
Two Decreasing Measures for Simply Typed
λ-Terms (Extended Version)
Pablo Barenbaum #

ICC, Universidad de Buenos Aires, Argentina
Universidad Nacional de Quilmes (CONICET), Argentina

Cristian Sottile #

ICC, Universidad de Buenos Aires (CONICET), Argentina
Universidad Nacional de Quilmes, Argentina

Abstract
This paper defines two decreasing measures for terms of the simply typed λ-calculus, called the
W-measure and the T m-measure. A decreasing measure is a function that maps each typable λ-term
to an element of a well-founded ordering, in such a way that contracting any β-redex decreases
the value of the function, entailing strong normalization. Both measures are defined constructively,
relying on an auxiliary calculus, a non-erasing variant of the λ-calculus. In this system, dubbed the
λm-calculus, each β-step creates a “wrapper” containing a copy of the argument that cannot be
erased and cannot interact with the context in any other way. Both measures rely crucially on the
observation, known to Turing and Prawitz, that contracting a redex cannot create redexes of higher
degree, where the degree of a redex is defined as the height of the type of its λ-abstraction. The
W-measure maps each λ-term to a natural number, and it is obtained by evaluating the term in the
λm-calculus and counting the number of remaining wrappers. The T m-measure maps each λ-term
to a structure of nested multisets, where the nesting depth is proportional to the maximum redex
degree.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Lambda calculus

Keywords and phrases Lambda Calculus, Rewriting, Termination, Strong Normalization, Simple
Types

Funding This work was partially supported by project grants PICT-2021-I-A-00090, PICT-2021-I-
INVI-00602, PIP 11220200100368CO, PICT 2019-1272, PUNQ 2218/22, and PUNQ 2219/22.

Acknowledgements To the anonymous reviewers, Giulio Manzonetto, and Eduardo Bonelli for
feedback on earlier versions of this paper. The second author would like to thank his advisors
Alejandro Díaz-Caro and Pablo E. Martínez-López.

1 Introduction

In this paper we revisit a fundamental question, that of strong normalization of the simply
typed λ-calculus (STLC). We begin by recalling that a reduction relation is weakly normalizing
(WN) if every term can be reduced to normal form in a finite number of steps, whereas it is
strongly normalizing (SN) if there are no infinite reduction sequences (a1 → a2 → a3 → . . .).
Let us review three proof techniques for proving strong normalization of the STLC.

One of the better known ways to prove that the STLC is SN is through arguments
based on reducibility models. The idea is to interpret each type A as a set [[A]] of
strongly normalizing terms, and to prove that each term M of type A is an element of [[A]].
Many variants of these ideas can be found in the literature, including Girard’s reducibility
candidates [17] and Tait’s saturated sets [30]. These techniques provide relatively succint
proofs and they generalize well to extensions of the STLC, e.g. to dependent type theory [6]
or classical calculi [13]. On the other hand, the abstract nature of reducibility arguments

mailto:pbarenbaum@dc.uba.ar
mailto:csottile@icc.fcen.uba.ar

2 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

does not provide a “tangible” insight on why a β-reduction step brings a term closer to
normal form. More specifically, reducibility arguments do not construct explicit decreasing
measures. By decreasing measure we mean a function “#” mapping each λ-term to a
well-founded ordering (X, >) such that M →β N implies #(M) > #(N).

Another way to prove strong normalization is based on redex degrees. A redex in the
STLC is an applied abstraction, i.e. a term of the form (λx. M) N . The degree of a redex
is defined as the height of the type of its abstraction. A crucial observation, that can be
attributed to an unpublished note of Turing (as reported by Gandy [15]; see also [4]), is that
contracting a redex cannot create a redex of higher or equal degree. Recall that a redex S is
created by the contraction of a redex R if S has no ancestor before R. Indeed, as shown by
Lévy [22], in the λ-calculus, redexes can be created in exactly one of the three ways below:

1 (λx. x) (λy. M) N →β (λy. M) N

2 (λx. λy. M) N P →β (λy. M [x := N]) P

3 (λx. . . . x M . . .) (λy. N) →β . . . (λy. N) M [x := λy. N] . . .

where we underline the λ of the contracted redex on the left, and the λ of the created redex
on the right. In each of these cases, it can be seen that the degree of the created redex is
strictly lower than the degree of the contracted redex. For instance, in creation case 1, the
type of the contracted redex is of the form (A → B) → (A → B), while the type of the
created redex is A→ B, so the height strictly decreases.

With this fact in mind, for each term M one can define what we call Turing’s measure,
i.e. the multiset T (M) of the degrees of all the redexes of M . One may hope that any
reduction step M →β N decreases the measure, i.e. T (M) ≻ T (N), where “≻” is the
usual well-founded multiset ordering induced by the ordering (N, >) of its elements [12].
Unfortunately, this is not the case: even though contracting a redex can only create redexes of
strictly lower degree, it can still make an arbitrary number of copies of redexes of arbitrarily
large degrees.

In his notes, Turing observed that one can follow a reduction strategy that always selects
the rightmost redex of highest degree. This strategy ensures that the contracted redex does
not copy redexes of higher or equal degree, which makes the T (−) measure strictly decrease,
thus proving that the λ-calculus is WN. An even simpler measure that also decreases, if one
follows this strategy, is T ′(M) = (D, n), where D is the maximum degree of the redexes in M

and n is the number of redexes of degree D in M . Similar ideas were exploited by Prawitz [28]
and Gentzen (as reported by von Plato [27]) to normalize proofs in natural deduction. After
WN has been established, an indirect proof of SN can be obtained by translating each typable
λ-term M to a typable term M ′ of the λI-calculus; see for instance [29, Section 3.5].

In summary, redex degrees can be used to define concrete measures such as T (M) and
T ′(M), that are computable in linear time and decrease when following a particular reduction
strategy. As already mentioned, these measures do not necessarily decrease when contracting
arbitrary β-redexes.

A third way to prove SN relies on an interpretation that maps terms to increasing
functionals. This approach was pioneered by Gandy [16] and refined by de Vrijer [10].
Each type A is mapped to a partially ordered set [[A]]. Specifically, base types are mapped
to (N,≤), and [[A → B]] is defined as the set of strictly increasing functions [[A]] → [[B]],
partially ordered by the point-wise order. Each term M of type A is interpreted as an element
[M] ∈ [[A]]. Moreover, an element f ∈ [[A]] can be projected to a natural number f⋆ ∈ N in
such a way that M →β N implies [M]⋆ > [N]⋆. This indeed provides a decreasing measure.
One of the downsides of this measure is that computing [M]⋆ is essentially as difficult as

P. Barenbaum and C. Sottile 3

evaluating M , because [M] is defined as a higher-order functional with a similar structure as
the λ-term M itself.

In this work we propose two decreasing measures for the STLC, that we dub the
W-measure and the T m-measure, and we prove that they are decreasing. An ideal decreasing
measure should fulfill multiple (partly subjective) requirements: 1. the measure should be
easy to calculate, in terms of computational complexity; 2. its codomain (a well-founded
ordering) should be simple, in terms of its ordinal type; 3. it should give us insight on
why β-reduction terminates; 4. it should be easy to prove that the measure is decreasing.
A measure that excels simultaneously at all these requirements is elusive, and perhaps
unattainable. The proposed measures have different strengths and weaknesses.

Contributions and structure of this document The W-measure and the T m-measure are
defined by means of on an auxiliary calculus that we dub the λm-calculus. The remainder of
the paper is structured as follows.

In Section 2 we define the λm-calculus. It is an extension of the STLC with terms1

of the form t{s}, called wrappers. A wrapper t{s} should be understood as essentially the
term t in which s is a memorized term, that is, leftover garbage that can be reduced but
cannot interact with the context in any way. The type of t{s} is the same as the type of t,
disregarding the type of s.

The β-reduction rule is modified so that contracting a redex (λx. t) s, besides substituting
the free occurrences of x by s in t, produces a wrapper that contains a copy of the argument s.
The reduction rule is (λx. t){u1} . . . {un} s →m t[x := s]{s}{u1} . . . {un}. Note that
we allow the presence of an arbitrary number of memorized terms mediating between the
abstraction and the application. This is to avoid memorized terms blocking redexes. For
example, if I = λx. x:

(λx. x(xy))I →m (I(Iy)){I}→m (Iy){Iy}{I}→m (Iy){y{y}}{I}→m y{y}{y{y}}{I}

Then we study some syntactic properties of λm. In particular, we define a relation t ▷ s of
forgetful reduction, meaning that s is obtained from t by erasing one memorized subterm.
For example, x {x{y}}{y{z}} ▷ x {y{z}}. Forgetful reduction is used as a technical tool
to prove that the measures are decreasing in the following sections.

In Section 3, we propose the W-measure (Def. 12), and we prove that it is decreasing.
To define the W-measure, we resort to an operation Sd(t) that simultaneously contracts
all the redexes of degree d in a term of the λm-calculus, that is, the result of the complete
development of all the redexes of degree d. The degree of a redex (λx. t){u1} . . . {un} s

is defined similarly as for the STLC, as the height of the type of the abstraction. To
calculate the W-measure of a λ-term M , let D be the maximum degree of the redexes in
M , and define W(M) as the number of wrappers in S1(S2(. . . SD(M))). For example, if
M = (λx. x (x y)) (λz. w), it turns out that S1(S2(M)) = w{w{y}}{λz. w} which has three
wrappers, so W(M) = 3. The W-measure maps each typable λ-term to a natural number.
The main result of Section 3 is Thm. 15, stating that W is decreasing, i.e. that M →β N

implies W(M) >W(N).
In Section 4 we study reduction by degrees, a restricted notion of reduction in the

λm-calculus, written t
d−→m s, meaning that t reduces to s by contracting a redex of degree d.

This section contains technical commutation, termination, and postponement results.

1 Note that terms of the λm-calculus are ranged over by t, s, . . . (rather than M, N, . . .).

4 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

In Section 5, we propose the T m-measure, and we prove that it is decreasing. To
define the T m-measure, we define two auxiliary measures T m

≤D(t) and Rm
D (t), indexed by a

natural number D ∈ N0, mutually recursively:
T m

≤D(t) is the multiset of pairs (d,Rm
d (t)), for each redex occurrence of degree d ≤ D in t;

Rm
D (t) is the multiset of elements T m

≤D−1(t′), for each reduction sequence t
D−→∗

m t′.
The measure T m

≤D(t) is defined for every D ≥ 0, while Rm
D (t) is defined only for D ≥ 1.

Multisets are ordered according to the usual multiset ordering, and pairs according to the
lexicographic ordering. To calculate the T m-measure of a λ-term M , let D be the maximum
degree of the redexes in M , and define T m

≤ (M) def= T m
≤D(M). The measure T m

≤ (M) yields a
structure of nested multisets of nesting depth at most 2D. The main theorem of Section 3
is Thm. 32, stating that T m is decreasing, i.e. that M →β N implies T m

≤ (M) > T m
≤ (N).

Finally, in Section 6, we conclude.

2 The λm-calculus

As mentioned in the introduction, the λm-calculus is an extension of the STLC in which the
β-reduction rule keeps an extra memorized copy of the argument in a “wrapper” t{s}, in
such a way that contracting a redex like (λx. t) s does not erase s, even if x does not occur
free in t. In this section we define the λm-calculus and we prove some of the properties that
are needed in the following sections to prove that the W-measure and the T m-measure are
decreasing. In particular, we discuss subject reduction (Prop. 3) and confluence (Prop. 4); we
define an operation of simplification (Def. 5) which turns out to calculate the normal form
of a term (Prop. 7); and we define the relation called forgetful reduction (Def. 8), which is
shown to commute with reduction (Prop. 10).

First we fix the notation and nomenclature. Types of the STLC are either base types
(α, β, . . .) or arrow types (A → B). Terms are either variables (xA, yA, . . .), abstrac-
tions (λxA. M), or applications (M N), with the usual typing rules. Terms are defined
up to α-renaming of bound variables. We adopt an à la Church presentation of the STLC,
but we omit most type decorations on variables as long as there is little danger of confusion.
The β-reduction rule is (λx. M) N →β M [x := N] where M [x := N] is the capture-avoiding
substitution of the free occurrences of x in M by N .

The λm-calculus: syntax and reduction The set of λm-terms —or just terms— is given by
t, s, . . . ::= xA | λxA. t | t s | t{s}. The four kinds of terms are respectively called variables,
abstractions, applications, and wrappers. In a wrapper t{s}, the subterm t is called the body
and s is called the memorized term. As in the STLC, we usually omit type annotations and
terms are regarded up to α-renaming. A context is a term C with a single free occurrence of
a distinguished variable □, and C[t] is the variable-capturing substitution of the occurrence
of □ in C by t.

Typing judgments are of the form Γ ⊢ t : A where Γ is a partial function mapping variables
to types. Derivable typing judgments are defined by the following rules:

Γ, x : A ⊢ xA : A

Γ, x : A ⊢ t : B

Γ ⊢ λxA. t : A → B

Γ ⊢ t : A → B Γ ⊢ s : A

Γ ⊢ t s : B

Γ ⊢ t : A Γ ⊢ s : B

Γ ⊢ t{s} : A

A term t is typable if Γ ⊢ t : A holds for some Γ and some A. Unless otherwise specified,
when we speak of “terms” we mean “typable terms”. It is straightforward to show that a
typable term has a unique type. We write type(t) for the type of t.

P. Barenbaum and C. Sottile 5

A memory, written L, is a list of memorized terms, given by the grammar L ::= □ | L{t}.
If t is a term and L is a memory, we write tL for the term that results from appending all the
memorized terms in L to t, that is, (t)(□{s1} . . . {sn}) = t{s1} . . . {sn}. We write t[x := s]
for the operation of capture-avoiding substitution of the free occurrences of x in t by s. The
λm-calculus is the rewriting system whose objects are typable λm-terms, endowed with the
following notion of reduction, closed by compatibility under arbitrary contexts:

▶ Definition 1 (Reduction in the λm-calculus). (λx. t)L s →m t[x := s]{s}L

Abstractions followed by lists of memorized terms, i.e. terms of the form (λx. t)L, are called
m-abstractions. Note that all abstractions are also m-abstractions, as L may be empty. A
redex is an expression matching the left-hand side of the →m-reduction rule, which must be
an applied m-abstraction, i.e. a term of the form (λx. t)L s. The height of a type is given by
h(α) def= 0 and h(A → B) def= 1 + max(h(A), h(B)). The degree of a m-abstraction (λx. t)L
is defined as the height of its type; note that this number is always strictly positive, since
the type must be of the form A → B. Moreover, this type is unique, so the operation is
well-defined. The degree of a redex (λx. t)L s is defined as the degree of the m-abstraction
(λx. t)L. The max-degree of a term t is written maxdeg(t) and it is defined as the maximum
degree of the redexes in t, or 0 if t has no redexes. The weight w(t) of a λm-term t is the
number of wrappers in t.

▶ Example 2. Let 0 be a base type and let t := (λx0→0. λy0. y0{x0→0 (x0→0 z0)}) I w0,
where I := λx0. x0. One possible way to reduce t is:

(λx. λy. y{x (x z)}) I w →m (λy. y{I (I z)}){I} w →m w{I (I z)}{w}{I}
→m w{I (z{z})} {w} {I} →m w{z{z}{z{z}}}{w}{I} = s

The degrees of the redexes contracted in each step are 2, 1, 1, and 1, in that order. Note
that maxdeg(t) = 2 and that the weight of the resulting term is w(s) = 6.

Two basic properties of the λm-calculus are subject reduction and confluence. These are
immediate consequences of the fact that the λm-calculus can be understood as an orthogonal
HRS in the sense of Nipkow [26], i.e. a left-linear higher-order rewriting system without
critical pairs.

▶ Proposition 3 (Subject reduction). Let Γ ⊢ t : A and t→m s. Then Γ ⊢ s : A.

▶ Proposition 4 (Confluence). If t1 →∗
m t2 and t1 →∗

m t3, there exists a term t4 such that
t2 →∗

m t4 and t3 →∗
m t4.

Full simplification Next, we define an operation written S∗(t) and called full simplification.
Let d ≥ 1 be a natural number. The simplification of degree d, written Sd(t), is the

result of simultaneously contracting all the redexes of degree d in t, that is, the result of
the complete development of all redexes of degree d. Formally, for each λm-term t we define
Sd(t), and, for each memory L, we define Sd(L) as follows:

▶ Definition 5 (Simplification).

Sd(x) def= x

Sd(λx. t) def= λx. Sd(t)

Sd(t s) def=
{

Sd(t′)[x := Sd(s)]{Sd(s)}Sd(L) if t = (λx. t′)L and it is of degree d

Sd(t) Sd(s) otherwise
Sd(t{s}) def= Sd(t){Sd(s)}

6 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

where if L is a memory, Sd(L) is defined by Sd(□) def= □ and Sd(L{t}) def= Sd(L){Sd(t)}.
Furthermore, if t is a λm-term of max-degree D, we define the full simplification of t as the
term that results from iteratively taking the simplification of degree i from D down to 1.
More precisely, S∗(t) def= S1(. . . SD−1(SD(t))).

▶ Example 6. Consider the λ-term M = (λx0→0. x0→0(x0→0 y0))(λz0. w0). It can be
regarded also as a λm-term, and we have:

S2(M) = ((λz0. w0) ((λz0. w0) y0)){λz0. w0}
S∗(M) = S1(S2(M)) = w0{w0{y0}}{λz0. w0}

Note that M has only one redex, whose abstraction is of type (0 → 0) → 0 and hence
of degree 2, and that S2(M) has two redexes, whose abstractions are of type 0 → 0 and
hence of degree 1. Moreover, consider the λ-term N = (λz0. w0) ((λz0. w0) y0). Then
S∗(N) = S1(N) = w{w{y}}. Note that N has two redexes whose abstraction is of type
0→ 0 and hence of degree 1. As an additional note, in the λ-calculus there is a reduction
step M →β N , and we have that w(S∗(M)) = 3 > 2 = w(S∗(N)). So this example illustrates
that the W-measure (as defined in Def. 12) is decreasing (as we will show in Thm. 15).

As it turns out, full simplification corresponds to reduction to normal form.
More precisely, we have the following result, which entails in particular that the λm-calculus
is weakly normalizing:

▶ Proposition 7. t→∗
m S∗(t), and moreover S∗(t) is a →m-normal form.

Proof. To show that t→∗
m S∗(t), it suffices to prove a lemma stating that t→∗

m Sd(t) for all
d ≥ 1. This implies that t→∗

m SD(t)→∗
m SD−1(SD(t)) . . .→∗

m S1(. . . SD−1(SD(t))) = S∗(t),
where D is the max-degree of t. The lemma itself is straightforward by induction on t.

To show that S∗(t) is a →m-normal form, the key property is that, after performing
a simplification of order d, no redexes of order d remain. The reason is that contracting
a redex of order d can only create redexes of lower degree. More precisely, we prove a
key lemma stating that if d ≥ 1 and maxdeg(t) ≤ d, then maxdeg(Sd(t)) < d. If we
let maxdeg(t) ≤ D, we can iterate this lemma, to obtain that maxdeg(SD(t)) < D, and
maxdeg(SD−1(SD(t))) < D − 1, . . ., and finally maxdeg(S1(. . . SD−1(SD(t)))) < 1. This
means that S∗(t) = S1(. . . SD−1(SD(t))) does not contain redexes, since there are no redexes
of degree 0, so S∗(t) must be a →m-normal form. See Prop. 43 in the appendix for detailed
proofs. ◀

Forgetful reduction To conclude this section, we introduce the relation of forgetful reduction
t ▷+ s, and we prove that it commutes with reduction.

▶ Definition 8. A λm-term t reduces via a forgetful step to s, written t ▷ s, according to
the following axiom, closed by compatibility under arbitrary contexts:

t{s} ▷ t

We say that t reduces via forgetful reduction to s if and only if t ▷+ s, where ▷+ denotes
the transitive closure of ▷.

▶ Example 9. (λx. x{y{y}}){z{z}} ▷ (λx. x{y{y}}){z} ▷ (λx. x){z} ▷ λx. x.

▶ Proposition 10 (Forgetful reduction commutes with reduction). If t ▷+ s and t →∗
m t′,

there exists a term s′ such that t′ ▷+ s′ and s →∗
m s′. Furthermore, if t ▷+ s and t is a

→m-normal form, then s is also a normal form.

P. Barenbaum and C. Sottile 7

Proof. The result can be reduced to a local commutation result, stating that if t ▷ s and
t→m t′, there exists a term s′ such that t′ ▷+ s′ and s→=

m s′, where →=
m is the reflexive

closure of →m. Local commutation can be proved by case analysis. The interesting cases are
when a shrinking step s ▷ s′ lies inside the argument of a redex, and when a reduction step
r →m r′ is inside erased garbage:

(λx. t)L s

��

▷ (λx. t)L s′

��
t[x := s]{s}L ▷+ t[x := s′]{s′}L

u{r}

��

▷ u

u{r′} ▷+ u

For the last part of the statement, it suffices to show that if t ▷ s in one step and t is a
→m-normal form, then s is also a normal form, which is straightforward by induction on t.
See Prop. 46 in the appendix for detailed proofs. ◀

Each step in the STLC has a corresponding step in the λm-calculus, that contracts
the redex in the same position. For instance the step (λx. x y) I →β I y in the STLC
has a corresponding step (λx. x y) I →m (I y){I} in the λm-calculus. In this example,
(I y){I} ▷ I y. The following easy lemma confirms that this is a general fact:

▶ Lemma 11 (Reduce/forget lemma). Let M →β N be a β-step, and let M →m s be the
corresponding step in λm. Then s ▷ N .

3 The W-measure

In this section, we define the W-measure (Def. 12) and we prove that it is decreas-
ing (Thm. 15). Let us try to convey some ideas that led to the definition of the W-
measure. Recall that an abstract rewriting system (A,→) is weakly Church–Rosser (WCR)
if ←→⊆→∗←∗, Church–Rosser (CR) if ←∗→∗⊆→∗←∗, and increasing (Inc) if there exists
a function | · | : A→ N such that a→ b implies |a| < |b|. Let us also recall Klop–Nederpelt’s
lemma [31, Theorem 1.2.3 (iii)], which states that Inc ∧ WCR ∧ WN =⇒ SN ∧ CR.

