Pattern Matching and Fixed Points: Resource Types and Strong Call-By-Need

Pablo Barenbaum

Eduardo Bonelli

Kareem Mohamed

PPDP 2018 September 5, 2018 Frankfurt, Germany

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

Weak vs. strong reduction

Typical programming languages use **weak** reduction:

- Bodies of functions are not evaluated (until applied).
- ▶ Well-formed programs are assumed to be closed.
- ▶ The result of a computation is a weak head normal form.

Example (weak reduction in OCaml)

```
>>> fun x -> x / 0
= <fun>
: int -> int
```

Weak vs. strong reduction

Contrast with **strong** reduction:

- ▶ To fully evaluate a function, the body must be evaluated.
- ▶ Programs may be open, involving symbolic variables.
- ▶ The result of a computation is a (strong) normal form.

Example (strong reduction in Coq)

```
>>> Eval lazy in (fun x => 2 + id x)
= fun x : nat => S (S x)
: nat -> nat
```

Motivations to study strong reduction

Motivation: partial evaluation

```
pow x n := if n == 0 then 1 else x * pow x (n-1) square := \lambda x. pow x 2 \rightarrow \lambda x. x * x
```

Motivations to study strong reduction

Motivation: implementation of proof assistants

Proof assistants based on dependent type theory (Coq, Agda, ...) typically include the following typing rule (**conversion**):

$$\frac{\Gamma \vdash t : A \qquad A \equiv B}{\Gamma \vdash t : B}$$

▶ To decide definitional equality $A \equiv B$, implementations compare the strong normal forms of A and B.

Weak evaluation strategies

Many well-known evaluation strategies for weak reduction.

For instance, if f(x) = x + x:

Goal of this work

- ▶ Define a **call-by-need** strategy for **strong** reduction.
- ▶ It must contemplate **pattern matching** and **recursion**, extending previous work by the first two authors with Balabonski and Kesner (ICFP'17).
- ▶ Show that the strategy is complete.

Plan

- $\lambda_{\rm e}$ Our starting point: an extended λ -calculus with pattern matching and fixed points.
- $\lambda_{\rm sh}$ A variant of $\lambda_{\rm e}$ with subterm sharing (explicit substitutions).
- $ightharpoonup_{
 m sh}$ A deterministic **strong call-by-need** evaluation strategy for $\lambda_{
 m sh}$.

Main result (Completeness)

```
If t 	woheadrightarrow_e s for some s \in NF(\lambda_e)
then t 	woheadrightarrow_{sh} s' for some s' \in NF(\blacktriangleright_{sh}).
```

Key technical tool

A non-idempotent intersection type system for λ_e/λ_{sh} .

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

The Extended Lambda Calculus (λ_e)

Untyped subset of Gallina, the specification language of Coq.

Proposed by Grégoire and Leroy (ICFP'02) to study strong call-by-value reduction.

The Extended Lambda Calculus (λ_e)

Reduction rules

$$\begin{array}{ccc} (\lambda x.t)s & \rightarrow_{\mathbf{e}} & t\{x \rightarrow s\} \\ & \text{fix}(x.t) & \rightarrow_{\mathbf{e}} & t\{x \rightarrow \text{fix}(x.t)\} \\ \text{case } \mathbf{c}_{j}\bar{t} \text{ of } (\mathbf{c}_{i}\bar{x}_{i} \Rightarrow s_{i})_{i \in I} & \rightarrow_{\mathbf{e}} & s_{j}\{\bar{x}_{j} \rightarrow \bar{t}\} \\ & & \text{if } j \in I \text{ and } |\bar{t}| = |\bar{x}_{j}| \end{array}$$

The Theory of Sharing (λ_{sh})

A variant of λ_e with explicit substitutions, for sharing subterms.

Ancestors:

- The call-by-need lambda calculus of Ariola, Felleisen, Maraist, Odersky, and Wadler (1997).
- Explicit substitutions at a distance introduced by Accattoli and Kesner (2010).

