Factoring Derivation Spaces
via

Intersection Types
May 2018

Pablo Barenbaum Gonzalo Ciruelos
Universidad de Buenos Aires Universidad de Buenos Aires
Université Paris 7

Derivation spaces

ID>[1+1]:<1+1*>2)

D[3 + 4% 5] = (3+4*5H3+20H23)

D[(1+1, 34+4%5)] =
(141, 3+4%5)—(1+1, 3+20) — (1+1, 23)

l | l

(2, 344%5) —— (2, 3420) —— (2, 23)

D[(A, B)] ~ D[A] x D[B]

-~
isomorphism of lattices

Derivation spaces in the \-calculus

Creation.

D[(Ax.f (xx)) Ax.f (xx)] = (Ax.f(xx))Ax.f(xx)

f (Ax.f (xx)) Ax.f (xx))

f(f (Ax.f (xx)) Ax.f (xx)))

D[Ax.f (x x)] is finite but D[(Ax.f (x x))Ax.f (x x)] is infinite.

Derivation spaces in the \-calculus

Duplication.

D[(Ax.xx) (I y)] = (Ax.xx) (ly)

™~

(Iy)(1y) (Ax.xx)y

~
\yy

\

y(ly (ly)y

\/

D[(Ax.x x) (I y)] # D[(Ax.x x)O] x D[/yl

PARN
N

Derivation spaces in the \-calculus

Erasure.

D[(Ax-2)(1y)] = (Ax.z)(1y)

o
/

z

Ax.z)y

D[(Ax.2) (1 y)] # D[(Ax.z)0] x D[/ y]

-~

Derivation spaces in the \-calculus

Definition (Derivation space)
If t is a term, D[t] is the set of reduction sequences' from t:

.t —* s is a sequence of rewrite steps =
plp

Partially ordered by the prefix order:

PICl] &5 plo=c

Modulo permutation equivalence.

Derivation spaces in the \-calculus

Theorem (J.-J. Lévy)
In the A-calculus, D[t] forms an upper semilattice with:

Plulel = [o(o/p)]

It is not necessarily a lattice.

(Soft) goals and hypotheses

Goal: understanding derivation spaces.
Hypothesis: explicit resource management may be helpful.

[(Axxx) [y, Iy]] =
(Ax.x x) [Iy,ly])\XXX)y, !yl
(Ax.x x [Iy y] (Ax.x x [y y]
y(/y

The distributive A-calculus (*)

Proof-term notation for the non-idempotent intersection type system W.
Definition (Proto-A*)

Syntax.
Terms t = x"| X\ x.t|tt Lists of terms t = [ti,...,t]
Types A= a | M—=A Multisets of types M == [A1,...,Al]
Contexts I == ()|lx:M
Typing.
Mx:MFt:A FTEt:[AL...,A]l =B (AiFs: A,
. A
XAIEXTA ey vt Mo A [+, Ak tls,....s0]: B
Reduction.
(A x.t)[s1,...,Sn] =& t{x = [s1,...,5n]}

Each free occurrence of x* consumes exactly one argument s; of type A.

The distributive A-calculus (*)

Proof-term notation for the non-idempotent intersection type system W.
Definition (Proto-A*)

Syntax.
Terms t = x"| X\ x.t|tt Lists of terms t = [ti,...,t]
Types A= a | M—=A Multisets of types M == [A1,...,Al]
Contexts I == ()|lx:M
Typing.
Mx:MFt:A FTEt:[AL...,A]l =B (AiFs: A,
. A
XAIEXTA ey vt Mo A [+, Ak tls,....s0]: B
Reduction.
(A x.t)[s1,...,Sn] =& t{x = [s1,...,5n]}

Each free occurrence of x* consumes exactly one argument s; of type A.

