Optimality and the Linear Substitution Calculus

FSCD 2017

Pablo Barenbaum

Universidad de Buenos Aires Université Paris 7 CONICET Eduardo Bonelli Universidad Nacional de Quilmes

CONICET

Outline

- 1. Review: The Linear Substitution Calculus
- 2. Review: Finite Family Developments
- 3. Lévy Labels for the Linear Substitution Calculus
- 4. Applications
 - Optimality
 - Standardization
 - Normalization of a call-by-need strategy

The Linear Substitution Calculus (LSC)

LSC is a calculus of explicit substitutions.

Introduced by Accattoli and Kesner [CSL'10].

Inspired by an earlier calculus of Milner.

Based on distant interaction using contextual rules.

The Linear Substitution Calculus (LSC)

Syntax

$$\begin{array}{l} t ::= x \mid \lambda x.t \mid t \mid t \mid t[x \setminus t] \\ C ::= \Box \mid \lambda x.C \mid C t \mid t C \mid C[x \setminus t] \mid t[x \setminus C] \\ L ::= \Box \mid L[x \setminus t] \end{array}$$

terms contexts substitution contexts (lists of substitutions)

Reduction rules

$$\begin{array}{cccc} (\lambda x.t) L\,s & \to & t[x \backslash s] L & & \mbox{distant beta} & (\mbox{dB}) \\ C \langle\!\langle x \rangle\!\rangle [x \backslash t] & \to & C \langle t \rangle [x \backslash t] & & \mbox{linear substitution} & (\mbox{ls}) \\ t[x \backslash s] & \to & t & \mbox{if } x \notin \mbox{fv}(t) & \mbox{garbage collection} & (\mbox{gc}) \end{array}$$

Structural equivalence

$$\begin{array}{rcl} \lambda x.t[y \backslash s] &\sim & (\lambda x.t)[y \backslash s] & \text{if } x \notin \mathsf{fv}(s) \\ t[x \backslash s] \, u &\sim & (t \, u)[x \backslash s] & \text{if } x \notin \mathsf{fv}(u) \\ t[x \backslash s][y \backslash u] &\sim & t[y \backslash u][x \backslash s] & \text{if } x \notin \mathsf{fv}(u) \text{ and } y \notin \mathsf{fv}(s) \end{array}$$

The Linear Substitution Calculus (LSC)

Known properties of LSC

- Preservation of strong normalization.
- Confluence on open terms.
- Simulation of β -reduction.
- ► Full composition.

Various works, culminating in [Accattoli and Kesner, CSL'10].

- LSC modulo ~ is isomorphic to its encoding in proof-nets. Various works; cf. [Di Cosmo+, FoSSaCS'03] and Accattoli's 2010 PhD thesis.
- LSC admits a notion of residuals and standardization. [Accattoli+, POPL'14].
- Evaluation strategies correspond to abstract machines. [Accattoli+, ICFP'14].

Finite Developments (FD)

Definition (Development)

A **development** of a set of coinitial steps \mathcal{M} is a possibly infinite sequence:

$$t_0 \xrightarrow{\mathsf{R}_1} t_1 \xrightarrow{\mathsf{R}_2} t_2 \dots$$

such that each R_i is a residual of some step in \mathcal{M} .

Theorem (Curry)

If \mathcal{M} is a set of coinitial steps in the λ -calculus:

- 1. There are no infinite developments of \mathcal{M} .
- 2. Maximal developments of \mathcal{M} end on the same term.
- 3. Residuals by maximal developments of \mathcal{M} are the same.

Finite Developments (FD)

Some derivations are not developments:

$$(\lambda x.xy)I \xrightarrow{\mathsf{R}} Iy \xrightarrow{\mathsf{S}} y$$

The step S is **created**, *i.e.* it has no ancestor.

Finite Family Developments (FFD)

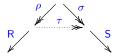
FD can be generalized to involve also created steps. The notion of **residual** is generalized to the notion of **family**.

Definition (Step with history)

An **hstep** is a non-empty sequence of steps ρR . (The last step is singled out).

Definition (Family)

An hstep σS is a **copy** of ρR (written $\rho R \leq \sigma S$) if there exists a derivation τ such that $\rho \tau \equiv \sigma$ and $S \in R/\tau$:



Zig-zag $\leftrightarrow \Rightarrow$ is the least equivalence relation containing \leq . A **family** is an equivalence class of $\leftrightarrow \Rightarrow$.

