
Optimal reduction
in the

Linear Substitution Calculus
(work in progress)

Pablo Barenbaum1

joint work with Eduardo Bonelli2

1Universidad de Buenos Aires / CONICET
2Universidad Nacional de Quilmes / CONICET

Optimality
Motivation (in the context of the λ-calculus)

I By the standardization theorem, the leftmost-outermost
strategy is correct (normalizing).

I But normal-order evaluation is certainly not “optimal”:

(λx .x x)R → R R two copies of R!

I Reducing needed internal redexes is not optimal:

(λx .x I) (λy .∆ (y z))→ . . . where ∆ := λx .x x

I Lazy evaluation, introduced by Wadsworth in 1971, improves
the situation by sharing the argument with pointers but is also
not optimal:

(λx .x y (x z))λw .I w → . . .

Some questions, studied by Lévy in his PhD thesis (1978)

What would it mean for a reduction to be optimal?
Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimality
Motivation (in the context of the λ-calculus)

I By the standardization theorem, the leftmost-outermost
strategy is correct (normalizing).

I But normal-order evaluation is certainly not “optimal”:

(λx .x x)R → R R two copies of R!

I Reducing needed internal redexes is not optimal:

(λx .x I) (λy .∆ (y z))→ . . . where ∆ := λx .x x

I Lazy evaluation, introduced by Wadsworth in 1971, improves
the situation by sharing the argument with pointers but is also
not optimal:

(λx .x y (x z))λw .I w → . . .

Some questions, studied by Lévy in his PhD thesis (1978)

What would it mean for a reduction to be optimal?
Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

What would it mean for a reduction to be optimal?

Informally

I Avoid doing useless work =⇒ contract needed redexes only.

I Avoid duplicating work =⇒ share multiple copies of redexes.

Less informally

1. Characterize the notion of redex family.
I Redexes in the same family are “copies” of the same redex.
I Example. ∆ (λx .∆ (x y))→ . . . with ∆ := λx .x x .
I Non-examples. redexes that happen to coincide: z (I x) (I x);

syntactic accidents: I (I I)→
I We care about redexes with history ρR rather than redexes.

Why?
I Define a family equivalence relation: ρR ' σS .
I Lévy gives three equivalent characterizations.

We’ll focus on this later.

2. Let [ρR] denote the family class of ρR:

[ρR]
def
= {σS | ρR ' σS}

3. If ρ = R1 . . .Rn is a reduction sequence, let FAM(ρ) denote the
families contracted along ρ:

FAM(ρ)
def
= {[R1R2 . . .R i] | i ∈ {1, . . . , n}}

4. A redex ρR is needed iff any extension ρσ to normal form contracts
a residual of R.

5. A derivation ρ = F1F2 . . .Fn is call-by-need iff each Fi contains at
least one needed redex R i .

6. A derivation ρ = F1F2 . . .Fn is complete iff Fi 6= ∅ and Fi is a
maximal set of redexes such that:

∀R,S ∈ Fi . F1 . . .Fi−1R ' F1 . . .Fi−1S

7. Define cost(ρ) to measure the number of steps in a derivation,
assigning unitary cost to the reduction of a set of shared copies.

8. Theorem (Lévy) Complete call-by-need derivations compute the
normal form in optimal cost, i.e.:

I if ρ is a complete call-by-need derivation: cost(ρ) = #FAM(ρ)
I if σ is a terminating reduction starting from the same term,

cost(σ) ≥ #FAM(σ) ≥ #FAM(ρ) = cost(ρ)

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

- Lévy (1978): optimal derivations have optimal cost.

/ There cannot exist an optimal reduction strategy:

(λx .x I x) (λy .∆ (y z)) with ∆ := λx .x x

- Lamping’s reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

??? Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(ρ) parallel beta

steps is not bounded by O(2n), O(22n), O(222n

), etc.

??? Can a realistic notion of optimal reduction be devised?

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

- Lévy (1978): optimal derivations have optimal cost.

/ There cannot exist an optimal reduction strategy:

(λx .x I x) (λy .∆ (y z)) with ∆ := λx .x x

- Lamping’s reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

??? Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(ρ) parallel beta

steps is not bounded by O(2n), O(22n), O(222n

), etc.

??? Can a realistic notion of optimal reduction be devised?

