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Delia Kesner IRIF, Université de Paris; Institut Universitaire de France

Jurado

Nazareno Aguirre Universidad Nacional de Ŕıo Cuarto; CONICET
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[...] if their use has not become general for large numer-

ical calculations, it is because they have not in fact re-

solved the double problem which the question presents,

that of correctness in the results, united with econ-

omy of time.

—Ada Lovelace, on the Analytical Engine (1843)

State of the art (2020)

Writing correct and efficient software is still a difficult problem.

Ultimate goal

Write declarative programs, execute them efficiently.

Techniques used in this thesis

Abstract machines, rewriting theory, type theory, ...
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Evaluation strategies — ways to evaluate expressions

f pxq “ x ˚ x

f p2` 3q // p2` 3q ˚ p2` 3q

��

5 ˚ p2` 3q

��
f p5q // 5 ˚ 5

// Call-by-name: Apply the function first. Duplication (7)
// Call-by-value: Evaluate the argument first. No duplication (3)
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Evaluation strategies — ways to evaluate expressions

gpxq “ 0

gp2` 3q

��

gp5q // 0

// Call-by-value: Evaluate the argument first. Unneeded (7)
// Call-by-name: Apply the function first. Needed (3)
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Evaluation strategies — ways to evaluate expressions

Call-by-need (Wadsworth, 1971)

f pxq “ x ˚ x

f p2` 3q ÝÑ ‚

��

˚ ‚

��

2` 3

ÝÑ ‚

��

˚ ‚

��

5

ÝÑ 5 ˚ 5

Lazy (no unneeded work). (3)
Complete with respect to call-by-name. (Ariola et al., 1995)

Sharing (no duplication of work). (3)
Optimal for weak reduction. (Balabonski, 2013)
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The λ-calculus (Church, 1930s)

Syntax

Terms t, s, . . . ::“ x variable
| λx .t lambda abstraction
| t s application

Semantics
pλx .tq s Ñβ ttx :“ su

Example

Erasure pλx .0qpy zq Ñβ 0
Duplication pλx .x xqpy zq Ñβ py zq py zq
Non-termination pλx .x xqpλx .x xq Ñβ pλx .x xqpλx .x xq

Limitation — It cannot express sharing.
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Linear Substitution Calculus (LSC) (Accattoli & Kesner, 2010)

Syntax

Terms t, s, . . . ::“ x variable
| λx .t lambda abstraction
| t s application
| trx{ss explicit substitution

List contexts L ::“ rx1{t1s . . . rxn{tns
Term contexts C ::“ l | λx .C | C t | t C | Crx{ts | trx{Cs

Semantics

pλx .tqL s Ñdb trx{ssL
Cxxyrx{ts Ñls Cxtyrx{ts

trx{ss Ñgc t if x R fvptq

Rules are at a distance. Justified by linear logic proof nets (3)

Example

pλx .x xqpy zq Ñdb px xqrx{y zs
Ñls ppy zq xqrx{y zs
Ñls ppy zq py zqqrx{y zs
Ñgc py zq py zq
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This thesis

Overarching theme

Evaluation strategies in the Linear Substitution Calculus.

Three lines of work

1. Abstract machines (with Accattoli, Mazza)

2. Strong call-by-need (with Balabonski, Bonelli, Kesner)

+ Pattern matching and fixed points (with Bonelli, Mohamed)

3. Lévy labels (with Bonelli)

˚ Not included in this defense.
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Weak vs. strong reduction

Typical programming languages use weak reduction:

§ Bodies of functions are not evaluated (until applied).

§ Programs are closed (no free variables).

§ The result is a weak head normal form.

Example

λx . p2` 3q ˚ id x is already a weak head normal form.



12

Weak vs. strong reduction

Contrast with strong reduction:

§ Bodies of functions must be evaluated.

§ Programs may be open.

§ The result is a (strong) normal form.

Example

λx . p2` 3q ˚ id x ÝÑ λx . 5 ˚ id x ÝÑ λx . 5 ˚ x
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Motivation to study strong reduction

Proof assistants based on dependent type theory (Coq, Agda, ...)
include the following typing rule:

Γ $ t : A A ” B

Γ $ t : B

§ To decide whether A ” B, compare their normal forms.

