Factoring Derivation Spaces via Intersection Types

May 2018

Pablo Barenbaum
Universidad de Buenos Aires
Université Paris 7

Gonzalo Ciruelos Universidad de Buenos Aires

Derivation spaces

$$\mathbb{D}[1+1] = \left(1+1 \longrightarrow 2\right)$$

$$\mathbb{D}[3+4*5] = \left(3+4*5 \longrightarrow 3+20 \longrightarrow 23\right)$$

$$\mathbb{D}[(1+1, 3+4*5)] = (1+1, 3+4*5) \longrightarrow (1+1, 3+20) \longrightarrow (1+1, 23)$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

$$\underbrace{\mathbb{D}[(A,B)] \simeq \mathbb{D}[A] \times \mathbb{D}[B]}_{\text{isomorphism of lattices}}$$

Creation.

 $\mathbb{D}[\lambda x.f(xx)]$ is finite but $\mathbb{D}[(\lambda x.f(xx))\lambda x.f(xx)]$ is infinite.

Duplication.

$$\mathbb{D}[(\lambda x.xx)(ly)] = (\lambda x.xx)(ly)$$

$$y(ly)$$

$$y(ly)$$

$$\mathbb{D}[(\lambda x.xx)(ly)] \neq \mathbb{D}[(\lambda x.xx)\square] \times \mathbb{D}[ly]$$

Erasure.

Definition (Derivation space)

If t is a term, $\mathbb{D}[t]$ is the set of **reduction sequences**¹ from t:

$$\{\rho \mid \rho : t \to^* s \text{ is a sequence of rewrite steps}\} / \equiv$$

Partially ordered by the prefix order:

$$[\rho] \sqsubseteq [\sigma] \qquad \stackrel{\text{def}}{\Longleftrightarrow} \qquad \rho/\sigma = \epsilon$$

¹Modulo permutation equivalence.

Theorem (J.-J. Lévy)

In the λ -calculus, $\mathbb{D}[t]$ forms an **upper semilattice** with:

$$[\rho] \sqcup [\sigma] \stackrel{\text{def}}{=} [\rho (\sigma/\rho)]$$

It is not necessarily a lattice.

(Soft) goals and hypotheses

Goal: **understanding derivation spaces**.

Hypothesis: explicit resource management may be helpful.

The distributive λ -calculus ($\lambda^{\#}$)

Proof-term notation for the non-idempotent intersection type system $\mathcal{W}.$

Definition (Proto- $\lambda^{\#}$)

Syntax.

Terms
$$t$$
 ::= $x^A \mid \lambda x.t \mid t \ \vec{t}$ Lists of terms \vec{t} ::= $[t_1, \dots, t_n]$ Types A ::= $\alpha \mid \mathcal{M} \to A$ Multisets of types \mathcal{M} ::= $[A_1, \dots, A_n]$ Contexts Γ ::= $(.) \mid \Gamma, x : \mathcal{M}$

Typing.

$$\frac{}{x:[A]\vdash x^A:A} \quad \frac{\Gamma,x:\mathcal{M}\vdash t:A}{\Gamma\vdash \lambda \ x.t:\mathcal{M}\to A} \quad \frac{\Gamma\vdash t:[A_1,\ldots,A_n]\to B \quad (\Delta_i\vdash s_i:A_i)_{i=1}^n}{\Gamma\vdash_{i=1}^n \Delta_i\vdash t[s_1,\ldots,s_n]:B}$$

Reduction.

$$(\lambda \times t)[s_1,\ldots,s_n] \longrightarrow_{\#} t\{x := [s_1,\ldots,s_n]\}$$

Each free occurrence of x^A consumes exactly one argument s_i of type A.

The distributive λ -calculus ($\lambda^{\#}$)

Proof-term notation for the non-idempotent intersection type system $\mathcal{W}.$

Definition (Proto- $\lambda^{\#}$)

Syntax.

Terms
$$t$$
 ::= $x^A \mid \lambda x.t \mid t \vec{t}$ Lists of terms \vec{t} ::= $[t_1, \dots, t_n]$ Types A ::= $\alpha \mid \mathcal{M} \to A$ Multisets of types \mathcal{M} ::= $[A_1, \dots, A_n]$ Contexts Γ ::= $(.) \mid \Gamma, x : \mathcal{M}$

Typing.

$$\frac{\sum_{x:[A]\vdash x^A:A} \frac{\Gamma,x:\mathcal{M}\vdash t:A}{\Gamma\vdash \lambda \ x.t:\mathcal{M}\to A} \frac{\Gamma\vdash t:[A_1,\ldots,A_n]\to B \quad (\Delta_i\vdash s_i:A_i)_{i=1}^n}{\Gamma\vdash_{i=1}^n \Delta_i\vdash t[s_1,\ldots,s_n]:B}$$

Reduction.

$$(\lambda \times t)[s_1,\ldots,s_n] \longrightarrow_{\#} t\{x := [s_1,\ldots,s_n]\}$$

Each free occurrence of x^A consumes exactly one argument s_i of type A.

(Non-confluent).

$$(\lambda x.(\lambda y.f y x)x)[a,b]$$

The distributive λ -calculus (λ *)

Definition $(\lambda^{\#})$

Syntax.

