
Reductions in Higher-Order Rewriting and Their
Equivalence
Pablo Barenbaum ! Ï

Universidad Nacional de Quilmes (CONICET), Argentina
Universidad de Buenos Aires, Argentina

Eduardo Bonelli !Ï

Stevens Institute of Technology, USA

Abstract
Proof terms are syntactic expressions that represent computations in term rewriting. They were
introduced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of
reductions in (left-linear) first-order term rewriting systems. We study the problem of extending the
notion of proof term to higher-order rewriting, which generalizes the first-order setting by allowing
terms with binders and higher-order substitution. In previous works that devise proof terms for
higher-order rewriting, such as Bruggink’s, it has been noted that the challenge lies in reconciling
composition of proof terms and higher-order substitution (β-equivalence). This led Bruggink to
reject “nested” composition, other than at the outermost level. In this paper, we propose a notion
of higher-order proof term we dub rewrites that supports nested composition. We then define two
notions of equivalence on rewrites, namely permutation equivalence and projection equivalence, and
show that they coincide.

2012 ACM Subject Classification Theory of computation→ Equational logic and rewriting; Theory
of computation → Type theory

Keywords and phrases Term Rewriting, Higher-Order Rewriting, Proof terms, Equivalence of
Computations

Digital Object Identifier 10.4230/LIPIcs.CSL.2023.11

Funding Pablo Barenbaum: Partially supported by project ECOS-Sud A17C01.

1 Introduction

Term rewriting systems model computation as sequences of steps between terms, reduction
sequences, where steps are instances of term rewriting rules [15]. It is natural to consider
reduction sequences up to swapping of orthogonal steps since such reductions perform the
“same work”. The ensuing notion of equivalence is called permutation equivalence and was
first studied by Lévy [11] in the setting of the λ-calculus but has appeared in other guises
connected with concurrency [15, Rem.8.1.1]. As an example, consider the rewrite rule
c(x, f(y)) _ d(x, x) and the following reduction sequence where, in each step, the contracted
redex is underlined:

c(c(z, f(z)), f(z)) _ d(c(z, f(z)), c(z, f(z))) _ d(d(z, z), c(z, f(z))) _ d(d(z, z),d(z, z))
(1)

Performing the innermost redex first, rather than the outermost one, leads to:

c(c(z, f(z)), f(z)) _ c(d(z, z), f(z)) _ d(d(z, z),d(z, z)) (2)

The first step in (1) makes two copies of the innermost redex. It is the two steps contracting
these copies that are swapped with the first one in (1) to produce (2). Such duplication (and
erasure) contribute most of the complications behind permutation equivalence, both in its
formulation and the study of its properties.

© Pablo Barenbaum and Eduardo Bonelli;
licensed under Creative Commons License CC-BY 4.0

31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Editors: Bartek Klin and Elaine Pimentel; Article No. 11; pp. 11:1–11:94

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

21
0.

15
65

4v
1

 [
cs

.S
C

]
 2

7
O

ct
 2

02
2

mailto:pbarenbaum@dc.uba.ar
http://foones.github.io
mailto:ebonelli@stevens.edu
https://ebonelli.github.io/
https://doi.org/10.4230/LIPIcs.CSL.2023.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Reductions in Higher-Order Rewriting and Their Equivalence

Proof Terms. Proof terms are a natural representation for computations. They were
introduced by Meseguer as a means of representing proofs in Rewriting Logic [13] and exploited
by van Oostrom and de Vrijer in the setting of first-order left-linear rewriting systems, to study
equivalence of reductions in [17] and [15, Chapter 9]. Rewrite rules are assigned rule symbols
denoting the application of a rewriting rule. Proof terms are expressions built using function
symbols, a binary operator “;” denoting sequential composition of proof terms, and rule
symbols. Assuming the following rule symbol for our rewrite rule %(x, y) : c(x, f(y)) _ d(x, x),
reduction (1) may be represented as the proof term: %(c(z, f(z)), z) ; d(%(z, z), c(z, f(z))) ;
d(d(z, z), %(z, z)) and reduction (2) as the proof term: c(%(z, z), f(z)) ; %(d(z, z), z). One
notable feature of proof terms is that they support parallel steps. For instance, both proof
terms above are permutation equivalent to %(c(z, f(z)), z) ; d(%(z, z), %(z, z)), which performs
the two last steps in parallel, as well as to %(%(z, z), z), which performs all steps simultaneously.
Permutation equivalence now can be studied in terms of equational theories on proof terms.

