v 9

@

Optimal reduction

_ in the
Linear Substitution Calculus

(work in progress)

Pablo Barenbaum?!

joint work with Eduardo Bonelli?

'Universidad de Buenos Aires / CONICET
2Universidad Nacional de Quilmes / CONICET

Optimality
Motivation (in the context of the \-calculus)

» By the standardization theorem, the leftmost-outermost
strategy is correct (normalizing).
» But normal-order evaluation is certainly not “optimal”:

(Axxx)R— RR two copies of R!
» Reducing needed internal redexes is not optimal:
(Axxl)(Ay.A(yz)) — ... where A := Ax.xx

> Lazy evaluation, introduced by Wadsworth in 1971, improves
the situation by sharing the argument with pointers but is also
not optimal:
(Mxxy(xz)wdw— ...

Optimality
Motivation (in the context of the \-calculus)

» By the standardization theorem, the leftmost-outermost
strategy is correct (normalizing).
» But normal-order evaluation is certainly not “optimal”:

(Axxx)R— RR two copies of R!
» Reducing needed internal redexes is not optimal:
(Axxl)(Ay.A(yz)) — ... where A := Ax.xx

> Lazy evaluation, introduced by Wadsworth in 1971, improves
the situation by sharing the argument with pointers but is also
not optimal:

(Mxy(xz) Awdw — ...

Some questions, studied by Lévy in his PhD thesis (1978)
What would it mean for a reduction to be optimal?
Are there optimal reduction strategies?

Can optimal reduction be implemented efficiently?

What would it mean for a reduction to be optimal?

Informally

> Avoid doing useless work = contract needed redexes only.

» Avoid duplicating work = share multiple copies of redexes.

Less informally
1. Characterize the notion of redex family.

>

>

>

Redexes in the same family are “copies” of the same redex.
Example. A (Ax.A (xy)) — ... with A 1= dAx.x x.
Non-examples. redexes that happen to coincide: z (I x) (I x);
syntactic accidents: / (/) —

We care about redexes with history pR rather than redexes.
Why?

» Define a family equivalence relation: pR ~ ¢§.
» Lévy gives three equivalent characterizations.

We'll focus on this later.

. Let [pR] denote the family class of pR:

def
[pR] = {oS|pR~05}
. If p=R;y...R, is a reduction sequence, let FAM(p) denote the
families contracted along p:
def .
FAM(p) = {[RiR2...Ri]|i€e{l,...,n}}
. A redex pR is needed iff any extension po to normal form contracts
a residual of R.
. A derivation p = F1 F, ... F, is call-by-need iff each F; contains at
least one needed redex R;.
. A derivation p = F1 F» ... F, is complete iff 7; # 0 and F; is a
maximal set of redexes such that:

VR,SE}—,’. Fi...FiaR~F...Fi_1S

. Define cost(p) to measure the number of steps in a derivation,
assigning unitary cost to the reduction of a set of shared copies.
. Theorem (Lévy) Complete call-by-need derivations compute the
normal form in optimal cost, i.e.:
» if p is a complete call-by-need derivation: cost(p) = #FAM(p)
» if o is a terminating reduction starting from the same term,
cost(o) > #FAM(o) > #FAM(p) = cost(p)

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

O Levy (1978): optimal derivations have optimal cost.

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

O Levy (1978): optimal derivations have optimal cost.

& There cannot exist an optimal reduction strategy:

(Ax.x1x)(Ay.A(yz)) with A :=Ax.xx

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

O Levy (1978): optimal derivations have optimal cost.
& There cannot exist an optimal reduction strategy:
(Ax.x1x)(Ay.A(yz)) with A :=Ax.xx

@ Lamping's reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

O Levy (1978): optimal derivations have optimal cost.

& There cannot exist an optimal reduction strategy:

(Ax.x1x)(Ay.A(yz)) with A :=Ax.xx

@ Lamping's reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

777 Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(p) parallel beta
steps is not bounded by O(2"), 0(22"), O(222n), etc.

Are there optimal reduction strategies?
Can optimal reduction be implemented efficiently?

Optimal reduction: it comes with a free frogurt!

()
®

77

77

Lévy (1978): optimal derivations have optimal cost.

There cannot exist an optimal reduction strategy:

(Ax.x1x)(Ay.A(yz)) with A :=Ax.xx

Lamping's reduction algorithm (1989) based on sharing
graphs implements optimal reduction.

Asperti and Mairson (1998) show that optimal reduction
cannot be implemented efficiently: n = cost(p) parallel beta

steps is not bounded by O(2"), 0(22"), O(222n), etc.
Can a realistic notion of optimal reduction be devised?

Characterizing redex families

Lévy gives three equivalent characterizations of the family relation:
pR~ oS
in the A-calculus using various tools:
1. Zig-zag.

2. Extraction.
3. Labelling.

Families by

zig-zag

Definition (copy).
pR < oS

A redex with history ¢S is a copy of
a redex with history pR iff there is a

derivation 7 such that p7 = ¢ and
SeR/T.

