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Université Paris 7
CONICET

Eduardo Bonelli
Universidad Nacional de Quilmes

CONICET



Outline

1. Review: The Linear Substitution Calculus

2. Review: Finite Family Developments
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The Linear Substitution Calculus (LSC)

LSC is a calculus of explicit substitutions.

Introduced by Accattoli and Kesner [CSL’10].

Inspired by an earlier calculus of Milner.

Based on distant interaction using contextual rules.



The Linear Substitution Calculus (LSC)

Syntax

t ::= x | λx .t | t t | t[x\t] terms
C ::= � | λx .C | C t | t C | C[x\t] | t[x\C] contexts
L ::= � | L[x\t] substitution contexts

(lists of substitutions)

Reduction rules

(λx .t)L s → t[x\s]L distant beta (dB)
C〈〈x〉〉[x\t] → C〈t〉[x\t] linear substitution (ls)

t[x\s] → t if x 6∈ fv(t) garbage collection (gc)

Structural equivalence

λx .t[y\s] ∼ (λx .t)[y\s] if x 6∈ fv(s)
t[x\s] u ∼ (t u)[x\s] if x 6∈ fv(u)

t[x\s][y\u] ∼ t[y\u][x\s] if x 6∈ fv(u) and y 6∈ fv(s)



The Linear Substitution Calculus (LSC)

Known properties of LSC

I Preservation of strong normalization.

I Confluence on open terms.

I Simulation of β-reduction.

I Full composition.
Various works, culminating in [Accattoli and Kesner, CSL’10].

I LSC modulo ∼ is isomorphic to its encoding in proof-nets.
Various works; cf. [Di Cosmo+, FoSSaCS’03] and Accattoli’s 2010 PhD thesis.

I LSC admits a notion of residuals and standardization.
[Accattoli+, POPL’14].

I Evaluation strategies correspond to abstract machines.
[Accattoli+, ICFP’14].



Finite Developments (FD)

Definition (Development)

A development of a set of coinitial steps M is a possibly infinite
sequence:

t0
R1−→ t1

R2−→ t2 . . .

such that each Ri is a residual of some step in M.

Theorem (Curry)

If M is a set of coinitial steps in the λ-calculus:

1. There are no infinite developments of M.

2. Maximal developments of M end on the same term.

3. Residuals by maximal developments of M are the same.



Finite Developments (FD)

Some derivations are not developments:

(λx .xy)I
R−→ Iy

S−→ y

The step S is created, i.e. it has no ancestor.



Finite Family Developments (FFD)

FD can be generalized to involve also created steps.
The notion of residual is generalized to the notion of family.

Definition (Step with history)

An hstep is a non-empty sequence of steps ρR.
(The last step is singled out).

Definition (Family)

An hstep σS is a copy of ρR (written ρR ≤ σS) if there exists a
derivation τ such that ρτ ≡ σ and S ∈ R/τ :

ρ

����
σ
�� ��

R

��

τ // //
S

��

Zig-zag ! is the least equivalence relation containing ≤.
A family is an equivalence class of !.



Finite Family Developments (FFD)

Definition (Family Development)

If F is a set of coinitial families, a family development of F is a
possibly infinite sequence:

R1R2 . . .Rn . . .

such that the family of each hstep R1 . . .Rn is in F .

Theorem (Lévy, 1980)

If F is a finite set of families in the λ-calculus:

1. There are no infinite family developments of F .

2. Maximal family developments of F end on the same term.

3. Residuals by maximal family developments of F are the same.



Redex families for LSC

In this work, we introduce a variant of the LSC with Lévy labels
to study families and prove FFD.

The gc rule poses some problems.
(In this paper) we ignore the gc rule altogether.
For the most part at no loss of generality:

I gc steps do not interfere with dB or ls steps.

I gc steps can be postponed.

Every derivation t � s can be factorized as follows:

t

¬gc
�� ��

// // s

gc

?? ??



The LSC with Lévy labels (LLSC)

Syntax

α ::= a | α | α | αα | dB(α) labels
t ::= xα | λαx .t | @α(t, t) | t[x\t] labeled terms

Adding a label to a term Outermost and innermost sublabel

α : xβ
def
= xαβ

α : λβx .t
def
= λαβx .t

α : @β(t, s)
def
= @αβ(t, s)

α : t[x\s]
def
= (α : t)[x\s]

↑ (α1α2)
def
= ↑ (α1)

↑ (α)
def
= α (α 6= α1α2)

↓ (α1α2)
def
= ↓ (α1)

↓ (α)
def
= α (α 6= α1α2)

Reduction rules

Name of the step

@α((λβx .t)L, s) → α dB(β) : t[x\ dB(β) : s]L dB(β)

C〈〈xα〉〉[x\t] → C〈α • : t〉[x\t] ↓ (α) • ↑ (t)



Key properties of LLSC

Lemma (LLSC is well-defined modulo ∼)

Structural equivalence ∼ is a strong bisimulation.
Names of steps are preserved by ∼.

