
Finite Family Developments

for the

Linear Substitution Calculus

October 2016

Pablo Barenbaum
Universidad de Buenos Aires

Université Paris 7
CONICET

Eduardo Bonelli
Universidad Nacional de Quilmes

CONICET

Structure of the talk

1. Family Developments

2. The Linear Substitution Calculus

3. Lévy Labels for the Linear Substitution Calculus

4. Applications
- Optimality
- Standardization
- Normalization of a call-by-need strategy

Finite Developments (FD)

If M is a set of coinitial redexes in the λ-calculus:

1. All developments of M are finite.

2. Complete developments of M are cofinal.

3. Complete developments of M give the same residual relation.

(λx .I (xx))(∆I)
R
uu

S
))

I (∆I (∆I))
S1
vv

S2

))

(λx .I (xx))(II)

R′mm

I (II (∆I))
S′
2

))

I (∆I (II))
S′
1

tt
I (II (II))

I = λx .x ∆ = λx .xx

Finite Developments (FD)

Some derivations are not developments:

(λx .xy)I
R−→ Iy

S−→ y

The redex S is created, i.e. it has no ancestor.

Finite Family Developments (FFD)

FD can be generalized to involve also created redexes.

redex R hredex ρR
residuals of some redex in M hredexes whose family is in F

set of coinitial redexes M set of families F
development of M family development of F

A hredex σS is a copy of ρR (written ρR ≤ σS) if there exists a
derivation τ such that ρτ ≡ σ and S ∈ R/τ :

ρ

����
σ
�� ��

R

��

τ // //
S

��

Zig-zag ! is the least equivalence relation containing ≤.
Families are equivalence classes of !.

Finite Family Developments (FFD)

If F is a set of coinitial families, a family development of F is a
possibly infinite sequence:

R1R2 . . .Rn . . .

such that the family of each R1 . . .Rn is in F for every n ≥ 1.

Theorem (Lévy, 1980)

If F is a finite set of families in the λ-calculus:

1. All family developments of F are finite.

2. Complete family developments of F are cofinal.

3. Complete family developments of F give the same residual
relation.

The Linear Substitution Calculus (LSC)

LSC is an explicit substitution calculus.

Based on distant interaction using contextual rules.

Introduced by Accattoli and Kesner (CSL 2010)
inspired by a calculus of Milner.

Isomorphic to proof-nets, modulo a structural equivalence.

The Linear Substitution Calculus (LSC)

Syntax

t ::= x | λx .t | t t | t[x/t] terms
C ::= � | λx .C | C t | t C | C[x/t] | t[x/C] contexts
L ::= � | L[x/t] substitution contexts

Reduction rules

(λx .t)L s → t[x/s]L distant beta (db)
C〈〈x〉〉[x/t] → C〈t〉[x/t] linear substitution (ls)

t[x/s] → t if x 6∈ fv(t) garbage collection (gc)

Structural equivalence

λx .t[y/s] ∼ (λx .t)[y/s] if x 6∈ fv(s)
t[x/s] u ∼ (t u)[x/s] if x 6∈ fv(u)

t[x/s][y/u] ∼ t[y/u][x/s] if x 6∈ fv(u) and y 6∈ fv(s)

The Linear Substitution Calculus (LSC)

Some facts

The structural equivalence ∼ is a strong bisimulation.

Reduction in LSC is well-defined modulo ∼.

Example

(λx .x)(λy .yy)z →db x [x/λy .yy]z

→ls (λy .yy)[x/λy .yy]z

→db (yy)[y/z][x/λy .yy]

→ls (yz)[y/z][x/λy .yy]

→gc (yz)[y/z]
∼ y [y/z]z

→ls z [y/z]z

→gc zz

Redex families for LSC

LSC is the first and currently the only explicit substitution
calculus with a sensible theory of residuals, as far as we
know.

It is an Orthogonal Axiomatic Rewrite System
as defined in Melliès’ 1996 PhD thesis.
See Accattoli, Bonelli, Kesner, and Lombardi (POPL 2014).

This already defines a notion of family.

Redex families for LSC

Lévy characterized families in the λ-calculus in several ways:

1. Zig-zag.
Equivalence classes of the zig-zag equivalence relation !.

2. Extraction.
Class representatives resulting from an extraction procedure.
Erase superfluous steps not contributing to a hredex.

3. Labels.
Hredexes decorated with the same labels in a labeled calculus.
Labels trace the history of a redex.

Redex families for LSC

We introduce a Lévy labeled LSC to study families.