Definition (family).
pR~cS

The symmetric and transitive closure
of < defines the family relation.

Families by zig-zag: example

Let / := Ax.x and A := Ax.x x:

){/) e (K
A D
(A\y.A(yz)! (Axx1)(Ay.yz(y 2))
% E
A(lz2) (\y-yz(yz))l
cl F
Az 1z(lz)
G

lzz

ABC~DEFG 77

Families by zig-zag: example contd.
Let / := Ax.x and A := Ax.x x:

(Axx1)(A\y.A(y z))

T T

r (Mxx 1) (Ay.y z(y 2))
B : E
A(l 2) N
| ey | z(l z)
G
lzz

ABH=DEF GeC/H
— ABC<DEFG — ABC~DEFG

Families by extraction

Define a rewriting relation between reduction sequences, the
extraction relation:
pR > oS

Informally. > erases the steps of p that do not contribute to the
creation of the redex R.

Less informally. Let o stand for any non-empty reduction
sequence. Then > is defined by:

(1) pRS > pS ifSeS/R

(2) p(RUo) > po if Rand o are disjoint

(3) p(Ruo) > po ifoisinternal to the function part of R
(4) pRT ©> po if 7isinternal

to the i-th copy of the argument of R
and o is the corresponding reduction,
internal to the argument of R*

* The formal statement requires quite more work (o/R = 7||R).

Families by extraction: properties

Theorem (Lévy). > is SN and CR.
Theorem (Lévy). > decides the family relation ~. More
precisely, let p and o be standard reductions. Then:

pR~cS iff pR >* 7T <% oS
for some >-normal redex-with-history 7 T.

Note: to check pR ~ o5 in the general case, standardize p and o
first.

Families by extraction: example

Let / := Ax.x and A := Ax.x x:

){/) e (K
A D
(A\y.A(yz)! (Axx1)(Ay.yz(y 2))
% E
A(lz2) (\y-yz(yz))l
cl F
Az 1z(lz)
G

lzz

ABC~DEFG 77

Families by extraction: example contd.
Let / := Ax.x and A := Ax.x x:

(Axx 1) (A\y.A(y z))
/ \
(Ay.A(y2))! (Axx 1) (Ay.y z(y 2))
Bl E
A(lz).. (Ay.yz(yz))l
o i
Ho
Az 1z(lz)
G
» A B is already standard. lzz
» DEF is standardized to ABH
» ABHG > ABC by case 1 (and also 4!) of >
» Moral: A and B contribute to the creation of G. — H doesn't.

Families by labelling
Informally. Work with a labelled variant of the calculus in such a
way that:
» Redexes with history pR are assigned a label o (“name”).
» Residuals of R have the same name as R.
» If contraction of a redex R creates a redex S, the name of R
is a proper sublabel of the name of S.
Less informally.

Labels a,fB,... u= al|b|c|...laf]||a]]]
initial labels

modulo associativity: a(8v) = (af)y
Labelled terms t,5,... = x%| \%.t | Q@*(t,s)
Adding a label a:xf X a8

a:Mxt B yebxy
a:@(t,s) bt s)

Substitution xY[x/t] ©oae (plus the expected rules)

Reduction O(Mx.t,s) —y afB]:t{x:=|B]:s}

Families by labelling: properties

> A term is initially labelled iff all of its nodes are decorated
with pairwise distinct initial labels.

» The name (or degree) of a redex is the label decorating its
abstraction.

» Theorem (Lévy). Let pR and oS be redexes with history
starting from the same initially labelled term. Then:

pR and o5 have the same name <~ pR~0oS

Families by labelling: example

Let / := Ax.x and A := Ax.x x:

){/) e (K
A D
(A\y.A(yz)! (Axx1)(Ay.yz(y 2))
% E
A(lz2) (\y-yz(yz))l
cl F
Az 1z(lz)
G

lzz

ABC~DEFG 77

Families by labelling: example contd.
Let / := X\®x.x® and A := \°x.@¢(x®, x):
» ABC:

&(\"x.@i(xd, 1), \ky.@'(A, @ (y", z°)))
S eeMi(NIMky.@'(A, @™ (y", 2%)). 1)
EILILAS @e/MTiliMIKI(A, @ (n|jlhTk] : 1, 2°))
nblhika, = @elnlififmikli(A, pminLilh]kjalblnlifh]k]ajo)

» DEFG:
Q¥ (\x.G(x, 1), Ney. @A, @7(y", 22)))
i)é @g()\hx.@l(xj, I),)\ky'©l(c]d(@eLcjm(yn’zo), @chJm(yn,Zo)))
LU @g(h]i()\jthky‘©l[c]d(@eLch(yn,Zo)7 @fl_cjm(ynjzo))’ I)
L, esMKIIEld @elem (nj{n]k] : /,2°), @™ (nljlh]k] : 1, 2°))

nlifhlka, @e/MIifiLhIKIIeld (@elelm(y ;i) : 1, 2°), ZflelminLilh]kjalblnlilh]kjajo)

» Then ABC~DEFG.
» Note that h C jih]k C n[j[hlk|a % c.