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

- Lévy (1978): optimal derivations have optimal cost.

/ There cannot exist an optimal reduction strategy:

(λx .x I x) (λy .∆ (y z)) with ∆ := λx .x x

- Lamping’s reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

??? Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(ρ) parallel beta

steps is not bounded by O(2n), O(22n), O(222n

), etc.

??? Can a realistic notion of optimal reduction be devised?

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

- Lévy (1978): optimal derivations have optimal cost.

/ There cannot exist an optimal reduction strategy:

(λx .x I x) (λy .∆ (y z)) with ∆ := λx .x x

- Lamping’s reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

??? Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(ρ) parallel beta

steps is not bounded by O(2n), O(22n), O(222n

), etc.

??? Can a realistic notion of optimal reduction be devised?

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

- Lévy (1978): optimal derivations have optimal cost.

/ There cannot exist an optimal reduction strategy:

(λx .x I x) (λy .∆ (y z)) with ∆ := λx .x x

- Lamping’s reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

??? Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(ρ) parallel beta

steps is not bounded by O(2n), O(22n), O(222n

), etc.

??? Can a realistic notion of optimal reduction be devised?

Characterizing redex families

Lévy gives three equivalent characterizations of the family relation:

ρR ' σS

in the λ-calculus using various tools:

1. Zig-zag.

2. Extraction.

3. Labelling.

Families by zig-zag

t0

ρ

��

σ

��

t1

R

��

τ

&&

≡

t2

S

��

Definition (copy).

ρR ≤ σS

A redex with history σS is a copy of
a redex with history ρR iff there is a
derivation τ such that ρτ ≡ σ and
S ∈ R/τ .

Definition (family).

ρR ' σS

The symmetric and transitive closure
of ≤ defines the family relation.

Families by zig-zag: example

Let I := λx .x and ∆ := λx .x x :

(λx .x I) (λy .∆ (y z))

A

uu

D

**

(λy .∆ (y z)) I

B
��

(λx .x I) (λy .y z (y z))

E
��

∆ (I z)

C
��

(λy .y z (y z)) I

F
��

∆ z I z (I z)

G
��

I z z

A B C ' D E F G ??

Families by zig-zag: example contd.
Let I := λx .x and ∆ := λx .x x :

(λx .x I) (λy .∆ (y z))

A

uu

D

**

(λy .∆ (y z)) I

B

��

(λx .x I) (λy .y z (y z))

E

��

∆ (I z)

C

��
H

,,

≡
(λy .y z (y z)) I

F

��

∆ z I z (I z)

G
��

I z z

A B H ≡ D E F G ∈ C/H

=⇒ A B C ≤ D E F G =⇒ A B C ' D E F G

Families by extraction

Define a rewriting relation between reduction sequences, the
extraction relation:

ρR B σS

Informally. B erases the steps of ρ that do not contribute to the
creation of the redex R.
Less informally. Let σ stand for any non-empty reduction
sequence. Then B is defined by:

(1) ρR S B ρ S ′ if S ∈ S ′/R
(2) ρ (R t σ) B ρ σ if R and σ are disjoint
(3) ρ (R t σ) B ρ σ if σ is internal to the function part of R
(4) ρR τ B ρ σ if τ is internal

to the i-th copy of the argument of R
and σ is the corresponding reduction,
internal to the argument of R*

* The formal statement requires quite more work (σ/R = τ ||R).

Families by extraction: properties

Theorem (Lévy). B is SN and CR.
Theorem (Lévy). B decides the family relation '. More
precisely, let ρ and σ be standard reductions. Then:

ρR ' σS iff ρR B∗ τT C∗ σS

for some B-normal redex-with-history τT .

Note: to check ρR ' σS in the general case, standardize ρ and σ
first.

Families by extraction: example

Let I := λx .x and ∆ := λx .x x :

(λx .x I) (λy .∆ (y z))

A

uu

D

**

(λy .∆ (y z)) I

B
��

(λx .x I) (λy .y z (y z))

E
��

∆ (I z)

C
��

(λy .y z (y z)) I

F
��

∆ z I z (I z)

G
��

I z z

A B C ' D E F G ??