The Theory of Sharing (λ_{sh})

```
variable
t, s, \ldots := x
                                          abstraction
              \lambda x.t
                                          application
             | fix(x.t)
                                          fixed-point
                                          constant (e.g. true, nil, cons)
               C
              case t of \overline{(\mathbf{c}\bar{x}\Rightarrow t)} case expression
             |t[x \rightarrow s]|
                                          explicit substitution
           Substitution contexts L ::= \Box | L[x \rightarrow t]
           Constant contexts A ::= \square | AL t
                                       v ::= \lambda x.t \mid A[c]
           Values
```

The Theory of Sharing (λ_{sh})

Interaction rules

$$\begin{array}{ccc} (\lambda x.t) \mathbf{L} \, s & \to_{\mathtt{sh}} & t[x \to s] \\ & \mathtt{fix}(x.t) & \to_{\mathtt{sh}} & t[x \to \mathtt{fix}(x.t)] \\ \mathtt{case} \, \mathbf{A}[\mathbf{c}_j] \mathbf{L} \, \mathtt{of} \, (\mathbf{c}_i \bar{x}_i \Rightarrow s_i)_{i \in I} & \to_{\mathtt{sh}} & s_j[\bar{x}_j \to \mathbf{A}] \mathbf{L} \\ & & \mathsf{if} \, j \in I \, \mathsf{and} \, |\mathbf{A}| = |\bar{x}_j| \end{array}$$

where $t[\bar{x} \to A]$ is defined recursively:

$$\begin{array}{ccc} t[\epsilon \to \square] & := & t \\ t[\bar{x}, y \to ALt] & := & t[\bar{x} \to A]L[y \to t] \end{array}$$

Substitution rules

Example

Let:

$$\begin{array}{lll} \mathtt{MAP} := & \mathtt{fix}(\mathit{map}.\,\lambda\mathit{f}.\,\lambda\mathit{\ell}.\\ & \mathtt{case}\,\,\ell\,\,\mathtt{of}\,\,\middle|\,\, \mbox{nil} & \Rightarrow & \mathtt{nil}\\ & \mathtt{cons}\,\mathit{x}\,\mathit{xs} & \Rightarrow & \mathtt{cons}\,(\mathit{f}\,\mathit{x})\,(\mathit{map}\,\mathit{f}\,\mathit{xs})) \end{array}$$

Then:

MAP
$$F$$
 (cons A nil)

$$\rightarrow_{\sf sh} ({\sf cons}(f \, x)(map \, f \, xs))[x \rightarrow A][xs \rightarrow {\sf nil}][f \rightarrow F][map \rightarrow {\tt MAP}]$$

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

The Strong Call-by-Need Strategy (▶_{sh})

Recall the popular saying:

call-by-need = "sharing + lazy evaluation"

The Theory of Sharing λ_{sh} is (just) a **calculus**:

- ▶ The rewriting relation \rightarrow_{sh} defines a theory of equality.
- ► It allows for sharing.
- It does not impose any evaluation order.

We define a deterministic evaluation **strategy** $\triangleright_{\mathrm{sh}}$ to impose a lazy evaluation order.

Design principles of the Strong Call-by-Need Strategy ▶_{sh}

We follow the guidelines from the preceding ICFP'17 work:

- Evaluation focuses on a subterm t under a context C.
- ► Evaluate *t* until reaching a **weak head normal form**. The possible weak head normal forms are roughly:

Abstractions	$\lambda x.t$	
Variable structures	$x t_1 \dots t_n$	
Constant structures	$\mathbf{c} t_1 \dots t_n$	
Stuck case expressions	case t of $ar{b}$	if t cannot possibly
		match any branch.

(Sprinkled with explicit substitutions).

▶ If C can interact with t, zoom out and continue.
Otherwise, recursively evaluate the subterms of t.

Strong call-by-need evaluation is **context-dependent** along two dimensions.

Example (Interaction with the context)

In $(\mathbf{succ}\ t)$ the subterm t may be the focus of evaluation or not:

```
\underbrace{\operatorname{case} \operatorname{succ} t \operatorname{of} \operatorname{succ} x \Rightarrow x}_{\text{sh}} \quad \operatorname{succ} \left( \operatorname{succ} t' \right)
```

depending on whether (succ t) can interact with the context.

Example (Frozen variables)

In (case x of **zero** \Rightarrow t) the focus of evaluation may be x or t:

```
\begin{array}{ccc} \lambda x. \left( \text{case } x \text{ of } \mathbf{zero} \Rightarrow t \right) & \blacktriangleright_{\mathtt{sh}} & \lambda x. \left( \text{case } x \text{ of } \mathbf{zero} \Rightarrow t' \right) \\ \left( \text{case } x \text{ of } \mathbf{zero} \Rightarrow t \right) [x \rightarrow \mathbf{zero}] & \blacktriangleright_{\mathtt{sh}} & \left( \text{case } \mathbf{zero} \text{ of } \mathbf{zero} \Rightarrow t \right) [x \rightarrow \mathbf{zero}] \end{array}
```

depending on whether *x* is **frozen** by the context or not.