Equivalence of Reductions via Proof Terms for First-Order Rewriting. In [17], van
Oostrom and de Vrijer characterize permutation equivalence of proof terms in four al-
ternative ways. First, they formulate an equational theory of permutation equivalence ρ ≈ σ
between proof terms, such that for example %(c(z, f(z)), z) ; d(%(z, z), %(z, z)) ≈ %(%(z, z), z)
holds. These equations account for the behavior of proof term composition, which has a
monoidal structure, in the sense that composition is associative and empty steps act as
identities. Second, they define an operation of projection ρ/σ, denoting the computational
work that is left of ρ after σ. For example, c(%(z, z), f(z))/%(c(z, f(z)), z) = d(%(z, z), %(z, z)).
This induces a notion of projection equivalence between proof terms ρ and σ, declared to hold
when both ρ/σ and σ/ρ are empty, i.e. they contain no rule symbols. Third, they define a
standardization procedure to reorder the steps of a reduction in outside-in order, mapping
each proof term ρ to a proof term ρ∗ in standard form. For example, the (parallel) standard
form of c(%(z, z), f(z)) ; %(d(z, z), z) is %(c(z, f(z)), z) ; d(%(z, z), %(z, z)). This induces a
notion of standardization equivalence between proof terms ρ and σ, declared to hold when
ρ∗ = σ∗. Fourth, they define a notion of labelling equivalence, based on lifting computational
steps to labelled terms. Although these notions of equivalence were known prior to [17],
the main result of that paper is that they are systematically studied using proof terms and,
moreover, shown to coincide.

Higher-Order Rewriting. Higher-order term rewriting (HOR) generalizes first-order term
rewriting by allowing binders. Function symbols are generalized to constants of any given
simple type, and first-order terms are generalized to simply-typed λ-terms, including constants
and up to βη-equivalence. The paradigmatic example of a higher-order rewriting system is the
λ-calculus. It includes a base type ι and two constants app : ι→ ι→ ι and lam : (ι→ ι)→ ι;
β-reduction may be expressed as the higher-order rewrite rule app (lam (λz.x z)) y _ x y.
A sample reduction sequence is:

lam(λv.app(lam(λx.x),app(lam(λw.w), v))) _ lam(λv.app(lam(λx.x), v)) _ lam(λv.v) (3)

Generalizing proof terms to the setting of higher-order rewriting is a natural goal. Just
like in the first-order case, we assign rule symbols to rewrite rules. One would then expect
to obtain proof terms by adding these rule symbols and the “;” composition operator to
the simply typed λ-calculus. If we assume the following rule symbol for our rewrite rule
% x y : app (lam (λz.x z)) y _ x y, then an example of a higher-order proof term for (3) is:

lam
(
λv.
(
app(lam(λx.x), % (λw.w) v) ; % (λu.u) v

))

P. Barenbaum and E. Bonelli 11:3

However, higher-order substitution and proof term composition seem not to be in conson-
ance, an issue already observed by Bruggink [4]. Consider a variable x. This variable itself
denotes an empty computation x _ x, so the composition (x ; x) also denotes an empty
computation x _ x. If σ is an arbitrary proof term s _ t, the proof term (λx.(x ; x))σ
should, in principle, represent a computation (λx.x) s _ (λx.x) t. This is the same as s _ t,
because terms are regarded up to βη-equivalence. The challenge lies in lifting βη-equivalence
to the level of proof terms: if β-reduction is naively extended to operate on proof terms, the
well-formed proof term (λx.(x ; x))σ becomes equal to (σ ; σ), which is ill-formed because
σ is not composable with itself if s 6=βη t. Rather than simply disallowing the use of “;”
under applications and abstractions (the route taken in [4]), our aim is to integrate it with
βη-reduction.