Example

xa[x\λby .t[z\s]]
a • b // (λa • by .t[z\s])[x\λby .t[z\s]]

∼ ∼

xa[x\(λby .t)[z\s]]
a • b // (λa • by .t)[z\s][x\(λby .t)[z\s]]



Key properties of LLSC

Lemma (Copy)

Hsteps in the same family have the same name.

Example

xa[x\yb][y\zc]
a • b //

b • c

��

ya • b[x\yb][y\zc]

b • c
��

za • b • c[x\yb][y\zc]

b • c
��

xa[x\zb • c][y\zc]
a • b // za • b • c[x\zb • c][y\zc]



Key properties of LLSC

Lemma (Creation)

If R creates S, the name of R is a sublabel of the name of S.

Example (ls creates dB)

@a(xb, t)[x\λcy .zd]

b • c−−→ @a((λb • cy .zd), t)[x\λcy .zd]

dB(b • c)−−−−−→ za dB(b • c) d[y\ dB(b • c) : t][x\λcy .zd]



Key properties of LLSC

Proposition (Bounded termination)

Reduction in LLSC is SN if the height of the names is bounded.

The proof relies on Klop–Nederpelt’s lemma:

Inc ∧WCR ∧WN =⇒ SN

Corollary (FFD)

Finite Family Developments holds for the unlabeled LSC.

Corollary (Confluence)

Labeled reduction is confluent.

A consequence of WCR and SN for bounded names.



Key properties of LLSC

Proposition (Contribution)

The following are equivalent:

Syntactic contribution

A name M is a sublabel of a name N.

Semantic contribution

For every hstep ρR such that the name of R is N there is a
step S in ρ whose name is M.



Key properties of LLSC

The properties above can be summed up as follows:

Theorem
LSC forms a Deterministic Family Structure (DFS)
as defined in [Glauert and Khasidashvili, ’96].



Applications



Optimal reduction

Definition
A step R : t → s is X -needed if
every reduction t � t ′ ∈ X contracts a residual of R.

Theorem (Glauert and Khasidashvili ’96, generalizing Lévy ’80)

If X is a stable set of terms in a DFS, and M1 . . .Mn such that:

I Each Mi is a maximal set of steps in the same family.

I Each Mi contains at least a X -needed step.

I The target is a term in X .

Then M1 . . .Mn reaches a term in X in an optimal number of
multisteps.

Corollary (Optimality for LSC)

This holds for LSC taking X := {t | nfgc(t) is in normal form}.



Standardization by selection

Definition (Selection strategy)
For each term t let <t be any strict partial order on the set steps going
out from t.
If ρ is a non-empty derivation, M(ρ) selects a multistep:

M(ρ)
def
= {R | R/ρ = ∅ and R is minimal for <src(ρ)}

If ρ is a derivation, M?(ρ) builds a sequence of multisteps:

M?(ε)
def
= ε

M?(ρ)
def
= M(ρ) M?(ρ/M(ρ)) if ρ is non-empty

Theorem (Standardization for LSC without gc)

1. M?(ρ) is well-defined and computable. (Relies on FFD).

2. If ρ ≡ σ then M?(ρ) = M?(σ).

3. For every ρ there is a unique σ such that ρ ≡ σ and M?(σ) = σ.



Normalization of linear call-by-need

The linear call-by-need strategy is an evaluation strategy for LSC.

N ::= � | N t | N[x\t] | N〈〈x〉〉[x\N] evaluation contexts

Reduction rules (closed under evaluation contexts)

(λx .t)L s →need t[x\s]
N〈〈x〉〉[x\vL] →need N〈vL〉[x\vL] if v = λy .t

Normal forms

A ∈ NLNF ::= (λx .t)L answers
| N〈〈x〉〉 structures

Theorem (Normalization of linear call-by-need)

If t = s for some s ∈ NLNF then →need terminates and reaches a
term in NLNF.

The proof relies on FFD.



Conclusions

LSC (without gc) can be endowed with a notion of Lévy labels.

More abstractly, LSC forms a Deterministic Family Structure.

This can be exploited to prove further results:

- Optimality.

- Standardization.

- Normalization of strategies (in particular: linear call-by-need).