For each discriminator h and each set of frozen variables ϑ we define a family $\mathcal{E}_{\vartheta}^h$ of evaluation contexts.

[Details in the paper.]

Formal definition of the Strong Call-by-Need Strategy (▶_{sh})

$$\begin{array}{lll} \texttt{C}[(\lambda x.t) \texttt{L} \, s] & \qquad & \texttt{sh} \quad \texttt{C}[t[x \to s]] \\ \texttt{C}[\texttt{fix}(x.t)] & \qquad & \texttt{sh} \quad \texttt{C}[t[x \to \texttt{fix}(x.t)]] \\ \texttt{C}[\texttt{case} \, \texttt{A}[\textbf{c}_j] \texttt{L} \, \texttt{of} \, (\textbf{c}_i \bar{x}_i \Rightarrow s_i)_{i \in I}] & \qquad & \texttt{sh} \quad \texttt{C}[s_j[\bar{x}_j \to \texttt{A}] \texttt{L}] \\ & \qquad & \texttt{if} \, j \in I \, \, \texttt{and} \, \, |\texttt{A}| = |\bar{x}_j| \\ \texttt{C}_1[\texttt{C}_2[x][x] \times \to v \texttt{L}]] & \qquad & \texttt{sh} \quad \texttt{C}_1[\texttt{C}_2[v][x \to v] \texttt{L}] \\ \end{array}$$

In every case, C must be an evaluation context, $\mathtt{C} \in \mathcal{E}^h_{\varnothing}$.

```
(In the last case, C := C_1[C_2[\square][x \to vL]]).
```

Example (Strong call-by-need evaluation)

$$\lambda w.(\lambda x.\mathtt{case}\ x\ \mathtt{of}\ \mathtt{succ}\ y\Rightarrow x)((\lambda z.\mathtt{succ}\ z)\ w)$$

- ▶_{sh} $\lambda w.(\text{case } x \text{ of } \text{succ } y \Rightarrow x)[x \rightarrow (\lambda z.\text{succ } z) w]$
- $ightharpoonup_{
 m sh}$ $\lambda w.({
 m case}\ \underline{x}\ {
 m of}\ {
 m succ}\ y\Rightarrow x)[x o({
 m succ}\ z)[z o w]]$
- ▶_{sh} $\lambda w.$ (case succ z of succ $y \Rightarrow x$)[$x \to \text{succ } z$][$z \to w$]
- $\blacktriangleright_{\operatorname{sh}} \quad \lambda w.\underline{x}[y \to z][x \to \operatorname{succ} z][z \to w]$
- $ightharpoonup_{\rm sh}$ $\lambda w.(\operatorname{succ} z)[y \to z][x \to \operatorname{succ} z][z \to w]$

Outline

Motivation and goal

A Theory of Sharing

The Strong Call-by-Need Strategy

Completeness

Completeness

```
Theorem (Completeness)

If t 	woheadrightarrow_e s for some s \in NF(\lambda_e)

then t 	woheadrightarrow_{sh} u for some u \in NF(	woheadrightarrow_{sh}).

Furthermore, u^{\Diamond} = s.

t[x \to s]^{\Diamond} := t^{\Diamond}\{x \to s^{\Diamond}\}
```

Completeness

Theorem (Completeness) If $t \rightarrow_e s$ for some $s \in NF(\lambda_e)$ then $t \blacktriangleright_{sh} u$ for some $u \in NF(\blacktriangleright_{sh})$. Furthermore, $u^{\Diamond} = s$. $t[x \rightarrow s]^{\Diamond} := t^{\Diamond}\{x \rightarrow s^{\Diamond}\}$

Proof

The proof is cut in three steps.

- 1. Normalizing \rightarrow typable. If $t \in WN(\lambda_e)$ then t is typable.
- 2. Typable \rightarrow normalizing.
- 3. Factorization.

If t is **typable** then $t \in WN(\lambda_{sh})$.

If $t \in WN(\lambda_{sh})$ then $t \mapsto_{sh} u$ and $u^{\diamond} = s$.

The key tool is a non-idempotent intersection type system.

Intersection Types for the Theory of Sharing

Reminder: non-idempotent intersection types

- ▶ Subterms are typed as many times as they are used.
- A subterm can be untyped (if it is not used).
- No unique/principal typing.
- Typability characterizes normalization:

```
t has a head normal form \iff t is typable t has a (strong) normal form \iff t is typable + constraints
```

Typability is undecidable.