Contribution. We propose a syntax for higher-order proof terms, called rewrites,
that includes βη-equivalence and allows rewrites to be freely composed. We then define a
relation ρ ≈ σ of permutation equivalence between rewrites, the central notion of our
work. The issue mentioned above is avoided by disallowing the ill-behaved substitution of a
rewrite in a rewrite “ρ{x\σ}”, and by only allowing notions of substitution of a term in a
rewrite ρ{x\s}, and of a rewrite in a term s{x\\ρ}. From these, a well-behaved notion of
substitution of a rewrite in a rewrite ρ{x\\\σ} can be shown to be derivable. We also define
a notion of projection ρ//σ. The induced notion of projection equivalence coincides
with permutation equivalence, in the sense that ρ ≈ σ iff ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt,
where ρtgt stands for the target term of ρ. The equivalence is established by means of
flattening, a method to convert an arbitrary rewrite ρ into a (flat) representative ρ[that
only uses the composition operator “;” at the top level and a notion of flat permutation
equivalence ρ ∼ σ. Flattening is achieved by means of a rewriting system whose objects
are themselves rewrites. This system is shown to be confluent and strongly normalizing.
We also show that permutation equivalence is sound and complete with respect to
flat permutation equivalence in the sense that ρ ≈ σ if and only if ρ[∼ σ[.

Structure of the Paper. In Section 2 we review Nipkow’s Higher-Order Rewriting Systems.
Section 3 proposes our notion of rewrite and Section 4 introduces permutation equivalence for
them. Flattening is presented in Section 5. In this section, we also formulate an equational
theory defining the relation ρ ∼ σ of flat permutation equivalence between flat rewrites.
It relies crucially on a ternary relation between multisteps, called splitting and written
µ⇔ µ1 ; µ2, meaning that µ and µ1 ; µ2 perform the same computational work. In Section 6
we first define a projection operator for flat rewrites ρ/σ, and we lift it to a projection
operator for arbitrary rewrites ρ//σ def= ρ[/σ[. Then we show that the induced notion of
projection equivalence coincides with permutation equivalence. Finally, we conclude and
discuss related and future work. Detailed proofs can be found in the accompanying technical report [2].

2 Higher-Order Rewriting

There are various approaches to HOR in the literature, including Klop’s Combinatory
Reduction Systems (CRSs) [8] and Nipkow’s Higher-Order Rewriting Systems (HRSs) [14,
12]. We consider HRSs in this paper. Their use of the simply-typed lambda calculus for
representing terms and substitution provides a suitable starting point for modeling our
rewrites. Moreover, HRS are arguably more general than CRS in that their instantiation

CSL 2023

11:4 Reductions in Higher-Order Rewriting and Their Equivalence

mechanism is more powerful [15, Sec.11.4.2]. We next introduce HRS. Assume given a
denumerably infinite set of variables (x, y, . . .), base types (α, β, . . .), and constant symbols
(c,d, . . .). The sets of terms (s, t, . . .) and types (A,B, . . .) are given by:

s ::= x | c | λx.s | s s A ::= α | A→ A

A term can either be a variable, a constant, an abstraction or an application. A type can
either be a base type or an arrow type. We write fv(s) for the free variables of s. We use Xn,
or sometimes just X if n is clear from the context, to denote a sequence X1, . . . , Xn. Following
standard conventions, s tn stands for the iterated application s t1 . . . tn, and An → B for the
type A1 → . . . An → B. We write s{x\t} for the capture-avoiding substitution of all free
occurrences of x in s with t and call it a term/term substitution. We identify terms that differ
only in the names of their bound variables. A typing context (Γ,Γ′, . . .) is a partial function
from variables to types. We write dom(Γ) for the domain of Γ. Given a typing context Γ
and x /∈ dom(Γ), we write Γ, x : A for the typing context such that (Γ, x : A)(x) = A, and
(Γ, x : A)(y) = Γ(y) whenever y 6= x. We write · for the empty typing context and x ∈ Γ if
x ∈ dom(Γ). A signature of a HRS is a set C of typed constants c : A. A sample signature is
C = {app : ι→ ι→ ι, lam : (ι→ ι)→ ι} for ι a base type.