There are some difficulties regarding the gc rule.
The stability property fails:

x [y/z][z/t]

R
xx

S

$$
x [y/t] [z/t]

S′

&&T1 ��

x [z/t]

∅
zz T2

��
x [y/t] x [z/t]

T3 ��

x

x

Steps T1 and T2 have a common residual but no common
ancestor. There are two “ways” of creating gc redexes.

Redex families for LSC

We avoid the gc rule.

For the most part at no loss of generality:

- gc steps do not create db or ls steps.

- gc steps can be postponed.

Every derivation t � s can be factorized:

t

¬gc �� ��

// // s

gc

?? ??

The LSC with Lévy labels (LLSC)

Syntax

α ::= a | α | α | αα | db(α) labels
t ::= xα | λαx .t | @α(t, t) | t[x/t] labeled terms

Outermost sublabel

↑ (α)
def
=

{
↑ (α1) if α = α1α2

α otherwise

↑ (xα)
def
= ↑ (α)

↑ (λαx .t)
def
= ↑ (α)

↑ (@α(t, s))
def
= ↑ (α)

↑ (t[x/s])
def
= ↑ (t)

Innermost sublabel

↓ (α)
def
=

{
↓ (α2) if α = α1α2

α otherwise

The LSC with Lévy labels (LLSC)

Adding a label to a term, jumping over substitutions

α : xβ
def
= xαβ

α : λβx .t
def
= λαβx .t

α : @β(t, s)
def
= @αβ(t, s)

α : t[x/s]
def
= (α : t)[x/s]

Reduction rules

Redex name

@α((λβx .t)L, s) → α db(β) : t[x/ db(β) : s]L db(β)

C〈〈xα〉〉[x/t] → C〈α • : t〉[x/t] ↓ (α) • ↑ (t)

Key properties of LLSC

Hredexes in the same family have the same name

xa[x/yb][y/zc]
a • b //

b • c

��

ya • b[x/yb][y/zc]

b • c
��

za • b • c[x/yb][y/zc]

b • c
��

xa[x/zb • c][y/zc]
a • b // za • b • c[x/zb • c][y/zc]

Key properties of LLSC

Reduction in LLSC is well-defined modulo ∼

xa[x/λby .t[z/s]]
a • b // (λa • by .t[z/s])[x/λby .t[z/s]]

∼ ∼

xa[x/(λby .t)[z/s]]
a • b // (λa • by .t)[z/s][x/(λby .t)[z/s]]

Key properties of LLSC

Creation implies name containment

db creates db

@a(@b(λcx .λdy .xe, t), s)

db(c)−−−→ @a((λb db(c) dy .xe)[x/ db(b) : t], s)

db(b db(c) d)−−−−−−−−→ xa db(b db(c) d) e[y/ db(b db(c) d) : s][x/ db(b) : t]

Key properties of LLSC

db creates ls

@a(λbx .xc, yd)

db(b)−−−→ xa db(b) c[x/y db(b) d]

c • db(b)
−−−−−→ ya db(b) c • db(b) d[x/y db(b) d]

ls creates db

@a(xb, t)[x/λcy .zd]

b • c−−→ @a((λb • cy .zd), t)[x/λcy .zd]

db(b • c)−−−−−→ za db(b • c) d[y/ db(b • c) : t][x/λcy .zd]

Key properties of LLSC

Finite Family Developments

Reduction in LLSC is SN for redex names of bounded height

The proof relies on Klop–Nederpelt’s lemma:

Inc ∧WCR ∧WN =⇒ SN

Reduction in LLSC is CR

A consequence of WCR and SN for bounded names.

Alternatively:
LLSC is an Orthogonal Axiomatic Rewrite System.

Corollary: Finite Family Developments for the unlabelled calculus

Key properties of LLSC

Contribution property

The following are equivalent in LLSC:

Syntactic contribution
A redex name M is contained in a redex name N.

Semantic contribution
For every hredex ρR whose name is N
some prefix of ρ is a hredex σS whose name is M.

Applications

Optimal reduction

Lévy introduced redex families to study optimal reduction.

- Call-by-name is not optimal:

(λx .xx)(Iy)→ Iy(Iy)→ y(Iy)→ yy

It may duplicate work.

- Call-by-value is not optimal:

(λx .z)(Iy)→ (λx .z)y → z

It may perform some unnecessary work.

- Is there an optimal evaluation mechanism?

Optimal reduction

LSC forms a Deterministic Family Structure (DFS)
as defined by Glauert and Khasidashvili (1996).

DFSs are essentially Orthogonal Axiomatic Rewrite Systems with a
well-behaved notion of “Lévy labels”.

