A Constructive Logic with Classical Proofs and Refutations

LICS 2021

Pablo Barenbaum^{1,2}

Teodoro Freund¹

¹ Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Argentina ² Universidad Nacional de Quilmes Argentina

Introduction

The Logical System PRK

Kripke Semantics

Propositions as types

The BHK Interpretation

 $(\{\land,\lor,\neg\}$ fragment)

 $(A \wedge B)^+ \simeq A^+ \times B^+$ $(A \vee B)^+ \simeq A^+ \uplus B^+$ $(\neg A)^+ \simeq A^+ \Rightarrow \emptyset$

 A^+ = "proofs of A"

Nelson's Strong Negation

$$(A \wedge B)^{+} \simeq A^{+} \times B^{+} \qquad (A \wedge B)^{-} \simeq A^{-} \uplus B^{-}$$
$$(A \vee B)^{+} \simeq A^{+} \uplus B^{+} \qquad (A \vee B)^{-} \simeq A^{-} \times B^{-}$$
$$(\neg A)^{+} \simeq A^{-} \qquad (\neg A)^{-} \simeq A^{+}$$

 A^+ = "proofs of A"

 $A^- =$ "refutations of A"

Starting point: a BHK interpretation for classical logic

$$(A \wedge B)^+ \simeq A^{\oplus} \times B^{\oplus}$$

- $(A \lor B)^+ \simeq A^{\oplus} \uplus B^{\oplus}$
- $(A \wedge B)^{-} \simeq A^{\ominus} \uplus B^{\ominus}$
- $(A \lor B)^- \simeq A^{\ominus} \times B^{\ominus}$
- $(\neg A)^+ \simeq A^{\ominus} \qquad (\neg A)^- \simeq A^{\oplus}$
 - $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+ \qquad A^{\ominus} \simeq A^{\oplus} \Rightarrow A^-$

 $A^+ =$ "strong proofs of A" $A^{\oplus} =$ "classical proofs of A" A^- = "strong refutations of A" A^{\ominus} = "classical refutations of A"

Introduction

The Logical System $\ensuremath{\operatorname{PRK}}$

Kripke Semantics

Propositions as types

System **PRK** – Natural Deduction

Pure propositions
$$A ::= \alpha | A \land A | A \lor A | \neg A$$
Propositions $P ::= A^+$ strong affirmation $| A^-$ strong denial $| A^\oplus$ classical affimation $| A^\oplus$ classical denial

Inference rules (excerpt)

$$\frac{\Gamma \vdash A^+ \quad \Gamma \vdash A^-}{\Gamma \vdash Q} \text{ Abs } \qquad \frac{\Gamma \vdash}{\Gamma}$$

$$\frac{\Gamma \vdash A^{\ominus} \quad \Gamma \vdash B^{\ominus}}{\Gamma \vdash (A \lor B)^{-}}$$
 IV⁻

$$\frac{\Gamma, A^{\ominus} \vdash A^{+}}{\Gamma \vdash A^{\oplus}} \operatorname{IC}^{+} \qquad \qquad \frac{\Gamma \vdash A^{\oplus} \quad \Gamma \vdash A^{\ominus}}{\Gamma \vdash A^{+}} \operatorname{EC}^{+}$$

System **PRK** – Natural Deduction

Conservative extension

 $\vdash A$ holds classically if and only if $\vdash A^{\oplus}$ holds in PRK

Strong propositions behave constructively

The classical excluded middle $\vdash (A \lor \neg A)^{\oplus}$ always holds.

The strong excluded middle $\vdash (A \lor \neg A)^+$ does not hold in general.

Introduction

The Logical System PRK

Kripke Semantics

Propositions as types

Kripke Semantics

A Kripke model for PRK is a structure $\mathcal{M} = (\mathcal{W}, \leq, \mathcal{V}^+, \mathcal{V}^-)$. (Enjoying appropriate technical conditions).