I Definition 1 (Type system for terms). Terms are typed using the usual typing rules of the
simply-typed λ-calculus:
(x : A) ∈ Γ

Var
Γ ` x : A

(c : A) ∈ C
Con

Γ ` c : A

Γ, x : A ` s : B
Abs

Γ ` λx.s : A→ B

Γ ` s : A→ B Γ ` t : A
App

Γ ` s t : B
Given any Γ and A such that Γ ` s : A can be proved using these rules, we say s is a typed
term over C. We typically drop C assuming it is implicit.

We assume the usual definition of β and η-reduction between terms. Recall that β-
reduction (resp. η-reduction) is confluent and terminating on typed terms. We write s ↓β
(resp. s ↓η) for the unique β-normal form (resp. η-normal form) of s. The β-normal form of
a term s has the form λxk.a t1 . . . tm, for a either a constant or a variable. The η-expanded
form of s is defined as:

s ↑η def= λxn+k.a (tm ↑η) (xn+1 ↑η) . . . (xn+k ↑η)

where s is assumed to have type An+k → B and the xn+1, . . . , xn+k are fresh. We use s lηβ
to denote the term s ↓β ↑η and call it the βη-normal form of s.

A substitution θ is a function from variables to typed terms such that θ(x) 6= x only
for finitely many x. The domain of a substitution is defined as dom(θ) = {x | θ(x) 6= x}.
The application of a substitution θ = {x1 7→ s1, . . . , xn 7→ sn} to a term t is defined as
θ t

def= ((λxn.t) sn) lηβ .

I Definition 2. A pattern is a typed term in β-normal form such that all free occurrences of
a variable xi are in a subterm of the form xi t1 . . . tk with t1, . . . , tk η-equivalent to distinct
bound variables. A rewriting rule is a pair 〈`, r〉 of typed terms in βη-normal form of the
same base type with ` a pattern not η-equivalent to a variable and fv(r) ⊆ fv(`). An HRS is
a pair consisting of a signature and a set of rewriting rules over that signature. We typically
omit the signature.

I Definition 3. The rewrite relation →R for an HRS R is the relation over typed terms in
βη-normal form defined as follows:

〈`, r〉 ∈ R
Root

θ ` →R θ r

s →R t
App

a rm s pn →R a rm t pn

s →R t
Abs

λx.s →R λx.t

P. Barenbaum and E. Bonelli 11:5

where a is either a constant or a variable of type Am+1+n → B. We write ∗→R (resp. ∗↔R)
for the reflexive, transitive (resp. reflexive, symmetric and transtive) closure of →R .

I Example 4. Consider a base type ι and typed constants mu : (ι → ι) → ι and f : ι →
ι. Two sample rewriting rules are: 〈mu(λy.x y), x (mu(λy.x y))〉 and 〈f x,g x〉. All four
terms have base type ι. An example of a sequence of rewrite steps is mu (λx.f x) →R
f (mu (λx.f x)) →R f (mu (λx.g x)) →R g (mu (λx.g x)).

An HRS is orthogonal if: 1. The rules are left-linear, i.e. if the left-hand side ` has
fv(`) = {x1, . . . , xn}, then there is exactly one free occurrence of xi in `, for each 1 ≤ i ≤ n.
2. There are no critical pairs, as defined for example in [14, Def. 4.1]. Orthogonal HRSs
are deterministic in the sense that their rewrite relation is confluent. All of the examples of
HRSs presented above are orthogonal. In the sequel of this paper, we assume given a fixed,
orthogonal HRS R.

