
1

Semantics of a Relational λ-Calculus

ICTAC 2020

December 2nd, 2020

Pablo Barenbaum1,2

Federico Lochbaum2

Mariana Milicich1

1 Facultad de Ciencias Exactas y Naturales 2 Universidad Nacional de Quilmes
Universidad de Buenos Aires Argentina

Argentina



2

Outline

Motivation

Difficulties

Operational semantics

Denotational semantics

Future work



3

Motivation

Functional programming Logic/relational programming

Inductive datatypes First order terms, symbolic variables
Pattern matching Unification
Higher-order functions Relations, invertible predicates
Lazy evaluation Non-deterministic search

Functional logic programming
mother Hera = Rhea

mother Demeter = Hera

grandmother = mother ◦ mother

granddaughter = inv grandmother

inv : (a -> b) -> b -> a

inv f b = ν a. ((f a
•
= b) ; a)



3

Motivation

Functional programming Logic/relational programming

Inductive datatypes First order terms, symbolic variables
Pattern matching Unification
Higher-order functions Relations, invertible predicates
Lazy evaluation Non-deterministic search

Functional logic programming
mother Hera = Rhea

mother Demeter = Hera

grandmother = mother ◦ mother

granddaughter = inv grandmother

inv : (a -> b) -> b -> a

inv f b = ν a. ((f a
•
= b) ; a)



4

Motivation — Formal semantics

Functional programming Logic/relational programming
λ-calculus miniKanren

t ::= x
| λx .t
| t t

G ::= T
•
= T

| R(T1, . . . ,Tn)
| G ; G
| G ⊕ G
| νx .G

(T ,T1, . . . are first-order terms)

Functional logic programming

Confluent λ-calculus with relational constructs.



4

Motivation — Formal semantics

Functional programming Logic/relational programming
λ-calculus miniKanren

t ::= x
| λx .t
| t t

G ::= T
•
= T

| R(T1, . . . ,Tn)
| G ; G
| G ⊕ G
| νx .G

(T ,T1, . . . are first-order terms)

Functional logic programming

???

Confluent λ-calculus with relational constructs.



4

Motivation — Formal semantics

Functional programming Logic/relational programming
λ-calculus miniKanren

t ::= x
| λx .t
| t t

G ::= T
•
= T

| R(T1, . . . ,Tn)
| G ; G
| G ⊕ G
| νx .G

(T ,T1, . . . are first-order terms)

Functional logic programming

Goal:

Confluent λ-calculus with relational constructs.



5

Related work

Functional logic programming languages
λProlog (Miller et al., 1986), Mercury (Somogyi et al., 1995),
Curry (Hanus et al., 1997), Makam (Stampoulis, 2018), ...

Related formalisms
I Pattern calculi No full unification, no non-determinism.

Jay & Kesner (2006), Klop et al. (2008), Petit (2011), ...

I λ-calculi with non-deterministic choice No unification.
Schmidt-Schauß et al. (2000), Faggian & Della Rocca (2019), ...

I miniKanren No λ-abstractions/applications.
Rozhplokas et al. (2019)

I λ-calculi with non-deterministic choice and unification
Smolka (1997), Chakravarty et al. (1998) Not confluent.
Albert et al. (2002) Big-step semantics, no confluence.



6

Outline

Motivation

Difficulties

Operational semantics

Denotational semantics

Future work



7

Our first approach

t ::= x variable
| λx . t abstraction
| t t application
| c constant
| fail explicit failure

| t
•
= t unification

| t ; t sequence
| t ⊕ t non-deterministic alternative
| νx . t fresh variable



8

Difficulty

We cannot solve higher-order unification

f c
•
= c

Higher-order unification is undecidable. (Only semi-decidable).
Huet, 1973

Higher-order unification problems have no most general unifiers.
Existence of mgu’s is key for confluence.

There are well-known restrictions of higher-order unification:

Higher-order pattern unification. Miller, 1991

Nominal unification. Urban et al., 2004

They require strong reduction (under abstractions).
They fall back on full higher-order unification.



9

Difficulty

We cannot solve higher-order unification

...but we do want to match functions

(x
•
= λy . y) ; (x

•
= x)→ (λy . y)

•
= (λy . y)→ (should succeed)

...but functions cannot be compared by syntactic equality
This is not stable under substitution.