Let (A,→) be increasing and WCR. Given a reduction a→∗ b, where b is a normal form,
we can find a decreasing measure for the set of objects reachable from a, that is, the set
{c ∈ A | a→∗ c}. In fact, by Klop–Nederpelt’s lemma, we know that for every c ∈ A such
that a →∗ c we have that c →∗ b, which implies that |c| ≤ |b|, and hence we can define
#(c) := |b| − |c|. It is easy to see that #(−) is a decreasing measure, since c→ c′ implies
that |c| < |c′| so #(c) := |b| − |c| > |b| − |c′| = #(c′). Furthermore, the value of #(c) does
not depend on the choice of a, by uniqueness of normal forms.

The idea behind the W-measure is that the construction of a decreasing measure can be
based on an increasing measure, according to the previous observation. It is not possible
to build an increasing measure directly for the STLC; e.g. the following infinite sequence
of expansions t ← I t ← I (I t) ← . . . would induce an infinite decreasing chain of natural
numbers |t| > |I t| > |I (I t)| >

One could try to define an increasing measure in a variant of the STLC such as Endrullis
et al.’s clocked λ-calculus [14], in which the β-rule becomes (λx. t) s→ τ(t[x := s]), that is,
contracting a β-redex produces a counter “τ” that keeps track of the number of contracted
redexes. One could then count the number of τ ’s: for example, in the reduction sequence
(λx. x (x y)) I → τ(I (I y))→ ττ(I y)→ τττy the number of counters strictly increases with
each step. Unfortunately, this does not define an increasing measure, due to erasure. For
example, (λx. y) t→ τy erases all the counters in t.

8 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

This is the motivation behind the definition of the λm-calculus, which avoids erasure
by always keeping an extra copy of the argument in a wrapper. The λm-calculus is indeed
increasing: in a step t→m s one has that w(t) < w(s), where we recall that w(t) denotes the
weight, i.e. the number of wrappers in t. For example, the step (λx. y) (z{z})→m y{z{z}}
increases the number of wrappers. The decreasing measure W(M) is defined essentially by
reducing M to normal form in the λm-calculus and counting the number of wrappers in the
result:

▶ Definition 12 (The W-measure). For each typable λ-term M , define W(M) def= w(S∗(M)).

As we show below, S∗(M) turns out to be exactly the normal form of M in the λm-calculus.
We insist in writing S∗(M) to emphasize that the definition of theW-measure does not require
to prove that the λm-calculus is weakly normalizing. Indeed, the simplification Sd(t) can be
defined by structural induction on t, and the full simplification S∗(t) = S1(S2(. . . SD(t))) can
be calculated in exactly D iterations. On the other hand, the proof that the W-measure is
decreasing does rely on the fact that S∗(M) is the normal form of M .

In the remainder of this section, we prove that the W-measure is indeed decreasing. The
following lemma states that forgetful reduction decreases weight, and it is straightforward to
prove:

▶ Lemma 13. If t ▷+ s then w(t) > w(s).

The proof that the W-measure decreases relies on the two following properties that relate
full simplification S∗(−) respectively with reduction (→m) and forgetful reduction (▷+):

▶ Lemma 14. 1. If t→m s then S∗(t) = S∗(s). 2. If t ▷+ s then S∗(t) ▷+ S∗(s).

Proof. For the first item, note that by Prop. 7, we know that t→∗
m S∗(t) and that t→m

s→∗
m S∗(s), where moreover S∗(t) and S∗(s) are →m-normal forms. By confluence (Prop. 4),

this means that S∗(t) = S∗(s).
For the second item, note that by Prop. 7, we know that t→∗

m S∗(t). Since we also know
t ▷+ s by hypothesis, and since forgetful reduction commutes with reduction (Prop. 10),
there exists a term u such that s→∗

m u and S∗(t) ▷+ u. By Prop. 7 we know that S∗(t) is in
normal form, so by Prop. 10 u must also be a normal form. On the other hand, by Prop. 7 we
know that s→∗

m S∗(s), where S∗(s) must also be a normal form. In summary, we have that
s→∗

m u and s→∗
m S∗(s), where both u and S∗(s) are normal forms. By confluence (Prop. 4)

u = S∗(s), and from this we obtain that S∗(t) ▷+ u = S∗(s), as required. ◀

▶ Theorem 15. Let M, N be typable λ-terms such that M →β N . Then W(M) >W(N).

Proof. Given the step M →β N , consider the corresponding step M →m s, and note that
s ▷+ N by the reduce/forget lemma (Lem. 11). Since M →m s ▷+ N , by Lem. 14, we have
that S∗(M) = S∗(s) ▷+ S∗(N). Finally, by Lem. 13, W(M) = w(S∗(M)) > w(S∗(N)) =
W(N). ◀

The following is one example that the W-measure decreases (see Ex. 6 for another
example):

▶ Example 16. Let M = (λx0. y0→0→0 x0 x0) ((λx0→0. x0→0 z0) f0→0), consider the step
M = (λx. y x x)((λx. x z) f)→β (λx. y x x) (f z) = N , and note that W(M) = w(S∗(M)) =
4 > 1 =W(N), since:

S∗(M) = (y (f z){f} (f z){f}){(f z){f}} S∗(N) = (y (f z) (f z)){f z}

P. Barenbaum and C. Sottile 9

4 Reduction by degrees

This section is of purely technical nature. The aim is to develop tools that we use in
the following section to reason about the T m-measure. To do so, we need to introduce
witnesses of steps and reduction sequences, treating the λm-calculus as an abstract rewriting
system in the sense of [31, Def. 8.2.2] or as a transition system in the sense of [24, Def. 1].
Objects are λm-terms, steps are 5-uples R = (C, x, t, L, s) witnessing the reduction step
C[(λx. t)L s]→m C[t[x := s]{s}L] under a context C, and reductions (ρ, σ, . . .) are sequences
of composable steps. Similarly, forgetful steps are triples R = (C, t, s) witnessing the forgetful
reduction C[t{s}] ▷ C[t], and forgetful reductions (also written ρ, σ, . . .) are sequences of
composable forgetful steps. We write ρsrc and ρtgt respectively for the source and target
terms of ρ.

For each d ∈ N0, we define reduction of degree d as follows:

▶ Definition 17. t
d−→m s if and only if t→m s by contracting a redex of degree d.

We write R : t
d−→m s if R is a step witnessing a reduction step of degree d, and ρ : t

d−→∗
m s if

ρ is a reduction witnessing a sequence of reduction steps of degree d.
The following results require to explicitly manipulate steps and reductions. We only give

sketches of the proofs for lack of space. See Section A.2 in the appendix for detailed proofs.

▶ Proposition 18 (Commutation of reduction by degrees). For any two reductions ρ : t1
d−→∗

m t2

and σ : t1
D−→∗

m t3, there exists a term t4 and one can construct reductions σ/ρ : t2
D−→∗

m t4

and ρ/σ : t3
d−→∗

m t4 such that, furthermore, if d ̸= D, then 1. ρ/σ contains at least as many
steps as ρ; and 2. ρ/σ determines ρ, that is, ρ1/σ = ρ2/σ implies ρ1 = ρ2.

Proof. This is reduced to the fact that the λm-calculus can be understood as an orthogonal
higher-order rewriting system in the sense of Nipkow [26]. Indeed, ρ/σ and σ/ρ can be taken
to be the standard notion of projection based on residuals for orthogonal HRSs. Note that
item 1. holds because the λm-calculus is non-erasing while item 2. is a consequence of the
unique ancestor property, i.e. each redex descends from at most one redex. ◀

▶ Corollary 19 (Termination of reduction by degrees). The relation d−→m is strongly normalizing.

Proof. This is a consequence of the fact that HRSs enjoy the Finite Developments property [31,
Theorem 11.5.11], observing that reduction of degree d does not create redexes of degree d.
Alternatively, it can be easily shown that t

d−→∗
m Sd(t) and Sd(t) is in d−→m-normal form, so

d−→m is WN. Moreover, one can observe that d−→m is uniformly normalizing [19], given that
there is no erasure, which entails that d−→m is SN. ◀

▶ Proposition 20 (Lifting property for lower steps). Let d < D and t
d−→m s

D−→∗
m s′. Then

there exist terms t′, s′′ such that t
D−→∗

m t′ and s′ D−→∗
m s′′ and t′ d−→+

m s′′.

Proof. Note that t
D−→∗

m SD(t). By Prop. 18, there exists a term u such that s
D−→∗

m u

and SD(t) d−→+
m u. Again by Prop. 18, there exists s′′ such that u

D−→∗
m s′′ and s′ D−→∗

m s′′.
Moreover, SD(t) is in D−→m-normal form. Since SD(t) d−→∗

m u with d < D and reduction does
not create redexes of higher degree, u is also in D−→m-normal form, so u = s′′, and we are
done. ◀

10 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

▶ Proposition 21 (Postponement of forgetful reduction). For any two reductions ρ : t ▷∗ t′

and σ : t′ d−→∗
m s′, there exists a term s and reductions ρ↷σ : s ▷∗ s′ and σ↶ρ : t

d−→∗
m s.

Furthermore, σ↶ρ determines σ, that is, σ↶
1 ρ = σ↶

2 ρ implies σ1 = σ2.

Proof. This can be reduced to an analysis of the critical pairs between the rewriting rules
defining ▷−1 and →m. Critical pairs are of the form (λx. t)L1{s}L2 u ▷ (λx. t)L1L2 u→m
t[x := u]{u}L1L2 and can be closed by (λx. t)L1{s}L2 u→m t[x := u]{u}L1{s}L2 ▷ t[x :=
u]{u}L1L2. ◀

The following diagrams depict the statements of the three preceding propositions:

t1

σ D

��

ρ

d // //

Prop. 18

t2

σ/ρ D
����

t3
ρ/σ

d // // t4

t

Prop. 20d

��

D // // t′

d

+��
s

D // // s′ D // // s′′

t

Prop. 21

ρ
▷∗

dσ↶ρ

����

t′

dσ

∗��
s

ρ↷σ
▷∗ s′

5 The T m-measure

In this section, we define the T m-measure (Def. 25) and we prove that it is decreas-
ing (Thm. 32). We start with some preliminary notions.

A partially ordered set (X, >) is well-founded if there are no infinite decreasing chains.
M(X) denotes the set of finite multisets over a set X, which are functions m : X → N0 such
that m(x) > 0 for finitely many values of x ∈ X. We write m + n for the sum of multisets,
and x ∈ m if m(x) > 0. We write [x1, . . . , xn] for the multiset of elements x1, . . . , xn, taking
multiplicities into account. If X is a finite set and f : X → Y is a function, we use the
“multiset builder” notation [f(x) || x ∈ X] to denote the multiset

∑
x∈X [f(x)]. If (X, >)

is a partially ordered set, we define a binary relation ≻1 on multisets by declaring that
m + [x] ≻1 m + n if x > y for every y ∈ n. The multiset order induced by (X, >) is the strict
order relation on multisets defined by declaring that m ≻ n if and only if m (≻1)+ n. We
recall the following widely known theorem by Dershowitz and Manna [12]:

▶ Theorem 22. If (X, >) is well-founded, then (M(X),≻) is well-founded.

As usual, m ⪰ n stands for (m = n ∨ m ≻ n), and m ⪯ n stands for n ⪰ m. We define an
operation k ⊗m by the recursive equations 0⊗m

def= [] and (1 + k)⊗m
def= m + k ⊗m. The

relation m :≻: n, called the pointwise multiset order, is defined to hold if m and n can be
written as of the forms m = [x1, . . . , xn] and n = [y1, . . . , yn] in such a way that xi > yi for
all i ∈ 1..n. Observe that if m :≻: n then for all k ∈ N0 we have that m ⪰ k ⊗ n. Another
easy-to-check property is that if m :≻: n and m is non-empty then m ≻ n.

A first frustrated attempt As mentioned in the introduction, Turing’s measure, given
by T (M) def= [d || R is a redex occurrence of degree d in M], decreases when contracting the
rightmost redex of highest degree. Our goal is to mend the T -measure in such a way that
contracting any redex decreases the measure. The difficulty is that a redex of degree d may
copy redexes of a higher or equal degree d′ ≥ d. So one can wonder: whenever a redex R of
degree d makes n copies of a redex S of degree d′ ≥ d, in what sense can the copies of S be
considered “smaller” than S? To address this, we generalize the T -measure to a family of
measures TD(M) def= [(d, Td−1(M)) || R is a redex occurrence of degree d ≤ D in M] indexed

P. Barenbaum and C. Sottile 11

by a degree D ∈ N0. Note that T0(M) is the empty multiset because there are no redexes of
degree 0.

Let us try to argue that if d ≤ D and M
d−→β N then TD(M) ≻ TD(N). Here M

d−→β N

means that M →β N by contracting a redex of degree d. Suppose that the contraction of the
redex R : M

d−→β N copies a redex S of degree d′, where we assume that d < d′ ≤ D, producing
n copies S1, . . . , Sn. Note that the contribution of S to the multiset is (d′, Td′−1(M)), and
the contribution of each Si is (d′, Td′−1(N)). By induction on D, we could inductively argue
that Td′−1(M) ≻ Td′−1(N), since d′ − 1 < d′ ≤ D. So far the property would seem to hold.

The problem with this proposal is that a redex R of degree d may still make copies of
redexes of degree exactly d, whose contribution does not necessarily decrease2.

A second frustrated attempt The difficulty is to deal with the situation in which a redex
R of degree d makes n copies of a redex S of the same degree d. A key observation is that
a reduction sequence M

d−→∗
β N must be a development3 of the set of redexes of degree d.

This is because contracting a redex of degree d can only create redexes of degree strictly
less than d, so any redex of degree d that remains after one d−→β-step must be a residual
of a preexisting redex. This motivates our second attempt to define a measure, consisting
of two families of measures T β

≤D(−) and Rβ
D(−), indexed by D ∈ N0 and defined mutually

recursively:
T β

≤D(M) def= [(d,Rβ
d (M)) || R is a β-redex occurrence of degree d ≤ D in M]

Rβ
D(M) def= [T β

≤D−1(M ′) || ρ : M
D−→∗

β M ′]
Note that there are no redexes of degree 0, so T β

≤D(M) may not depend on Rβ
0 (M). In

fact, Rβ
D(M) is defined only for D ≥ 1. The recursive definition is well-founded because

T β
≤D(M) may depend on Rβ

1 (M), . . . ,Rβ
D(M) which in turn may only depend on T β

≤d(M ′)
for d < D. The multiplicity of T β

≤D−1(M ′) in the multiset Rβ
D(M) is given by the number of

reduction sequences that contract only redexes of degree D, that is, the number of different
paths M

D−→∗
m M ′. One important point is that, for the measure Rβ

D(t) to be well defined,

one needs to argue that the number of paths M
D−→∗

m M ′ is finite. Since M
D−→∗

m M ′ is a
development, this is a consequence of the finite developments (FD) property for orthogonal
HRSs [31, Theorem 11.5.11].4

Let us try to argue that if d ≤ D and M
d−→β N then T β

≤D(M) ≻ T β
≤D(N). On the first

hand, if a redex R : M
d−→β N of degree d copies a redex S of exactly the same degree d making

n copies S1, . . . , Sn, the contribution of S to the multiset is (d,Rβ
d (M)), whereas each Si

contributes (d,Rβ
d (N)), and we can argue that Rβ

d (M) ≻ Rβ
d (N), because we can injectively

map each reduction sequence ρ : N
d−→∗

β N ′ to the reduction sequence Rρ : M
d−→β N

d−→∗
β N ′,

2 For example, in M = (λx0. y0→0→0 x0 x0) ((λz0. z0) w0) 1−→β y0→0→0 ((λz0. z0) w0) ((λz0. z0) w0) = N
the measure does not decrease, as T1(M) = [(1, []), (1, [])] = T1(N).

3 Recall that a development of a set of redexes X is a reduction sequence M →∗
β N in which each step

contracts a residual of a redex in X. The residuals of a redex S : t →β s after the contraction of a
redex R : t →β t′ are, informally speaking, the “copies” left of S in t′. For formal definitions see [3,
Section 11.2].

4 Note that FD only ensures that developments are finite. To see that the set {ρ | M
D−→∗

m M ′} is finite,
one should resort to König’s lemma, together with the fact that the STLC is finitely branching. For a
constructive proof, one can use a computable decreasing measure, such as in de Vrijer’s proof of FD [9].

12 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

where Rρ denotes the composition of R and ρ. Furthermore, there is an empty reduction
sequence M

d−→∗
β M contributing an element T β

≤d−1(M) to Rβ
d (M) but not to Rβ

d (N).

On the other hand, if the contraction of a redex R : M
d−→β N of degree d copies a redex

S of strictly greater degree d′ > d making n copies S1, . . . , Sn, the weight of S is (d′,Rβ
d′(M))

and the weight of each Si is (d′,Rβ
d′(N)), and we would need to show that Rβ

d′(M) ≻ Rβ
d′(N).

One way to do so would be to map each reduction sequence ρ : N
d−→∗

β N ′ to a reduction

sequence σ : M
d−→∗

β M ′ such that T β
≤d′−1(M ′) ≻ T β

≤d′−1(N ′). However, there does not seem
to be a way to rule out the possibility that σ might erase R and that M ′ = N ′, which would
yield T β

≤d′−1(M ′) = T β
≤d′−1(N ′), rather than a strict inequality. The root of the problem

seems again to be erasure.

Definition of the T m-measure The T m-measure is based on the ideas described above,
but considering reduction in the λm-calculus rather than in the STLC, to ensure that there
is no erasure. Informally, the T m-measure is defined by means of the two following equations.
These equations are exactly as the ones defining T β

≤D(−) and Rβ
D(−) above, with the only

difference that they deal with λm-terms and →m-reduction rather than with pure λ-terms
and →β-reduction:

T m
≤D(t) def= [(d,Rm

d (t)) || R is a m-redex occurrence of degree d ≤ D in t]

Rm
D (t) def= [T m

≤D−1(t′) || ρ : t
D−→∗

m t′]

To be able to reason about these measures inductively, it will be convenient to define an
auxiliary measure T m

d (t0, t) as the multiset of elements of the form (d,Rm
d (t0)) for each

m-redex occurrence of degree exactly d in t. This auxiliary measure takes two arguments
t0 and t, and it is defined by structural recursion on the second argument (t), while the
first argument (t0) is used to keep track of the original term. Note that, with this auxiliary
definition, we can write T m

≤D(t) as the sum T m
≤D(t) = T m

1 (t, t) + . . . + T m
D (t, t).

To define the measure formally, we start by precisely defining the codomain of the measure.

▶ Definition 23 (Codomain of the T m-measure). For each d ≥ 0, we define a set Td, and for
d ≥ 1 we define a set Rd, mutually recursively:

Td
def= M({(i, b) | 1 ≤ i ≤ d, b ∈ Ri}) Rd

def= M(Td−1)

The sets Td and Rd are partially ordered by the induced multiset ordering on their
elements. Tuples (i, b) are ordered with the lexicographic order, that is, (i, b) > (i′, b′) if and
only if i > i′ ∨ (i = i′ ∧ b ≻ b′). Note that T0 = {[]} and that if d ≤ d′ then Td ⊆ Td′ and
Rd ⊆ Rd′ . Moreover, (Td,≻) and (Rd,≻) are well-founded partial orders by Thm. 22.

Given typable λm-terms t0, t, and d ∈ N0, we define T m
d (t0, t) ∈ Td and T m

≤d(t) ∈ Td,
and if d > 0 we define Rm

d (t) ∈ Rd, by induction on d as follows. Note that T m
d (t0, t) is

defined by a nested induction on t, and it is also defined on memories (T m
d (t0, L)):

P. Barenbaum and C. Sottile 13

▶ Definition 24 (The measures T m
d (−,−), T m

≤d(−), and Rm
d (−)).

T m
d (t0, x) def= []

T m
d (t0, λx. s) def= T m

d (t0, s)

T m
d (t0, s u) def=

T m

d (t0, s′) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

if s = (λx. s′)L and it is of degree d

T m
d (t0, s) + T m

d (t0, u) otherwise
T m

d (t0, s{u}) def= T m
d (t0, s) + T m

d (t0, u)

T m
d (t0,□) def= []

T m
d (t0, L{t}) def= T m

d (t0, L) + T m
d (t0, t)

T m
≤d(t) def=

∑d
i=1 T m

i (t, t)

Rm
d (t) def= [T m

≤d−1(t′) || ρ : t
d−→∗

m t′]

Moreover, the T m-measure itself is defined for λ-terms as follows:

▶ Definition 25. If M is a typable λ-term, T m(M) def= T m
≤D(M) where D := maxdeg(M).

When we write T m
≤D(M), we implicitly regard M as a λm-term without any memorized

terms.
From a higher-level perspective, the T m

d (t0, t) measure defined above is the multiset of
pairs of the form (d,Rm

d (t0)) for each redex of degree d in t. Similarly, T m
≤D(t) is the multiset

of pairs of the form (d,Rm
d (t)) for each redex of degree d ≤ D in t. In particular, T m

0 (t0, t)
and T m

≤0(t) are empty multisets, because there are no redexes of degree 0. Two easy remarks
are that D ≤ D′ implies T m

≤D(t) ⪯ T m
≤D′(t), and that T m

d (t0, tL) = T m
d (t0, t) + T m

d (t0, L).
▶ Remark 26. As mentioned in the preceding discussion, one important point is that for
Rm

d (−) to be well-defined we need to argue that the set {ρ | ∃t′. ρ : t
d−→∗

m t′} is finite. This
is a consequence of Coro. 19.