3 Rewrites

In this section we propose a syntax for higher-order proof terms, called rewrites1. Rewrites
for an HRS R are a means for denoting proofs in Higher-Order Rewriting Logic (HORL,
cf. Def. 7) which, in turn, correspond to reduction sequences in R (cf. Thm. 9). As in the
first-order case [13], HORL is simply the equational theory that results from an HRS but
disregarding symmetry. Given an HRS R, let Rc denote the set of pairs 〈λxn.`, λxn.r〉 such
that 〈`, r〉 ∈ R and {x1, . . . , xn} = fv(`). We begin by recalling the definition of equational
logic (cf. Def. 5), the equational theory induced by an HRS. It is essentially that of [12,
Def. 3.11], except that in the inference rule ERule we use Rc rather than R. This equivalent
formulation will be convenient when introducing rewrites since free variables in the LHS of a
rewrite rule will be reflected in the rewrite too.

I Definition 5 (Equational Logic). An HRS R induces a relation .=R on terms defined by
the following rules:

Γ, x : A ` s : B Γ ` t : A
EBeta

Γ ` (λx.s) t .=R s{x\t} : B

Γ, x : A ` s : B x /∈ fv(s)
EEta

Γ ` λx.s x .=R s : B

(x : A) ∈ Γ
EVar

Γ ` x .=R x : A

(c : A) ∈ C
ECon

Γ ` c .=R c : A

Γ, x : A ` s0
.=R s1 : B

EAbs
Γ ` λx.s0

.=R λx.s1 : A→ B

Γ ` s0
.=R s1 : A→ B Γ ` t0

.=R t1 : A
EApp

Γ ` s0 t0
.=R s1 t1 : B

〈s, t〉 ∈ Rc · ` s : A · ` t : A
ERule

Γ ` s .=R t : A

Γ ` s0
.=R s1 : A

ESymm
Γ ` s1

.=R s0 : A

Γ ` s0
.=R s1 : A Γ ` s1

.=R s2 : A
ETrans

Γ ` s0
.=R s2 : A

I Theorem 6 (Thm. 3.12 in [12]). Γ ` s .=R t : A iff s lηβ
∗↔R t lηβ.

The (⇐) direction follows from observing that →β,η and ∗↔R are all included in .=R. The
(⇒) direction is by induction on the derivation of Γ ` s .=R t : A.

1 Our notion of rewrite is unrelated to that of Def. 2.4 in [13]; it corresponds to “proof terms” as introduced
in Sec. 3.1 in [13].

CSL 2023

11:6 Reductions in Higher-Order Rewriting and Their Equivalence

Higher-Order Rewriting Logic results from dropping ESymm in Def. 5 and adding a proof
witness. Its judgments take the form Γ ` ρ : s _ t : A where the proof witness ρ is called a
rewrite. Given a set of rule symbols (%, ϑ, . . .), the set of rewrites (ρ, σ, . . .) is given by:

ρ ::= x | c | % | λx.ρ | ρ ρ | ρ ; ρ

A rewrite can either be a variable, a constant, a rule symbol, an abstraction congruence, an
application congruence, or a composition. Note that composition may occur anywhere inside
a rewrite. For the sake of clarity we present the full system for Higher-Order Rewriting Logic
next. We assume given an HRS R such that each rewrite rule 〈`, r〉 ∈ R has been assigned
a unique rule symbol % and shall write 〈%, `, r〉 ∈ R and also use the same notation for Rc.
HORL consists of two forms of typing judgments:
1. Γ ` s =βη t : A, meaning that s and t are βη-equivalent terms of type A under Γ; and
2. Γ ` ρ : s _R t : A, meaning that ρ is a rewrite with source s and target t, which are

terms of type A under Γ.

