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Weak vs. strong reduction

Typical programming languages use weak reduction.

I Functions are considered values.
I Bodies of functions are not evaluated.

The following are final results:

I λx. while (True) {} does not hang,

I λx. 1 / 0 does not throw a zero-division exception,

I λx. ACKERMANN(42) does not perform any computation.
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Weak vs. strong reduction

Example of weak reduction (in Python)

def loop():

while True:

pass

>>> lambda x: loop()

<function <lambda> at 0x7f254a423320>
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Weak vs. strong reduction

Weak reduction is fine from a programming standpoint.

However, proof assistants based on dependent type-theory:
I Coq,
I Agda,
I Isabelle/HOL,
I Lean,
I etc.

require strong reduction to decide definitional equality.
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Weak vs. strong reduction

Example of strong reduction (in Coq)

Definition times2 (x : nat) : nat := x + x.

Definition injective (f : nat -> nat) : Prop :=

forall x y, f x = f y -> x = y.

Hypothesis A : injective (fun x => x + x).

Lemma B : injective (fun x => times2 x).

apply A.

Qed.

The propositions

injective (fun x => x + x)

injective (fun x => times2 x)

should be equal by definition, which requires strong reduction.
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Weak evaluation strategies

There are many well-known evaluation strategies for weak
reduction.

For instance, if f(x) = x + x, then:

f(2 * 3)

��

�� $,
2 * 3 + 2 * 3

��

(x + x)[x := 2 * 3]

��
f(6)

++

6 + 2 * 3

��

(x + x)[x := 6]

��
(6 + x)[x := 6]

lt6 + 6

// = call-by-value // = call-by-name +3 = call-by-need
= “lazy”
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Goal

The call-by-need strategy is optimal for weak reduction:
I It does not duplicate computations.

Subterms are shared.
I It does not perform useless computations.

Only needed steps are taken.
[Balabonski, 2013]

Our goal

Extend the call-by-need strategy for strong reduction.
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The call-by-need calculus

The call-by-need calculus is an explicit substitution calculus.

Term syntax

t ::= x variable
| λx .t abstraction
| t t application
| t[x := t] explicit substitution

Call-by-need reduction

(λx .t)L s → t[x := s ]L
C[x ][x := (λy .t)L] → C[λy .t][x := λy .t]L

t[x := s ] → t if x does not
occur free in t

Note. Calculi are usually non-deterministic.
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The weak call-by-need strategy

We are interested in deterministic call-by-need strategies.

Weak call-by-need is defined using simple evaluation contexts.

E ::= �
| E t
| E[x := t]
| E[x ][x := E]

This notion of weak call-by-need coincides with the standard
weak call-by-need strategy by Ariola, Felleisen, Maraist,
Odersky, and Wadler.
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The weak call-by-need strategy

Example of weak call-by-need reduction

Let id = λx . x . Then:

(λx . x x)(id id) → (x x)[x := id id]
→ (x x)[x := y [y := id]]
→ (x x)[x := id[y := id]]
→ (id x)[x := id][y := id]
→ z [z := x ][x := id][y := id]
→ z [z := id][x := id][y := id]
→ id[z := id][x := id][y := id]
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The strong call-by-need strategy

Strong call-by-need is also defined using evaluation contexts.
The two main technical challenges are:

I Context-dependency.

(λx .t)[y := s ] the body t must be evaluated

(λx .t)[y := s ]u the body t must not be evaluated yet

I Frozen variables.

λx . x t x is frozen, so t must be evaluated

λx . y [y := x t] x , y are frozen, so t must be evaluated

(x t)[x := I ] x is not frozen, so t must not be evaluated
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The strong call-by-need strategy

To deal with these, evaluation contexts are parameterized:

I Evaluation contexts depend on a set of frozen variables φ.
(x z)[z := y �] is an {x , y}-evaluation context
(x z)[z := y �] is not a {x}-evaluation context

I There are two kinds of evaluation contexts:
I Unrestricted evaluation contexts.
I Inert evaluation contexts.

Unable to interact with a surrounding application.

(x y)[y := z �] is inert
(λx .y)[y := z �] is not inert

Details in the ICFP 2017 paper.
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The strong call-by-need strategy

Example of strong call-by-need reduction

Let id = λx . x . Then:

(λx . λy . id (y x)]) (id id) → (λy . id (y x)])[x := id id]
→ (λy . z [z := y x ]])[x := id id]
→ (λy . z [z := y x ]])[x := w [w := id]]
→ (λy . z [z := y x ]])[x := id[w := id]]
→ (λy . z [z := y id]])[x := id][w := id]
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Results: conservativity

Theorem (Conservativity)

Strong call-by-need is a conservative extension of weak
call-by-need.

More precisely, if the weak call-by-need strategy picks a step
t → s , the strong call-by-need strategy picks the same step.

The proof is easy (once the calculus is got right).

I Observe that if E is a weak evaluation context,
then E is also a strong evaluation context.
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Results: completeness

Theorem (Completeness)

If a term t has a normal form in the λ-calculus, then the strong
call-by-need strategy also reduces t to a normal form.

Furthermore, there is a precise relation between the two:

t

need-strategy
����

β // // t ′

t ′′
unfold

88 88

The proof is hard and the core of the ICFP 2017 paper.
It relies on two technical tools:
I A non-idempotent intersection type system W .
I Exhaustive case-analysis of permutation diagrams.
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Future/ongoing work

I Define an abstract machine for strong call-by-need
evaluation.

I Characterize strong call-by-need via a big-step semantics.
I Extend the strategy for further programming constructs,

such as pattern matching.
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Questions?
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