Finite Family Developments (FFD)

Definition (Family Development)

If \mathcal{F} is a set of coinitial families, a **family development** of \mathcal{F} is a possibly infinite sequence:

 $R_1R_2\ldots R_n\ldots$

such that the family of each hstep $R_1 \dots R_n$ is in \mathcal{F} .

Theorem (Lévy, 1980)

If \mathcal{F} is a finite set of families in the λ -calculus:

- 1. There are no infinite family developments of \mathcal{F} .
- 2. Maximal family developments of \mathcal{F} end on the same term.
- 3. Residuals by maximal family developments of \mathcal{F} are the same.

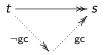
Redex families for LSC

In this work, we introduce a variant of the LSC with **Lévy labels** to study families and prove FFD.

The gc rule poses some problems. (In this paper) we ignore the gc rule altogether. For the most part at no loss of generality:

- gc steps do not interfere with dB or ls steps.
- gc steps can be postponed.

Every derivation $t \rightarrow s$ can be factorized as follows:



The LSC with Lévy labels (LLSC)

 $\mathbb{Q}^{\alpha}((\lambda^{\beta}x.t)L,s) \rightarrow \alpha \overline{\mathrm{dB}(\beta)} : t[x \setminus \mathrm{dB}(\beta) : s]L$

 $C\langle\!\langle x^{\alpha} \rangle\!\rangle [x \setminus t] \rightarrow C\langle\!\alpha \bullet : t\rangle [x \setminus t]$

Syntax

Adding a label to a termOutermost and innermost sublabel $\alpha : x^{\beta} \stackrel{\text{def}}{=} x^{\alpha\beta}$ $\uparrow (\alpha_1 \alpha_2) \stackrel{\text{def}}{=} \uparrow (\alpha_1)$ $\alpha : \lambda^{\beta} x.t \stackrel{\text{def}}{=} \lambda^{\alpha\beta} x.t$ $\uparrow (\alpha) \stackrel{\text{def}}{=} \alpha \quad (\alpha \neq \alpha_1 \alpha_2)$ $\alpha : \mathbb{Q}^{\beta}(t,s) \stackrel{\text{def}}{=} \mathbb{Q}^{\alpha\beta}(t,s)$ $\downarrow (\alpha_1 \alpha_2) \stackrel{\text{def}}{=} \chi (\alpha_1)$ $\alpha : t[x \setminus s] \stackrel{\text{def}}{=} (\alpha : t)[x \setminus s]$ $\downarrow (\alpha) \stackrel{\text{def}}{=} \alpha \quad (\alpha \neq \alpha_1 \alpha_2)$

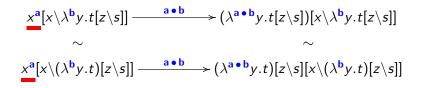
Reduction rules

Name of the step $dB(\beta)$ $\downarrow (\alpha) \bullet \uparrow (t)$

Lemma (LLSC is well-defined modulo \sim)

Structural equivalence \sim is a strong bisimulation. Names of steps are preserved by \sim .

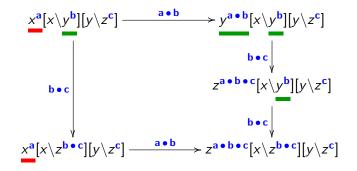
Example



Lemma (COPY)

Hsteps in the same family have the same name.

Example



Lemma (CREATION)

If R creates S, the name of R is a sublabel of the name of S.

Example (Is creates dB)

$$\begin{array}{ccc}
\mathbb{Q}^{\mathbf{a}}(x^{\mathbf{b}},t)[x \setminus \lambda^{\mathbf{c}}y.z^{\mathbf{d}}] \\
\xrightarrow{\mathbf{b} \bullet \mathbf{c}} & \mathbb{Q}^{\mathbf{a}}((\lambda^{\mathbf{b} \bullet \mathbf{c}}y.z^{\mathbf{d}}),t)[x \setminus \lambda^{\mathbf{c}}y.z^{\mathbf{d}}] \\
\xrightarrow{\mathrm{dB}(\mathbf{b} \bullet \mathbf{c})} & z^{\mathbf{a}} \overline{\mathrm{dB}(\mathbf{b} \bullet \mathbf{c})} \, d[y \setminus \mathrm{dB}(\mathbf{b} \bullet \mathbf{c}) : t][x \setminus \lambda^{\mathbf{c}}y.z^{\mathbf{d}}]
\end{array}$$

Proposition (Bounded termination)

Reduction in LLSC is SN if the height of the names is bounded. The proof relies on Klop–Nederpelt's lemma:

$\mathsf{Inc} \land \mathsf{WCR} \land \mathsf{WN} \implies \mathsf{SN}$

Corollary (FFD)

Finite Family Developments holds for the unlabeled LSC.

