \rho)) &
\end{array}
$$

(The first equation uses pattern matching against LHSs of rewrite rules).

Projection

A notion of projection can be defined for multisteps (no composition):

$$
\begin{array}{llll}
\overline{x / / / x \Rightarrow x} & \overline{\mathbf{c} / / / \mathbf{c} \Rightarrow \mathbf{c}} \quad \overline{\varrho / / / \varrho \Rightarrow \varrho^{\mathrm{tgt}}} \quad \overline{\varrho / / / \varrho^{\text {src }} \Rightarrow \varrho} \\
\overline{\varrho^{\text {src }} / / \varrho \rho \Rightarrow \varrho^{\mathrm{tgt}}} & \frac{\mu / / / \nu \Rightarrow \xi}{\lambda x \cdot \mu / / / \lambda x . \nu \Rightarrow \lambda x . \xi} & \frac{\mu_{1} / / / \nu_{1} \Rightarrow \xi_{1}}{\mu_{1} \mu_{2} / / / \nu_{1} \nu_{2} \Rightarrow \xi_{1} \xi_{2}}
\end{array}
$$

This can be extended to flat proof terms in a typical way:

$$
\begin{array}{rll}
\mu^{b} / / \nu^{b} & \stackrel{\text { def }}{=} \xi^{b} & \text { if } \mu / / \nu \Rightarrow \xi \\
\rho / /(\sigma ; \tau) & \stackrel{\text { def }}{=} & (\rho / / \sigma) / / \tau \\
(\rho ; \sigma) / / \tau & \stackrel{\text { def }}{=}(\rho / / \tau) ;(\sigma / /(\tau / / \rho)) &
\end{array}
$$

(The first equation uses pattern matching against LHSs of rewrite rules).
Finally, it can be extended to arbitrary proof terms by flattening first:

$$
\rho / \sigma \stackrel{\text { def }}{=} \rho^{b} / / \sigma^{b}
$$

Projection equivalence

Theorem (Projection equivalence)
$\rho \approx \sigma$ if and only if ρ / σ and σ / ρ are empty.
Again, "empty" means that it contains no rule symbols.

Future work

- Formulate a standardization procedure.
- Study labeling equivalence.
- Relate with 2-categorical models (Hirschowitz, 2013).