▶ Example 27. Let ∆ := λx0→0. x0→0(x0→0z0) and W := λy0. w0 and consider the diagram:

t2 = w{Wz}{W} 1
,,

t0 = ∆ W
2 // t1 = (W (Wz)){W}

1 00

1 ..
t4 = w{w{z}}{W}

t3 = (W (w{z})){W} 1 22

Then T m
≤0(t1) = T m

≤0(t2) = T m
≤0(t3) = T m

≤0(t4) = T m
≤1(t4) = T m

≤2(t4) = [], and:

T m
≤2(t0) = [(2,Rm

2 (t0))] Rm
2 (t0) = [T m

≤1(t0), T m
≤1(t1)]

T m
≤2(t1) = T m

≤1(t1) = [(1,Rm
1 (t1)), (1,Rm

1 (t1))] Rm
1 (t1) = [T m

≤0(t1), T m
≤0(t2), T m

≤0(t3), T m
≤0(t4)]

T m
≤2(t2) = T m

≤1(t2) = [(1,Rm
1 (t2))] Rm

1 (t2) = [T m
≤0(t2), T m

≤0(t4)]
T m

≤2(t3) = T m
≤1(t3) = [(1,Rm

1 (t3))] Rm
1 (t3) = [T m

≤0(t3), T m
≤0(t4)]

In particular, T m
≤2(t0) ≻ T m

≤2(t1) ≻ T m
≤2(t2) ≻ T m

≤2(t4) and T m
≤2(t1) ≻ T m

≤2(t3) ≻ T m
≤2(t4).

The T m-measure is decreasing Lastly, we show the main theorem of this section, stating
that if M →β N then T m(M) ≻ T m(N). This theorem is based on three technical results,
that we call high/increase, low/decrease, and forget/decrease:

14 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

1. High/increase (Prop. 29) establishes —perhaps confusingly— that T m
≤d(−) (non-strictly)

increases if one contracts a redex of higher degree D > d. More precisely, if 0 ≤ d < D

and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′). Note that T m

≤d(t) only looks at redexes of degree
i ≤ d, and contracting a redex of degree D > d cannot erase a redex of any degree i ≤ d,
because the λm-calculus is non-erasing. Contracting a redex of degree D can, at most,
replicate redexes of degree i. This property is needed for a technical reason to prove the
low/decrease property, and it relies crucially on the commutation result of the previous
section (Prop. 18).

2. Low/decrease (Prop. 30) establishes that T m
≤D(−) strictly decreases if one contracts

a redex of lower degree d < D. More precisely, if 1 ≤ d ≤ D and t
d−→m t′ then

T m
≤D(t) ≻ T m

≤D(t′). This is the core of the argument, and the most technically difficult
part to prove. It relies crucially on the lifting property of the previous section (Prop. 20).

3. Forget/decrease (Prop. 31) establishes that forgetful reduction (non-strictly) decreases
the measure. More precisely, if t ▷ t′ then T m

≤d(t) ⪰ T m
≤d(t′). This property is used as

a final step in the main theorem, and it relies crucially on postponement of forgetful
reduction, as studied in the previous section (Prop. 21).

Below we sketch the proofs of these three properties. See Prop. 65, Prop. 68, and Prop. 69
in the appendix for detailed proofs. Let us first mention a straightforward lemma.

▶ Lemma 28 (Measure of a substitution). 1. T m
d (t0, t) ⪯ T m

d (t0, t[x := s]). 2. If s is not
a m-abstraction of degree d, then T m

d (t0, t[x := s]) = T m
d (t0, t) + k ⊗ T m

d (t0, s) for some
k ∈ N0.

Proof. By induction on t. See Lem. 64 and Lem. 67 in the appendix for details. ◀

▶ Proposition 29 (High/increase). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d < D and t

D−→m t′ then Rm
d (t) ⪯ Rm

d (t′).
2. If 0 ≤ d < D and t0

D−→m t′
0 then T m

d (t0, t) ⪯ T m
d (t′

0, t).
3. If 0 ≤ d < D and t0

D−→m t′
0 and t

D−→m t′ then T m
d (t0, t) ⪯ T m

d (t′
0, t′).

4. If 0 ≤ d < D and t
D−→m t′ then T m

≤d(t) ⪯ T m
≤d(t′).

Proof. The four items are proved simultaneously by induction on d, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t. Most cases are straightforward.

One interesting situation occurs in item 3 when t = (λx. s)L u is the redex of degree D

contracted by the step t
D−→m t′. Then we resort to the first part of Lem. 28.

Another interesting part of the proof is item 1. Let 1 ≤ d < D and t
D−→m t′ and let us

show that Rm
d (t) ⪯ Rm

d (t′). Indeed, let X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ :

t′ d−→∗
m s′}, and let R : t

D−→m t′. Using Prop. 18, we can define an injective function
φ : X → Y by φ(ρ) := ρ/R. Note that T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt) holds for every ρ ∈ X

using item 4 of the IH (noting that 1 ≤ d− 1 < D holds because 1 ≤ d < D), resorting to
the IH as many times as the length of the reduction s

D−→∗
m s′

ρ. To conclude the proof, let
Z = Y \ φ(X). Then:
Rm

d (t) = [T m
≤d−1(ρtgt) || ρ ∈ X] ⪯(⋆) [T m

≤d−1(φ(ρ)tgt) || ρ ∈ X] =(⋆⋆) [T m
≤d−1(σtgt) || σ ∈

φ(X)]
⪯ [T m

≤d−1(σtgt) || σ ∈ φ(X)] + [T m
≤d−1(σtgt) || σ ∈ Z] = [T m

≤d−1(σtgt) || σ ∈ Y] =
Rm

d (t′)

P. Barenbaum and C. Sottile 15

To justify the step marked with (⋆), note that [T m
≤d−1(ρtgt) || ρ ∈ X] =

∑
ρ∈X [T m

≤d−1(ρtgt)] ⪯∑
ρ∈X [T m

≤d−1(φ(ρ)tgt)] = [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] because T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt), as

we have already claimed. To justify the step marked with (⋆⋆), note that φ is injective. ◀

▶ Proposition 30 (Low/decrease). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d ≤ j ≤ D and t

d−→m t′ then Rm
j (t) ≻ Rm

j (t′).
2. If 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0 then T m

j (t0, t) :≻: T m
j (t′

0, t).
3. If 1 ≤ d ≤ D and t0

d−→m t′
0 and t

d−→m t′, then for all m ∈ Td−1 we have T m
d (t0, t) ≻

T m
d (t′

0, t′) + m.
4. If 1 ≤ d < j ≤ D and t0

d−→m t′
0 and t

d−→m t′ then T m
j (t0, t) ⪰ T m

j (t′
0, t′).

5. If 1 ≤ d ≤ D and t
d−→m t′ then T m

≤D(t) ≻ T m
≤D(t′).

Proof. The five items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2–4 proceed by a nested induction on t. We mention some of the interesting parts of
the proof.

For item 1, let 1 ≤ d ≤ j ≤ D and t
d−→m t′ and let us show that Rm

j (t) ≻ Rm
j (t′). Let

X := {ρ | (∃s) ρ : t
j−→∗

m s} and Y := {σ | (∃s′) σ : t′ j−→∗
m s′}, and consider two subcases:

If d = j, let R : t
d−→m t′, define an injective function φ : Y → X by φ(σ) = R σ, let

Z = X \ φ(Y), and note that:
Rm

j (t) = [T m
≤j−1(ρtgt) || ρ ∈ φ(Y)] + [T m

≤j−1(ρtgt) || ρ ∈ Z]
= [T m

≤j−1(Rσtgt) || σ ∈ Y] + [T m
≤j−1(ρtgt) || ρ ∈ Z] since φ is injective

= [T m
≤j−1(σtgt) || σ ∈ Y]+[T m

≤j−1(ρtgt) || ρ ∈ Z] = Rm
j (t′)+[T m

≤j−1(ρtgt) || ρ ∈ Z]
To conclude that Rm

j (t) ≻ Rm
j (t′), note that Z is non-empty because it contains the

empty reduction ϵ : t
d−→∗

m t.
If d < j, we construct a function φ : Y → X as follows. By Prop. 20, for each
reduction σ : t′ j−→∗

m s′ there exist sσ, uσ, and reductions φ(σ) : t
j−→∗

m sσ and s′ j−→∗
m uσ

and sσ
d−→+

m uσ. Note that for every σ ∈ Y we have T m
≤j−1(φ(σ)tgt) = T m

≤j−1(sσ) ≻†

T m
≤j−1(uσ) ⪰‡ T m

≤j−1(s′) = T m
≤j−1(σtgt) where † holds by item 5 of the IH observing that

1 ≤ d ≤ j − 1 < D because d < j ≤ D, and ‡ holds by high/increase (Prop. 29) observing
that 0 ≤ j − 1 < j. To conclude the proof, let Z = X \ φ(Y), and note that:
Rm

j (t) = [T m
≤j−1(ρtgt) || ρ ∈ φ(Y)] + [T m

≤j−1(ρtgt) || ρ ∈ Z]
= [T m

≤j−1(φ(σ)tgt) || σ ∈ Y] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

⪰ [T m
≤j−1(φ(σ)tgt) || σ ∈ Y] ≻(⋆) [T m

≤j−1(σtgt) || σ ∈ Y] = Rm
j (t′)

For the step marked with (⋆), note that [T m
≤j−1(φ(σ)tgt) || σ ∈ Y] :≻: [T m

≤j−1(σtgt) || σ ∈ Y]
because T m

≤j−1(φ(σ)tgt) ≻ T m
≤j−1(σtgt) holds by the claim above where, moreover, Y is

non-empty because it contains the empty reduction ϵ : t′ j−→∗
m t′.

Another interesting situation occurs in item 3, when t = (λx. s)L u is the redex of degree d

contracted by the step t
d−→m t′. The step is of the form t = (λx. s)L u

d−→m s[x := u]{u}L = t′.
Note that u is not an abstraction of degree d, because it is the argument of an abstraction of
degree d. So by Lem. 28 there exists k ∈ N0 such that T m

d (t′
0, s[x := u]) = T m

d (t′
0, s) + k ⊗

T m
d (t′

0, u). The crucial observation is that T m
d (t0, u) ⪰ (1 + k)⊗T m

d (t′
0, u), which is because

by item 2 we have that T m
d (t0, u) :≻: T m

d (t′
0, u).

Finally, for item 5, let 1 ≤ d ≤ D and t
d−→m t′ and let us show that T m

≤D(t) ≻ T m
≤D(t′).

Indeed:

16 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

T m
≤D(t) =

∑D
i=1 T m

i (t, t) ⪰ T m
d (t, t) +

∑D
j=d+1 T m

j (t, t)
≻ T m

≤d−1(t′) + T m
d (t′, t′) +

∑D
j=d+1 T m

j (t, t) by item 3, taking m := T m
≤d−1(t′)

⪰ T m
≤d−1(t′) + T m

d (t′, t′) +
∑D

j=d+1 T m
j (t′, t′) = T m

≤D(t′) by item 4. ◀

▶ Proposition 31 (Forget/decrease). Let d ∈ N0. Then the following hold:
1. If t ▷ t′ then Rm

d (t) ⪰ Rm
d (t′).

2. If t0 ▷ t′
0 then T m

d (t0, t) ⪰ T m
d (t′

0, t).
3. If t0 ▷ t′

0 and t ▷ t′ then T m
d (t0, t) ⪰ T m

d (t′
0, t′).

4. If t ▷ t′ then T m
≤d(t) ⪰ T m

≤d(t′).

Proof. The four items are proved simultaneously by induction on D, where item 1 resorts
to the IH, and the following items may resort to the previous items without decreasing d.
Items 2 and 3 proceed by a nested induction on t.

The interesting part is item 1, so let t ▷ t′ and let us show that Rm
d (t) ⪰ Rm

d (t′). Let

X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ : t′ d−→∗
m s′}. Define an injective function

φ : Y → X by φ(σ) := σ↶R, resorting to Prop. 21, where σ↶R : t
d−→∗

m sσ. and sσ ▷∗ s′.
Note that for every σ ∈ Y we have T m

≤d−1(φ(σ)tgt) = T m
≤d−1(sσ) ⪰† T m

≤d−1(s′) = T m
≤d−1(σtgt),

where † holds by item 4 of the IH, observing that d − 1 < d. To conclude the proof, let
Z = X \ φ(Y), and note that:
Rm

d (t) = [T m
≤d−1(ρtgt) || ρ ∈ φ(Y)] + [T m

≤d−1(ρtgt) || ρ ∈ Z] ⪰ [T m
≤d−1(ρtgt) || ρ ∈ φ(Y)]

=(⋆) [T m
≤d−1(φ(σ)tgt) || σ ∈ Y] ⪰(⋆⋆) [T m

≤d−1(σtgt) || σ ∈ Y] = Rm
d (t′)

For the step marked with (⋆), note that φ is injective. For the step marked with (⋆⋆),
note that [T m

≤d−1(φ(σ)tgt) || σ ∈ Y] =
∑

σ∈Y [T m
≤d−1(φ(σ)tgt)] ⪰

∑
σ∈Y [T m

≤d−1(σtgt)] =
[T m

≤d−1(σtgt) || σ ∈ Y] because T m
≤d−1(φ(σ)tgt) ⪰ T m

≤d−1(σtgt), as we have already justified. ◀

Finally, we prove the main theorem in this section:

▶ Theorem 32. Let M, N be typable λ-terms such that M →β N . Then T m(M) > T m(N).

Proof. Let D = maxdeg(M) and D′ = maxdeg(N). Let M →m s be the step corresponding
to M →β N . By Lem. 11 note that s ▷ N . Then:

T m(M) = T m
≤D(M) ≻Prop. 30 T m

≤D(s) ⪰Prop. 31 T m
≤D(N) ⪰ T m

≤D′(N) = T m(N)

The last inequality holds because D ≥ D′ since, as is well-known, contraction of a β-redex in
the simply typed λ-calculus cannot create a redex of higher degree. ◀

6 Conclusion

We have defined two decreasing measures for the STLC, the W-measure (Def. 12) and the
T m-measure (Def. 25). These measures are decreasing (Thm. 15 and Thm. 32 respectively)
and, to the best of our knowledge, they provide two new proofs of strong normalization for
the STLC. Both measures are defined constructively and by purely syntactic methods, using
the λm-calculus as an auxiliary tool.

The problem of finding a “straightforward” decreasing measure for β-reduction in the
simply typed λ-calculus is posed as Problem #26 in the TLCA list of open problems [5], and
as Problem #19 in the RTA list of open problems [11].

One strength of the W-measure is that its codomain is simple: each term is mapped to a
natural number. One weakness is that the definition of the W-measure relies on reduction
in the λm-calculus, and computing the W-measure is at least as costly as evaluating the

P. Barenbaum and C. Sottile 17

λ-term itself. Measures based on Gandy’s [16, 10] have similar characteristics. One question
is whether the values of the W-measure and measures based on Gandy’s can be related. It is
not immediate to establish a precise correspondence.

On the other hand, one strength of the T m-measure is that it shows how to extend
Turing’s measure T (−) so that it decreases when contracting any redex. The proof is based
on a delicate analysis of how contracting a redex of degree d may create and copy redexes
of degree d′, depending on whether d < d′, or d = d′, or d > d′. We hope that this may
provide novel insights on why the STLC is SN. The codomain of the T m-measure is not
so simple, as the T m-measure maps each term to a structure of nested multisets. Yet, it is
“reasonably simple”: the fact that the partial orders Td and Rd are well-founded only relies
on the ordinary multiset and lexicographic orderings. The T m-measure is costly to compute;
in particular Rm

d (t) is defined as a sum over all reductions ρ : t
d−→∗

m t′, which may produce a
combinatorial explosion. Another weakness is that our proofs make use of relatively heavy
rewriting machinery, as we have to keep explicit track of witnesses (e.g. in Section 4).

Besides the techniques mentioned in the introduction, other proofs of SN of the STLC can
be found in the literature. For example, David [7] gives a purely syntactic proof of SN relying
on the standardization theorem; Loader [23], as well as Joachimski and Matthes [18], give
combinatorial proofs of SN based on inductive predicates characterizing strongly normalizing
terms. As far as we know, the only proofs that explicitly construct decreasing measures are
those based on Gandy’s.

The idea of keeping “leftover garbage” can be traced back to at least the works of
Nederpelt [21] and Klop [20], who studied non-erasing variants of (possibly) erasing rewriting
systems, in order to relate weak and strong normalization. Many variations of these ideas
have been explored in the past, such as in de Groote’s notion of βS reduction [8] or Neergaard
and Sørensen calculus with memory [25]. Instead of using the λm-calculus, it is possible that
other non-erasing systems may be used. For instance, Gandy [16] translates λ-terms to the
terms of λI-calculus to avoid erasing arguments.

The definition of reduction in the λm-calculus, which allows arbitrary memory in between
the abstraction and the application, is inspired by Accattoli and Kesner’s work on calculi
with explicit substitutions “at a distance” [1]. This mechanism can be traced back, again, to
at least the work of Nederpelt [21].

The definition of the λm-calculus as a means to obtain an increasing measure was inspired
by the fact that, in explicit substitution calculi without erasure, labeled reduction (in the
sense of Lévy labels [22]) increases the sum of the sizes of all the labels in the term [2].

References
1 Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Computer Science

Logic, 24th International Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno,
Czech Republic, August 23-27, 2010. Proceedings, pages 381–395, 2010.

2 Pablo Barenbaum and Eduardo Bonelli. Optimality and the linear substitution calculus. In 2nd
International Conference on Formal Structures for Computation and Deduction, FSCD 2017,
September 3-9, 2017, Oxford, UK, pages 9:1–9:16, 2017. doi:10.4230/LIPIcs.FSCD.2017.9.

3 Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103. Elsevier,
1984.

4 Henk P. Barendregt and Giulio Manzonetto. Turing’s contributions to lambda calculus. In
B. Cooper and J. van Leeuwen, editors, Alan Turing - His Work and Impact, pages 139–143.
Elsevier, 2013.

5 TCLA Editorial Board. TLCA list of open problems. http://tlca.di.unito.it/opltlca/,
2006.

https://doi.org/10.4230/LIPIcs.FSCD.2017.9
http://tlca.di.unito.it/opltlca/

18 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

6 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.
Sci., 777:184–191, 2019. doi:10.1016/j.tcs.2019.01.015.

7 René David. Normalization without reducibility. Ann. Pure Appl. Log., 107(1-3):121–130,
2001. doi:10.1016/S0168-0072(00)00030-0.

8 Philippe de Groote. The conservation theorem revisited. In Marc Bezem and Jan Friso
Groote, editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 163–178. Springer, 1993.
doi:10.1007/BFb0037105.

9 Roel de Vrijer. A direct proof of the finite developments theorem. The Journal of symbolic
logic, 50(2):339–343, 1985.

10 Roel de Vrijer. Exactly estimating functionals and strong normalization. In Indagationes
Mathematicae (Proceedings), volume 90, pages 479–493. North-Holland, 1987.

11 Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open problems in
rewriting. In International Conference on Rewriting Techniques and Applications, pages
445–456. Springer, 1991.

12 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commu-
nications of the ACM, 22(8):465–476, 1979.

13 Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Abstracting models of strong
normalization for classical calculi. J. Log. Algebraic Methods Program., 111:100512, 2020.
doi:10.1016/j.jlamp.2019.100512.

14 Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky. Clocked lambda
calculus. Math. Struct. Comput. Sci., 27(5):782–806, 2017. doi:10.1017/S0960129515000389.

15 Robin O. Gandy. An early proof of normalization by A.M. Turing. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 453–455. Academic Press, 1980.

16 Robin O. Gandy. Proofs of strong normalization. In J.P. Seldin and J.R. Hindley, editors, To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 457–477.
Academic Press, 1980.

17 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

18 Felix Joachimski and Ralph Matthes. Short proofs of normalization for the simply- typed
lambda-calculus, permutative conversions and go"del’s T. Arch. Math. Log., 42(1):59–87, 2003.
doi:10.1007/s00153-002-0156-9.

19 Zurab Khasidashvili, Mizuhito Ogawa, and Vincent van Oostrom. Uniform normalisation
beyond orthogonality. In Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th
International Conference, RTA 2001, Utrecht, The Netherlands, May 22-24, 2001, Proceedings,
volume 2051 of Lecture Notes in Computer Science, pages 122–136. Springer, 2001. doi:
10.1007/3-540-45127-7_11.

20 Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.
21 Robert Pieter Nederpelt Lazarom. Strong normalization in a typed lambda calculus with lambda

structured types. PhD thesis, TU Eindhoven, 1973.
22 Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,

Université de Paris 7, 1978.
23 Ralph Loader. Notes on simply typed lambda calculus. Technical Report ECS-LFCS-98-381,

University of Edinburgh, 1998.
24 Paul-André Melliès. Axiomatic rewriting theory I: A diagrammatic standardization theorem.

In Aart Middeldorp, Vincent van Oostrom, Femke van Raamsdonk, and Roel C. de Vrijer,
editors, Processes, Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan
Willem Klop, on the Occasion of His 60th Birthday, volume 3838 of Lecture Notes in Computer
Science, pages 554–638. Springer, 2005. doi:10.1007/11601548_23.

https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/S0168-0072(00)00030-0
https://doi.org/10.1007/BFb0037105
https://doi.org/10.1016/j.jlamp.2019.100512
https://doi.org/10.1017/S0960129515000389
https://doi.org/10.1007/s00153-002-0156-9
https://doi.org/10.1007/3-540-45127-7_11
https://doi.org/10.1007/3-540-45127-7_11
https://doi.org/10.1007/11601548_23

P. Barenbaum and C. Sottile 19

25 Peter Møller Neergaard and Morten Heine Sørensen. Conservation and uniform normalization
in lambda calculi with erasing reductions. Inf. Comput., 178(1):149–179, 2002. doi:10.1006/
inco.2002.3153.

26 Tobias Nipkow. Higher-order critical pairs. In Proceedings 1991 Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 342–343. IEEE Computer Society, 1991.

27 Jan von Plato. Gentzen’s proof of normalization for natural deduction. Bulletin of Symbolic
Logic, 14(2):240–257, 2008.

28 Dag Prawitz. Natural deduction: a proof-theoretical study. PhD thesis, Almqvist & Wiksell,
1965.

29 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism,
volume 149. Elsevier, 2006.