Corollary (Confluence)

Labeled reduction is confluent.

A consequence of WCR and SN for bounded names.

Proposition (CONTRIBUTION)

The following are equivalent:

Syntactic contribution

A name M is a sublabel of a name N.

Semantic contribution

For every hstep ρR such that the name of R is N there is a step S in ρ whose name is M.

The properties above can be summed up as follows:

Theorem LSC forms a **Deterministic Family Structure** (DFS) as defined in [Glauert and Khasidashvili, '96]. Applications

Optimal reduction

Definition

A step $R : t \to s$ is X-needed if every reduction $t \twoheadrightarrow t' \in X$ contracts a residual of R.

Theorem (Glauert and Khasidashvili '96, generalizing Lévy '80) If X is a stable set of terms in a DFS, and $M_1 \dots M_n$ such that:

- Each \mathcal{M}_i is a maximal set of steps in the same family.
- ► Each *M*_i contains at least a X-needed step.
- The target is a term in X.

Then $\mathcal{M}_1 \dots \mathcal{M}_n$ reaches a term in X in an optimal number of multisteps.

Corollary (Optimality for LSC)

This holds for LSC taking $X := \{t \mid nf_{gc}(t) \text{ is in normal form}\}.$

Standardization by selection

Definition (Selection strategy)

For each term $t | \text{et} <_t \text{be any strict partial order}$ on the set steps going out from t.

If ρ is a non-empty derivation, $\mathbb{M}(\rho)$ selects a multistep:

$$\mathbb{M}(\rho) \stackrel{\text{def}}{=} \{ \mathsf{R} \mid \mathsf{R}/\rho = \emptyset \text{ and } \mathsf{R} \text{ is minimal for } <_{\mathsf{src}(\rho)} \}$$

If ρ is a derivation, $\mathbb{M}^*(\rho)$ builds a sequence of multisteps:

$$\begin{split} \mathbb{M}^{\star}(\epsilon) & \stackrel{\text{def}}{=} & \epsilon \\ \mathbb{M}^{\star}(\rho) & \stackrel{\text{def}}{=} & \mathbb{M}(\rho) \ \mathbb{M}^{\star}(\rho/\mathbb{M}(\rho)) \quad \text{if } \rho \text{ is non-empty} \end{split}$$

Theorem (Standardization for LSC without gc)

M^{*}(ρ) is well-defined and computable. (Relies on FFD).
 If ρ ≡ σ then M^{*}(ρ) = M^{*}(σ).
 For every ρ there is a unique σ such that ρ ≡ σ and M^{*}(σ) = σ.

Normalization of linear call-by-need

The linear call-by-need strategy is an evaluation strategy for LSC.

 $\mathbb{N} ::= \Box \mid \mathbb{N} t \mid \mathbb{N}[x \setminus t] \mid \mathbb{N}\langle\!\langle x \rangle\!\rangle [x \setminus \mathbb{N}] \qquad \text{evaluation contexts}$

Reduction rules (closed under evaluation contexts)

$$egin{aligned} & (\lambda x.t) \mathbb{L} \, s \ o_{\mathsf{need}} \ t[x ackslash s] \ \mathbb{N}\langle\!\langle x
angle
angle [x ackslash u] \ o_{\mathsf{need}} \ \mathbb{N}\langle\!\langle v \mathbb{L}
angle [x ackslash v] \ ext{if } v = \lambda y.t \end{aligned}$$

Normal forms

$$egin{array}{lll} A\in \mathsf{NLNF} &::= & (\lambda x.t) \mathsf{L} & ext{answers} \ & & & & & \ & & & & \ & & & \ & & & \mathbb{N}\langle\!\langle x
angle\!
angle & & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & \ & & \ & \ & & \$$

Theorem (Normalization of linear call-by-need)

If t = s for some $s \in NLNF$ then \rightarrow_{need} terminates and reaches a term in NLNF.

The proof relies on FFD.

Conclusions

LSC (without gc) can be endowed with a notion of Lévy labels.

More abstractly, LSC forms a Deterministic Family Structure.

This can be exploited to prove further results:

- Optimality.
- Standardization.
- Normalization of strategies (in particular: linear call-by-need).