The non-idempotent intersection type system ${\mathcal T}$

- 1. **Multi type** ($\mathcal{M} = [\tau_1, \dots, \tau_n]$). Type of a term that has many types simultaneously: \mathcal{M} is a multiset of types.
- 2. **Function type** $(\mathcal{M} \to \sigma)$ Type of a function that uses its argument once for each type in \mathcal{M} , and returns σ .
- 3. **Datatype** $(c\mathcal{M}_1 \dots \mathcal{M}_n)$ Type of a constant **c** applied to n arguments, the i-th of which has type \mathcal{M}_i .
- 4. **Error type** $(\langle \mathbb{e} \tau (\bar{\mathcal{M}}_i \Rightarrow \sigma_i)_{i=1}^n \rho_1 \dots \rho_j \rangle \rho_{j+1} \dots \rho_k)$ Type of a stuck case expression, with condition of type τ , branches of types $(\bar{\mathcal{M}}_i \Rightarrow \sigma_i)$, that has been applied to arguments of types ρ_1, \dots, ρ_j , and expects arguments of types $\rho_{j+1}, \dots, \rho_k$.

[Formal details in the paper.]

Example $\lambda x. \mathbf{cons} \, x \, x \quad : \quad [\alpha, \beta, \gamma] \to \mathbf{cons} \, [\alpha, \gamma] \, [\beta]$ $\lambda x. \underbrace{\left(\underbrace{\mathsf{case}} \, x \, \mathsf{of} \, \, \mathbf{succ} \, y \Rightarrow y \right)}_{\langle e \, \alpha \, ([\gamma] \Rightarrow \gamma) \rangle \beta} \quad : \quad [\alpha, \beta] \to \langle e \, \alpha \, ([\gamma] \Rightarrow \gamma) \beta \rangle$

Completeness (1/3)

```
Step 1: Normalizing \rightarrow typable. If t \in WN(\lambda_e) then there exist \Gamma, \Sigma, \tau such that \Gamma; \Sigma \vdash t : \tau and the judgment is good.
```

Proof

- ▶ Prove the particular case when $t \in NF(\lambda_e)$.
- ▶ Prove subject expansion for →e:

```
If \Gamma; \Sigma \vdash s : \tau and t \rightarrow_e s
then \Gamma; \Sigma \vdash t : \tau.
```

Completeness (2/3)

```
Step 2: Typable \rightarrow normalizing. If \Gamma; \Sigma \vdash t : \tau and the judgment is good, then t \in WN(\lambda_{sh}).
```

Proof

- ▶ Define a measure for typing derivations.
- ▶ Prove weighted subject reduction for →_{sh}:

If
$$\frac{\pi}{\Gamma; \Sigma \vdash t : \tau}$$
 and $t \notin NF(\lambda_{sh})$

then there is a step $t \rightarrow_{sh} s$

such that
$$\frac{\pi'}{\Gamma; \Sigma \vdash s : \tau}$$
 and $\#(\pi) > \#(\pi')$.

Completeness (3/3)

Step 3: Factorization

```
If t \rightarrow_{sh} s with s \in NF(\lambda_{sh}) then t \triangleright_{sh} u and u^{\diamond} = s.
```

Proof

Steps $t \triangleright_{sh} s$ are called **external**. Steps that are not external are **internal**, written $t \triangleright_{sh} s$.

By exhaustive case analysis, show that any two consecutive steps $\triangleright_{\mathtt{sh}} \triangleright_{\mathtt{sh}}$ can be swapped to obtain $\triangleright_{\mathtt{sh}} \twoheadrightarrow_{\mathtt{sh}}$.

This can be iterated to obtain a **standardization** result:

$$(t \rightarrow_{sh} s) \Longrightarrow (t \blacktriangleright_{sh} u \bowtie_{sh} s)$$

Moreover, $r_1 \triangleright_{sh} r_2$ implies $r_1^{\diamondsuit} = r_2^{\diamondsuit}$.

Conclusions

- ▶ We have proposed a strong call-by-need strategy ▶_{sh}.
- It extends preceding work with pattern matching and recursion.
- ▶ The main challenge is dealing with **stuck case expressions**.
- The strategy is complete with respect to Grégoire and Leroy's λ_e-calculus.
- Byproducts:
 - ▶ A Theory of Sharing λ_{sh} for λ_{e} .
 - ► A non-idempotent intersection type system T characterizing weak normalization.

Future work

- ▶ Decide $t \equiv_{\lambda_e} s$ using \blacktriangleright_{sh} non-naïvely. (Naïvely: reduce to \blacktriangleright_{sh} -normal form, unfold, and compare).
- ▶ Big step semantics, abstract machine.