30 William W. Tait. A realizability interpretation of the theory of species. In Rohit Parikh,
editor, Logic Colloquium, pages 240–251, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

31 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

https://doi.org/10.1006/inco.2002.3153
https://doi.org/10.1006/inco.2002.3153

20 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

A Technical appendix

A.1 Proofs of Section 2 — The λm-calculus
In this section we give detailed proofs of the results about the λm-calculus stated in Section 2.

▶ Remark 33. t{s} is a m-abstraction if and only if t is a m-abstraction.

▶ Lemma 34 (Substitution lemma). Let Γ, x : A ⊢ t : B and Γ ⊢ s : A. Then Γ ⊢ t[x := s] : B.

Proof. Straightforward by induction on t. ◀

▶ Proposition 35 (Subject reduction). Let Γ ⊢ t : A and t→m s. Then Γ ⊢ s : A.

Proof. Straightforward by induction on the derivation of the step t →m s, resorting to
Lem. 34 for the base case, when there is a m-reduction step at the root. ◀

A.1.1 Confluence of the λm-calculus
▶ Proposition 36 (Confluence). The λm-calculus is confluent. That is, if t1 →∗

m t2 and
t1 →∗

m t3, there exists a term t4 such that t2 →∗
m t4 and t3 →∗

m t4.

Proof. The proof can be done following standard techniques. For example, following Tait
and Martin-Löf’s technique, we may define a notion of simultaneous reduction ⇒m that
allows to contract many redexes simultaneously, i.e. allowing the complete development of
any set of redexes on the starting term. Then it suffices to show that →m⊆⇒m⊆→∗

m and
that ⇒m enjoys the diamond property, i.e. that if t1 ⇒m t2 and t1 ⇒m t3 there exists a
term t4 such that t2 ⇒m t4 and t3 ⇒m t4. The key lemma is:

t⇒m t′ and s⇒m s′ implies t[x := s]⇒m t′[x := s′]

The key diagrams in the proof that ⇒m enjoys the diamond property are:

(λx. t1)L1 s2 +3

��

(λx. t2)L2 s2

��
t3[x := s3]{s3}L3 +3 t4[x := s4]{s4}L4

(λx. t1)L1 s2 +3

��

t2[x := s2]{s2}L2

��
t3[x := s3]{s3}L3 +3 t4[x := s4]{s4}L4

◀

A.1.2 Simplification of a λm-term
▶ Definition 37 (Generalization of notions to memories). We generalize some of the notions
to memories as follows:
1. The reduction relation →m is extended to operate on memories with the two following

inductively defined rules:
1.1 If t→m t′ then L{t}→m L{t′}.
1.2 If L→m L′ then L{t}→m L′{t}.

2. The max-degree is extended to memories as follows: maxdeg(□) = 0 and maxdeg(L{t}) =
max(maxdeg(L), maxdeg(t)).

▶ Lemma 38 (Terms reduce to its simplification). For every term t and for all k ≥ 1 we have
that t→∗

m Sk(t).

P. Barenbaum and C. Sottile 21

Proof. To prove it by induction, we generalize the statement to memories, i.e. L→∗
m Sk(L).

We proceed by simultaneous induction on t and L:
1. t = x: Immediate, as x→∗

m x = Sk(x) in zero steps.
2. t = λx. s: Then λs. →∗

m λx. Sk(s) = Sk(λx. s) by IH.
3. t = (λx. s)L u where (λx. s)L is a m-abstraction of degree k: By IH (λx. s)L u →∗

m
(λx. Sk(s))Sk(L) Sk(u)→m Sk(s)[x := Sk(u)]{Sk(u)}Sk(L) = Sk((λx. s)L u) = Sk(t).

4. t = s u where s is not a m-abstraction of degree k: By IH s u→∗
m Sk(s) Sk(u) = Sk(s u) =

Sk(t).
5. t = s{u}: By IH s{u}→∗

m Sk(s){Sk(u)} = Sk(s{u}) = Sk(t).
6. L = □: Immediate, as □→∗

m □ = Sk(□) in zero steps.
7. L = L′{t}: By IH L′{t}→∗

m Sk(L′){Sk(t)} = Sk(L′{t}).
◀

▶ Lemma 39 (Substitution of terms of lower type does not create abstractions). If h(type(t)) >

h(type(s)) and t not a m-abstraction, then t[x := s] is not a m-abstraction.

Proof. By induction on t:
1. t = y: We claim that y ̸= x. Indeed, note that the type of y is type(t) but the type of x is

type(s). By contradiction, suppose that x = y. Then type(t) = type(s) and in particular
h(type(t)) > h(type(s)) = h(type(t)), which is impossible. Then we have that y ̸= x, so
t[x := s] = y[x := s] = y, which is not a m-abstraction.

2. t = λx. t′: Impossible, since t is not a m-abstraction by hypothesis.
3. t = t1 t2: Then t[x := s] = t1[x := s] t2[x := s] is trivially not an abstraction.
4. t = t1{t2}: Note that t1 is not a m-abstraction by Rem. 33. Furthermore, note that

type(t1) = type(t) so in particular h(type(t1)) = h(type(t)) > h(type(s)). We are under
the conditions to apply the IH on t1, hence t1[x := s] is not a m-abstraction. To conclude,
note that t[x := s] = t1[x := s]{t2[x := s]} cannot be a m-abstraction by Rem. 33.

◀

▶ Lemma 40 (Simplification does not create abstractions). If h(type(t)) ≥ k and maxdeg(t) ≤ k

and t is not a m-abstraction, then Sk(t) is not a m-abstraction.

Proof. By induction on t:
1. t = x: Then Sk(x) = x is not a m-abstraction.
2. t = λx. s: Impossible, since t is not a m-abstraction by hypothesis.
3. t = (λx. s)L u where (λx. s)L is a m-abstraction of degree k: We claim that this case

is impossible. Writing the types explicitly, we have that type(t) = B with h(B) =
h(type(t)) ≥ k by hypothesis. Then the type of the function must be of the form
type(λx. s) = A→ B. But note that h(type(λx. s)) = h(A→ B) > h(B) ≥ k. This means
that (λx. s)L cannot be of degree k, contradicting the hypothesis of this case.

4. t = s u where s is not a m-abstraction of degree k: Then Sk(t) = s u = Sk(s) Sk(u) is not
a m-abstraction.

5. t = s{u}: Note that type(s) = type(t), so in particular h(type(s)) = h(type(t)) ≥ k.
Moreover, maxdeg(s) ≤ maxdeg(t) ≤ k and s is not a m-abstraction by Rem. 33. We
are under the conditions to apply the IH on s, hence Sk(s) is not a m-abstraction. To
conclude, note that Sk(t) = Sk(s){Sk(u)} cannot be a m-abstraction by Rem. 33.

◀

▶ Lemma 41 (Properties of the max-degree).
1. maxdeg(tL) = max(maxdeg(t), maxdeg(L))

22 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

2. If maxdeg(t) < k and maxdeg(s) < k and h(type(s)) < k then maxdeg(t[x := s]) < k.

Proof. Item 1 is straightforward by induction on L, since maxdeg(t{s}) = max(maxdeg(t), maxdeg(s)).
For item 2, we proceed by induction on t:
1. t = y: We consider two subcases, depending on whether y = x or not. If y = x, then

maxdeg(x[x := s]) = maxdeg(s) < k. If y ̸= x, then maxdeg(y[x := s]) = maxdeg(y) =
maxdeg(t) < k.

2. t = λy. t′: By α-conversion we assume that x ̸= y. Note that maxdeg(t′) = maxdeg(λy. t′) =
maxdeg(t) < k by hypothesis. Then maxdeg((λy. t′)[x := s]) = maxdeg(λy. t′[x := s]) =
maxdeg(t′[x := s]) < k by IH.

3. t = t1 t2: Note that maxdeg(t1) ≤ maxdeg(t1 t2) = maxdeg(t) < k and, similarly,
maxdeg(t2) < k. This means that we can apply the IH to obtain that maxdeg(t1[x :=
s]) < k and maxdeg(t2[x := s]) < k. We proceed by case analysis, depending on whether
h(type(t1)) < k or h(type(t1)) ≥ k:

3.1 If h(type(t1)) < k then, by the substitution lemma (Lem. 34), the terms t1[x := s] and
t1 have the same type. In particular, t1[x := s] t2[x := s] cannot be a redex of degree
k or greater, since h(type(t1[x := s])) < k. As a consequence, if t1[x := s] t2[x := s] is
a redex, its degree is at most k − 1. Hence maxdeg((t1 t2)[x := s]) = maxdeg(t1[x :=
s] t2[x := s]) ≤ max(k − 1, maxdeg(t1[x := s]), maxdeg(t2[x := s])) < k.

3.2 If h(type(t1)) ≥ k, note that t1 cannot be a m-abstraction, because then t = t1 t2
would be a redex of degree k or greater, but by hypothesis we know that maxdeg(t) <

k. Note that we are under the conditions of Lem. 39, so we know that t1[x :=
s] is not a m-abstraction. In particular, t1[x := s] t2[x := s] cannot be a redex.
Hence maxdeg((t1 t2)[x := s]) = maxdeg(t1[x := s] t2[x := s]) = max(maxdeg(t1[x :=
s]), maxdeg(t2[x := s])) < k.

4. t = t1{t2}: Note that maxdeg(t1) ≤ maxdeg(t1{t2}) = maxdeg(t) < k and, similarly,
maxdeg(t2) < k. This means that we can apply the IH to obtain that maxdeg(t1[x :=
s]) < k and maxdeg(t2[x := s]) < k. Hence maxdeg((t1{t2})[x := s]) = maxdeg(t1[x :=
s]{t2[x := s]}) = max(maxdeg(t1[x := s]), maxdeg(t2[x := s])) < k.

◀

▶ Lemma 42 (Simplification decreases the max-degree). Suppose that k ≥ 1. If maxdeg(t) ≤ k

then maxdeg(Sk(t)) < k.

Proof. Let k ≥ 1 be such that maxdeg(t) ≤ k. We argue that maxdeg(Sk(t)) < k, that is, all
the redexes in t have degree less than k. To prove it by induction, we generalize the statement
to memories, proving also that maxdeg(Sk(L)) < k. We prove the statement simultaneously
by induction on t and L:
1. t = x: Then Sk(x) = x has no redexes, so maxdeg(x) = 0 < 1 ≤ k.
2. t = λx. s: Note that maxdeg(s) = maxdeg(λx. s) ≤ k so by IH maxdeg(Sk(s)) < k.

Moreover, maxdeg(Sk(λx. s)) = maxdeg(λx. Sk(s)) = maxdeg(Sk(s)) < k.
3. t = (λx. s)L u where (λx. s)L is a m-abstraction of degree k: Note that maxdeg(s) ≤

maxdeg(t) because any redex in the subterm s is also a redex in the whole term t, so in
particular maxdeg(s) ≤ k and we may apply the IH on s to conclude that maxdeg(Sk(s)) <

k. Similarly, by IH, we have that maxdeg(Sk(L)) < k and maxdeg(Sk(u)) < k.
Since t is typable, its type is of the form type(t) = B with type((λx. s)L) = A→ B and
type(u) = A. Note that h(type(u)) = h(A) < h(A→ B) = k since (λx. s)L is of degree k

by hypothesis of this case.

P. Barenbaum and C. Sottile 23

To conclude this case, note that:

maxdeg(Sk(t))
= maxdeg(Sk(s)[x := Sk(u)]{Sk(u)}Sk(L))

by definition
≤ max(maxdeg(Sk(s)[x := Sk(u)]), maxdeg(Sk(u)), maxdeg(Sk(L)))

by Lem. 41 (1)
< max(k, k, k)

by Lem. 41 (2) and the IH
= k

For the last inequality, we use the fact that h(type(u)) < k.
4. t = s u where s is not a m-abstraction of degree k: Note that maxdeg(s) ≤ maxdeg(t)

because any redex in the subterm s is also a redex in the whole term t, so in particular
maxdeg(s) ≤ k and we may apply the IH on s to conclude that maxdeg(Sk(s)) < k.
Similarly, by IH, we have that maxdeg(Sk(u)) < k.
We proceed by case analysis, depending on whether h(type(s)) < k or h(type(s)) ≥ k:

4.1 If h(type(s)) < k, then by Lem. 38 we know that s →∗
m Sk(s) and by subject reduc-

tion (Prop. 3) we have that type(s) = type(Sk(s)). In particular, Sk(s) Sk(u) cannot
be a redex of degree k or greater, because h(type(Sk(s))) = h(type(s)) < k. That is, if
Sk(s) Sk(u) is a redex, its degree is at most k− 1. Hence we have that maxdeg(Sk(t)) =
maxdeg(Sk(s) Sk(u)) ≤ max(k − 1, maxdeg(Sk(s)), maxdeg(Sk(u))) < k.

4.2 If h(type(s)) ≥ k, note that s cannot be a m-abstraction. Indeed, we know by
hypothesis of this case that s is not an abstraction of degree k. Furthermore, s

cannot be an abstraction of degree k′ > k, because then t = s u would be a redex
of degree k′ > k, but then we would have that k < k′ ≤ maxdeg(t) ≤ k, which is a
contradiction. Since s is not a m-abstraction, maxdeg(s) ≤ k, and h(type(s)) ≥ k,
we are under the conditions to apply Lem. 40 to conclude that Sk(s) is not a m-
abstraction. This means that Sk(s) Sk(u) cannot be a redex. Hence we have that
maxdeg(Sk(t)) = maxdeg(Sk(s) Sk(u)) = max(maxdeg(Sk(s)), maxdeg(Sk(u))) < k.

5. t = s{u}: Note that maxdeg(s) ≤ maxdeg(t), so in particular maxdeg(s) ≤ k and we
may apply the IH on s to conclude that maxdeg(Sk(s)) < k. Similarly, by IH, we have
that maxdeg(Sk(u)) < k. Hence we have that maxdeg(Sk(t)) = maxdeg(Sk(s){Sk(u)}) =
max(maxdeg(Sk(s)), maxdeg(Sk(u))) < k.

6. L = □: Immediate, as maxdeg(□) = 0 < 1 ≤ k.
7. L = L′{t}: Similar to case 5 of this lemma.

◀

▶ Proposition 43 (Simplification is normalization). t→∗
m S∗(t) and S∗(t) is a →m-normal

form.

Proof. Let k be the max-degree of t. For each 0 ≤ i ≤ k we define S>i(t) as follows, by
induction on k − i:

S>k(t) def= t

S>i(t)
def= Si+1(S>i+1(t)) for each 0 ≤ i < k

That is, S>i(t)
def= Si+1(. . . Sk−1(Sk(t))). Note that S>k(t) = t and S>0(t) = S∗(t). Let us

prove each of the two parts of the statement:

24 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

1. To show that t →∗
m S∗(t), note that for each 1 ≤ i ≤ k we have that S>i(t) →∗

m
Si(S>i(t)) = S>i−1(t) by Lem. 38. Hence:

t = S>k(t)→∗
m S>k−1(t) . . .→∗

m S>i(t)→∗
m S>i−1(t) . . .→∗

m S>0(t) = S∗(t)

2. To show that S∗(t) is a →m-normal form, we claim that for each 0 ≤ i ≤ k we have
that maxdeg(S>i(t)) ≤ i. We proceed by induction on k − i. In the base case, we have
that i = k, so maxdeg(S>k(t)) = maxdeg(t) = k since k is the max-degree of t. For the
induction step, let k− i > 0, so 0 ≤ i < k. By IH we have that maxdeg(S>i+1(t)) ≤ i + 1.
Then maxdeg(S>i(t)) = maxdeg(Si+1(S>i+1(t))) < i + 1 by Lem. 42. This means that
maxdeg(S>i(t)) ≤ i, as required.

◀

A.1.3 Forgetful reduction
The forgetful reduction relation is generalized to operate on substitution contexts so that,
for example, (□{x}{y}) ▷ (□{y}).

▶ Lemma 44 (Properties of forgetful reduction).
1. If t ▷ t′ then tL ▷ t′L.
2. If L ▷ L′ then tL ▷ tL′.
3. If t ▷ t′ then t[x := s] ▷ t′[x := s].
4. If s ▷ s′ then t[x := s] ▷∗ t[x := s′] (in zero or more steps).

Proof.
Items 1 and 2 are straightforward by induction on L.
Items 3 and 4 are straightforward by induction on t. For item 4, note that when t = y

with y ̸= x, we have that y[x := s] = y ▷∗ y = y[x := s′] in exactly zero steps. Note also
that more that one step of ▷ may be required when t is an application or a wrapper.

◀

▶ Lemma 45 (Local commutation of reduction and forgetful reduction). If t ▷ s and t→m t′,
there exists a term s′ such that t′ ▷+ s′ and s→=

m s′, where ▷+ is the transitive closure of
▷, and →=

m is the reflexive closure of →m. Graphically:

t

��

▷ s

=��
t′ ▷+ s′

Proof. By induction on t:
1. t = x: Note that this case is impossible, since there are no steps x→m t′.
2. t = λx. t1: Since λx. t1 →m t′, we know that t′ must be of the form t′ = λx. t′

1 with
t1 →m t′

1. Note that the ▷ step is internal, that is, λx. t1 ▷ λx. s1 = s with t1 ▷ s1. By
IH there exists s′

1 such that t′
1 ▷+ s′

1 and s1 →=
m s′

1. Taking s′ := λx. s′
1 we have:

λx. t1

��

▷ λx. s1

=
��

λx. t′
1 ▷+ λx. s′

1

3. t = t1 t2: We consider three subcases, depending on whether the step t1 t2 →m t′ is a
→m step at the root, internal to t1, or internal to t2:

P. Barenbaum and C. Sottile 25

3.1 If the →m step is at the root, then t1 is a m-abstraction of the form t1 = (λx. t11)L
and the step is of the form t = (λx. t11)L t2 →m t11[x := t2]{t2}L = t′. Moreover, since
t = (λx. t11)L t2 ▷ t′, we consider three further subcases, depending on whether the
step t ▷ s is internal to t11, internal to L, or internal to t2:

3.1.1 If the ▷ step is internal to t11, then s = (λx. s11)L t2 with t11 ▷ s11. Taking
s′ := s11[x := t2]{t2}L we have:

(λx. t11)L t2

��

▷ (λx. s11)L t2

��
t11[x := t2]{t2}L ▷ s11[x := t2]{t2}L

For the ▷ step at the bottom, by Lem. 44 (1) it suffices to show that t11[x := t2] ▷
s11[x := t2]. This is a consequence of Lem. 44 (3).

3.1.2 If the ▷ step is internal to L, then s = (λx. t11)L′ t2 with L ▷ L′. Taking s′ :=
t11[x := t2]{t2}L′ we have:

(λx. t11)L t2

��

▷ (λx. t11)L′ t2

��
t11[x := t2]{t2}L ▷ t11[x := t2]{t2}L′

The ▷ step at the bottom holds by Lem. 44 (2).
3.1.3 If the ▷ step is internal to t2, then s = (λx. t11)L s′

2 with t2 ▷ s2. Taking s′ :=
t11[x := t2]{s′

2}L we have:

(λx. t11)L t2

��

▷ (λx. t11)L s2

��
t11[x := t2]{t2}L ▷+ t11[x := s2]{s2}L

For the bottom of the diagram, note that: t11[x := t2] ▷∗ t11[x := s2] by Lem. 44 (4).
Hence t11[x := t2]{t2} ▷∗ t11[x := s2]{t2} ▷ t11[x := s2]{s2}. Resorting to
Lem. 44 (1) we conclude.

3.2 If the →m step is internal to t1, the step is of the form t1 t2 →m t′
1 t2 with t1 →m t′

1.
We consider two further subcases, depending on whether the ▷ step is internal to t1
or internal to t2:

3.2.1 If the ▷ step is internal to t1, then s = s1 t2 with t1 ▷ s1. By IH there exists s′
1

such that t′
1 ▷+ s′

1 and s1 →=
m s′

1. Taking s′ := s′
1 t2 we have:

t1 t2

��

▷ s1 t2
=��

t′
1 t2 ▷+ s′

1 t2

3.2.2 If the ▷ step is internal to t2, then s = t1 s2 with t2 ▷ s2. Taking s′ := t′
1 s2 we

have:

t1 t2

��

▷ t1 s2

��
t′
1 t2 ▷ t′

1 s2

3.3 If the →m step is internal to t2, the proof is similar to the previous case.

26 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

4. t = t1{t2}: We consider two subcases, depending on whether the step t1{t2}→m t′ is
internal to t1 or internal to t2:

4.1 If the →m step is internal to t1, then t1{t2} →m t′
1{t2} = t′ with t1 →m t′

1. We
consider three further subcases, depending on whether the step t1{t2} ▷ s is at the
root of the wrapper, internal to t1, or internal to t2:

4.1.1 If the ▷ step is at the root of the wrapper, then t1{t2} ▷ t1 = s. Taking s′ := t′
1

we have:

t1{t2}

��

▷ t1

��
t′
1{t2} ▷ t′

1

4.1.2 If the ▷ step is internal to t1, then s = s1{t2} with t1 ▷ s1, and we conclude by IH
similarly as for case 3.2.1.

4.1.3 If the ▷ step is internal to t2, then s = t1{s2} with t2 ▷ s2, and we conclude taking
s′ := t′

1{s2} similarly as for case 3.2.2.
4.2 If the →m step is internal to t2, then t1{t2} →m t1{t′

2} = t′ with t2 →m t′
2. We

consider three further subcases, depending on whether the step t1{t2} ▷ s is at the
root of the wrapper, internal to t1, or internal to t2:

4.2.1 If the ▷ step is at the root of the wrapper, then t1{t2} ▷ t1 = s. Taking s′ := t1
we have:

t1{t2}

��

▷ t1

t1{t′
2} ▷ t1

4.2.2 If the ▷ step is internal to t1, then t1{t2} ▷ s1{t2} = s with t1 ▷ s1, and we
conclude taking s′ := s1{t′

2} similarly as for case 3.2.2.
4.2.3 If the ▷ step is internal to t2, then t1{t2} ▷ t1{s2} = s with t2 ▷ s2, and we

conclude by IH similarly as for case 3.2.1.
◀

▶ Proposition 46 (Forgetful reduction commutes with reduction). If t ▷+ s and t →∗
m t′,

there exists a term s′ such that t′ ▷+ s′ and s→∗
m s′. Graphically:

t

∗��

▷+ s

∗��
t′ ▷+ s′

Furthermore, if t ▷+ s and t is a →m-normal form, then s is also a normal form.