Terms
$$t ::= x^A \mid \lambda^L x.t \mid t \ \vec{t}$$
 Lists of terms $\vec{t} ::= [t_1, \dots, t_n]$ Types $A ::= \alpha^L \mid \mathcal{M} \xrightarrow{\longrightarrow} A$ Multisets of types $\mathcal{M} ::= [A_1, \dots, A_n]$ Contexts $\Gamma ::= (.) \mid \Gamma, x : \mathcal{M}$

Typing.

$$\frac{}{x:[A] \vdash x^A:A} \quad \frac{\Gamma, x: \mathcal{M} \vdash t: A}{\Gamma \vdash \lambda^{\mathbf{L}} x.t: \mathcal{M} \stackrel{\mathbf{L}}{\rightarrow} A} \quad \frac{\Gamma \vdash t: [A_1, \dots, A_n] \stackrel{\mathbf{L}}{\rightarrow} B \quad (\Delta_i \vdash s_i : A_i)_{i=1}^n}{\Gamma +_{i=1}^n \Delta_i \vdash t[s_1, \dots, s_n] : B}$$

Reduction.

$$(\lambda^{\mathbf{L}} x.t)[s_1,\ldots,s_n] \xrightarrow{\mathbf{L}}_{\#} t\{x := [s_1,\ldots,s_n]\}$$

Each free occurrence of x^A consumes exactly one argument s_i of type A.

The distributive λ -calculus (λ [#])

Remark (Unique typing)

If $\Gamma \vdash t : A$ is derivable, it is the unique typing derivation for t.

Definition (Correct terms)

A typable term t is correct if:

- Different lambdas are decorated with different labels.
- ▶ Given a multiset of types $[A_1, ..., A_n]$ occurring as a subformula anywhere in the typing derivation of t, if $i \neq j$ then A_i and A_j are decorated with different labels at the root.

Lemma (Subject reduction)

```
If \Gamma \vdash t : A, the term t is correct and t \rightarrow_{\#} s then \Gamma \vdash s : A and s is correct.
```

The distributive λ -calculus (λ [#])

Proposition (Confluence)

The $\lambda^{\#}$ -calculus has the Church–Rosser property.

The distributive λ -calculus (λ [#])

Proposition (Strong normalization)

There is no infinite reduction sequence $t_1 \to_\# t_2 \to_\# \dots$ [cf. System \mathcal{W}]

Residuals can be defined in $\lambda^{\#}$ using the labels over the lambdas.

Lemma

There is no duplication nor erasure in $\lambda^{\#}$.

Proposition

In the $\lambda^{\#}$ -calculus, $\mathbb{D}[t]$ is a distributive lattice.

There are joins (\sqcup) and meets (\sqcap) that distribute over each other.

Definition (Refinement)

Refinement (\ltimes) relates correct $\lambda^{\#}$ -terms and λ -terms:

$$\frac{t' \ltimes t}{\lambda^{\mathsf{L}} \times . t' \ltimes \lambda \times . t} \qquad \frac{t' \ltimes t \quad (s_i' \ltimes s)_{i=1}^n}{t' [s_1', \dots, s_n'] \ltimes t s}$$

A λ -term may have many refinements:

Proposition (Simulation)

Forward. If $t' \ltimes t \rightarrow_{\beta} s$ there is a term s' such that:

$$t \xrightarrow{\beta} s$$

$$\times \qquad \times$$

$$t' \xrightarrow{\sharp} s'$$

Reverse. If $t \times t' \rightarrow_{\#} s'$ there are terms s, s'' such that:

$$t \xrightarrow{\beta} s$$

$$\times \qquad \qquad \times$$

$$t' \xrightarrow{\#} s' \xrightarrow{\#} s''$$

Proposition (Refinement characterizes head normalization)

The following are equivalent:

- 1. The term t has a head normal form.
- 2. The term t has a refinement $t' \ltimes t$.

[cf. System W]

Proposition (Algebraic simulation)

For each refinement $t' \ltimes t$ the construction given by the Simulation result is a morphism of upper semilattices:

$$\mathbb{D}[t] \to \mathbb{D}[t'] \\
\rho \mapsto \rho/t'$$

Its definition and properties resemble residual theory. E.g. there is a "cube lemma":

$$(\rho/\mathbf{t'})/(\sigma/\mathbf{t'}) \equiv (\rho/\sigma)/(\mathbf{t'}/\sigma)$$

Garbage and factorization

Definition (Garbage)

Let $t' \ltimes t$. A derivation $\rho : t \to_{\beta}^* s$ is t'-garbage if $\rho/t' = \epsilon$.

The notion of garbage depends on the choice of t'.

The dotted steps are garbage:

Garbage and factorization

Theorem (Factorization)

If $t' \ltimes t$ there is an isomorphism of upper semilattices:

$$\mathbb{D}[t] \simeq \int_{\mathcal{F}} \mathcal{G}$$

where:

- \triangleright \mathcal{F} is the lattice of **garbage-free** derivations.
- ▶ $\mathcal{G}: \mathcal{F} \to \mathsf{Semilattice}$ is a functor. For each $\rho: t \to_{\beta}^* s$ in \mathcal{F} , we write $\mathcal{G}(\rho)$ for the semilattice of garbage derivations starting at s.
- ▶ $\int_{\mathcal{F}} \mathcal{G}$ is the Grothendieck construction.

In particular, for any derivation $\rho: t \to_{\beta}^* s$ there is a **unique** way to factor $\rho \equiv \rho_1 \rho_2$ such that ρ_1 is garbage-free and ρ_2 is garbage.

Future work

- ▶ Show that the notion of garbage is not ad hoc.
- ▶ Relate with Melliès external—internal factorization.
- Use other resource calculi instead of λ[#].