The Lévy labelled A-calculus: more properties

> A predicate P on labels is said to be bounded iff there exists a
bound M € N such that for every label a:

Pla) = h(a) <M

where h(«) is the height of v (seen as a tree).

Then:
» Theorem (Lévy). The labelled A-calculus restricted to any
predicate is Church-Rosser. (In particular, it is CR).
» Theorem (Lévy). The labelled A-calculus restricted to any

bounded predicate is SN.
» There are three ways of creating redexes in the A-calculus.
They are the generalizations of the following examples:
» (AxAy.t)su— (\y.t{x:=s})u
» (Ax.x)(Ax.t)s = (Ax.t)s
» (Ax.xy)Az.s = (Az.s)y

Key property.
The name of a redex contains the names of all of its “causes”
as sublabels.

The linear substitution calculus (LSC)

» Calculus of explicit substitutions “at a distance”.
» Similar to calculi studied by Milner, De Bruijn, Nederpelt.

» Promoted by Accattoli and Kesner.

The linear substitution calculus: definition
» Terms and contexts:
t,s,u,... :=x | Ax.t | ts | t[x/s]
L =0 | L[x/t]

Cu:=0]|Mx.C|Cs|tC]| Cl[x/s]|t[x/C]
> Notation for plugging terms into contexts:

C(t) (capturing) vs. C((t)) (non-capturing)

tL rather than L(t)

» Reduction:

(Ax.t)Ls —gp t[x/s|L

Clhlx/t] =i ClB)x/]
tx/s] —g t if x & fv(t)

> Example:
(Ax Ay xx)ts — ...

Redex creation in the LSC

There are seven redex creation cases. They are the generalizations
of the following examples:

db creates db.

db creates Is.

db creates gc.
Is creates db'.
Is creates db'.

Is creates gc.

gc creates gc.

(Ax.Ay.t)su
(Ax.x) t
(Ax.y)t
X[x/Ay.t] s
(xs)[x/Ay.t]
x[x/t]
alx/ylly/2]

—db
—db
—db
—ls
—ls
—ls
—gc

(Ay.t)[x/s]u
x[x/t]

ylx/t]
(Ay.t)[x/Ay.t]s
((Ay-t)s)[x/Ay.t]
t[x/t]

aly/7]

The labelled LSC

Labels

Label sets

Terms

Adding labels

Reduction

a, B,...

t,s,...

a:xP
o)\gx.t
a:09(t,s)

a: (t[x/s]a)

Q*(A\ox.t,5)
C{x)x/tla

t[x/sla

db(ﬁ)
——¢db

Ha) o 1(t)

lls

{aet(s) | a€}
—_

0 gc

alapf|[al|la]|db(e)
mod associativity: a(37) = (af)y
distinguished initial labels: o, ®

{a1,...,a,}
only initial labels, treated as sets

XY | Agx.t | @ (t,s) | t[x/s]a

X8
)\g’gx.t
©“A(t,s)
(a: t)[x/s]a

afB] - tlx/18] : sla
Clae : t)[x/t]a
t

The labelled LSC

Some results:
» The labelled LSC is confluent for arbitrary predicates.
» The labelled LSC is SN for bounded predicates.

> [ssue: we do not capture the “gc = gc” creation case. This is
reasonable since the property of redex stability does not hold3,
i.e. there are multiple ways of creating gc redexes:

ity X/l 2Nz

/ {ell/el) S

alx/bl[z/c] alx/bly/clllz/c]
ge(lz/ C] gC([Z/ <)
ge([x/b]) W
alz/c]
gc ([z/<)

3At least according to Lévy’s formulation.

Current and future work

Short-term:

» Develop a method of contraction by extraction > .
Piggyback on the work on standardization for the LSC by
Accattoli, Bonelli, Kesner and Lombardi.

This presents some difficulties by the fact that redexes are not
stable.

» Characterize redex families proving the equivalences:
zig-zag <= extraction <= labelling

Long-term:
» Give a sharing graph implementation for optimal reduction.

» Fuzzy question: study how the “built-in" sharing of the LSC
(explicit substitutions) relates with sharing for optimal
reduction.

Basic references

Optimality
» Andrea Asperti, Stefano Guerrini.

The Optimal Implementation of Functional Programming
Languages.

> Jean-Jacques Lévy.
Réductions correctes et optimales dans le lambda-calcul.

> Andrea Asperti, Harry Mairson.
Parallel beta reduction is not elementary recursive.

Linear substitution calculus

» Beniamino Accattoli, Delia Kesner.
The structural \-calculus.

» Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, Carlos
Lombardi.
A Nonstandard Standardization Theorem.