We instantiate a generic optimality result for the LSC.

Optimal reduction

A step R : t → s is X -needed if
every reduction t � t ′ ∈ X contracts a residual of R.

Theorem (Glauert and Khasidashvili ’96, generalizing Lévy ’80)

Let X be a stable set of terms in a DFS.
Given a sequence of multisteps M1 . . .Mn, if:

- Each Mi is a maximal set of redexes in the same family.

- Each Mi contains at least a X -needed step.

- The target is a term in X .

Then M1 . . .Mn reaches a term in X in an optimal number of
multisteps.

Corollary

This holds for LSC taking X := {t | nfgc(t) is in normal form}.

Standardization by selection

Accattoli, Bonelli, Kesner, and Lombardi prove a standardization
result for LSC using Melliès axiomatic framework.

We give an algorithm of standardization by selection.
Termination is proved using FFD.

Standardization by selection

- For each term t let <t be any strict partial order on the set
of redexes Red(t).

- If ρ is a non-empty derivation, M(ρ) selects a multistep:

M(ρ)
def
= {R | R/ρ = ∅ and R is minimal for <src(ρ)}

- If ρ is a derivation, M?(ρ) builds a sequence of multisteps:

M?(ε)
def
= ε

M?(ρ)
def
= M(ρ) M?(ρ/M(ρ)) if ρ is non-empty

Theorem (Standardization for LSC without gc)

- M?(ρ) is well-defined and computable.

- If ρ ≡ σ then M?(ρ) = M?(σ).

- For every ρ there is a unique σ such that ρ ≡ σ and σ is
M-compliant.

Standardization by selection

Example. Let t → t ′ → t ′′ and:

ρ : x [x/t]→ x [x/t ′]→ t ′[x/t ′]→ t ′′[x/t ′]

Using the trivial order where every step is incomparable

M?
trivial(ρ) : x [x/t] ◦−→ t ′[x/t ′]→ t ′′[x/t ′]

Using the total left-to-right order

M?
left-to-right(ρ) : x [x/t]→ t[x/t]→ t ′[x/t]→ t ′′[x/t]→ t ′′[x/t ′]

Using the total right-to-left order

M?
right-to-left(ρ) : x [x/t]→ x [x/t ′]→ t ′[x/t ′]→ t ′′[x/t ′]

Normalization of linear call-by-need

Many call-by-need calculi have been studied in the past.
E.g. Ariola, Maraist, Odersky, Felleisen, and Wadler (POPL ’95).

Accattoli and Kesner introduced a call-by-need strategy
based on explicit substitutions at a distance.

- Accattoli, Barenbaum, and Mazza relate it with abstract
machines (ICFP 2014).

- Kesner shows it is sound and complete w.r.t. call-by-name
using intersection types (FoSSaCS 2016).

We use FFD to prove normalization for a call-by-need strategy.
Note: this is a different call-by-need strategy.

Normalization of linear call-by-need

A strategy S is a sub-ARS of an ARS A.

- S is X -normalizing if for every term t such that there exists a
derivation t � t ′ ∈ X , every maximal reduction from t in the
strategy contains a term in X .

- S is residual-invariant if given R ∈ S and S 6= R there is a
residual R′ ∈ R/S and R′ ∈ S.

- S is strongly residual-invariant if moreover NF(S) is stable
by reduction.

Theorem
If S is a strongly residual-invariant strategy in a DFS,
then S is NF(S)-normalizing.

Normalization of linear call-by-need

The linear call-by-need strategy is a sub-ARS of LSC.

N ::= x | N t | N[x/t] | N〈〈x〉〉[x/N] evaluation contexts

Reduction rules (closed under evaluation contexts)

(λx .t)L s → t[x/s]
N〈〈x〉〉[x/vL] → N〈vL〉[x/vL] if v = λ

Normal forms NLNF

A ::= (λx .t)L answers
| N〈〈x〉〉 structures

Corollary

The linear call-by-need strategy is NLNF-normalizing.

Conclusions

LSC (without gc) can be endowed with Lévy labels.

In particular, FFD holds and can be exploited to prove:

- An optimality result.

- Standardization.

- Normalization of strategies.

- Other properties we have left out (factorization, glbs).

This work has been submitted to FoSSaCS 2017.

Conclusions: future work

Quite a few pending topics:

- Show that labels are not only correct but complete w.r.t.
zig-zag, possibly studying “legal” paths.

- Treat gc systematically.

- Give an extraction procedure for LSC.

- Is standardization compatible with structural equivalence?

- How does the built-in sharing in LSC impact sharing graphs?