§ This requires strong reduction, as types may depend on terms.
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Weak call-by-need

Weak call-by-need reduction
(Accattoli, Barenbaum, Mazza, 2014)

Values v ::“ λx .t
Weak evaluation contexts E ::“ l | E t | Erx{ts | Exxyrx{Es

pλx .tqL s
W

ù trx{ssL

Exxyrx{vLs
W

ù Exvyrx{vsL

Similar to (Ariola et al., 1995), but with rules at a distance.
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Our goal

Extend weak call-by-need (
W

ù) to strong call-by-need (
S

ù).
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Technical challenges

Context-dependency

λx .t (no arguments) ùñ evaluate t.

pλx .tq u (with arguments) ùñ do not evaluate t yet.

Production E ::“ . . . | λx .E is too naive.

Frozen variables

λx .x t (x is frozen) ùñ evaluate t.

px tqrx{λy .y s (x is not frozen) ùñ do not evaluate t yet.

Production E ::“ . . . | x E is too naive.



16

Technical challenges

Context-dependency

λx .t (no arguments) ùñ evaluate t.

pλx .tq u (with arguments) ùñ do not evaluate t yet.

Production E ::“ . . . | λx .E is too naive.

Frozen variables

λx .x t (x is frozen) ùñ evaluate t.

px tqrx{λy .y s (x is not frozen) ùñ do not evaluate t yet.

Production E ::“ . . . | x E is too naive.



17

Strong call-by-need strategy

Normal forms under frozen variables ϑ:

Nϑ ::“ Sϑ | λx .NϑYtxu | NϑYtxurx{Sϑs
looooooomooooooon

xPngvpNϑq

| Nϑrx{ts
looomooon

xRngvpNϑq

Sϑ ::“ x
loomoon

xPϑ

| Sϑ Nϑ | SϑYtxurx{S
1
ϑs

looooooomooooooon

xPngvpSϑq

| Sϑrx{ts
looomooon

xRngvpSϑq

Evaluation contexts under frozen variables ϑ:

Eϑ ::“ E˝ϑ | λx .EϑYtxu

| Eϑrx{ts
looomooon

xRϑ,tRSϑ

| EϑYtxurx{Sϑs | Eϑxxyrx{E
˝
ϑs

E˝ϑ ::“ l | E˝ϑ t | Sϑ Eϑ

| E˝ϑrx{ts
looomooon

xRϑ,tRSϑ

| E˝ϑYtxurx{Sϑs | E˝ϑxxyrx{E
˝
ϑs
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Strong call-by-need strategy

Reduction rules

Cxpλx .tqL sy
ϑ

ù Cxtrx{ssLy

C1xC2xxyrx{vLsy
ϑ

ù C1xC2xvyrx{vsLy

If the context is a strong call-by-need ϑ-evaluation context.

I.e., C and C1xC2xlyrx{vLsy are generated by the non-terminal
symbol Eϑ.
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Strong call-by-need strategy

Properties

1. Strong reduction if t P NFp
S

ùq then t˛ P NFpÑβq.

2. Determinism t
S

ù s1 and t
S

ù s2 implies s1 “ s2.

3. Conservativity
W

ù Ď
S

ù.

4. Soundness If t
S

ù s then t˛ “β s˛.

5. Completeness If t “β s and s is a β-normal form,

then t
S

ù˚ u with u˛ “ s.

For example, pλx .λy .xq a b
S

ù˚ xry{bsrx{as and xry{bsrx{as˛ “ a.
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S

ù s then t˛ “β s˛.

5. Completeness If t “β s and s is a β-normal form,

then t
S

ù˚ u with u˛ “ s.
Most interesting/difficult one.

We discuss the proof next.