E.g.:
(λx . y)

•
= (λx . z) fails

but if y 7→ z ,
(λx . z)

•
= (λx . z) succeeds



10

Outline

Motivation

Difficulties

Operational semantics

Denotational semantics

Future work



11

The λU-calculus

Terms t ::= x variable
| λx .P abstraction
| λ`x .P allocated abstraction
| t t application
| c constructor

| t
•
= t unification

| t ; t sequence
| νx . t fresh variable

Programs P ::= fail empty program
| t ⊕ P non-deterministic alternative

Programs are of the form P = t1 ⊕ . . . ⊕ tn.

Invariant
Any two abstractions with the same location are closed and equal.



12

The λU-calculus

Values v ::= x
| λ`x .P
| c v1 . . . vn

Weak contexts W ::= �
| W t
| t W

| W
•
= t

| t
•
= W

| W ; t
| t ; W

Usual operation to plug a term into a context:

W〈t〉

Plus an operation to plug a program into a context:

W〈t1 ⊕ . . . ⊕ tn〉
def
= W〈t1〉 ⊕ . . . ⊕W〈tn〉



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



13

Reduction rules

Rules operate on the toplevel program.

P1 ⊕W〈λx .Q〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x .Q〉 ⊕ P2 ` fresh

P1 ⊕W〈(λ`x .Q) v〉 ⊕ P2
beta−−−→ P1 ⊕W〈Q{x := v}〉 ⊕ P2

P1 ⊕W〈v ; t〉 ⊕ P2
seq−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx . t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 y fresh

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

σ = mgu({v •= w})

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−−→ P1 ⊕ P2

if mgu({v •= w}) fails

Two abstractions unify iff they have the same location.



14

Confluence

The λU-calculus is confluent, up to a notion of structural equivalence ≡.

t1

zzzz $$ $$
t2

����

t3

����
t ′2 ≡ t ′3



15

Confluence

Example

(v1
•
= v2) (w1

•
= w2) t

σ=mgu({v1
•
=v2}) //

τ=mgu({w1
•
=w2})

��

ok (w1
σ •= w2

σ) tσ

τ ′=mgu({w1σ
•
=w2

σ})
��

ok ok (tσ)τ
′

≡

(v1
τ •= v2

τ ) ok tτ
σ′=mgu({v1τ

•
=v2

τ}) // ok ok (tτ )σ
′

The equivalence relies on the fact that:

τ ′ ◦ σ and σ′ ◦ τ are both most general unifiers of {{v1
•
= v2, w1

•
= w2}}

hence τ ′ ◦ σ ≡ σ′ ◦ τ , up to renaming.



16

Type system

We have formulated a system of simple types for λU.

Subject reduction

I If Γ ` P : A and P
¬fresh−−−−→ Q then Γ ` Q : A.

I If Γ ` P : A and P
fresh(x)−−−−−→ Q then Γ, x : B ` Q : A for some B.



17

Outline

Motivation

Difficulties

Operational semantics

Denotational semantics

Future work



18

A denotational semantics
We have defined a naive denotational semantics for λU:

[[A→ B]]
def
= [[A]]→ P([[B]])

[[xA]]ρ
def
= {ρ(xA)}

[[c]]ρ
def
= {Rc}

[[λxA.P]]ρ
def
= {ha[[A]]. [[P]]ρ[xA 7→a]}

[[λ`xA.P]]ρ
def
= {ha[[A]]. [[P]]ρ[xA 7→a]}

[[t s]]ρ
def
= {b | ∃f ∈ [[t]]ρ,∃a ∈ [[s]]ρ, b ∈ f (a)}

[[t
•
= s]]ρ

def
= {Rok | ∃a ∈ [[t]]ρ,∃b ∈ [[s]]ρ, a = b}

[[t ; s]]ρ
def
= {a | ∃b ∈ [[t]]ρ, a ∈ [[s]]ρ}

[[νxA. t]]ρ
def
= {b | ∃a ∈ [[A]], b ∈ [[t]]ρ[xA 7→a]}

[[failA]]ρ
def
= ∅

[[t ⊕ P]]ρ
def
= [[t]]ρ ∪ [[P]]ρ

[[P]]
def
=

⋃
ρ[[P]]ρ



19

A naive denotational semantics

Correctness
If P → Q then [[P]] ⊇ [[Q]].

(Completeness fails).



19

A naive denotational semantics

Correctness
If P → Q then [[P]] ⊇ [[Q]].

(Completeness fails).



20

Outline

Motivation

Difficulties

Operational semantics

Denotational semantics

Future work



21

Future work

I We have a working prototype programming language (~Nuflo).

I Relate λU with pattern calculi.

I Study evaluation strategies and abstract machines.

I Formulate a complete denotational semantics.

I ...


	Motivation
	Difficulties
	Operational semantics
	Denotational semantics
	Future work