Proof. First we claim that if t ▷+ s and t→m t′, there exists a term s′ such that t′ ▷+ s′

and s →=
m s′. This can be seen by induction on the number of ▷ steps in a reduction

sequence t ▷+ s, resorting to the local commutation lemma (Lem. 45).
The main statement of the proposition can be seen by induction on the number of steps

in a reduction sequence t→∗
m t′, resorting to the claim.

For the “furthermore” part in the statement, it suffices to show that if t ▷ s in one
step and t is a →m-normal form, then s is also a normal form. This is straightforward by
induction on t. ◀

P. Barenbaum and C. Sottile 27

▶ Lemma 47 (Reduce/forget lemma). Let M →β N be a β-step and let M →m s be the
corresponding step in λm. Then s ▷ N .

Proof. We proceed by induction on M :
1. M = x: Impossible, as there are no steps x→β N .
2. M = λx. M1: Then the step must be of the form M = λx. M1 →β λx. N1 = N with

M1 →β N1, and the corresponding step must be of the form M = λx. M1 →m λx. s1 = s

where M1 →m s1 is the step corresponding to M1 →β N1. By IH s1 ▷ N1, so s =
λx. s1 ▷ λx. N1 = N .

3. M = M1 M2: We consider three subcases, depending on whether the step is at the root,
internal to M1, or internal to M2:

3.1 If the step is at the root, the step must be of the form M = (λx. M11) M2 →β M11[x :=
M2] with M1 = λx. M11, and the corresponding step is M = (λx. M11) M2 →m
M11[x := M2]{M2} = s. Then:

s = M11[x := M2]{M2}
▷ M11[x := M2]
= N

3.2 If the step is internal to M1, the step must be of the form M1 M2 →β N1 M2 = N with
M1 →β N1, and the corresponding step is M1 M2 →m s1 M2 = s where M1 →m s1 is
the step corresponding to M1 →m N1. By IH we have that s1 ▷ N1, so s = s1 M2 ▷
N1 M2 = N .

3.3 If the step is internal to M2, the proof is similar to the previous case.
◀

A.2 Proofs of Section 4 — Reduction by degrees
In this section we give detailed proofs of the results about reduction by degrees stated in
Section 2.
▶ Remark 48. tL is in d−→m-normal form if and only if t and L are in d−→m-normal form.

▶ Definition 49 (Steps and reduction sequences). A step of degree d —or just step if clear
from the context—– is formally a 5-uple R = (C, xA, t, L, s) where C is an arbitrary context
and λxA. t is an abstraction of degree d. The source of R is Rsrc def= C[(λx. t)L s] and its
target is Rtgt def= C[t[x := s]{s}L]. We write R : t

d−→m s to mean that R is a step of degree d

with source t and target s.
A forgetful step —or just step if clear from the context—– is formally a triple R = (C, t, s)

where C is an arbitrary context and t, s are terms. The source of R is Rsrc def= C[t{s}] and its
target is Rtgt def= C[t]. We write R : t ▷ s to mean that R is a forgetful step of degree with
source t and target s.

Steps of degree d are generalized to reduction sequences of degree d (and, respectively,
forgetful reduction sequences), which are sequences of composable steps of the correspond-
ing kind. Formally, a reduction sequence is a pair ρ = ((t0, . . . , tn), (R1, . . . , Rn)) where
(t0, . . . , tn) is a sequence of n + 1 terms and (R1, . . . , Rn) is a sequence of n steps Rsrc

i = ti−1
and Rtgt

i = ti for all i ∈ 1..n. The notions of source and target are extended to reduction

sequences by declaring ρsrc = t0 and ρtgt = tn. We write ρ : t
d−→∗

m s to mean that ρ is a
reduction sequence of degree d with source t and target s. Similarly, we write ρ : t ▷∗ s to
mean that ρ is a forgetful reduction sequence with source t and target s

28 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

A step R can be implicitly treated as the one-step reduction sequence ((Rsrc, Rtgt), R). If
ρtgt = σsrc, we write ρ σ for their composition, defined as expected.

▶ Definition 50 (Simultaneous reduction of degree d). We define a relation t
d=⇒m t′, meaning

that there is a multi-step of degree d from t to t′, inductively by the following rules:

p-var
x

d=⇒m x

t
d=⇒m t′

p-abs
λx. t

d=⇒m λx. t′

t
d=⇒m t′ s

d=⇒m s′

p-app1

t s
d=⇒m t′ s′

t
d=⇒m t′ L

d=⇒m L′ s
d=⇒m s′ λx. t is of degree d

p-app2

(λx. t)L s
d=⇒m t′[x := s′]{s′}L′

t
d=⇒m t′ s

d=⇒m s′

p-wrap
t{s} d=⇒m t′{s′}

p-ctx-hole
□

d=⇒m □

L
d=⇒m L′ t

d=⇒m t′

p-ctx-wrap
L{t} d=⇒m L′{t′}

If R is the derivation witnessing a multi-step t
d=⇒+

m t′ We say that R is empty if it does

not use the rule p-app2. We write R : t
d=⇒+

m t′ if R uses the rule p-app2 at least once.

▶ Remark 51 (Simultaneous reduction of terms with memory).
1. tL d=⇒m s if and only if s is of the form t′L′ where t

d=⇒m t′ and L d=⇒m L′.
2. Furthermore, the set of derivations R : tL d=⇒m t′L′ is in bijective correspondence with

the set of pairs of derivations R1 : t
d=⇒m t′ and R2 : L d=⇒m L′.

▶ Lemma 52 (Properties of simultaneous reduction by degrees).
1. For each step R : t

d−→m t′ there is a multi-step sim(R) : t
d=⇒m t′.

2. For each multi-step R : t
d=⇒m t′ there is a reduction sequence red(R) : t

d−→∗
m t′.

Moreover, if R is non-empty, then red(R) contains at least one step.
3. Reflexivity: t

d=⇒m t.
4. Substitution: If t

d=⇒m t′ and s
d=⇒m s′ then t[x := s] d=⇒m t′[x := s′].

Proof. All items are straightforward by induction. ◀

▶ Lemma 53 (Commutation of simultaneous reduction by degrees). Let d, D ∈ N0. Given
a step R : t1

d−→m t2 and a multi-step S : t1
D=⇒m t3, there exists a term t4, a multi-step

S/R : t2
D=⇒m t4 and a multi-step R/S : t3

d=⇒m t4. Graphically:

t1
d //

D ��

t2

D��
t3

d
+3 t4

Furthermore:
1. If d ̸= D then R/S is non-empty, i.e. R/S : t3

d=⇒+
m t4.

2. If d ̸= D, the first step of red(R/S) determines the step R. More precisely, suppose that
red(R1/S) and red(R2/S) start with the same step. Then R1 = R2.

Proof. We prove a more general version of the statement including memories, i.e. we prove
that for R : X1

d−→m X2 and S : X1
D=⇒m X3, there exist X4 and S/R : X2

D=⇒m X4 and
R/S : X3

d=⇒m X4, where X1, X2, X3, X4 stand for either terms or memories. We proceed by
induction on X1:

P. Barenbaum and C. Sottile 29

1. t1 = x: Impossible, as there are no reduction steps x
d−→m t2.

2. t1 = λx. s1: Then R : t1 = λx. s1
d−→m λx. s2 = t2 with s1

d−→m s2 and S must be derived
from the p-abs rule, so S : t1 = λx. s1

d=⇒m λx. s3 = t3 with s1
d=⇒m s3. By IH we have

the diagram on the left, and we can construct the one on the right:

s1
d //

D
��

s2
D
��

s3
d
+3 s4

λx. s1
d //

D ��

λx. s2

D��
λx. s3

d
+3 λx. s4

Furthermore, if d ̸= D, using the IH it is easy to show that R/S is non-empty and that
R/S determines R.

3. t1 = s1 u1: We consider three subcases, depending on whether R is at the root, internal
to s1, or internal to u1:

3.1 If R is at the root: Then s1 is a m-abstraction of degree d, i.e. of the form s1 =
(λx. r1)L1, and R : t1 = (λx. r1)L1 u1

d−→m r1[x := u1]{u1}L1 = t2. We consider two
further subcases, depending on whether S is derived using the p-app1 or the p-app2
rule:

3.1.1 If S is derived using the p-app1 rule: Then by Rem. 51 we have that S : t1 =
(λx. r1)L1 u1

D=⇒m (λx. r3)L3 u3 = t3 where r1
D=⇒m r3 and L1

D=⇒m L3 and
u1

D=⇒m u3. By Lem. 52 we can construct the following diagram, using reflexivity
and p-app2 on the bottom:

(λx. r1)L1 u1
d //

D ��

r1[x := u1]{u1}L1

D��
(λx. r3)L3 u3

d
+3 r3[x := u3]{u3}L3

3.1.2 If S is derived using the p-app2 rule: Then note that d = D and we have that
S : t1 = (λx. r1)L1 u1

D=⇒m r3[x := u3]{u3}L3 = t3 where r1
D=⇒m r3 and

L1
D=⇒m L3 and u1

D=⇒m u3. By Lem. 52 we can construct the following diagram,
using reflexivity on the bottom:

(λx. r1)L1 u1
d //

D ��

r1[x := u1]{u1}L1

D��
r3[x := u3]{u3}L3

d
+3 r3[x := u3]{u3}L3

3.2 If R is internal to s1: Then R : t1 = s1 u1
d−→m s2 u1 with s1

d−→m s2. We consider two
further subcases, depending on whether S is derived using the p-app1 or the p-app2
rule:

3.2.1 If S is derived using the p-app1 rule: Then S : t1 = s1 u1
d=⇒m s3 u3 = t3 with

s1
d=⇒m s3 and u1

d=⇒m u3. By IH we have the diagram on the left, and we can
construct the one on the right:

s1
d //

D
��

s2
D
��

s3
d
+3 s4

s1 u1
d //

D
��

s2 u1
D
��

s3 u3
d
+3 s4 u3

30 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

3.2.2 If S is derived using the p-app2 rule: Then s1 is a m-abstraction of degree D, i.e. of
the form s1 = (λx. r1)L1, and by Rem. 51 we have that S : t1 = (λx. r1)L1 u1

D=⇒m

r3[x := u3]{u3}L3 where r1
D=⇒m r3 and L1

D=⇒m L3 and u1
D=⇒m u3. Moreover,

since we know s1 = (λx. r1)L1
d−→m s2 we consider two further subcases, depending

on whether the step s1
d−→m s2 is internal to r1 or internal to L1. These subcases

are similar; we only give the proof for the case in which the step is internal to r1.
In such case s1 = (λx. r1)L1

d−→m (λx. r2)L1 with r1
d−→m r2. By IH we have the

diagram on the left, and we can construct the one on the right, using Lem. 52. On
the right of the diagram, use p-app2. On the bottom of the diagram, note that
u3

d=⇒m u3 by reflexivity so r3[x := u3] d=⇒m r4[x := u3]:

r1
d //

D
��

r2
D
��

r3
d
+3 r4

(λx. r1)L1 u1
d //

D ��

(λx. r2)L1 u1

D��
r3[x := u3]{u3}L3

d
+3 r4[x := u3]{u3}L3

3.3 If R is internal to u1: Then R : t1 = s1 u1
d−→m s1 u2 with u1

d−→m u2. We consider two
further subcases, depending on whether S is derived using the p-app1 or the p-app2
rule:

3.3.1 If S is derived using the p-app1 rule: Then S : t1 = s1 u1
d=⇒m s3 u3 = t3 with

s1
d=⇒m s3 and u1

d=⇒m u3. By IH we have the diagram on the left, and we can
construct the one on the right:

u1
d //

D
��

u2
D
��

u3
d
+3 u4

s1 u1
d //

D
��

s1 u2
D
��

s3 u3
d
+3 s3 u4

3.3.2 If S is derived using the p-app2 rule: Then s1 is a m-abstraction of degree D, i.e. of
the form s1 = (λx. r1)L1, and by Rem. 51 we have that S : t1 = (λx. r1)L1 u1

D=⇒m

r3[x := u3]{u3}L3 where r1
D=⇒m r3 and L1

D=⇒m L3 and u1
D=⇒m u3. By IH

we have the diagram on the left, and we can construct the one on the right. On
the right of the diagram, use p-app2. On the bottom of the diagram, note that
r3

d=⇒m r3 by reflexivity so r3[x := u3] d=⇒m r3[x := u4]:

u1
d //

D
��

u2
D
��

u3
d
+3 u4

(λx. r1)L1 u1
d //

D ��

(λx. r1)L1 u2

D��
r3[x := u3]{u3}L3

d
+3 r3[x := u4]{u4}L3

Furthermore, note that if d ̸= D, then the multi-step R/S : t3
d=⇒m t4 at the bottom of

the diagram must be non-empty. Indeed, case 3.1.1, uses exactly one occurrence of the
p-app2 rule to construct R/S. Case 3.1.2 is impossible, because in such case d = D. In
the remaining cases, the bottom of the diagram is constructed by resorting to the IH,
which means that R/S is non-empty. An important observation is that in case 3.3.2 the
argument is not erased, because it is always kept as a memorized term.
Furthermore, if d ̸= D, to see that the first step of red(R/S) determines the step R,
consider the first step T of red(R/S) and note that it its λ-abstraction can be uniquely
traced back to the λ-abstraction of R (i.e. it has a unique ancestor). Indeed, in case 3.1.1

P. Barenbaum and C. Sottile 31

the step at the bottom has R as its unique ancestor. Case 3.1.2 is impossible, because in
such case d = D. In the remaining cases, it suffices to resort to the IH.

4. t1 = s1{u1}: We consider two subcases, depending on whether R is internal to s1 or
internal to u1:

4.1 If R is internal to s1: Then R : t1 = s1{u1} d−→m s2{u1} = t2. Note that S must be
derived using the p-wrap rule, so S : t1 = s1{u1} d=⇒m s3{u3} = t3. By IH we have
the diagram on the left, and we can construct the one on the right:

s1
d //

D
��

s2
D
��

s3
d
+3 s4

s1{u1} d //

D ��

s2{u1}
D��

s3{u3}
d
+3 s4{u3}

4.2 If R is internal to u1: Similar to the previous case.
Furthermore, if d ̸= D, using the IH it is easy to show that R/S is non-empty and that
R/S determines R.

5. L1 = □: Impossible, as there are no steps □
d−→m L2.

6. L1 = L′
1{t1}: Similar to case 4.

◀

▶ Proposition 54 (Commutation of reduction by degrees). Let d, D ∈ N0. Then d−→m and D−→m

commute. More precisely, given reduction sequences ρ : t1
d−→∗

m t2 and σ : t1
D−→∗

m t3, there
exists a term t4 and reduction sequences σ/ρ : t2

D−→∗
m t4 and ρ/σ : t3

d−→∗
m t4. Graphically:

t1
d // //

D ����

t2

D����
t3

d
// // t4

The reduction sequence ρ/σ is called the projection of ρ after σ and symmetrically for σ/ρ.
Furthermore:
1. If d ̸= D, then ρ/σ contains at least as many steps as ρ.
2. If d ̸= D, then ρ/σ determines ρ. More precisely, if ρ1/σ = ρ2/σ then ρ1 = ρ2.

Proof. Recall that d−→m ⊆
d=⇒m ⊆

d−→∗
m. by Lem. 52. We prove this in two stages.

First, given a reduction sequence ρ : t1
d−→∗

m t2 and a multi-step S : t1
D=⇒m t3, we claim

that there exists a term t4 and constructing ρ/S : t3
d−→∗

m t4 and S/ρ : t2
D=⇒m t4 as follows,

by induction on ρ, resorting to Lem. 53 for the constructions of R/S and S/R.

ϵ/S def= ϵ

(R ρ′)/S def= red(R/S)(ρ′/(S/R))
S/ϵ

def= S
S/(R ρ′) def= (S/R)/ρ′

Recall from Lem. 52 that if R : u
d=⇒m u′ is a multi-step, then red(R) : u

d−→∗
m u′ denotes a

reduction sequence. The inductive cases correspond to the following diagram:

R //

S
��

ρ′
// //

S/R

��
(S/R)/ρ′

��
red(R/S)

// //
ρ′/(S/R)

// //

32 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

For the general case, we proceed by induction on σ resorting to the previous construction for
the constructions of sim(S)/ρ and ρ/sim(S):

ρ/ϵ
def= ρ

ρ/(S σ′) def= (ρ/sim(S))/σ′
ϵ/ρ

def= ϵ

(S σ′)/ρ
def= red(sim(S)/ρ) (σ′/(ρ/sim(S))

Recall from Lem. 52 that if R : u
d−→m u′ is a step, then sim(R) : u

d=⇒m u′ denotes a
multi-step. The inductive cases correspond to the following diagram:

S

��

ρ // //

red(sim(S)/ρ)
��

σ′

����

ρ/sim(S) // //

σ′/(ρ/sim(S))
����(ρ/sim(S))/σ′
// //

Furthermore, if d ̸= D, note that R/S : t
d=⇒+

m s by Lem. 53, so red(R/S) : t
d−→+

m s

by Lem. 52. Then by induction on ρ, we can show that ρ/S contains at least as many steps
as ρ. Finally, by induction on σ, we can show that ρ/σ contains at least as many steps as ρ.

Furthermore, to see that ρ/σ determines ρ, we proceed in stages:
1. First, if red(R1/S) and red(R2/S) start with the same step, then R1 = R2 by Lem. 53.
2. Second, we can see that if ρ1/S = ρ2/S then ρ1 = ρ2 by induction on ρ1. Note that

if ρ1/S = ρ2/S then ρ1 and ρ2 are either both empty or both non-empty, because if
ρ1 = R1 ρ′

1 then by definition ρ1/S = red(R1/S) (ρ′
1/(S/R1)) and Lem. 53 ensures that

R1/S is non-empty whenever d ≠ D, so ρ2/S is non-empty, and hence ρ2 is non-empty. The
base case is immediate. For the induction step, when ρ1 = R1 ρ′

1 and ρ2 = R2 ρ′
2 we have

that ρ1/S = ρ2/S, so by definition red(R1/S) (ρ′
1/(S/R1)) = red(R2/S) (ρ′

2/(S/R2)).
As before Lem. 53 ensures that red(R1/S) and red(R2/S) are non-empty, so they must
start with the same step. Hence by Lem. 53 we have that R1 = R2. This in turn implies
that ρ′

1/(S/R1) = ρ′
2/(S/R2), so by IH ρ′

1 = ρ′
2.

3. Finally, by induction on σ we can see that if ρ1/σ = ρ2/σ then ρ1 = ρ2, resorting to the
previous item.

◀

▶ Lemma 55 (A term reduces to its simplification, by degrees). For every term t and for all
d ≥ 1 we have that t

d−→∗
m Sd(t).

Proof. The proof is essentially the same proof as that of Lem. 38, noting that whenever a
redex is contracted, its degree is exactly d. ◀

▶ Lemma 56 (Substitution of d−→m-normal forms).
1. If t and s are not m-abstractions of degree d, then t[x := s] is not a m-abstraction of

degree d.
2. Let t and s be terms in d−→m-normal form such that s is not an abstraction of degree d.

Then t[x := s] is in d−→m-normal form.

Proof. We prove the two items separately:
1. By induction on t:

1.1 t = x: Then t[x := s] = s, which is not a m-abstraction of degree d by hypothesis.
1.2 t = y ̸= x: Then t[x := s] = y is not a m-abstraction.

P. Barenbaum and C. Sottile 33

1.3 t = λy. t′: By α-conversion we may assume that y /∈ {x} ∪ fv(s). Note that t is
a m-abstraction but, by hypothesis, it cannot be of degree d. By the substitution
lemma (Lem. 34) we have that type(t[x := s]) = type(λy. t′[x := s]) = type(λy. t′), so
t[x := s] = λy. t′[x := s] is a m-abstraction, but it is not of degree d.

1.4 t = t1 t2: Then t[x := s] = t1[x := s] t2[x := s] is an application, hence not a
m-abstraction.

1.5 t = t1{t2}: Since t is not a m-abstraction of degree d, we have that t1 is also not a
m-abstraction of degree d. By IH, t1[x := s] is not a m-abstraction of degree d, so
t[x := s] = t1[x := s]{t2[x := s]} is not a m-abstraction of degree d.

2. By induction t:
2.1 t = x: Then t[x := s] = s is in d−→m-normal form.
2.2 t = y ̸= x: Then t[x := s] = y is in d−→m-normal form.
2.3 t = λy. t′: By α-conversion we may assume that y /∈ {x} ∪ fv(s). By IH, t′[x := s] is in

d−→m-normal form, so t[x := s] = λy. t′[x := s] is also in d−→m-normal form.
2.4 t = t1 t2: By IH, t1[x := s] and t2[x := s] are in d−→m-normal form. To show that the

whole term t[x := s] = t1[x := s] t2[x := s] is a normal form, we are only left to show
that the term does not have a d−→m-redex at the root, i.e. that t1[x := s] is not a
m-abstraction of degree d. Note that t1 cannot be a m-abstraction of degree d, for
otherwise t = t1 t2 would be a redex of degree d, but we know by hypothesis that t is
in d−→m-normal form. Hence by item 1 of this lemma, t1[x := s] is not a m-abstraction
of degree d, as required.

2.5 t = t1{t2}: By IH, t1[x := s] and t2[x := s] are in d−→m-normal form, so t[x := s] =
t1[x := s]{t2[x := s]} is also in d−→m-normal form.

◀

▶ Lemma 57 (Simplification does not create abstractions, by degrees). If t is not a m-
abstraction of degree d, then Sd(t) is not a m-abstraction of degree d.

