Pattern Matching and Fixed Points:
Resource Types and Strong Call-By-Need

Pablo Barenbaum Eduardo Bonelli Kareem Mohamed

PPDP 2018
September 5, 2018
Frankfurt, Germany

Outline

Motivation and goal

/31

Weak vs. strong reduction

Typical programming languages use weak reduction:
» Bodies of functions are not evaluated (until applied).

» Well-formed programs are assumed to be closed.

» The result of a computation is a weak head normal form.

Example (weak reduction in OCaml)

>> funx >x/0
= <fun>
int -> int

31

Weak vs. strong reduction

Contrast with strong reduction:
» To fully evaluate a function, the body must be evaluated.
» Programs may be open, involving symbolic variables.

» The result of a computation is a (strong) normal form.

Example (strong reduction in Coq)

>>> Eval lazy in (fun x => 2 + id x)
= fun x : nat => S (S x)
: nat -> nat

Motivations to study strong reduction

Motivation: partial evaluation

pow x n = if n==0 then 1 else x * pow x (n— 1)
square = Ax. pow x 2

square = AX. pow x 2~ AX. X % X

31

Motivations to study strong reduction

Motivation: implementation of proof assistants

Proof assistants based on dependent type theory (Coq, Agda, ..

typically include the following typing rule (conversion):

lr=t: A A=B
Nt:B

» To decide definitional equality A = B, implementations
compare the strong normal forms of A and B.

)

31

Weak evaluation strategies

Many well-known evaluation strategies for weak reduction.

For instance, if f(x) = x + x:

/f(2*3)
,7 2% 3+ 2 %3 (x + x)[x — 2 * 3]
/
) | [}
f£(6) 6 +2 % 3 (x + x)[x — 6]
\\ ﬂ
N (6 + x)[x — 6]

~ /
Tr6 + 6

— — > = call-by-value —— = call-by-name ——= = call-by-need

Goal of this work

» Define a call-by-need strategy for strong reduction.

» It must contemplate pattern matching and recursion,
extending previous work by the first two authors with
Balabonski and Kesner (ICFP'17).

» Show that the strategy is complete.

31

Xe — Our starting point: an extended A-calculus
with pattern matching and fixed points.

Ash — A variant of ¢ with subterm sharing
(explicit substitutions).

».. — A deterministic strong call-by-need

evaluation strategy for Agp.
Main result (Completeness)

If t—»es forsomese NF()\)
then tw»_, s° forsomes € NF(»_,).

Key technical tool
A non-idempotent intersection type system for \e/\gp.

Outline

A Theory of Sharing

10/31

The Extended Lambda Calculus ().)

Untyped subset of Gallina, the specification language of Coq.

Proposed by Grégoire and Leroy (ICFP'02) to study strong
call-by-value reduction.

11/31

The Extended Lambda Calculus ().)

t,s,... 1= Xx variable
| Ax.t abstraction
| ts application
| fix(x.t) fixed-point
| c constant (e.g. true, nil, cons)

| case t of (cX = t) case expression

Reduction rules

(Ax.t)s —e t{x — s}
fix(x.t) —e t{x — fix(x.t)}
case Cjt_' of (CiXi = si)icr —e Sj{)?j — t}
if j €l and |t] = ||

12/31

The Theory of Sharing (\g)

A variant of)\, with explicit substitutions, for sharing subterms.

Ancestors:

> The call-by-need lambda calculus
of Ariola, Felleisen, Maraist, Odersky, and Wadler (1997).

» Explicit substitutions at a distance
introduced by Accattoli and Kesner (2010).