Families by extraction: example contd.
Let I := λx .x and ∆ := λx .x x :

(λx .x I) (λy .∆ (y z))

A

uu

D

**

(λy .∆ (y z)) I

B
��

(λx .x I) (λy .y z (y z))

E
��

∆ (I z)

C
��

H
,,

(λy .y z (y z)) I

F
��

∆ z I z (I z)

G
��

I z zI A B is already standard.

I D E F is standardized to A B H

I A B H G B A B C by case 1 (and also 4!) of B
I Moral: A and B contribute to the creation of G. – H doesn’t.

Families by labelling
Informally. Work with a labelled variant of the calculus in such a
way that:

I Redexes with history ρR are assigned a label α (“name”).
I Residuals of R have the same name as R.
I If contraction of a redex R creates a redex S , the name of R

is a proper sublabel of the name of S .

Less informally.

Labels α, β, . . . ::= a | b | c | . . .︸ ︷︷ ︸
initial labels

| αβ | dαe | bαc

modulo associativity: α(βγ) = (αβ)γ

Labelled terms t, s, . . . ::= xα | λαx .t | @α(t, s)

Adding a label α : xβ
def
= xαβ

α : λβx .t
def
= λαβx .t

α : @β(t, s)
def
= @αβ(t, s)

Substitution xα[x/t]
def
= α : t (plus the expected rules)

Reduction @α(λβx .t, s) →` αdβe : t{x := bβc : s}

Families by labelling: properties

I A term is initially labelled iff all of its nodes are decorated
with pairwise distinct initial labels.

I The name (or degree) of a redex is the label decorating its
abstraction.

I Theorem (Lévy). Let ρR and σS be redexes with history
starting from the same initially labelled term. Then:

ρR and σS have the same name ⇐⇒ ρR ' σS

Families by labelling: example

Let I := λx .x and ∆ := λx .x x :

(λx .x I) (λy .∆ (y z))

A

uu

D

**

(λy .∆ (y z)) I

B
��

(λx .x I) (λy .y z (y z))

E
��

∆ (I z)

C
��

(λy .y z (y z)) I

F
��

∆ z I z (I z)

G
��

I z z

A B C ' D E F G ??

Families by labelling: example contd.
Let I := λax .xb and ∆ := λcx .@d(xe, x f):

I A B C:

@g(λhx .@i(x j, I), λky .@l(∆,@m(yn, zo)))
h−→` @gdhei(λjbhcky .@l(∆,@m(yn, zo)), I)
jdhek−−−→` @gdheidjdhekel(∆,@m(nbjdhekc : I , zo))
nbjdhekca−−−−−−→` @gdheidjdhekel(∆, zmdnbjdhekcaebbnbjdhekcaco)

I D E F G:

@g(λhx .@i(x j, I), λky .@l(∆,@m(yn, zo)))
c−→` @g(λhx .@i(x j, I), λky .@ldced(@ebccm(yn, zo),@fbccm(yn, zo)))
h−→` @gdhei(λjbhcky .@ldced(@ebccm(yn, zo),@fbccm(yn, zo)), I)
jdhek−−−→` @gdheidjbhckeldced(@ebccm(nbjbhckc : I , zo),@fbccm(nbjbhckc : I , zo))
nbjdhekca−−−−−−→` @gdheidjbhckeldced(@ebccm(nbjbhckc : I , zo), z fbccmdnbjbhckcaebbnbjbhckcaco)

I Then A B C ' D E F G.
I Note that h ⊂ jdhek ⊂ nbjdhekca 6⊃ c.

The Lévy labelled λ-calculus: more properties
I A predicate P on labels is said to be bounded iff there exists a

bound M ∈ N such that for every label α:

P(α) =⇒ h(α) ≤ M

where h(α) is the height of α (seen as a tree).

Then:
I Theorem (Lévy). The labelled λ-calculus restricted to any

predicate is Church-Rosser. (In particular, it is CR).
I Theorem (Lévy). The labelled λ-calculus restricted to any

bounded predicate is SN.
I There are three ways of creating redexes in the λ-calculus.

They are the generalizations of the following examples:
I (λx .λy .t) s u → (λy .t{x := s}) u
I (λx .x) (λx .t) s → (λx .t) s
I (λx .x y)λz .s → (λz .s) y

Key property.
The name of a redex contains the names of all of its “causes”
as sublabels.