Proof. By induction on t:
1. t = x: Then Sd(t) = x is not a m-abstraction of degree d.
2. t = λy. s: Note that t is an abstraction but, by hypothesis, it cannot be of degree d.

By the fact that a term reduces to its simplification (Lem. 38) and by the substitution
lemma (Lem. 34) we know that type(Sd(t)) is not of degree d, so in particular it cannot
be a m-abstraction of degree d.

3. t = (λy. s)L u, where (λy. s)L is a m-abstraction of degree d: Then Sd(t) = Sd(s)[x :=
Sd(u)]{Sd(u)}Sd(L). To show that this term is not a m-abstraction of degree d, it suffices to
show that Sd(s)[x := Sd(u)] is not a m-abstraction of degree d. Note that the abstraction
λy. s is of type A → B where type(s) = B and type(u) = A. In particular, since the
abstraction λy. s is of degree d, we have that h(A→ B) = d. Furthermore, by the fact that
a term reduces to its simplification (Lem. 38) and by subject reduction (Prop. 3), we know
that h(type(Sd(s))) = h(type(s)) = h(B) < d and h(type(Sd(u))) = h(type(u)) = h(A) < d.
In particular, Sd(s) and Sd(u) cannot be m-abstractions of degree d. Finally by Lem. 56(1)
this means that Sd(s)[x := Sd(u)] is not a m-abstraction of degree d, as required.

4. t = s u, where s is not a m-abstraction of degree d: Then Sd(t) = Sd(s) Sd(u) is an
application, hence not a m-abstraction of degree d.

5. t = s{u}: Since t is not a m-abstraction of degree d, we know that s is also not
a m-abstraction of degree d. By IH, Sd(s) is not a m-abstraction of degree d, so
Sd(t) = Sd(s){Sd(u)} is not a m-abstraction of degree d.

34 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

◀

▶ Lemma 58 (The simplification of a term is normal, by degrees). Sd(t) is in d−→m-normal
form.

Proof. By induction on t, generalizing the statement also for memories, i.e. showing that
Sd(L) is in d−→m-normal form:
1. t = x: Then Sd(t) = x is in d−→m-normal form.
2. t = λx. s: Then Sd(t) = λx. Sd(s) is in d−→m-normal form because Sd(s) is in d−→m-normal

form by IH.
3. t = (λx. s)L u, where (λx. s)L is a m-abstraction of degree d: Then Sd(t) = Sd(s)[x :=

Sd(u)]{Sd(u)}Sd(L). Note that, by IH, Sd(s), Sd(u), and Sd(L) are in d−→m-normal form.
Since (λx. s)L is an abstraction of degree d, we know that h(type(u)) < d. Hence by the
fact that a term reduces to its simplification (Lem. 38) and by subject reduction (Prop. 3)
we know that h(type(Sd(u))) < d. In particular, Sd(u) is not an abstraction of degree d.
This allows us to apply Lem. 56(2) to conclude that Sd(s)[x := Sd(u)] is in d−→m-normal
form. This lets us conclude that Sd(s)[x := Sd(u)]{Sd(u)}Sd(L) is in d−→m-normal form.

4. t = s u, where s is not a m-abstraction of degree d. Then Sd(t) = Sd(s) Sd(u), where by
IH we have that Sd(s) and Sd(u) are in d−→m-normal form, and by Lem. 57 we have that
Sd(s) is not a m-abstraction of degree d. Hence Sd(t) is in d−→m-normal form.

5. t = s{u}: Then Sd(t) = Sd(s){Sd(u)} and we conclude by IH.
6. L = □: Immediate, as Sd(□) = □ is in d−→m-normal form.
7. L = L{t}: Then Sd(L) = Sd(L){Sd(t)} and we conclude by IH.

◀

▶ Lemma 59 (Reduction does not create redexes of higher degree). Let d ≤ D and suppose
that t

d−→m s.
1. If t is not a m-abstraction of degree D, then s is not a m-abstraction of degree D.
2. If t is in D−→m-normal form, then s is also in D−→m-normal form.

Proof. We prove the two items independently:
1. By induction on t:

1.1 t = x: This case is impossible, as there are no reduction steps t
d−→m s.

1.2 t = λx. t′: Note that t is a m-abstraction, so by IH it cannot be of degree D, that is,
h(type(t)) ̸= D. By subject reduction (Prop. 3) we have that h(type(s)) = h(type(t)) ̸=
D, so s cannot be a m-abstraction of degree D.

1.3 t = t1 t2: We consider three subcases, depending on whether the reduction is at the
root, internal to t1, internal to t2:

1.3.1 If the reduction is at the root: Then t1 = (λx. t′
1)L is an abstraction of degree

d, and the step is of the form t = (λx. t′
1)L t2

d−→m t′
1[x := t2]{t2}L = t′. Note

that λx. t′
1 is an abstraction of degree d, so its type is of the form A → B with

h(A → B) = d. The type of the body of the abstraction is type(t′
1) = B, so

h(type(t′
1)) = h(B) < d ≤ D, and the type of the argument of the abstraction is

type(t2) = A, so h(type(t2)) = h(A) < d ≤ D. This means that t′
1 and t2 cannot be

m-abstractions of degree D. Hence by Lem. 56(1) we have that t′
1[x := t2] is not

a m-abstractions of degree D. From this we conclude that t′ = t′
1[x := t2]{t2}L is

not a m-abstractions of degree D.

P. Barenbaum and C. Sottile 35

1.3.2 If the reduction is internal to t1: Then the step is of the form t = t1 t2
d−→m s1 t2 = s

with t1
d−→m s1. Note that s is an application, and hence not a m-abstraction of

degree D.
1.3.3 If the reduction is internal to t2: Then the step is of the form t = t1 t2

d−→m t1 s2 = s

with t2
d−→m s2. Note that s is an application, and hence not a m-abstraction of

degree D.
1.4 t = t1{t2}: We consider two subcases, depending on whether the reduction is internal

to t1 or internal to t2:
1.4.1 If the reduction is internal to t1: Then the step is of the form t = t1{t2} d−→m

s1{t2} = s with t1
d−→m s1. By hypothesis t is not a m-abstraction of degree D,

so t1 is also not a m-abstraction of degree D. By IH s1 is not a m-abstraction of
degree D, so we conclude that s = s1{t2} is not a m-abstraction of degree D.

1.4.2 If the reduction is internal to t2: Then the step is of the form t = t1{t2} d−→m

t1{s2} = s with t2
d−→m s2. By hypothesis t is not a m-abstraction of degree D, so

t1 is also not a m-abstraction of degree D. Hence s = t1{s2} is not a m-abstraction
of degree D.

2. By induction on t:
2.1 t = x: This case is impossible, as there are no reduction steps t

d−→m s.
2.2 t = λx. t′: Straightforward resorting to the IH.
2.3 t = t1 t2: We consider three subcases, depending on whether the reduction is at the

root, internal to t1, internal to t2:
2.3.1 If the reduction is at the root: Then t1 = (λx. t′

1)L is an abstraction of degree d,
and the step is of the form t = (λx. t′

1)L t2
d−→m t′

1[x := t2]{t2}L = s. Note that by
hypothesis, t = (λx. t′

1)L t2 is in D−→m-normal form, which means in particular that
t′
1, L and t2 are in D−→m-normal form. Moreover, since λx. t′

1 is an abstraction of
degree d, its type is of the form A→ B with h(A→ B) = d. Moreover, its argument
t2 is such that type(t2) = A, so h(type(t2)) = h(A) < d ≤ D. In particular, t2
cannot be an abstraction of degree D. By Lem. 56 this implies that t′

1[x := t2]
is in D−→m-normal form. Finally, this means that t′

1[x := t2]{t2}L must also be in
D−→m-normal form.

2.3.2 If the reduction is internal to t1: Then the step is of the form t = t1 t2
d−→m s1 t2 = s.

By hypothesis t = t1 t2 is in D−→m-normal form, so we kwow that t1 and t2 must be
in D−→m-normal form and, moreover, that t1 is not a m-abstraction of degree D. By
IH, we have that s1 is a D−→m-normal form. Moreover, by item 1 of this lemma, we
have that s1 is not a m-abstraction of degree D. Hence we conclude that s = s1 t2

is in D−→m-normal form.
2.3.3 If the reduction is internal to t2: Then the step is of the form t = t1 t2

d−→m t1 s2 = s.
By hypothesis t = t1 t2 is in D−→m-normal form, so we kwow that t1 and t2 must be
in D−→m-normal form and, moreover, that t1 is not a m-abstraction of degree D. By
IH, we have that s2 is a D−→m-normal form. Hence we conclude that s = s1 t2 is in
D−→m-normal form.

2.4 t = t1{t2}: Straightforward resorting to the IH.
◀

36 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

▶ Proposition 60 (Lifting property for lower steps). Let d < D and suppose that t
d−→m s

D−→∗
m

s′. Then there exist a term t′ and a term s′′ such that t
D−→∗

m t′ and s′ D−→∗
m s′′ and t′ d−→+

m s′′

in at least one step. Graphically:

t
d //

D

����

s

D����
s′

D����
t′ d // // s′′

Proof. Take t′ := SD(t). By the fact that a term reduces to its simplification (Lem. 55) we
have that t

D−→∗
m SD(t). Appyling commutation (Prop. 18) on the reduction sequences t

d−→m s

and t
d−→∗

m SD(t), we have that there exists a term u such that s
D−→∗

m u and SD(t) d−→+
m u

in at least one step. Applying the commutation theorem again, this time on the reduction
sequences s

D−→∗
m u and s

D−→∗
m s′ we have that there exists a term s′′ such that u

D−→∗
m s′′

and s′ D−→∗
m s′′. The situation is:

t
d //

D

����

s

D����
D

����

s′

D����
SD(t) d // // u

D// // s′′

By Lem. 58 we know that SD(t) is in D−→m-normal form, and since SD(t) d−→∗
m u with d < D,

by Lem. 59 (2) we have that u is in D−→m-normal form, so u = s′′, which concludes the
proof. ◀

▶ Lemma 61 (Local postponement of forgetful reduction). If R : t ▷ s is a forgetful step
and S : s

d−→m s′ is a reduction step of degree d, there exists a term t′, a forgetful reduction
R↷S : t′ ▷∗ s′ and a step S↶R : t

d−→m t′. Graphically:

t

d ��

▷ s

d��
t′ ▷∗ s′

Furthermore, the step S↶R determines the step S. More precisely, if S↶R = T↶R then
S = T .

Proof. By induction on t:
1. t = x: Impossible, as there are no reduction steps x ▷ s.
2. t = λx. t1: The steps must be of the form R : t = λx. t1 ▷ λx. s1 = s with t1 ▷ s1, and

S : s = λx. s1
d−→m λx. s′

1 = s′ with s1
d−→m s′

1. By IH we have the diagram on the left, so
we can construct the one on the right:

t1

d ��

▷ s1

d��
t′
1 ▷∗ s′

1

λx. t1

d ��

▷ λx. s1

d��
λx. t′

1 ▷∗ λx. s′
1

P. Barenbaum and C. Sottile 37

By IH, the step t1
d−→m t′

1 determines the step s1
d−→m s′

1, which implies that the step
λx. t1

d−→m λx. t′
1 determines the step λx. s1

d−→m λx. s′
1.

3. If t = t1 t2: We consider two subcases, depending on whether the step R : t ▷ s is internal
to t1 or internal to t2.

3.1 If R is internal to t1, then R : t = t1 t2 ▷ s1 t2 = s where t1 ▷ s1. We consider three
further subcases, depending on whether the step S : s = s1 t2

d−→m s′ is at the root,
internal to s1, or internal to t2:

3.1.1 If the S is at the root of s = s1 t2: Then s1 is a m-abstraction of degree d, i.e. of the
form s1 = (λx. s11)L, and S is of the form S : (λx. s11)L t2

d−→m s11[x := t2]{t2}L.
We consider three subcases, depending on the form of the step R1 : t1 ▷ (λx. s11)L:

3.1.1.1 If R1 is of the form t1 = (λx. t11)L ▷ (λx. s11)L = s1 where t11 ▷ s11, we can
choose t′ := t11[x := t2]{t2}L, according to the diagram:

(λx. t11)L t2

d ��

▷ (λx. s11)L t2

d��
t11[x := t2]{t2}L ▷ s11[x := t2]{t2}L

Here we use the fact that t11 ▷ s11 implies t11[x := t2] ▷ s11[x := t2], as stated
in Lem. 44.

3.1.1.2 If R1 is of the form t1 = (λx. s11)L1{t3}L2 ▷ (λx. s11)L1{s3}L2 = s1 with t3 ▷ s3,
we can choose t′ := t11[x := t2]{t2}L1{t3}L2, according to the diagram:

(λx. t11)L1{t3}L2 t2

d ��

▷ (λx. t11)L1{s3}L2 t2

d��
t11[x := t2]{t2}L1{t3}L2 ▷ t11[x := t2]{t2}L1{s3}L2

3.1.1.3 If R1 is of the form t1 = (λx. s11)L1{t3}L2 ▷ (λx. s11)L1L2 = s1, we can choose
t′ := t11[x := t2]{t2}L1{t3}L2, according to the diagram:

(λx. t11)L1{t3}L2 t2

d ��

▷ (λx. t11)L1L2 t2

d��
t11[x := t2]{t2}L1{t3}L2 ▷ t11[x := t2]{t2}L1L2

3.1.2 If S is internal to s1: Then S must be of the form S : s = s1 t2
d−→m s′

1 t2 with
s1

d−→m s′
1. By IH we have the diagram on the left, so we can construct the one on

the right:

t1

d ��

▷ s1

d��
t′
1 ▷∗ s′

1

t1 t2

d ��

▷ s1 t2

d��
t′
1 t2 ▷∗ s′

1 t2

3.1.3 If S is internal to t2: Then S must be of the form S : s = s1 t2
d−→m s1 t′

2 with
t2

d−→m t′
2. Then we can choose t′ := t1 t′

2, according to the diagram:

t1 t2

d ��

▷ s1 t2

d��
t1 t′

2 ▷ s1 t′
2

38 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

3.2 If R is internal to t2, then R : t = t1 t2 ▷ t1 s2 = s where t2 ▷ s2. We consider three
further subcases, depending on whether the step S is at the root, internal to t1 or
internal to s2:

3.2.1 If S is at the root of t1 s2: Then t1 is a m-abstraction of degree d, i.e. of the
form t1 = (λx. t11)L, and the step is of the form S : s = (λx. t11)L s2

d−→m t11[x :=
s2]{s2}L = s′. Then we can choose t′ := t11[x := t2]{t2}L, according to the diagram:

(λx. t11)L t2

d ��

▷ (λx. t11)L s2

d��
t11[x := t2]{t2}L ▷∗ t11[x := s2]{s2}L

Here we use the fact that t2 ▷ s2 implies t11[x := t2] ▷∗ t11[x := s2], as stated in
Lem. 44.

3.2.2 If S is internal to t1: Then S : s = t1 s2
d−→m t′

1 s2 = s′ with t1
d−→m t′

1, and we can
choose t′ := t′

1 t2, according to the diagram:

t1 t2

d ��

▷ t1 s2

d��
t′
1 t2 ▷ t′

1 s2

3.2.3 If S is internal to s2: Then S : t1 s2
d−→m t1 s′

2 with s2
d−→m s′

2. By IH we have the
diagram on the left, so we can construct the one on the right:

t2

d ��

▷ s2

d��
t′
2 ▷∗ s′

2

t1 t2

d ��

▷ t1 s2

d��
t1 t′

2 ▷∗ t1 s′
2

Furthermore, to see that the step S↶R : t
d−→m t′ determines the step S : t

d−→m t′, it
suffices to note that there are no overlappings between the diagrams, i.e. if the step S

and the step S↶R are fixed, then no more than one of the cases above applies.
4. If t = t1{t2}: We consider three subcases, depending on whether the step R : t ▷ s is at

the root, internal to t1 or internal to t2:
4.1 If the step R is at the root: Then R is of the form R : t = t1{t2} ▷ t1 = s and S is of

the form S : s
d−→m s′. Then we can choose t′ := s′{t2}, according to the diagram:

s t2

d ��

▷ s

d��
s′{t2} ▷ s′ t2

4.2 If the step R is internal to t1: Then R is of the form R : t = t1{t2} ▷ s1{t2} = s with
t1 ▷ s1. We consider two subcases, depending on whether the step S is internal to s1
or internal to t2:

4.2.1 If R is internal to s1: Then R : s = s1{t2} d−→m s′
1{t2} = s′ with s1

d−→m s′
1. By IH

we have the diagram on the left, so we can construct the one on the right:

t1

d ��

▷ s1

d��
t′
1 ▷∗ s′

1

t1{t2}
d ��

▷ t1{s2}
d��

t1{t′
2} ▷∗ t1{s′

2}

P. Barenbaum and C. Sottile 39

4.2.2 If R is internal to t2: Then R : s = s1{t2} d−→m s1{t′
2} = s′ with t2

d−→m t′
2 and we

can choose t′ = t1{t′
2}, according to the diagram:

t1{t2}
d ��

▷ s1{t2}
d��

t1{t′
2} ▷ s1{t′

2}

4.3 If the step R is internal to t2: Symmetric to the previous case.
Furthermore, to see that the step S↶R : t

d−→m t′ determines the step S : t
d−→m t′, it

suffices to note that there are no overlappings between the diagrams, i.e. if the step S

and the step S↶R are fixed, then no more than one of the cases above applies.

◀

▶ Proposition 62 (Postponement of forgetful reduction). Let ρ : t ▷∗ t′ be a forgetful reduction
sequence and let σ : t′ d−→∗

m s′ be a reduction sequence of degree d. Then there exist a term s

and reduction sequences ρ↷σ : s ▷∗ s′ and σ↶ρ : t
d−→∗

m s. Graphically:

t

d ����

▷∗ t′

d����
s ▷∗ s′

Furthermore, σ↶ρ determines σ, that is, More precisely, σ↶
1 ρ = σ↶

2 ρ then σ1 = σ2.

Proof. First, if ρ : t ▷∗ t′ is a forgetful reduction sequence and and S : t′ d−→m s′ is a single
step of degree d, we can construct a forgetful reduction sequence ρ↷S and a step S↶ρ of
degree d by induction on ρ as follows, resorting to Lem. 61 for the constructions of R↷(S↶ρ′)
and (S↶ρ′)↶R:

ϵ↷S
def= ϵ

(R ρ′)↷S
def= (R↷(S↶ρ′))(ρ′↷S)

S↶ϵ
def= S

S↶(R ρ′) def= (S↶ρ′)↶R

The inductive cases correspond to the following diagram:

R //

(S↶ρ′)↶R

��

ρ′
// //

S↶ρ′

��
S

��
R↷(S↶ρ′)

// //
ρ′↷S

// //

For the general case, we proceed by induction on σ, resorting to the previous construction
for the constructions of ρ↷S and S↶ρ:

ρ↷ϵ
def= ρ

ρ↷(S σ′) def= (ρ↷S)↷σ′
ϵ↶ρ

def= ϵ

(S σ′)↶ρ
def= (S↶ρ)(σ′↶(ρ↷S))

The inductive cases correspond to the following diagram:

S↶ρ

��

ρ // //

S

��

σ′↶(ρ↷S)
��

ρ↷S // //

σ′

����(ρ↷S)↷σ′
// //

Furthermore, to see that σ↶ρ determines σ, we proceed in three stages:

40 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

1. First, if S↶
1 R = S↶

2 R then S1 = S2 by Lem. 61.
2. Second, by induction on ρ, it is easy to see that if S↶

1 ρ = S↶
2 ρ then S1 = S2.

3. Finally, we can see that if σ↶
1 ρ = σ↶

2 ρ then σ1 = σ2 by induction on σ1. Note that
σ↶

1 ρ = σ↶
2 ρ then σ1 and σ2 are either both empty or both non-empty. The base case is

immediate. For the induction step, we have that σ1 = S1 σ′
1 and σ2 = S2 σ′

2; then note that
if (S1 σ′

1)↶ρ = (S2 σ′
2)↶ρ then by definition (S↶

1 ρ) (σ′
1
↶(ρ↷S)) = (S↶

2 ρ) (σ′
2
↶(ρ↷S))

so we have that S↶
1 ρ = S↶

2 ρ which, resorting to the previous item, means that S1 = S2,
and we also have that σ′

1
↶(ρ↷S) = σ′

2
↶(ρ↷S) which by IH implies σ′

1 = σ′
2.

◀

A.3 Proofs of Section 4 — The T m-measure
In this section we give detailed proofs of the results about reduction by degrees stated in
Section 5.

▶ Lemma 63 (Properties of the pointwise multiset order).
1. If m1 :≻: n1 and m2 :≻: n2 then m1 + m2 :≻: n1 + n2.
2. If m :≻: n then for all k ∈ N0 we have that m ⪰ k⊗ n. In particular, taking k = 1, m ⪰ n.
3. If m :≻: n and m is non-empty then m ≻ n.

Proof. The first item is straightforward. For the second item, suppose that m :≻: n

and proceed by induction on the cardinality of m. If m is empty, then m = [] = n, so
m = [] ⪰ [] = k ⊗ [] = k ⊗ n. If m is non-empty, then we can write m = [x] + m′ and
n = [y] + n′ in such a way that x > y and m′ :≻: n′. By IH we have that m′ ⪰ k ⊗ n′, so
m = [x] + m′ ≻ k ⊗ [y] + m′ ⪰ k ⊗ [y] + k ⊗ n′ = k ⊗ ([y] + n′) = k ⊗ n. The third item is
similar to the second. ◀

▶ Lemma 64 (Higher substitution lemma). Let t, s be typable terms and let x be a variable.
Then T m

d (t0, t) ⪯ T m
d (t0, t[x := s]).