I Definition 7 (Higher-Order Rewriting Logic). Term equivalence is defined as the reflexive,
symmetric, transitive, and contextual closure of:

Γ, x : A ` s : B Γ ` t : A
EqBeta

Γ ` (λx.s) t =βη s{x\t} : B

Γ, x : A ` s : B x /∈ fv(s)
EqEta

Γ ` λx.s x =βη s : B

Typing rules for rewrites are as follows:

(x : A) ∈ Γ
RVar

Γ ` x : x _R x : A

(c : A) ∈ C
RCon

Γ ` c : c _R c : A

Γ, x : A ` ρ : s0 _R s1 : B
RAbs

Γ ` λx.ρ : λx.s0 _R λx.s1 : A→ B

Γ ` ρ : s0 _R s1 : A→ B Γ ` σ : t0 _R t1 : A
RApp

Γ ` ρ σ : s0 t0 _R s1 t1 : B

〈%, s, t〉 ∈ Rc · ` s : A · ` t : A
RRule

Γ ` % : s _R t : A

Γ ` ρ : s0 _R s1 : A Γ ` σ : s1 _R s2 : A
RTrans

Γ ` ρ ; σ : s0 _R s2 : A

Γ ` ρ : s′ _R t′ : A Γ ` s =βη s
′ : A Γ ` t′ =βη t : A

RConv
Γ ` ρ : s _R t : A

The RVar and RCon rules express that variables and constants represent identity rewrites.
The RAbs and RApp rules express congruence below abstraction and application. The RRule
rule allows us to use a rule symbol to stand for a rewrite between its source and its target,
which must be closed terms of the same type. The RConv rule states that the source and the
target of a rewrite are regarded up to βη-equivalence. Note that there are no rules equating
rewrites; such rules are the purpose of Section 4 which introduces permutation equivalence.

I Example 8. Suppose we assign the following rule symbols to the rewriting rules of Ex. 4:
〈%,mu(λy.x y), x (mu(λy.x y))〉 and 〈ϑ, f x,g x〉. Recall that C def= {mu : (ι → ι) → ι, f :
ι→ ι}. The reduction of Ex. 4 can be represented as a rewrite:

· ` % (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) : mu (λx.f x) _R g (mu (λx.g x) : ι

Inspection of the proof of Thm. 6 in [12] reveals that β and η are only needed for
substitutions in rewrite rules. As a consequence:

I Theorem 9. There is a rewrite ρ such that Γ ` ρ : s _R t : A if and only if s lηβ
∗→R t lηβ.

P. Barenbaum and E. Bonelli 11:7

Now that we know that rewrites over an HRS R are sound and complete with respect to
reduction sequences in R, we review some basic properties of rewrites and then focus, in
the remaining sections, on equivalences between rewrites. In the sequel we will omit R in
Γ ` ρ : s _R t : A and write Γ ` ρ : s _ t : A.

I Definition 10 (Source and target of a rewrite). For each rewrite ρ we define the source ρsrc

and the target ρtgt as the following terms:

xsrc def= x

csrc def= c
%src def= s if (% : s _ t : A) ∈ R

(λx.ρ)src def= λx.ρsrc

(ρ σ)src def= ρsrc σsrc

(ρ ; σ)src def= ρsrc

xtgt def= x

ctgt def= c
%tgt def= t if (% : s _ t : A) ∈ R

(λx.ρ)tgt def= λx.ρtgt

(ρ σ)tgt def= ρtgt σtgt

(ρ ; σ)tgt def= ρtgt

The free variables of an expression X (which may be a term or a rewrite) are written
fv(X), and defined as expected, with lambdas binding variables in their bodies. For any given
term or rewrite X, we write X{x\t} for the capture-avoiding substitution of the variable x
in X by t. The operation ρ{x\t} is called rewrite/term substitution.