For example, pλx .λy .xq a b
S
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Proof of Completeness of strong call-by-need

Completeness of strong call-by-need

If t Ñ˚
β nfβ then t

ϑ
ù˚ nfϑ and pnfϑq

˛ “ nfβ.

t

ϑ

����

β // // nfβ

nfϑ

˛

OO
t

ϑ

����
B

sh

!! !!
nfϑ nfsh

t

A
sh

    

β // // nfβ

nfsh

˛

OO

A: Completeness of the Theory of Sharing

If t Ñ˚
β nfβ then t Ñ˚

sh nfsh and nf˛sh “ nfβ.

B: Factorization of the Theory of Sharing

If t Ñ˚
sh nfsh then t

ϑ
ù˚ nfϑ and nf˛sh “ nf˛ϑ.
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Proof of A: Completeness of the Theory of Sharing

If t Ñ˚
β nfβ then t Ñ˚

sh nfsh and nf˛sh “ nfβ.

t

A
sh

    

β // // nfβ

nfsh

˛

OO

An argument based on non-idempotent intersection types.
Extending a similar argument for weak call-by-need.

(Kesner, 2016)
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Proof of A: Completeness of the Theory of Sharing

The proof passes through the type system HW.
(Kesner & Ventura, 2014)

§ HW is an non-idempotent intersection type system.
(Coppo & Dezani-Ciancaglini, 1978)

(Gardner, 1994; Kfoury, 2004; de Carvalho, 2007)

§ Intersection type systems characterize normalization properties.

t is weakly normalizing with respect to Ñβ

ó

Γ $ t : τ in system HW, without positive occurrences of r s
ó

t is weakly normalizing with respect to Ñsh
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Proof of B: Factorization of the Theory of Sharing

If t Ñ˚
sh nfsh then t

ϑ
ù˚ nfϑ and nf˛sh “ nf˛ϑ.

t

ϑ

����
B

sh

!! !!
nfϑ nfsh

Core of the argument: internal/external commutation.

Ñsh “
ϑ

ù Z
 ϑ
ÝÝÑsh

We prove p
 ϑ
ÝÝÑsh

ϑ
ùq Ď p

ϑ
ùÑ˚

shq by exhaustive case analysis.
Very long/intrincate proof.
It relies on an abstract factorization result. (Accattoli, 2012).
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Residuals

S{R denotes the set of residuals of S after R

xrx{pλy .yqzs

R

ww
S

%%
ppλy .yqzqrx{pλy .yqzs

S1

ww

S2

''

xrx{y ry{zss

R1

mm

y ry{zsrx{pλy .yqzs

S1
2 ((

ppλy .yqzqrx{y ry{zss

S1
1vv

y ry{zsrx{y ry{zss

R{S “ tR1u S{R “ tS1,S2u
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Residuals

R creates S 1 if there is no S such that S 1 P S{R.

pλx .xxqpλy .yq
R // pxxqrx{λy .y s S // ppλy .yqxqrx{λy .y s

R creates S
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Our goal

Develop the residual theory of reduction in the LSC.

Adapt the notions of redex families, Lévy labels, FFD,
extraction, optimality, etc..

(Vuillemin, Lévy, Lamping, Laneve,

van Oostrom, Asperti, Guerrini,

Glauert, Khasidashvili, . . .)

Motivations
§ Conceptual . . . . . . . . . . . . Causality in the presence of sharing.

§ Pragmatical . . . . . . . . . . . Build technology to prove theorems.

Two parts

§ The LSC with Lévy labels.

§ Applications of the LSC with Lévy labels.
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extraction, optimality, etc..
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The LSC with Lévy labels (LLSC)

Syntax

Labeled terms t ::“ xα | λαx .t | @αpt, tq | trx{ts
Labels α ::“ ‚ | a | rαs | tαu | dbpαq | αα

Operations

Ò ptq denotes the outermost sublabel of t.
Ó pαq denotes the innermost sublabel of α.
α : t adds a label α to a term t.

Reduction rules

@αppλβx .tqL, sq
dbpβq
ÝÝÝÑ αrdbpβqs : trx{tdbpβqu : ssL

Cxxαyrx{ts
Ópαq ‚ Òptq
ÝÝÝÝÝÝÑ Cxα ‚ : tyrx{ts
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Properties of LLSC

Confluence
pÑ˚

` q
´1 Ñ˚

` Ď Ñ˚
` pÑ

˚
` q
´1

Copy

If S1 P S{R then S and S1 have the same name.