Proof. We generalize the lemma for the case in which t may also be a memory. That is,
we prove that if X is a term or a memory, s is a term, and x is a variable then T m

d (t0, X) ⪯
T m

d (t0, X[x := s]). We proceed by induction on X:
1. t = x: Then T m

d (t0, x) = [] ⪯ T m
d (t0, s) = T m

d (t0, x[x := s]).
2. t = y ̸= x: Then T m

d (t0, y) ⪯ T m
d (t0, y) = T m

d (t0, y[x := s]).
3. t = λy. t′: By α-conversion, we may assume that y /∈ {x} ∪ fv(s). Then T m

d (t0, λy. t′) =
T m

d (t0, t′) ⪯ T m
d (t0, t′[x := s]) = T m

d (t0, (λy. t′)[x := s]) by IH.
4. If t = (λx. t1)L t2 is a redex of degree d: Then T m

d (t0, (λx. t1)L t2) = T m
d (t0, t1) +

T m
d (t0, L)+T m

d (t0, t2)+[(d,Rm
d (t0))] ⪯ T m

d (t0, t1[x := s])+T m
d (t0, L[x := s])+T m

d (t0, t2[x :=
s]) + [(d,Rm

d (t0))] = T m
d (t0, ((λy. t1)L t2)[x := s]) by IH.

5. If t = t1 t2 is not a redex of degree d: Then T m
d (t0, t1 t2) = T m

d (t0, t1) + T m
d (t0, t2) ⪯

T m
d (t0, t1[x := s]) + T m

d (t0, t2[x := s]) = T m
d (t0, (t1 t2)[x := s]) by IH.

6. t = t1{t2}: Similar to case 5.
7. L = □: Then T m

d (t0,□) ⪯ T m
d (t0,□) = T m

d (t0,□[x := s]).
8. L = L1{t}: Similar to case 5.

◀

▶ Proposition 65 (High/increase). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d < D and t

D−→m t′ then Rm
d (t) ⪯ Rm

d (t′).
2. If 0 ≤ d < D and t0

D−→m t′
0 then T m

d (t0, t) ⪯ T m
d (t′

0, t).

P. Barenbaum and C. Sottile 41

3. If 0 ≤ d < D and t0
D−→m t′

0 and t
D−→m t′ then T m

d (t0, t) ⪯ T m
d (t′

0, t′).
4. If 0 ≤ d < D and t

D−→m t′ then T m
≤d(t) ⪯ T m

≤d(t′).

Proof. We prove a more general version of the statement: in items 2 and 3 we allow t to be
either a term or a memory. For example, the statement of item 2 is generalized as follows: if
1 ≤ d < D and t0

d−→m t′
0 then T m

d (t0, X) ⪯ T m
d (t′

0, X), where X is either a term or a memory.
We prove all items simultaneously by induction on d. Note that: item 1. resorts to the

IH; item 2. resorts to item 1. (without decreasing d); item 3. resorts to items 1. and 2.
(without decreasing d); item 4. resorts to item 3. (without necessarily decreasing d).
1. Let 1 ≤ d < D and t

D−→m t′. We argue that Rm
d (t) ⪯ Rm

d (t′). Let X and Y be the sets

of reduction sequences X = {ρ | (∃s) ρ : t
d−→∗

m s} and Y = {σ | (∃s′) σ : t′ d−→∗
m s′}. Note

that, by definition, Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ X] and Rm
d (t′) = [T m

≤d−1(σtgt) || σ ∈ Y].
We construct a function φ : X → Y as follows. Consider a reduction step R : t

D−→m t′;
note that there may be more than one such step, but we know by hypothesis that there is at
least one. By commutation (Prop. 18), given a reduction sequence ρ ∈ X, i.e. ρ : t

d−→∗
m s

there exists a term s′
ρ and reduction sequences ρ/R : t′ d−→∗

m s′
ρ and R/ρ : s

D−→∗
m s′

ρ. In
particular, ρ/R ∈ Y , and we can define φ(ρ) := ρ/R. Moreover, φ is injective, because
if ρ1, ρ2 ∈ X are such that ρ1/R = ρ2/R then by commutation (Prop. 18) we have that
ρ1 = ρ2, given that d < D.
First, we claim that T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt) for every ρ ∈ X. If d = 1, this is

immediate since T m
≤d−1(ρtgt) = T m

≤0(ρtgt) = [] = T m
≤0(φ(ρ)tgt) = T m

≤d−1(φ(ρ)tgt). Assume
now that d > 1. Then we have that:

T m
≤d−1(ρtgt) = T m

≤d−1(s)
⪯ T m

≤d−1(s′
ρ) by item 4 of the IH

= T m
≤d−1((ρ/R)tgt)

= T m
≤d−1(φ(ρ))

To be able to apply item 4 of the IH, observe that 1 ≤ d−1 < D holds because 1 ≤ d < D.
We resort to the IH as many times as the length of the reduction s

D−→∗
m s′

ρ. To conclude
the proof, let Z = Y \ φ(X), so that Y = φ(X) ⊎ Z, and note that:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ X]
⪯ [T m

≤d−1(φ(ρ)tgt) || ρ ∈ X] (⋆)
= [T m

≤d−1(σtgt) || σ ∈ φ(X)] (⋆⋆)
⪯ [T m

≤d−1(σtgt) || σ ∈ φ(X)] + [T m
≤d−1(σtgt) || σ ∈ Z]

= [T m
≤d−1(σtgt) || σ ∈ φ(X) ⊎ Z]

= [T m
≤d−1(σtgt) || σ ∈ Y]

= Rm
d (t′)

To justify the step marked with (⋆), note that [T m
≤d−1(ρtgt) || ρ ∈ X] =

∑
ρ∈X [T m

≤d−1(ρtgt)] ⪯∑
ρ∈X [T m

≤d−1(φ(ρ)tgt)] = [T m
≤d−1(φ(ρ)tgt) || ρ ∈ X] because T m

≤d−1(ρtgt) ⪯ T m
≤d−1(φ(ρ)tgt),

as we have already claimed. To justify the step marked with (⋆⋆), note that φ is injective,
so X and φ(X) have the same cardinality.

2. Let 0 ≤ d < D and t0
D−→m t′

0. We argue that T m
d (t0, X) ⪯ T m

d (t′
0, X), where X is either a

term (X = t) or a memory (X = L). We proceed by induction on X:
2.1 t = x: Then T m

d (t0, x) = [] ⪯ [] = T m
d (t′

0, x).
2.2 t = λx. s: Then T m

d (t0, λx. s) = T m
d (t0, s) ⪯ T m

d (t′
0, s) = T m

d (t′
0, λx. s) by the internal

IH.

42 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

2.3 If t = (λx. s)L u is a redex of degree d: Then:

T m
d (t0, t) = T m

d (t0, (λx. s)L u)
= T m

d (t0, s) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

⪯ T m
d (t′

0, s) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t0))] by the internal IH

⪯ T m
d (t′

0, s) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t′

0))] by item 1
= T m

d (t′
0, (λx. s)L u)

= T m
d (t′

0, t)

2.4 If t = s u is not a redex of degree d: Then:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

⪯ T m
d (t′

0, s) + T m
d (t′

0, u) by the internal IH
= T m

d (t′
0, s u)

2.5 t = s{u}: Similar to case 2.4.
2.6 L = □: Then T m

d (t0,□) = [] ⪯ [] = T m
d (t′

0,□).
2.7 L = L1{t}: Similar to case 2.4.

3. Let 0 ≤ d < D and t0
D−→m t′

0 and let X, X′ be and X D−→m X′ where X, X′ are either terms
(X = t and X = t′) or memories (X = L and X = L′). We argue that T m

d (t0, X) ⪯ T m
d (t′

0, X′).
We proceed by induction on X:

3.1 t = x: Impossible, as there are no steps x
D−→m t′.

3.2 t = λx. s: Then the step is of the form t = λx. s
D−→m λx. s′ = t′ with s

D−→m s′, so
T m

d (t0, λx. s) = T m
d (t0, s) ⪯ T m

d (t′
0, s′) = T m

d (t′
0, λx. s′) by the internal IH.

3.3 If t = (λx. s)L u is the redex of degree D contracted by the step t
D−→m t′: Then the

step is of the form t = (λx. s)L u
D−→m s[x := u]{u}L = t′. Note that t is not a redex

of degree d because d < D, so:

T m
d (t0, t) = T m

d (t0, (λx. s)L u)
= T m

d (t0, s) + T m
d (t0, L) + T m

d (t0, u)
⪯ T m

d (t′
0, s) + T m

d (t′
0, L) + T m

d (t′
0, u) by item 2

= T m
d (t′

0, s) + T m
d (t′

0, u) + T m
d (t′

0, L)
⪯ T m

d (t′
0, s[x := u]) + T m

d (t′
0, u) + T m

d (t′
0, L) by Lem. 28

= T m
d (t′

0, s[x := u]{u}L)
= T m

d (t′
0, t′)

3.4 If t = (λx. s)L u is a redex of degree d: Note that t is not a redex of degree D because
d < D. We consider three subcases, depending on whether the step t

D−→m t′ is internal
to s, internal to L, or internal to u. All these subcases are similar; we only give the
proof for the case in which the step is internal to s. Then:

T m
d (t0, t) = T m

d (t0, (λx. s)L u)
= T m

d (t0, s) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

⪯ T m
d (t′

0, s′) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))] by the internal IH

⪯ T m
d (t′

0, s′) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t0))] by item 2

⪯ T m
d (t′

0, s′) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t′

0))] by item 1
= T m

d (t′
0, (λx. s′)L u)

= T m
d (t′

0, t′)

P. Barenbaum and C. Sottile 43

3.5 If t = s u is not the redex contracted by the step t
D−→m t′ nor a redex of degree d:

We consider two subcases, depending on whether the step t
D−→m t′ is internal to s or

internal to u:
3.5.1 If the step is internal to s, then the step is of the form t = s u

D−→m s′ u = t′ with
s

D−→m s′. We know that s is not a m-abstraction of degree d, but d < D, so it
may be the case that s′ is a m-abstraction of degree d, i.e. reduction at degree
D may create an abstraction of degree d < D. We consider two further subcases,
depending on whether s′ is a m-abstraction of degree d or not:

3.5.1.1 If s′ = (λx. s′′)L is a m-abstraction of degree d, then:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

⪯ T m
d (t′

0, (λx. s′′)L) + T m
d (t0, u) by the internal IH

⪯ T m
d (t′

0, (λx. s′′)L) + T m
d (t′

0, u) by item 2
⪯ T m

d (t′
0, (λx. s′′)L) + T m

d (t′
0, u) + [(d,Rm

d (t′
0))]

= T m
d (t′

0, (λx. s′′)L u)
= T m

d (t′
0, t′)

3.5.1.2 If s′ is not a m-abstraction of degree d, then:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

⪯ T m
d (t′

0, s′) + T m
d (t0, u) by the internal IH

⪯ T m
d (t′

0, s′) + T m
d (t′

0, u) by item 2
= T m

d (t′
0, s′ u)

= T m
d (t′

0, t′)

3.5.2 If the step is internal to u: Similar to case 3.5.1.2.
3.6 t = s{u}: Similar to case 3.5.
3.7 L = □: Impossible, as there are no reduction steps □

D−→m L′.
3.8 L = L1{t}: Similar to case 3.5.

4. Let 0 ≤ d < D and t
D−→m t′. We argue that T m

≤d(t) ⪯ T m
≤d(t′). Indeed:

T m
≤d(t) =

∑d
i=1 T m

i (t, t)
⪯

∑d
i=1 T m

i (t′, t′) by item 3, resorting to the IH when i < d

= T m
≤d(t′)

Note that for the value i = d, we resort directly to item 3 and not to the IH.

◀

▶ Lemma 66 (Substitution of degree d does not create abstractions). If t and s are not
m-abstractions of degree d, then t[x := s] is not a m-abstraction of degree d.

Proof. By induction on t:
1. t = x: Then t[x := s] = s is not a m-abstraction of degree d.
2. t = y ̸= x: Then t[x := s] = y is not a m-abstraction of degree d.
3. t = λy. t′: Then t is a m-abstraction but, by hypothesis, we know that it cannot be of

degree d. Hence t[x := s] = λy. t′[x := s]. By the substitution lemma (Lem. 34) t and
t[x := s] have the same type, so λy. t′[x := s] is a m-abstraction but it is not of degree d.

44 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

4. t = t1 t2: Then t[x := s] = t1[x := s] t2[x := s] is an application, hence not a m-abstraction
of degree d.

5. t = t1{t2}: Since t is not a m-abstraction of degree d, we have that t1 is also not a
m-abstraction of degree d. By IH, t1[x := s] is not a m-abstraction of degree d. So
t[x := s] = t1[x := s]{t2[x := s]} is not a m-abstraction of degree d.

◀

▶ Lemma 67 (Lower substitution lemma). Let t, s be typable terms and let x be a variable such
that s is not a m-abstraction of degree d. Then there exists k ∈ N0 such that T m

d (t0, t[x :=
s]) = T m

d (t0, t) + k ⊗ T m
d (t0, s).

Proof. We generalize the lemma for the case in which t may also be a memory. That is,
we prove that if X is a term or a memory, s is a term, and x is a variable such that s is
not a m-abstraction of degree d, then there exists k ∈ N0 such that T m

d (t0, X[x := s]) =
T m

d (t0, X) + k ⊗ T m
d (t0, s). We proceed by induction on X:

1. t = x: Take k := 1. Then T m
d (t0, t[x := s]) = T m

d (t0, x[x := s]) = T m
d (t0, s) =

[] + 1⊗ T m
d (t0, s) = T m

d (t0, x) + 1⊗ T m
d (t0, s) = T m

d (t0, t) + 1⊗ T m
d (t0, s).

2. t = y ̸= x: Take k := 0. Then T m
d (t0, t[x := s]) = T m

d (t0, y[x := s]) = T m
d (t0, y) =

T m
d (t0, y) + 0⊗ T m

d (t0, s) = T m
d (t0, t) + 0⊗ T m

d (t0, s).
3. t = λy. t′: By α-conversion we may assume that y /∈ {x} ∪ fv(s). Resorting to the IH,

we have T m
d (t0, t[x := s]) = T m

d (t0, λy. t′[x := s]) = T m
d (t0, t′[x := s]) = T m

d (t0, t′) + k ⊗
T m

d (t0, s) = T m
d (t0, λy. t′) + k ⊗ T m

d (t0, s) = T m
d (t0, t) + k ⊗ T m

d (t0, s).
4. t = (λx. t1)L t2 where (λx. t1)L is a m-abstraction of degree d. Note that, by the

substitution lemma (Lem. 34) we have that (λx. t1[x := s])(L[x := s]) is also an abstraction
of degree d. Then by IH there exist k1, k2, k3 ∈ N0 such that:

T m
d (t0, t[x := s])

= T m
d (t0, (λx. t1[x := s])(L[x := s])(t2[x := s]))

= T m
d (t0, λx. t1[x := s]) + T m

d (t0, L[x := s]) + T m
d (t0, t2[x := s]) + [(d,Rm

d (t0))]
= (T m

d (t0, λx. t1) + k1 ⊗ T m
d (t0, s)) + (T m

d (t0, L) + k2 ⊗ T m
d (t0, s))

+ (T m
d (t0, t2) + k3 ⊗ T m

d (t0, s)) + [(d,Rm
d (t0))]

= T m
d (t0, λx. t1) + T m

d (t0, L) + T m
d (t0, t2) + [(d,Rm

d (t0))] + (k1 + k2 + k3)⊗ T m
d (t0, s)

= T m
d (t0, (λx. t1)L t2) + (k1 + k2 + k3)⊗ T m

d (t0, s)
= T m

d (t0, t) + (k1 + k2 + k3)⊗ T m
d (t0, s)

So taking k := k1 + k2 + k3 we are done.
5. t = t1 t2 where t1 is not a m-abstraction of degree d: Note by Lem. 66 that t1[x := t2] is

not a m-abstraction of degree d. Then by IH there exist k1, k2 ∈ N0 such that:

T m
d (t0, t[x := s]) = T m

d (t0, t1[x := s] t2[x := s])
T m

d (t0, t1[x := s]) + T m
d (t0, t2[x := s])

= (T m
d (t0, t1) + k1 ⊗ T m

d (t0, s)) + (T m
d (t0, t2) + k2 ⊗ T m

d (t0, s))
= T m

d (t0, t1) + T m
d (t0, t2) + (k1 + k2)⊗ T m

d (t0, s))
= T m

d (t0, t1 t2) + (k1 + k2)⊗ T m
d (t0, s))

So taking k := k1 + k2 we are done.
6. t = t1{t2}: Similar to the previous case.
7. L = □: Take k := 0. Then T m

d (t0,□[x := s]) = T m
d (t0,□) = T m

d (t0,□) + 0⊗ T m
d (t0, s).

8. L = L′{t}: Similar to case 5.
◀

P. Barenbaum and C. Sottile 45

▶ Proposition 68 (Low/decrease). Let D ∈ N0. Then the following hold:
1. If 1 ≤ d ≤ j ≤ D and t

d−→m t′ then Rm
j (t) ≻ Rm

j (t′).
2. If 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0 then T m

j (t0, t) :≻: T m
j (t′

0, t).
3. If 1 ≤ d ≤ D and t0

d−→m t′
0 and t

d−→m t′, then for all m ∈ Td−1 we have T m
d (t0, t) ≻

T m
d (t′

0, t′) + m.
4. If 1 ≤ d < j ≤ D and t0

d−→m t′
0 and t

d−→m t′ then T m
j (t0, t) ⪰ T m

j (t′
0, t′).

5. If 1 ≤ d ≤ D and t
d−→m t′ then T m

≤D(t) ≻ T m
≤D(t′).

Proof. We prove a more general version of the statement: in items 2, 3, and 4 we allow t to
be either a term or a memory. For example, the statement of item 2 is generalized as follows:
if 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0 then T m

j (t0, X) :≻: T m
j (t′

0, X), where X is either a term or a
memory.

We prove all items simultaneously by induction on D. Note that: item 1. resorts to the
IH; item 2. resorts to item 1. (without decreasing D); items 3. and 4. resort to items 1.
and 2. (without decreasing D); item 5. resorts to items 3. and 4. (without decreasing D).
1. Let 1 ≤ d ≤ j ≤ D and t

d−→m t′. We argue thatRm
j (t) ≻ Rm

j (t′). Let X and Y be the sets

of reduction sequences X := {ρ | (∃s) ρ : t
j−→∗

m s} and Y := {σ | (∃s′) σ : t′ j−→∗
m s′}. Note

that, by definition, Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ X] and Rm
j (t′) = [T m

≤j−1(σtgt) || σ ∈ Y].
We consider two subcases, depending on whether d = j or d < j:

1.1 If d = j, let R be the step R : t
d−→m t′. We construct a function φ : Y → X given by

φ(σ) = R σ. Observe that φ is injective and that if σ : t′ d−→∗
m s′ then R σ : t

d−→∗
m s′,

and in particular σ and φ(σ) have the same target. Let Z = X \ φ(Y), so that
X = φ(Y) ⊎ Z. Note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ X]
= [T m

≤j−1(ρtgt) || ρ ∈ φ(Y) ⊎ Z]
= [T m

≤j−1(ρtgt) || ρ ∈ φ(Y)] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(Rσtgt) || σ ∈ Y] + [T m

≤j−1(ρtgt) || ρ ∈ Z] since φ is injective
= [T m

≤j−1(σtgt) || σ ∈ Y] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= Rm
j (t′) + [T m

≤j−1(ρtgt) || ρ ∈ Z]

By this chain of equations, in order to conclude that Rm
j (t) ≻ Rm

j (t′), it suffices to

show that Z is non-empty. Indeed, let ϵ : t
d−→∗

m t be the empty reduction sequence.
Then ϵ ∈ X \ φ(Y), so ϵ ∈ Z.

1.2 If d < j, we construct a function φ : Y → X using Prop. 20. More precisely, since
d < j and t

d−→m t′, for each reduction sequence σ : t′ j−→∗
m s′ by Prop. 20 there exist a

term sσ and a term uσ, such that there is a reduction sequence φ(σ) : t
j−→∗

m sσ and

such that s′ j−→∗
m uσ, and sσ

d−→+
m uσ in at least one step.

First, we claim that T m
≤j−1(φ(σ)tgt) ≻ T m

≤j−1(σtgt) for every σ ∈ Y . Indeed:

T m
≤j−1(φ(σ)tgt) = T m

≤j−1(sσ)
≻ T m

≤j−1(uσ) by item 5 of the IH
⪰ T m

≤j−1(s′) by high/increase (Prop. 29(4))
= T m

≤j−1(σtgt)

To be able to apply item 5 of the IH, observe that we have that 1 ≤ d ≤ j−1 < D holds
because we know d < j ≤ D. We resort to the IH as many times as the length of the

46 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

reduction sσ
d−→+

m uσ. The inequality is strict because this reduction contains at least
one step. To be able to apply the high/increase property, observe that 0 ≤ j − 1 < j.
We resort to this lemma as many times as the length of the reduction s′ j−→∗

m uσ, which
may be empty. To conclude the proof, let Z = X \ φ(Y), so that X = φ(Y) ⊎ Z, and
note that:

Rm
j (t) = [T m

≤j−1(ρtgt) || ρ ∈ X]
= [T m

≤j−1(ρtgt) || ρ ∈ φ(Y) ⊎ Z]
= [T m

≤j−1(ρtgt) || ρ ∈ φ(Y)] + [T m
≤j−1(ρtgt) || ρ ∈ Z]

= [T m
≤j−1(φ(σ)tgt) || σ ∈ Y] + [T m

≤j−1(ρtgt) || ρ ∈ Z]
⪰ [T m

≤j−1(φ(σ)tgt) || σ ∈ Y]
≻ [T m

≤j−1(σtgt) || σ ∈ Y] (⋆)
= Rm

j (t′)

For the step marked with (⋆), note that [T m
≤j−1(φ(σ)tgt) || σ ∈ Y] :≻: [T m

≤j−1(σtgt) || σ ∈
Y] because T m

≤j−1(φ(σ)tgt) ≻ T m
≤j−1(σtgt) holds by the claim above. Moreover, Y is

non-empty because the empty reduction sequence ϵ : t′ j−→∗
m t′ is in Y , so we may resort

to Lem. 63.
2. Let 1 ≤ d ≤ j ≤ D and t0

d−→m t′
0. We argue that T m

j (t0, X) :≻: T m
j (t′

0, X), where X is
either a term (X = t) or a memory (X = L). We proceed by induction on X:

2.1 t = x: Then T m
j (t0, x) = [] :≻: [] = T m

j (t′
0, x).