13/31

The Theory of Sharing (\g)

n= X

| Ax.t

| ts

| fix(x.t)
| c

| case t of (cX = t)

| t[x — s]

Substitution contexts
Constant contexts
Values

L
A
v

variable

abstraction

application

fixed-point

constant (e.g. true, nil, cons)
case expression

explicit substitution

m= 0O | Lix—t]
c= [0 | ALt
= Ax.t | Alc]

14 /31

The Theory of Sharing (\g)

Interaction rules

(Ax.t)Ls —a t[x — 5]
fix(x.t) —a t[x — fix(x.t)]
case A[Cj]L of (C,')_(,' = S,'),'e/ —sh Sj[)_g — A]L
if j €l and |A] = ||

where t[x — A] is defined recursively:
te—-0] = t
t[x,y — ALt] := t[x — AJL[y — t]

Substitution rules

Clx][x — vL] —an C[v][x — v]L if Cis any context, v is a value
tlx >s] —a t if x & fv(t)

15 /31

Example

Let:

MAP := fix(map. Af. L.
case ¢ of | nil = nil

consxxs = cons(fx)(mapf xs))

Then:

MAP F (cons A nil)

nil = nil
consxxs = cons(fx)(mapf xs))
[¢ — cons A nil|[f — F][map — MAP]

—gsn (case £ of

—gn (case cons A nil of | nil = nil
consxxs = cons(f x)(mapf xs))

[f — F][map — MAP]

—an (cons (f x) (map f xs))[x — A][xs — nil|][f — F][map — MAP]

16

31

Outline

The Strong Call-by-Need Strategy

17/31

The Strong Call-by-Need Strategy (»,)

The Strong Call-by-Need Strategy (»_;)
Recall the popular saying:

call-by-need = “sharing + lazy evaluation”

The Theory of Sharing \gy is (just) a calculus:
» The rewriting relation —y defines a theory of equality.
> It allows for sharing.
» |t does not impose any evaluation order.

We define a deterministic evaluation strategy »_, to impose a
lazy evaluation order.

18 /31

The Strong Call-by-Need Strategy (»,)

Design principles of the Strong Call-by-Need Strategy »_,
We follow the guidelines from the preceding ICFP'17 work:
» Evaluation focuses on a subterm t under a context C.

» Evaluate t until reaching a weak head normal form.
The possible weak head normal forms are roughly:

Abstractions AX.t
Variable structures Xt...ty
Constant structures cty...t,

Stuck case expressions case t of b if t cannot possibly
match any branch.

(Sprinkled with explicit substitutions).

» If C can interact with t, zoom out and continue.
Otherwise, recursively evaluate the subterms of t.

19/31

The Strong Call-by-Need Strategy (»,)

Strong call-by-need evaluation is context-dependent along two
dimensions.

Example (Interaction with the context)
In (succ t) the subterm t may be the focus of evaluation or not:

succ (succt) »_ succ(succt’)
L]

case succt of succx = x b, x[x — t]

depending on whether (succ t) can interact with the context.

Example (Frozen variables)
In (case x of zero = t) the focus of evaluation may be x or t:

Ax.(case x of zero = t) »_ Ax.(case x of zero = t')
L]

(case x of zero = t)[x — zero] »_, (case zero of zero = t)[x — zero]
L]

depending on whether x is frozen by the context or not.

20/31

The Strong Call-by-Need Strategy (»,)

For each discriminator h and each set of frozen variables) we
define a family Eg of evaluation contexts.

[Details in the paper.]

21/31

The Strong Call-by-Need Strategy (»,)

Formal definition of the Strong Call-by-Need Strategy (»_,)

C[(Ax.t)Ls] >, Clt[x — 5]
Clfix(x.t)] >, C[t[x — fix(x.t)]]
C[case A[Cj]L of (C,')_<,' = S,'),'E/] > C[Sj[)_(j — A]L]

if j €l and |A] = |X;]
Ci[Ca[x][x — vL]] > Ci[Cav][x — v]L]

In every case, C must be an evaluation context, C € £J.

(In the last case, C := C1[C2[][x — vL]]).

22 /31

The Strong Call-by-Need Strategy (»,)

Example (Strong call-by-need evaluation)

>sh

>sh

>sh

>sh

>sh

Aw.(Ax.case x of succy = x)((A\z.succz) w)

Aw.(case x of succy = x)[x — (Az.succ z) w]
Aw.(case x of succy = x)[x — (succz)[z — w]]

Aw.(case succz of succy = x)[x — succz|[z — w]

Aw.x[y — z][x — succz][z — w]

Aw.(succ z)[y — z|[x — succz|[z — w]

23 /31

Outline

Completeness

24/31

Completeness

Theorem (Completeness)
If t—»es forsomese NF(\)
then t w»_, u for some u € NF(»_,).