(Non-confluent).
(Ax.(Ay.fyx)x)]a, b]

The distributive A-calculus (*)

Definition (A*)

Syntax.
Terms t = X" | A\'x.t|tt Lists of terms t o= [ty t)]
Types A = ot | M Ly} Multisets of types M == [Ai.... A,
Contexts I == ()|, x: M
Typing.
Mx: MEt:A Fl—t:[Al,...,An]bB (A s Ay
. A
X AIEXTEA S reab i m S A Ml Ak t[si,...,50]: B
Reduction.

(O'x.t) [s1,- - ., 5a] =4 t{x = [s1,..., 5]}

Each free occurrence of x consumes exactly one argument s; of type A.

The distributive A-calculus (*)

Remark (Unique typing)
If '+ t: Alis derivable, it is the unique typing derivation for t.

Definition (Correct terms)
A typable term t is correct if:
» Different lambdas are decorated with different labels.

» Given a multiset of types [A1, ..., A,] occurring as a
subformula anywhere in the typing derivation of t, if i #£ j
then A; and A; are decorated with different labels at the root.

Lemma (Subject reduction)

If T t: A, the term t is correct and t —4 s
then '+ s: A and s is correct.

The distributive A-calculus (*)

Proposition (Confluence)
The M*-calculus has the Church—Rosser property.

(Alx.()\zy.f3 y4x5) x*) [a*, b°] 1. (Azy.f3 y* b°) a*

| |

(ALx.F3 x4 x5) [a*, b5 — L > 3 5% b5

The distributive A-calculus (*)

Proposition (Strong normalization)

There is no infinite reduction sequence t; —4 to —u
[cf. System W]

Residuals can be defined in * using the labels over the lambdas.

Lemma
There is no duplication nor erasure in *.

Proposition
In the *-calculus, D[t] is a distributive lattice.
There are joins (L!) and meets (1) that distribute over each other.

Simulation

Definition (Refinement)
Refinement () relates correct A*-terms and A-terms:

t' xt t'xt (sixs)ly

XEXX bt Axit t'lst,....spl x ts

A A\-term may have many refinements:

(Axy? D] % (xyxx)z
(Axy? [N [2] % (Mxyxx)z
ALy 2 P x4 X)) [2°, 23,24 x (Axyxx)z

Simulation

Proposition (Simulation)
Forward. If t' x t —p s there is a term s such that:

t——s
B

X X

t/ > 5/

t > S
B

X X

t/ 5/ . S//

Simulation

Proposition (Refinement characterizes head normalization)
The following are equivalent:
1. The term t has a head normal form.
2. The term t has a refinement t’' x t.
[cf. System W]

Simulation

Proposition (Algebraic simulation)

For each refinement t' x t the construction given by the
Simulation result is a morphism of upper semilattices:

D[t] — D[]
p = p/t

Its definition and properties resemble residual theory.
E.g. there is a “cube lemma":

(p/t)/(a/t)) = (p/0)/ (/o)

Garbage and factorization
Definition (Garbage)
Let t' x t. A derivation p: t —7 s is t'-garbage if p/t' = ¢.
The notion of garbage depends on the choice of t'.

The dotted steps are garbage:
(AP [DIz.22) 2] % (Axxx) (1y)

/)\

(Nz.22)y? x (1y) (1) (AP [y?] = (Axxx) y

5
ylxy(ly) (z2)2l x (Iy)y

-

>y Ixyy

Garbage and factorization

Theorem (Factorization)
If t' x t there is an isomorphism of upper semilattices:

]D)[t]:/fg

> F is the lattice of garbage-free derivations.

where:

» G : F — Semilattice is a functor.
For each p : t —>}§ s in F, we write G(p) for the semilattice of
garbage derivations starting at s.

> f F G Is the Grothendieck construction.

In particular, for any derivation p : t —7% s there is a unique way
to factor p = p1 p2 such that p; is garbage-free and p, is garbage.

Future work

» Show that the notion of garbage is not ad hoc.
» Relate with Melliés external—internal factorization.

» Use other resource calculi instead of *.