Forcing (excerpt)

$$\begin{array}{lll} \mathcal{M}, w \Vdash \alpha^+ & \Longleftrightarrow & \alpha \in \mathcal{V}_w^+ \\ \mathcal{M}, w \Vdash \alpha^- & \Longleftrightarrow & \alpha \in \mathcal{V}_w^- \\ \mathcal{M}, w \Vdash (A \lor B)^- & \Longleftrightarrow & \mathcal{M}, w \Vdash A^\ominus \text{ and } \mathcal{M}, w \Vdash B^\ominus \\ \mathcal{M}, w \Vdash A^\oplus & \Longleftrightarrow & \mathcal{M}, w' \nvDash A^- \text{ for all } w' \ge w \end{array}$$

Theorem (Soundness and Completeness)

$$\Gamma \vdash P$$
 if and only if $\Gamma \Vdash P$

Introduction

The Logical System PRK

Kripke Semantics

Propositions as types

The calculus $\lambda^{\scriptscriptstyle \mathrm{PRK}}$

Type system (excerpt)

$$\frac{\Gamma \vdash t : A^+ \quad \Gamma \vdash s : A^-}{\Gamma \vdash t \bowtie s : Q}$$
ABS

$$\frac{\Gamma \vdash t : A^{\ominus} \quad \Gamma \vdash s : B^{\ominus}}{\Gamma \vdash \langle t, s \rangle^{-} : (A \lor B)^{-}} \operatorname{IV}^{-}$$

$$\frac{\Gamma, x : A^{\ominus} \vdash t : A^{+}}{\Gamma \vdash \mathsf{IC}_{x}^{+} \cdot t : A^{\oplus}} \operatorname{IC}^{+} \qquad \qquad \frac{\Gamma \vdash t : A^{\oplus} \quad \Gamma \vdash s : A^{\ominus}}{\Gamma \vdash t \bullet^{+} s : A^{+}} \operatorname{EC}^{+}$$

12

The calculus $\lambda^{_{\mathrm{PRK}}}$

 $\lambda^{\mbox{\tiny PRK}}$ is provided with a notion of reduction with good properties:

```
Theorem – Subject Reduction
If \Gamma \vdash t : P and t \rightarrow s then \Gamma \vdash s : P.
```

Theorem λ^{PRK} is confluent and strongly normalizing.

The proof of strong normalization relies on a translation to System F with Mendler-style recursion.

The embedding of classical logic into $\ensuremath{\Pr{\mathrm{RK}}}$ has good computational behavior. For example:

 $\pi_i^{\mathcal{C}}(\langle t_1, t_2 \rangle^{\mathcal{C}}) \rightarrow^* t_i$

Introduction

The Logical System PRK

Kripke Semantics

Propositions as types

• We studied an extension of the BHK interpretation.

Key idea: $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+$

A classical proof of A is a transformation that converts classical refutations of A into strong proofs of A.

• We studied an extension of the BHK interpretation.

Key idea: $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+$

A classical proof of A is a transformation that converts classical refutations of A into strong proofs of A.

This interpretation motivates the logical system PRK. PRK is a conservative extension of classical logic.

• We studied an extension of the BHK interpretation.

Key idea: $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+$

A classical proof of A is a transformation that converts classical refutations of A into strong proofs of A.

This interpretation motivates the logical system PRK. PRK is a conservative extension of classical logic.

Kripke semantics.

PRK is sound and complete w.r.t. a notion of Kripke model.

• We studied an extension of the BHK interpretation.

Key idea: $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+$

A classical proof of A is a transformation that converts classical refutations of A into strong proofs of A.

This interpretation motivates the logical system PRK. PRK is a conservative extension of classical logic.

Kripke semantics.

PRK is sound and complete w.r.t. a notion of Kripke model.

Propositions-as-types.

PRK corresponds to a confluent and terminating calculus λ^{PRK} .

• We studied an extension of the BHK interpretation.

Key idea: $A^{\oplus} \simeq A^{\ominus} \Rightarrow A^+$

A classical proof of A is a transformation that converts classical refutations of A into strong proofs of A.

This interpretation motivates the logical system PRK. PRK is a conservative extension of classical logic.

Kripke semantics.

PRK is sound and complete w.r.t. a notion of Kripke model.

Propositions-as-types.

PRK corresponds to a confluent and terminating calculus λ^{PRK} .

 λ^{PRK} is thus a computational interpretation of classical logic. There are many other ones—*e.g.* by Griffin, Parigot, Barbanera–Berardi, Curien–Herbelin, Krivine,

Future Work

Extend PRK to second-order logic and dependent types.