Proof Terms
for Higher-Order Rewriting

and Their Equivalence
October 28th, 2022

Pablo Barenbaum Eduardo Bonelli
Universidad Nacional de Quilmes (CONICET) Stevens Institute of Technology

Universidad de Buenos Aires

Argentina USA

First-order proof terms

Proof terms for first-order rewriting

A well-known first-order term rewriting system

add(zero,x) — x
add(suc(x),y) — suc(add(x,y))

Proof terms for first-order rewriting

A well-known first-order term rewriting system

o(x) : add(zero,x) — x
Hx,y) : add(suc(x),y) — suc(add(x,y))

Proof terms for first-order rewriting

A well-known first-order term rewriting system
o(x) : add(zero,x) — x
Hx,y) : add(suc(x),y) — suc(add(x,y))

Some first-order proof terms

¥(zero, suc(zero)) : add(suc(zero), suc(zero)) — suc(add(zero, suc(zero)))

Proof terms for first-order rewriting

A well-known first-order term rewriting system

o(x) : add(zero,x) — x
Hx,y) : add(suc(x),y) — suc(add(x,y))

Some first-order proof terms

¥(zero, suc(zero)) : add(suc(zero), suc(zero)) — suc(add(zero, suc(zero)))

suc(o(suc(zero))) : suc(add(zero, suc(zero))) — suc(suc(zero))

Proof terms for first-order rewriting

A well-known first-order term rewriting system

o(x) : add(zero,x) — x
Hx,y) : add(suc(x),y) — suc(add(x,y))

Some first-order proof terms

¥(zero, suc(zero)) : add(suc(zero), suc(zero)) — suc(add(zero, suc(zero)))

suc(o(suc(zero))) : suc(add(zero, suc(zero))) — suc(suc(zero))

¥(zero, suc(zero)) ; suc(o(suc(zero)))
: add(suc(zero), suc(zero)) — suc(suc(zero))

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

= c(p1,...,pn) congruence c is any n-ary function symbol
| o(p1,...,pn) rule application o is any n-ary rule symbol
| p13p2 composition

p

Proof terms for first-order rewriting

First-order proof terms (formal syntax)

p == c(p1,...,pn) congruence c is any n-ary function symbol
| o(p1,...,pn) rule application o is any n-ary rule symbol
| p13p2 composition

Rewriting judgment

PS>t
C(p17...,p,,):C(Sl,...,s,,)—DC(tl,...,t,,)
(o(x1s-.-yXn):s = t)ER ...piisi—ti...

o(p1s -5 pn) t s{xi\sitier.n — t{xi\ti }ic1..n

P ST —> S g .5 —»>8S3

P30 5 —>S3

Permutation equivalence of reductions (example)

f(d)

Permutation equivalence of reductions (example)

f(d)

Permutation equivalence of reductions (important remark)

» If p ~ o then p and o have the same source and target:
p:s—t and o:s—t
» But the converse does not hold, for instance, if:
o(x) : f(x) — x

then:

Projection of reductions (example)

o(x) : f(x)
9 : C

g(x,x)
d

—
—

f(d)

Projection of reductions (example)

f(d)

o(v)/elc = g(v,9) o(c)/o(V) = g(d,d)
o()/(e(c) 5 g(c, V) = g(v,d)
o(?)/(e(c) 5 (g(c. V) s g(9,d))) = g(d,d)

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:
1. Permutation equivalence: p =~ o.

2. Projection equivalence: p/o and o/p are empty.
Here “empty” means that it contains no rule symbols.

Equivalent notions of equivalence

Theorem (de Vrijer, van Oostrom)
The following are equivalent:
1. Permutation equivalence: p =~ o.

2. Projection equivalence: p/o and o/p are empty.
Here “empty” means that it contains no rule symbols.

Basic historical notes

» Permutation equivalence and projection equivalence had been
studied and shown equivalent by Jean-Jacques Lévy (~1978).
(But without proof terms).

» Proof terms were introduced in the work of José Meseguer.
(~1992; keyword: “rewriting logic").

» Proof terms were extensively studied by Roel de Vrijer and Vincent
van Oostrom (~2002) to study notions of equivalence between
reductions, including also standardization equivalence and
labeling equivalence. (See e.g. the Terese book, Chapter 8).