2.2 t = λx. s: Then T m
j (t0, λx. s) = T m

j (t0, s) = T m
j (t′

0, s) = T m
j (t′

0, λx. s) by the internal
IH.

2.3 If t = (λx. s)L u is a redex of degree j: Then:

T m
j (t0, (λx. s)L u)

= T m
j (t0, s) + T m

j (t0, L) + T m
j (t0, u) + [(j,Rm

j (t0))]
:≻: T m

j (t′
0, s) + T m

j (t′
0, L) + T m

j (t′
0, u) + [(j,Rm

j (t0))]
by the internal IH

:≻: T m
j (t′

0, s) + T m
j (t′

0, L) + T m
j (t′

0, u) + [(j,Rm
j (t′

0))]
since Rm

j (t0) ≻ Rm
j (t′

0) by item 1
= T m

j (t′
0, (λx. s)L u)

Note that we can resort to item 1, because 1 ≤ d ≤ j ≤ D and t0
d−→m t′

0.
2.4 If t = s u is not a redex of degree j: Then T m

j (t0, s u) = T m
j (t0, s) + T m

j (t0, u) :≻:
T m

j (t′
0, s) + T m

j (t′
0, u) = T m

j (t′
0, s u) by the internal IH.

2.5 t = s{u}: Then T m
j (t0, s{u}) = T m

j (t0, s) + T m
j (t0, u) :≻: T m

j (t′
0, s) + T m

j (t′
0, u) =

T m
j (t′

0, s{u}) by the internal IH.
2.6 L = □: Then T m

j (t0,□) = [] :≻: [] = T m
j (t′

0,□).
2.7 L = L1{t}: T m

j (t0, L1{t}) = T m
j (t0, L1) + T m

j (t0, t) :≻: T m
j (t′

0, L1) + T m
j (t′

0, t) by IH.

3. Let 1 ≤ d ≤ D and t0
d−→m t′

0 and X d−→m X′, where X, X′ are either terms (X = t and
X = t′) or memories (X = L and X = L′). We argue that for all m ∈ Td−1 we have
T m

d (t0, X) ≻ T m
d (t′

0, X′) + m. We proceed by induction on X:
3.1 t = x: Impossible, as there are no reduction steps x

d−→m t′.
3.2 t = λx. s: Then the step is of the form t = λx. s

d−→m λx. s′ = t′ with s
d−→m s′.

Let m ∈ Td−1. Then T m
d (t0, t) = T m

d (t0, λx. s) = T m
d (t0, s) ≻ T m

d (t′
0, s′) + m =

T m
d (t′

0, λx. s′) + m = T m
d (t′

0, t′) + m by the internal IH.

P. Barenbaum and C. Sottile 47

3.3 If t = (λx. s)L u is the redex of degree d contracted by the step t
d−→m t′: If the

reduction step is at the root, then (λx. s)L is a m-abstraction of degree d, and the
step is of the form t = (λx. s)L u

d−→m s[x := u]{u}L = t′. Given that (λx. s)L is
a m-abstraction of degree d, the type of its argument u is of height strictly less
than d, that is, h(type(u)) < d. In particular, u is not an abstraction of degree d

so we may apply the lower substitution lemma (Lem. 28) which ensures that there
exists k ∈ N0 such that T m

d (t′
0, s[x := u]) = T m

d (t′
0, s) + k ⊗ T m

d (t′
0, u). Furthermore,

observe that T m
d (t0, u) ⪰ (1 + k) ⊗ T m

d (t′
0, u). Indeed, by item 2 we have that

T m
d (t0, u) :≻: T m

d (t′
0, u), so by Lem. 63 T m

d (t0, u) ⪰ (1 + k)⊗ T m
d (t′

0, u). To conclude
this case:

T m
d (t0, t)

= T m
d (t0, (λx. s)L u)

= T m
d (t0, s) + T m

d (t0, L) + T m
d (t0, u) + [(d,Rm

d (t0))]
⪰ T m

d (t′
0, s) + T m

d (t′
0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

by item 2 and Lem. 63
⪰ T m

d (t′
0, s) + T m

d (t′
0, L) + (1 + k)⊗ T m

d (t′
0, u) + [(d,Rm

d (t0))]
since T m

d (t0, u) ⪰ (1 + k)⊗ T m
d (t′

0, u)
≻ T m

d (t′
0, s) + T m

d (t′
0, L) + (1 + k)⊗ T m

d (t′
0, u) + m

since m ∈ Td−1, so [(d,Rm
d (t0))] ≻ m

= T m
d (t′

0, s) + k ⊗ T m
d (t′

0, u) + T m
d (t′

0, u) + T m
d (t′

0, L) + m

= T m
d (t′

0, s[x := u]) + T m
d (t′

0, u) + T m
d (t′

0, L) + m

= T m
d (t′

0, s[x := u]{u}L) + m

= T m
d (t′

0, t′) + m

3.4 If t = (λx. s)L u is a redex of degree d, but not the redex contracted by the step
t

d−→m t′: There are three subcases, depending on whether the step t
d−→m t′ is internal

to s, internal to L, or internal to u. All these subcases are similar; we only give the
proof for the case in which the step is internal to s. Then the step is of the form
t = (λx. s)L u

d−→m (λx. s′)L u = t′ with s
d−→m s′, and we have:

T m
d (t0, t)

= T m
d (t0, (λx. s)L u)

= T m
d (t0, s) + T m

d (t0, L) + T m
d (t0, u) + [(d,Rm

d (t0))]
≻ T m

d (t′
0, s′) + T m

d (t0, L) + T m
d (t0, u) + [(d,Rm

d (t0))] + m by the internal IH
⪰ T m

d (t′
0, s′) + T m

d (t′
0, L) + T m

d (t′
0, u) + [(d,Rm

d (t0))] + m by item 2 and Lem. 63
⪰ T m

d (t′
0, s′) + T m

d (t′
0, L) + T m

d (t′
0, u) + [(d,Rm

d (t′
0))] + m by item 1

= T m
d (t′

0, (λx. s′)L u) + m

= T m
d (t′

0, t′) + m

3.5 If t = s u is not a redex of degree d: There are two subcases, depending on whether
the step t

d−→m t′ is internal to s or internal to u:

3.5.1 If the step is internal to s, then the step is of the form t = s u
d−→m s′ u = t′ with

s
d−→m s′. Note that s is not a m-abstraction of degree d (because s u is not a redex

48 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

of degree d). Hence by Lem. 59 s′ is not a m-abstraction of degree d. Then:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

≻ T m
d (t′

0, s′) + T m
d (t0, u) + m by the internal IH

⪰ T m
d (t′

0, s′) + T m
d (t′

0, u) + m by item 2 and Lem. 63
= T m

d (t′
0, s′ u) + m

= T m
d (t′

0, t′) + m

3.5.2 If the step is internal to u: Similar to the previous case.

3.6 t = s{u}: Similar to case 3.5.

3.7 L = □: Impossible, as there are no reduction steps □
d−→m L′.

3.8 L = L1{t}: Similar to case 3.5

4. Let 1 ≤ d < j ≤ D and t0
d−→m t′

0 and X d−→m X′, where X, X′ are either terms (X = t and
X = t′) or memories (X = L and X = L′). We argue that T m

j (t0, X) ⪰ T m
j (t′

0, X′). We
proceed by induction on X:

4.1 t = x: Impossible, as there are no reduction steps x
d−→m t′.

4.2 t = λx. s: Then the step is of the form t = λx. s
d−→m λx. s′ = t′ with s

d−→m s′. Then
T m

j (t0, t) = T m
j (t0, λx. s) = T m

j (t0, s) ⪰ T m
j (t′

0, s′) = T m
j (t′

0, λx. s′) = T m
j (t′

0, t′) by
the internal IH.

4.3 If t = (λx. s)L u is the redex of degree d contracted by the step t
d−→m t′: Then

the step is of the form t = (λx. s)L u
d−→m s[x := u]{u}L = t′. Recall that by

hypothesis d < j, and note that the abstraction (λx. s)L is of degree d, so the type
of the argument u must be of height less than d, that is, h(type(u)) < d < j. In
particular, the argument u cannot be a m-abstraction of degree j, so we may apply
the lower substitution lemma (Lem. 28), which ensures that there exists k ∈ N0
such that T m

j (t′
0, s[x := u]) = T m

j (t′
0, s) + k ⊗ T m

j (t′
0, u). Furthermore, observe that

T m
j (t0, u) ⪰ (1 + k) ⊗ T m

j (t′
0, u). Indeed by item 2 T m

j (t0, u) :≻: T m
j (t′

0, u) so by
Lem. 63 T m

j (t0, u) ⪰ (1 + k) ⊗ T m
j (t′

0, u). Moreover, note that t is not a redex of
degree j, so:

T m
j (t0, t) = T m

j (t0, (λx. s)L u)
= T m

j (t0, s) + T m
j (t0, L) + T m

j (t0, u)
⪰ T m

j (t′
0, s) + T m

j (t′
0, L) + T m

j (t0, u) by item 2 and Lem. 63
⪰ T m

j (t′
0, s) + T m

j (t′
0, L) + (1 + k)⊗ T m

j (t′
0, u)

since T m
j (t0, u) ⪰ (1 + k)⊗ T m

j (t′
0, u)

= T m
j (t′

0, s) + k ⊗ T m
j (t′

0, u) + T m
j (t′

0, u) + T m
j (t′

0, L)
= T m

j (t′
0, s[x := u]) + T m

j (t′
0, u) + T m

j (t′
0, L)

= T m
j (t′

0, s[x := u]{u}L)
= T m

j (t0, t′)

4.4 If t = (λx. s)L u is a redex of degree j: Note that the step t
d−→m t′ cannot be at the

root, because d < j, so the redex at the root is not of degree d. There are three
subcases, depending on whether the step is internal to s, internal to L, or internal to u.
All these subcases are similar; we only give the proof for the case in which the step
is internal to s. Then the step is of the form t = (λx. s)L u

d−→m (λx. s′)L u = t′ with

P. Barenbaum and C. Sottile 49

s
d−→m s′, and we have:

T m
j (t0, t)

= T m
j (t0, (λx. s)L u)

= T m
j (t0, s) + T m

j (t0, L) + T m
j (t0, u) + [(j,Rm

j (t0))]
⪰ T m

j (t′
0, s′) + T m

j (t0, L) + T m
j (t0, u) + [(j,Rm

j (t0))] by the internal IH
⪰ T m

j (t′
0, s′) + T m

j (t′
0, L) + T m

j (t′
0, u) + [(j,Rm

j (t0))] by item 2 and Lem. 63
⪰ T m

j (t′
0, s′) + T m

j (t′
0, L) + T m

j (t′
0, u) + [(j,Rm

j (t′
0))] by item 1

= T m
j (t′

0, (λx. s′)L u)
= T m

j (t′
0, t′)

4.5 If t = s u is not the redex contracted by the step t
d−→m t′ nor a redex of degree j:

There are two subcases, depending on whether the step t
d−→m t′ is internal to s or

internal to u:
4.5.1 If the step is internal to s, then the step is of the form t = s u

d−→m s′ u = t′ with
s

d−→m s′. Note that s is not a m-abstraction of degree j, (because s u is not a redex
of degree j). Moreover d < j so by Lem. 59 we have that s′ is not a m-abstraction
of degree j. Then:

T m
j (t0, t) = T m

j (t0, s u)
= T m

j (t0, s) + T m
j (t0, u)

⪰ T m
j (t′

0, s′) + T m
j (t0, u) by the internal IH

⪰ T m
j (t′

0, s′) + T m
j (t′

0, u) by item 2 and Lem. 63
= T m

j (t′
0, s′ u)

= T m
j (t′

0, t′)

4.5.2 If the step is internal to u: Similar to the previous case.
4.6 t = s{u}: Similar to case 4.5.
4.7 L = □: Impossible, as there are no reduction steps □

d−→m L′.
4.8 L = L1{t}: Similar to case 4.5.

5. Let 1 ≤ d ≤ D and t
d−→m t′. We argue that T m

≤D(t) ≻ T m
≤D(t′). Indeed:

T m
≤D(t) =

∑D
i=1 T m

i (t, t)
= T m

≤d−1(t) + T m
d (t, t) + (

∑D
j=d+1 T m

j (t, t))
⪰ T m

d (t, t) + (
∑D

j=d+1 T m
j (t, t))

removing the first term
≻ T m

≤d−1(t′) + T m
d (t′, t′) + (

∑D
j=d+1 T m

j (t, t))
by item 3, taking m := T m

≤d−1(t′)
⪰ T m

≤d−1(t′) + T m
d (t′, t′) + (

∑D
j=d+1 T m

j (t′, t′))
by item 4

= T m
≤D(t′)

◀

▶ Proposition 69 (Forget/decrease). Let d ∈ N0. Then the following hold:
1. If t ▷ t′ then Rm

d (t) ⪰ Rm
d (t′).

2. If t0 ▷ t′
0 then T m

d (t0, t) ⪰ T m
d (t′

0, t).
3. If t0 ▷ t′

0 and t ▷ t′ then T m
d (t0, t) ⪰ T m

d (t′
0, t′).

4. If t ▷ t′ then T m
≤d(t) ⪰ T m

≤d(t′).

50 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

Proof. We prove a more general version of the statement: in items 2 and 3 we allow t to be
either a term or a memory. For example, the statement of item 2 is generalized as follows: if
t0 ▷ t′

0 then T m
j (t0, X) ⪰ T m

j (t′
0, X), where X is either a term or a memory.

We prove all items simultaneously by induction on d. Note that: item 1. resorts to the
IH; item 2. resorts to item 1. (without decreasing d); item 3. resorts to items 1. and 2.
(without decreasing d); item 4. resorts to item 3. (without necessarily decreasing d).
1. Let t ▷ t′. We argue that Rm

d (t) ⪰ Rm
d (t′). Let X and Y be the sets of reduction

sequences X := {ρ | (∃s) ρ : t
d−→∗

m s} and Y := {σ | (∃s′) σ : t′ d−→∗
m s′}. Note that,

by definition, Rm
j (t) = [T m

≤d−1(ρtgt) || ρ ∈ X] and Rm
j (t′) = [T m

≤d−1(σtgt) || σ ∈ Y].
We construct a function φ : Y → X as follows. Consider a forgetful step R : t ▷ t′;
there may be more than one such step, but there is at least one by hypothesis. By
postponement of forgetful reduction Prop. 21, for each reduction sequence σ : t′ d−→∗

m s′

there exists a term sσ such that sσ ▷∗ s′ and a reduction sequence σ↶R : t
d−→∗

m sσ.
In particular, (σ↶R) ∈ X, and we can define φ(σ) := σ↶R. Moreover, φ is injective
because if σ1, σ2 ∈ Y are such that σ↶

1 R = σ↶
2 R then by Prop. 21 we have that σ1 = σ2.

First, we claim that T m
≤d−1(φ(σ)tgt) ⪰ T m

≤d−1(σtgt) for every σ ∈ Y . Indeed:

T m
≤d−1(φ(σ)tgt) = T m

≤d−1(sσ)
⪰ T m

≤d−1(s′) by item 4 of the IH
= T m

≤d−1(σtgt)

To be able to apply item 4 of the IH, observe that we have d− 1 < d. We apply the IH
as many times as the number of forgetful steps in sσ ▷∗ s′.
To conclude the proof, let Z = X \ φ(Y), so that X = φ(Y) ⊎ Z, and note that:

Rm
d (t) = [T m

≤d−1(ρtgt) || ρ ∈ X]
= [T m

≤d−1(ρtgt) || ρ ∈ φ(Y) ⊎ Z]
= [T m

≤d−1(ρtgt) || ρ ∈ φ(Y)] + [T m
≤d−1(ρtgt) || ρ ∈ Z]

⪰ [T m
≤d−1(ρtgt) || ρ ∈ φ(Y)]

= [T m
≤d−1(φ(σ)tgt) || σ ∈ Y] (⋆)

⪰ [T m
≤d−1(σtgt) || σ ∈ Y] (⋆⋆)

= Rm
d (t′)

To justify the step marked with (⋆), note that φ is injective, so Y and φ(Y) have the
same cardinality. To justify the step marked with (⋆⋆), note that [T m

≤d−1(φ(σ)tgt) || σ ∈
Y] =

∑
σ∈Y [T m

≤d−1(φ(σ)tgt)] ⪰
∑

σ∈Y [T m
≤d−1(σtgt)] = [T m

≤d−1(σtgt) || σ ∈ Y] because
T m

≤d−1(φ(σ)tgt) ⪰ T m
≤d−1(σtgt), as we have already justified.

2. Let t0 ▷ t′
0 and let X be either a term or a memory. We argue that T m

d (t0, X) ⪰ T m
d (t′

0, X).
We proceed by induction on X:

2.1 t = x: Then T m
d (t0, x) = [] ⪰ [] = T m

d (t′
0, x).

2.2 t = λx. s: Then T m
d (t0, λx. s) = T m

d (t0, s) ⪰ T m
d (t′

0, s) = T m
d (t′

0, λx. s) by the internal
IH.

2.3 If t = (λx. s)L u is a redex of degree d: Then:

T m
d (t0, t) = T m

d (t0, (λx. s)L u)
= T m

d (t0, s) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

⪰ T m
d (t′

0, s) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t0))] by the internal IH

⪰ T m
d (t′

0, s) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t′

0))] by item 1
= T m

d (t′
0, (λx. s)L u)

= T m
d (t′

0, t)

P. Barenbaum and C. Sottile 51

2.4 If t = s u is not a redex of degree d: Then:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

⪰ T m
d (t′

0, s) + T m
d (t′

0, u) by the internal IH
= T m

d (t′
0, t)

2.5 t = s{u}: Similar to case 2.4.
2.6 L = □: Then T m

d (t0,□) = [] ⪰ [] = T m
d (t′

0,□).
2.7 L = L1{t}: Similar to case 2.4.

3. Let t0 ▷ t′
0 and X ▷ X′, where X and X′ are either terms (X = t and X = t′) or memories

(X = L and X = L′). We argue that T m
d (t0, X) ⪰ T m

d (t′
0, X′). We proceed by induction on

X:
3.1 t = x: Impossible, as there are no forgetful steps x ▷ t′.
3.2 t = λx. s: Then t = λx. s ▷ λx. s′ = t′ with s ▷ s′ and T m

d (t0, t) = T m
d (t0, λx. s) =

T m
d (t0, s) ⪰ T m

d (t′
0, s′) ⪰ T m

d (t′
0, λx. s′) ⪰ T m

d (t′
0, t′) by the internal IH.

3.3 If t = (λx. s)L u is a redex of degree d: There are three subcases, depending on whether
the forgetful step t ▷ t′ is internal to s, internal to L, or internal to u. All these
subcases are similar; we only give the proof for the case in which the step is internal
to s. Then t = (λx. s)L u ▷ (λx. s′)L u = t′ with s ▷ s′ and:

T m
d (t0, t) = T m

d (t0, (λx. s)L u)
= T m

d (t0, s) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))]

⪰ T m
d (t′

0, s′) + T m
d (t0, L) + T m

d (t0, u) + [(d,Rm
d (t0))] by the internal IH

⪰ T m
d (t′

0, s′) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t0))] by item 2

⪰ T m
d (t′

0, s′) + T m
d (t′

0, L) + T m
d (t′

0, u) + [(d,Rm
d (t′

0))] by item 1
= T m

d (t′
0, (λx. s′)L u)

= T m
d (t′

0, t′)

3.4 If t = s u is not a redex of degree d: There are two subcases, depending on whether the
forgetful step t ▷ t′ is internal to s or internal to u. These subcases are similar; we only
give the proof for the case in which the step is internal to s. Then t = s u ▷ s′ u = t′

with s ▷ s′ and:

T m
d (t0, t) = T m

d (t0, s u)
= T m

d (t0, s) + T m
d (t0, u)

⪰ T m
d (t′

0, s′) + T m
d (t0, u) by the internal IH

⪰ T m
d (t′

0, s′) + T m
d (t′

0, u) by item 2
= T m

d (t′
0, s′ u)

= T m
d (t′

0, t′)

3.5 t = s{u}: There are three subcases, depending on whether the forgetful step t ▷ t′ is
at the root, internal to s, or internal to u:

3.5.1 If the step is at the root: Then the step is of the form t = s{u} ▷ s = t′ and:

T m
d (t0, t) = T m

d (t0, s{u})
= T m

d (t0, s) + T m
d (t0, u)

⪰ T m
d (t0, s)

⪰ T m
d (t′

0, s) by item 2
= T m

d (t′
0, t′)

3.5.2 If the step is internal to s: Similar to case 3.4.

52 Two Decreasing Measures for Simply Typed λ-Terms (Extended Version)

3.5.3 If the step is internal to u: Similar to case 3.4.
3.6 L = □: Impossible, as there are no forgetful steps □ ▷ L′.
3.7 L = L1{t}: Similar to case 3.5.

4. Let t ▷ t′. We argue that T m
≤d(t) ⪰ T m

≤d(t′). Indeed:

T m
≤d(t) =

∑d
i=1 T m

d (t, t)
⪰

∑d
i=1 T m

d (t′, t′) by item 3, resorting to the IH when i < d

= T m
≤d(t′)

Note that for the value i = d, we resort directly to item 3 and not to the IH.

◀

	1 Introduction
	2 The m-calculus
	3 The W-measure
	4 Reduction by degrees
	5 The Tm-measure
	6 Conclusion
	A Technical appendix
	A.1 Proofs of Section 2 — The m-calculus
	A.1.1 Confluence of the m-calculus
	A.1.2 Simplification of a m-term
	A.1.3 Forgetful reduction

	A.2 Proofs of Section 4 — Reduction by degrees
	A.3 Proofs of Section 4 — The Tm-measure