Furthermore, u°® = s.

tlx = s]° == t%{x — s°}

25 /31

Completeness

Theorem (Completeness)
If t—es forsomes e NF(\)
then t w»_, u for some u € NF(»_,).

Furthermore, u°® = s.

tlx = s]° == t%{x — s°}

Proof
The proof is cut in three steps.

1. Normalizing — typable. If t € WN()\.) then t is typable.

2. Typable — normalizing. |If t is typable then t € WN(\gp).

3. Factorization. If t € WN(A\gp) then t »»_, u
and u° =s.

The key tool is a non-idempotent intersection type system.

25/31

Intersection Types for the Theory of Sharing

Reminder: non-idempotent intersection types

v

Subterms are typed as many times as they are used.

v

A subterm can be untyped (if it is not used).

v

No unique/principal typing.

v

Typability characterizes normalization:

t has a head normal form <=t is typable
t has a (strong) normal form <=t is typable + constraints

v

Typability is undecidable.

26/31

The non-idempotent intersection type system 7T

1. Multi type (M = [71,...,74]). — Type of a term that has
many types simultaneously: M is a multiset of types.

2. Function type (M — o) — Type of a function that uses its
argument once for each type in M, and returns o.

3. Datatype (cM; ... M,) — Type of a constant c applied to
n arguments, the i-th of which has type M;.

4. Ervor type ((e7 (M; = 0j)! 1p1...pj)pj+1---pk) — Type
of a stuck case expression, with condition of type 7, branches
of types (M, = o), that has been applied to arguments of
types p1,...,pj, and expects arguments of types Pj+1s--+sPk-

[Formal details in the paper.]

Example Ax.consxx : [a, 3,7] — cons [, 7] 5]

Ax.(case x of succy = y)x : |[a,f5] = (ea([y] = v)B)
(ea([v]=7))8

27 /31

Completeness (1/3)

Step 1: Normalizing — typable.

If t € WN()e) then

there exist ',X,7 such that ;X Ft: 7
and the judgment is good.

Proof

» Prove the particular case when t € NF()\e).
» Prove subject expansion for —:

If T;XFs:7andt—es
then ;X Ft:T.

28 /31

Completeness (2/3)

Step 2: Typable — normalizing.

If ;X F t:7 and the judgment is good,
then t € WN(Agn).

Proof

» Define a measure for typing derivations.

» Prove weighted subject reduction for —;:

™
— and t &€ NF()\g
MYbtor 7 NF(Aan)
then thereisastept —gn s
/

suchthat — " and #(m) > #(7').
>YXks:T

29 /31

Completeness (3/3)

Step 3: Factorization

If t —gn s with s € NF(A\gp)
then t »»_, v and u° =s.

Proof
Steps t B, s are called external.
Steps that are not external are internal, written t >y s.

By exhaustive case analysis, show that any two consecutive steps
><n P, can be swapped to obtain B, —p.

This can be iterated to obtain a standardization result:
(t —»sh S) — (t ., U DPgh S)
Moreover, r; >g, r2 implies ry = r5.

30/31

Conclusions

> We have proposed a strong call-by-need strategy » .

> It extends preceding work with pattern matching and
recursion.
» The main challenge is dealing with stuck case expressions.
> The strategy is complete with respect to Grégoire and Leroy's
Ae-calculus.
» Byproducts:
» A Theory of Sharing Ay, for A.

» A non-idempotent intersection type system 7 characterizing
weak normalization.

Future work

» Decide t =)_ s using »_;, non-naively.
(Naively: reduce to »_,-normal form, unfold, and compare).
» Big step semantics, abstract machine.

31/31

	Motivation and goal
	A Theory of Sharing
	The Strong Call-by-Need Strategy
	Completeness