Higher-order proof terms

Higher-order rewriting systems (a la Nipkow)

A well-known higher-order rewriting system

app(lamf)x — fx

The object language is encoded in higher-order abstract syntax:

>

vvyVvyVvVYyyvYyy

First-order terms become simply-typed A-terms:
app:t—e—e lam: (=)= fii—=0 x:t

Terms are considered up to Sn-equivalence.

In HRSs, left-hand sides of rules must be patterns.

HRSs strictly generalize first-order term rewriting systems.
We work with orthogonal HRSs: left-linear, no critical pairs.
Orthogonal HRSs are confluent.

HRSs were introduced by Tobias Nipkow (~1991).
There are other flavors of HORSs (e.g. Klop's CRSs).

10

Proof terms for higher-order rewriting

Example
B AMAxapp(lamf)x — AMAx.fx :(t—=)—=1—0
The reduction step of the object language:
Ax.(Az.z (zx)) | = Ax.I (I x)
can be encoded as the higher-order proof term:

lam (Ax.8 (Az.appz (app zx)) (lam(A\x.x))) : s — t

L—>L L
with

= lam (A\x.app (lam (Az.app z (app z x))) (lam(Ax.x)))
t = lam (Ax.(Az.app z (app z x)) (lam(\x.x)))
=g, lam (Ax.app (lam(\x.x)) (app (lam()\x.x)) x))

11

Proof terms for higher-order rewriting

Higher-order proof terms (formal syntax)

p

X
C
4

AX.p

P1 P2
P15 P2

variable
constant
rule symbol
abstraction
application
composition

12

Proof terms for higher-order rewriting

Higher-order proof terms (formal syntax)

P X variable
c constant
0 rule symbol

AX.p abstraction
102 application
P13 P2 composition

Rewriting judgment

(0:s—=t)eR p:s—t

X:X—+>X C:C—»C 0:s—>t AX.p 1 Ax.s = Ax.t

pris1—ti priSH—>t p1iSI—>S pP2iSH >3

P1LP2 1 S15 —> t1 b P15 pP2:51 > S3
s=gys p:s =t t'=p,t

p:s—t 12

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).

What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

As noted by Bruggink, this is not sound

Suppose that p: s — t is such that s # t. Then:

X X

—>
X3 X DX —

X X

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X Y - X
X3 X DX - X
Ax.(x 5 x) DX - Ax.x

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 X X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

(Axp)o % p{x\o}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 X X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).
What does “(Ax.p)o” mean?

2

(M.p)o = p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 X X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

But p ; p is not well-typed, as p cannot be composed with itself.

13

A stumbling block

Proof terms for higher-order rewriting were studied by Bruggink (~2008).

What does “(Ax.p)o” mean?

2

(M.p)o = p{x\c}

As noted by Bruggink, this is not sound
Suppose that p: s — t is such that s # t. Then:

X X — X

X3 X X — X

Ax.(x 5 x AX.X — AX.X
(Ax.(x3x)) p (Ax.x)s — (Axx)t
(Ax.(x3x)) p s — t

But p ; p is not well-typed, as p cannot be composed with itself.

Bruggink sidesteps the problem by allowing compositions (“;") only at
the toplevel.

13

Permutation equivalence for higher-order proof terms

Definition
P p
pspeE
(p30)s57
(Ax.p) 5 (Ax.0)
(p1p2) 5 (0102)
(Ax.s)p
(Ax.p)s
AX.p X

aaaaaa

p
p

p3i(o;T)

Mx.(p; o)

(p1 5 01)(p2 5 02)

s{x\n}

p{x\s}

p if x & fv(p)

> o and p'8' denote the source and the target term of p.

» s{x\\p} substitutes a variable in a A-term for a proof term

(yielding a proof term).

> p{x\s} substitutes a variable in a proof term for a A-term

(yielding a proof term).