Example

xarx{ybsry{zcs

a ‚ b
//

b ‚ c

��

ya ‚ brx{ybsry{zcs

b ‚ c

��
za ‚ b ‚ crx{ybsry{zcs

b ‚ c

��
xarx{zb ‚ csry{zcs

a ‚ b
// za ‚ b ‚ crx{zb ‚ csry{zcs
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Properties of LLSC

Creation
If R creates S, the name of R is a sublabel of the name of S.

Example (ls creates db)

@apxb, tqrx{λcy .zds

b ‚ c

ÝÝÝÑ @appλb ‚ cy .zdq, tqrx{λcy .zds

dbpb ‚ cq

ÝÝÝÝÝÝÝÑ zardbpb ‚ cqsdry{tdbpb ‚ cqu : tsrx{λcy .zds
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Properties of LLSC

Finite Family Developments

Reduction in the LLSC is strongly normalizing if restricted to
names of bounded height.
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Properties of LLSC

Contribution
Let M and N be names of steps. The following are equivalent:

1. Name contribution. (Concrete/syntactic notion)

M is a sublabel of N.

2. History contribution. (Abstract/semantic notion)

For every sequence R1 . . .Rn such that namepRnq “ N
there exists an i ď n such that namepRi q “ M.

The proof relies on the Finite Family Developments property.
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Properties of LLSC

The properties we just mentioned:

1. Confluence

2. Copy

3. Creation

4. Finite Family Developments

5. Contribution

make the LSC a Deterministic Family Structure (DFS).
(Glauert & Khasidashvili, 1996)
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Applications (1)

A family reduction M1 . . .Mn to normal form is optimal if there
is no shorter family reduction to normal form.

Optimal reduction for the LSC

Any complete and needed family reduction M1 . . .Mn to
normal form is optimal.

A corollary of Glauert & Khasidashvili, 1996.

Itself extending work by Lévy (1978).
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Applications (2)

Two reduction sequences are permutation equivalent if they
perform the same computational work (swapping steps).

Standardization for the LSC
For each reduction ρ, we can compute a canonical
representative Mpρq of its permutation equivalence class.

Generalizes a theorem by Klop (1980) to DFSs.

Canonical representatives are known as standard reductions.
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Applications (3)

A deterministic reduction strategy S is:

§ invariant if steps in S have residuals in S,

§ strongly invariant if moreover NFpSq is stable by reduction,

§ normalizing if given a term with normal form, S finds it.

Normalization for the LSC
Any strongly invariant strategy in the LSC is normalizing.
In particular, call-by-name and a variant of weak call-by-need
are normalizing.
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Contributions

1. Abstract machines˚

Evaluation strategies in the LSC distill abstract machines.
They are reasonable in terms of time complexity.

(ICFP’14, APLAS’15)

2. Strong call-by-need
We designed a strong call-by-need strategy. The main result is
completeness.

(ICFP’17)

+ Pattern matching and fixed points˚

We extended these results to allow recursion and pattern
matching.

(PPDP’18)

3. Lévy labels
We endowed the LSC with Lévy labels. We applied it to obtain
optimality, standardization, and normalization results.

(FSCD’17)

˚ Not included in this defense.
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Conclusions

Explicit substitutions are adequate to study strategies with
subterm sharing.

The efficient implementation of strong reduction is still poorly
understood.

Some of the technology developed in the 1970s/1980s remains
underexplored:

§ Labeled λ-calculus.

§ Finite Family Developments.

§ Optimal reduction.
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Future work

§ Use Lévy labels to capture dynamic properties of programs.
E.g.: information flow, measuring partial evaluation.

Related: Blanc’s PhD thesis, 2006

§ Design a reasonable strong call-by-need strategy/machine.
Related: Biernacka & Charatonik, 2019

§ Characterize redex families by means of extraction.
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