The linear substitution calculus (LSC)

I Calculus of explicit substitutions “at a distance”.

I Similar to calculi studied by Milner, De Bruijn, Nederpelt.

I Promoted by Accattoli and Kesner.

The linear substitution calculus: definition

I Terms and contexts:

t, s, u, . . . ::= x | λx .t | t s | t[x/s]

L ::= 2 | L[x/t]

C ::= 2 | λx .C | C s | t C | C [x/s] | t[x/C]

I Notation for plugging terms into contexts:

C 〈t〉 (capturing) vs. C 〈〈t〉〉 (non-capturing)

tL rather than L〈t〉
I Reduction:

(λx .t)L s →db t[x/s]L
C 〈〈x〉〉[x/t] → ls C 〈t〉[x/t]

t[x/s] →gc t if x 6∈ fv(t)

I Example:
(λx .λy .x x) t s → . . .

Redex creation in the LSC

There are seven redex creation cases. They are the generalizations
of the following examples:

db creates db. (λx .λy .t) s u →db (λy .t)[x/s] u
db creates ls. (λx .x) t →db x [x/t]
db creates gc. (λx .y) t →db y [x/t]

ls creates db↑. x [x/λy .t] s → ls (λy .t)[x/λy .t] s

ls creates db↓. (x s)[x/λy .t] → ls ((λy .t) s)[x/λy .t]
ls creates gc. x [x/t] → ls t[x/t]
gc creates gc. a[x/y][y/z] →gc a[y/z]

The labelled LSC

Labels α, β, . . . ::= a | αβ | dαe | bαc | db(α)
mod associativity: α(βγ) = (αβ)γ

distinguished initial labels: • , ⊗

Label sets Ω ::= {a1, . . . , an}
only initial labels, treated as sets

Terms t, s, . . . ::= xα | λαΩx .t | @α(t, s) | t[x/s]Ω

Adding labels α : xβ
def
= xαβ

α : λβΩx .t
def
= λαβΩ x .t

α : @β(t, s)
def
= @αβ(t, s)

α : (t[x/s]Ω)
def
= (α : t)[x/s]Ω

Reduction @α(λβΩx .t, s)
db(β)−−−→` db αdβe : t[x/bβc : s]Ω

C 〈〈xα〉〉[x/t]Ω
↓(α) • ↑(t)−−−−−−→` ls C 〈α • : t〉[x/t]Ω

t[x/s]Ω
{a • ↑(s) | a∈Ω}−−−−−−−−−−→` gc t

The labelled LSC
Some results:

I The labelled LSC is confluent for arbitrary predicates.
I The labelled LSC is SN for bounded predicates.
I Issue: we do not capture the “gc⇒ gc” creation case. This is

reasonable since the property of redex stability does not hold3,
i.e. there are multiple ways of creating gc redexes:

a[x/b[y/z]][z/c]
gc([y/z])

��

ls(z←c)

��

U
U gc([z/c])
��

a[x/b][z/c]
gc([z/c])

��

gc([x/b])

,,

a[x/b[y/c]][z/c]
gc([z/c])
��

gc([x/b[y/c]])

qqa[z/c]
gc([z/c])
��

3At least according to Lévy’s formulation.

Current and future work

Short-term:

I Develop a method of contraction by extraction B .
Piggyback on the work on standardization for the LSC by
Accattoli, Bonelli, Kesner and Lombardi.

This presents some difficulties by the fact that redexes are not
stable.

I Characterize redex families proving the equivalences:

zig-zag ⇐⇒ extraction ⇐⇒ labelling

Long-term:

I Give a sharing graph implementation for optimal reduction.

I Fuzzy question: study how the “built-in” sharing of the LSC
(explicit substitutions) relates with sharing for optimal
reduction.

Basic references

Optimality

I Andrea Asperti, Stefano Guerrini.
The Optimal Implementation of Functional Programming
Languages.

I Jean-Jacques Lévy.
Réductions correctes et optimales dans le lambda-calcul.

I Andrea Asperti, Harry Mairson.
Parallel beta reduction is not elementary recursive.

Linear substitution calculus

I Beniamino Accattoli, Delia Kesner.
The structural λ-calculus.

I Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, Carlos
Lombardi.
A Nonstandard Standardization Theorem.

