
Pattern Matching and Fixed Points:
Resource Types and Strong Call-By-Need

Pablo Barenbaum Eduardo Bonelli Kareem Mohamed

PPDP 2018
September 5, 2018
Frankfurt, Germany

1 / 31

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

2 / 31

Weak vs. strong reduction

Typical programming languages use weak reduction:

I Bodies of functions are not evaluated (until applied).

I Well-formed programs are assumed to be closed.

I The result of a computation is a weak head normal form.

Example (weak reduction in OCaml)

>>> fun x -> x / 0

= <fun>

: int -> int

3 / 31

Weak vs. strong reduction

Contrast with strong reduction:

I To fully evaluate a function, the body must be evaluated.

I Programs may be open, involving symbolic variables.

I The result of a computation is a (strong) normal form.

Example (strong reduction in Coq)

>>> Eval lazy in (fun x => 2 + id x)

= fun x : nat => S (S x)

: nat -> nat

4 / 31

Motivations to study strong reduction

Motivation: partial evaluation

pow x n := if n == 0 then 1 else x ∗ pow x (n − 1)
square := λx . pow x 2

square = λx . pow x 2 λx . x ∗ x

5 / 31

Motivations to study strong reduction

Motivation: implementation of proof assistants

Proof assistants based on dependent type theory (Coq, Agda, ...)
typically include the following typing rule (conversion):

Γ ` t : A A ≡ B

Γ ` t : B

I To decide definitional equality A ≡ B, implementations
compare the strong normal forms of A and B.

6 / 31

Weak evaluation strategies

Many well-known evaluation strategies for weak reduction.

For instance, if f(x) = x + x:

f(2 * 3)

��

�� $,

2 * 3 + 2 * 3

��

(x + x)[x → 2 * 3]

��

f(6)

++

6 + 2 * 3

��

(x + x)[x → 6]

��

(6 + x)[x → 6]

lt6 + 6

// = call-by-value // = call-by-name +3 = call-by-need

7 / 31

Goal of this work

I Define a call-by-need strategy for strong reduction.

I It must contemplate pattern matching and recursion,
extending previous work by the first two authors with
Balabonski and Kesner (ICFP’17).

I Show that the strategy is complete.

8 / 31

Plan

λe — Our starting point: an extended λ-calculus
with pattern matching and fixed points.

λsh — A variant of λe with subterm sharing
(explicit substitutions).

Ish — A deterministic strong call-by-need
evaluation strategy for λsh.

Main result (Completeness)

If t �e s for some s ∈ NF (λe)
then t IIsh s ′ for some s ′ ∈ NF (Ish).

Key technical tool

A non-idempotent intersection type system for λe/λsh.

9 / 31

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

10 / 31

The Extended Lambda Calculus (λe)

Untyped subset of Gallina, the specification language of Coq.

Proposed by Grégoire and Leroy (ICFP’02) to study strong
call-by-value reduction.

11 / 31

The Extended Lambda Calculus (λe)

t, s, . . . ::= x variable
| λx .t abstraction
| t s application
| fix(x .t) fixed-point
| c constant (e.g. true, nil, cons)

| case t of (cx̄ ⇒ t) case expression

Reduction rules

(λx .t)s →e t{x → s}
fix(x .t) →e t{x → fix(x .t)}

case cj t̄ of (ci x̄i ⇒ si)i∈I →e sj{x̄j → t̄}
if j ∈ I and |t̄| = |x̄j |

12 / 31

The Theory of Sharing (λsh)

A variant of λe with explicit substitutions, for sharing subterms.

Ancestors:

I The call-by-need lambda calculus
of Ariola, Felleisen, Maraist, Odersky, and Wadler (1997).

I Explicit substitutions at a distance
introduced by Accattoli and Kesner (2010).