14

Permutation equivalence for higher-order proof terms

Example
0 : Azmuz — Azz(muz) @ (L—1) >0
9 f - g L=t
Then:
oV :muf —g(mug)
And:
0V

Qaa

(05 (Az.z(muz)))d

(0 (v (mu 20)) (F 5 9)
of 5 (Az.z(muz))d

of 59 (mud)

as Az.z (mu z) is the target of o
as f is the source of ¥

by the application rule

by the term /rewrite S-like rule

15

Permutation equivalence for higher-order proof terms

Example
0 : Azmuz — Azz(muz) @ (L—1) >0
9 f - g L=
Then:
oV :muf —g(mug)
And:
oV
~ (o3 (M\z.z(muz)))d as Az.z(mu z) is the target of o
~ (0;(Az.z(muz)))(f; V) asfisthe source of ¥
~ of;(Az.z(muz))d by the application rule
~ of ;0 (mud) by the term/rewrite S-like rule
Proposition

(Axp)o = p{x\o™}; pE{x\o} = p"{x\o} 5 p{x\o"}

15

Flattening

Definition

We have proposed a flattening relation between higher-order proof terms:

Ax.(p s 0) A (Ax.p) 5 (Ax.0)
(30)n 2 (pp) s (o p)
nlpso) > (up)s (1 o)
(pr3p)(o1502) = (o135 p2) 07) 5 (05 (01 5 02))
(v 5 p{x\v}
AX. o X A 1 if x ¢ fv(u)

where p, v, ... stand for multisteps, that is, multisteps without
occurrences of the composition operator “;".

16

Flattening

Definition
We have proposed a flattening relation between higher-order proof terms:
Mx.(p;0) N (Ax.p) 5 (Ax.0)
b
(pso)pu = (ppT); (op)
b
plpso) = (up)s (ueo)
b
(pr3p2)(01502) = ((p15p2)ai); (5 (015 02))
(v 5 p{x\v}
AX. o X A 1 if x ¢ fv(u)

where p, v, ... stand for multisteps, that is, multisteps without
occurrences of the composition operator “;".

Theorem
Flattening is confluent and strongly normalizing.

The normal forms are called flat proof terms.
Compositions only appear at the toplevel, as in Bruggink's work.

16

Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be
defined as follows:
(ps0)s7 ~ p3(o;7)
u ~ o misms i pe s
where 11 < 1 3 o is a ternary relation meaning that the multistep p can
be “split” as the composition of the multisteps p; and puo.

Example

If, as before:
0 : Azmuz — Azz(muz) @ (L—1) =0
9 f - g DL

Then, for example:

00 ~ of 539 (mu?) since o < of 5 (A\z.z(muz))d

17

Flat permutation equivalence
A notion of permutation equivalence between flat proof terms can be

defined as follows:

(ps0)s7 ~ p3(o;7)

u ~ o misms i pe s
where 11 < 1 3 o is a ternary relation meaning that the multistep p can
be “split” as the composition of the multisteps p; and puo.

Example

If, as before:
0 : Azmuz — Azz(muz) @ (L—1) =0
9 f - g DL

Then, for example:
00 ~ of 539 (mu?) since o < of 5 (A\z.z(muz))d

Theorem (Flat permutation equivalence)

p ~ o if and only if p° ~ o°.

17

Projection

A notion of projection can be defined for multisteps (no composition):

xfIx=x cffe=c offo= 0" offo" =0

- nhfv = § pmffvr =& ppffve = &
o fo= o' A pff Ax.v = Ax.£ w1 ppffrive = &1 &

18

Projection
A notion of projection can be defined for multisteps (no composition):

xfIx=x cffe=c offo= 0" offo" =0

- v =§ piffrr =& v = &
O MNe= 0% N pffaxw = AxE [i1 iz v v2 = €16

This can be extended to flat proof terms in a typical way:

,ub//l/’ def §b if ujflv==¢
plost) = (pfo))r
;o))T (o)) (@))p))

(The first equation uses pattern matching against LHSs of rewrite rules).

18

Projection
A notion of projection can be defined for multisteps (no composition):

xfIx=x cffe=c offo= 0" offo" =0

- v =§ pffvi =& pefve = &
O MNe= 0% N pffaxw = AxE [1 o [vo = €1 6

This can be extended to flat proof terms in a typical way:

def .
wp = ¢ it pffv=¢
def
pf(o;7) o (p/fo))™
(pso)m = (pf7)s (o) (7]p))
(The first equation uses pattern matching against LHSs of rewrite rules).
Finally, it can be extended to arbitrary proof terms by flattening first:

def
plo = oo’

18

Projection equivalence

Theorem (Projection equivalence)
p~ o if and only if p/o and o/p are empty.
Again, “empty” means that it contains no rule symbols.

19

Future work

» Formulate a standardization procedure.
» Study labeling equivalence.
> Relate with 2-categorical models (Hirschowitz, 2013).

20