13 / 31

The Theory of Sharing (λsh)

t, s, . . . ::= x variable
| λx .t abstraction
| t s application
| fix(x .t) fixed-point
| c constant (e.g. true, nil, cons)

| case t of (cx̄ ⇒ t) case expression
| t[x → s] explicit substitution

Substitution contexts L ::= � | L[x → t]
Constant contexts A ::= � | AL t
Values v ::= λx .t | A[c]

14 / 31

The Theory of Sharing (λsh)

Interaction rules

(λx .t)L s →sh t[x → s]
fix(x .t) →sh t[x → fix(x .t)]

case A[cj]L of (ci x̄i ⇒ si)i∈I →sh sj [x̄j → A]L
if j ∈ I and |A| = |x̄j |

where t[x̄ → A] is defined recursively:

t[ε→ �] := t
t[x̄ , y → ALt] := t[x̄ → A]L[y → t]

Substitution rules

C[[x]][x → vL] →sh C[[v]][x → v]L if C is any context, v is a value
t[x → s] →sh t if x 6∈ fv(t)

15 / 31

Example

Let:

MAP := fix(map. λf . λ`.
case ` of nil ⇒ nil

cons x xs ⇒ cons (f x) (map f xs))

Then:

MAP F (cons A nil)

�sh (case ` of nil ⇒ nil
cons x xs ⇒ cons (f x) (map f xs))

[`→ cons A nil][f → F][map → MAP]

�sh (case cons A nil of nil ⇒ nil
cons x xs ⇒ cons (f x) (map f xs))

[f → F][map → MAP]

→sh (cons (f x) (map f xs))[x → A][xs → nil][f → F][map → MAP]

16 / 31

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

17 / 31

The Strong Call-by-Need Strategy (Ish)

The Strong Call-by-Need Strategy (Ish)

Recall the popular saying:

call-by-need = “sharing + lazy evaluation”

The Theory of Sharing λsh is (just) a calculus:

I The rewriting relation →sh defines a theory of equality.

I It allows for sharing.

I It does not impose any evaluation order.

We define a deterministic evaluation strategy Ish to impose a
lazy evaluation order.

18 / 31

The Strong Call-by-Need Strategy (Ish)

Design principles of the Strong Call-by-Need Strategy Ish

We follow the guidelines from the preceding ICFP’17 work:

I Evaluation focuses on a subterm t under a context C.

I Evaluate t until reaching a weak head normal form.
The possible weak head normal forms are roughly:

Abstractions λx .t
Variable structures x t1 . . . tn
Constant structures c t1 . . . tn
Stuck case expressions case t of b̄ if t cannot possibly

match any branch.

(Sprinkled with explicit substitutions).

I If C can interact with t, zoom out and continue.
Otherwise, recursively evaluate the subterms of t.

19 / 31

The Strong Call-by-Need Strategy (Ish)
Strong call-by-need evaluation is context-dependent along two
dimensions.

Example (Interaction with the context)

In (succ t) the subterm t may be the focus of evaluation or not:

succ (succ t
•
) Ish succ (succ t′)

case succ t of succ x ⇒ x︸ ︷︷ ︸
•

Ish x[x → t]

depending on whether (succ t) can interact with the context.

Example (Frozen variables)

In (case x of zero⇒ t) the focus of evaluation may be x or t:

λx . (case x of zero⇒ t
•
) Ish λx . (case x of zero⇒ t′)

(case x
•
of zero⇒ t)[x → zero] Ish (case zero of zero⇒ t)[x → zero]

depending on whether x is frozen by the context or not.
20 / 31

The Strong Call-by-Need Strategy (Ish)

For each discriminator h and each set of frozen variables ϑ we
define a family Ehϑ of evaluation contexts.

[Details in the paper.]

21 / 31

The Strong Call-by-Need Strategy (Ish)

Formal definition of the Strong Call-by-Need Strategy (Ish)

C[(λx .t)L s] Ish C[t[x → s]]
C[fix(x .t)] Ish C[t[x → fix(x .t)]]
C[case A[cj]L of (ci x̄i ⇒ si)i∈I] Ish C[sj [x̄j → A]L]

if j ∈ I and |A| = |x̄j |
C1[C2[[x]][x → vL]] Ish C1[C2[[v]][x → v]L]

In every case, C must be an evaluation context, C ∈ Eh∅.

(In the last case, C := C1[C2[[�]][x → vL]]).

22 / 31

The Strong Call-by-Need Strategy (Ish)

Example (Strong call-by-need evaluation)

λw .(λx .case x of succ y ⇒ x)((λz .succ z)w)

Ish λw .(case x of succ y ⇒ x)[x → (λz .succ z)w]

Ish λw .(case x of succ y ⇒ x)[x → (succ z)[z → w]]

Ish λw .(case succ z of succ y ⇒ x)[x → succ z][z → w]

Ish λw .x [y → z][x → succ z][z → w]

Ish λw .(succ z)[y → z][x → succ z][z → w]

23 / 31

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

24 / 31

Completeness

Theorem (Completeness)
If t �e s for some s ∈ NF (λe)

then t IIsh u for some u ∈ NF (Ish).

Furthermore, u� = s.

t[x → s]� := t�{x → s�}

25 / 31

Completeness

Theorem (Completeness)
If t �e s for some s ∈ NF (λe)

then t IIsh u for some u ∈ NF (Ish).

Furthermore, u� = s.

t[x → s]� := t�{x → s�}

Proof

The proof is cut in three steps.

1. Normalizing → typable. If t ∈WN(λe) then t is typable.
2. Typable → normalizing. If t is typable then t ∈WN(λsh).
3. Factorization. If t ∈WN(λsh) then t IIsh u

and u� = s.

The key tool is a non-idempotent intersection type system.

25 / 31

Intersection Types for the Theory of Sharing

Reminder: non-idempotent intersection types

I Subterms are typed as many times as they are used.

I A subterm can be untyped (if it is not used).

I No unique/principal typing.

I Typability characterizes normalization:

t has a head normal form ⇐⇒ t is typable
t has a (strong) normal form ⇐⇒ t is typable + constraints

I Typability is undecidable.

26 / 31

The non-idempotent intersection type system T
1. Multi type (M = [τ1, . . . , τn]). — Type of a term that has

many types simultaneously: M is a multiset of types.

2. Function type (M→ σ) — Type of a function that uses its
argument once for each type in M, and returns σ.

3. Datatype (cM1 . . .Mn) — Type of a constant c applied to
n arguments, the i-th of which has type Mi .

4. Error type (〈e τ (M̄i ⇒ σi)
n
i=1ρ1 . . . ρj〉ρj+1 . . . ρk) — Type

of a stuck case expression, with condition of type τ , branches
of types (M̄i ⇒ σi), that has been applied to arguments of
types ρ1, . . . , ρj , and expects arguments of types ρj+1, . . . , ρk .

[Formal details in the paper.]

Example
λx .cons x x : [α, β, γ]→ cons [α, γ] [β]

λx .(case x of succ y ⇒ y︸ ︷︷ ︸
〈eα ([γ]⇒γ)〉β

) x : [α, β]→ 〈eα ([γ]⇒ γ)β〉

27 / 31

Completeness (1/3)

Step 1: Normalizing → typable.

If t ∈WN(λe) then
there exist Γ,Σ, τ such that Γ; Σ ` t : τ
and the judgment is good.

Proof

I Prove the particular case when t ∈ NF (λe).

I Prove subject expansion for →e:

If Γ; Σ ` s : τ and t →e s
then Γ; Σ ` t : τ .

28 / 31

Completeness (2/3)

Step 2: Typable → normalizing.

If Γ; Σ ` t : τ and the judgment is good,
then t ∈WN(λsh).

Proof

I Define a measure for typing derivations.

I Prove weighted subject reduction for →sh:

If
π

Γ; Σ ` t : τ
and t 6∈ NF (λsh)

then there is a step t →sh s

such that
π′

Γ; Σ ` s : τ
and #(π) > #(π′).

29 / 31

Completeness (3/3)

Step 3: Factorization

If t �sh s with s ∈ NF (λsh)
then t IIsh u and u� = s.

Proof
Steps t Ish s are called external.
Steps that are not external are internal, written t Bsh s.

By exhaustive case analysis, show that any two consecutive steps
BshIsh can be swapped to obtain Ish�sh.

This can be iterated to obtain a standardization result:

(t �sh s) =⇒ (t IIsh u BBsh s)

Moreover, r1 Bsh r2 implies r�1 = r�2 .

30 / 31

Conclusions

I We have proposed a strong call-by-need strategy Ish.

I It extends preceding work with pattern matching and
recursion.

I The main challenge is dealing with stuck case expressions.

I The strategy is complete with respect to Grégoire and Leroy’s
λe-calculus.

I Byproducts:
I A Theory of Sharing λsh for λe.
I A non-idempotent intersection type system T characterizing

weak normalization.

Future work

I Decide t ≡λe s using Ish non-näıvely.
(Näıvely: reduce to Ish-normal form, unfold, and compare).

I Big step semantics, abstract machine.

31 / 31

	Motivation and goal
	A Theory of Sharing
	The Strong Call-by-Need Strategy
	Completeness