We mention a few important syntactic properties of terms and rewrites (detailed statements
and proofs can be found in Section A of [2]). First, some basic properties hold, such as weakening
(e.g. if Γ ` ρ : s _ t : A then Γ, x : B ` ρ : s _ t : A) and commuting substitution
with the source and target operators (e.g. ρ{x\s}src = ρsrc{x\s}). Terms appearing in
valid equality and rewriting judgments can always be shown to be typable, that is, if either
Γ ` s =βη t : A or Γ ` ρ : s _ t : A, then Γ ` s : A and Γ ` t : A. Second, given a typable
rewrite, Γ ` ρ : s _ t : A, the source of ρ and s are not necessarily equal, but they are
interconvertible, that is Γ ` s =βη ρ

src : A, and similarly for the target, i.e. Γ ` t =βη ρ
tgt : A.

For example, if % : λx.cx _ λx.d : A→ A then it can be shown that ` %d : c d _ d : A,
and indeed c d =βη (λx.cx) d = (%d)src. Third, any typable term s can be understood as an
empty or unit rewrite s, without occurrences of rule symbols, between s and itself: if Γ ` s : A
then Γ ` s : s _ s : A. We usually coerce terms to rewrites implicitly if there is little danger
of confusion. Substitution of a variable for a term is functorial, that is, given a rewrite
Γ, x : A ` ρ : s _ t : B and a term Γ ` r : A, then Γ ` ρ{x\r} : s{x\r} _ t{x\r} : B.

Term/rewrite substitution generalizes term/term substitution s{x\t} when t is a rewrite,
i.e. s{x\\ρ}. Sometimes we also call this notion lifting substitution, as s{x\\ρ} “lifts” the
expression s from the level of terms to the level of rewrites.

I Definition 11 (Term/rewrite substitution).

y{x\\ρ} def=
{
ρ if x = y

y if x 6= y
c{x\\ρ} def= c

(λy.s){x\\ρ} def= λy.s{x\\ρ} if x 6= y (s t){x\\ρ} def= s{x\\ρ} t{x\\ρ}

We mention some important properties of term/rewrite substitution. First, term/rewrite
substitution is a kind of horizontal composition, in the sense that if Γ, x : A ` s : B and Γ ` ρ :
t _ t′ : A then Γ ` s{x\\ρ} : s{x\t} _ s{x\t′} : B. Second, term/rewrite and rewrite/term
substitution commute according to the equation s{x\\ρ}{y\t} = s{y\t}{x\\ρ{y\t}}, as-
suming that Γ, x : A, y : B ` s : C and Γ, y : B ` ρ : r _ r′ : A and Γ ` t : B (where, by
convention, x /∈ fv(t)). Note that, in particular, if y does not occur free in ρ, this means that

CSL 2023

11:8 Reductions in Higher-Order Rewriting and Their Equivalence

s{x\\ρ}{y\t} = s{y\t}{x\\ρ}. Third, term/rewrite substitution commutes with reflexivity
in the sense that s{x\\t} = s{x\t} holds whenever Γ, x : A ` s : B and Γ ` t : A. It also
commutes with the source and target operators, in the sense that s{x\\ρ}src = s{x\ρsrc} and
s{x\\ρ}tgt = s{x\ρtgt} hold whenever Γ, x : A ` s : B and Γ ` ρ : t _ t′ : A.

4 Permutation equivalence

This section presents permutation equivalence (Def. 12), a relation over (typed) rewrites
ρ ≈ σ that identifies any two rewrites ρ and σ denoting computations in a given HRS R that
are equivalent up to permutation of steps.

Towards Permutation Equivalence for Rewrites. Equipped with the self-evident operations
of term/rewrite substitution s{x\\ρ}, rewrite/term substitution ρ{x\t} and the fact that
rewrites may be freely composed, we set out to synthesize a definition of permutation
equivalence by attempting to assign a meaning for (λx.ρ)σ, where Γ ` ρ : s0 _ s1 : A and
Γ ` σ : t0 _ t1 : A. We begin by assuming we have equations that allow rewrites to be
post-composed with their targets (≈-IdR) and pre-composed with their source (≈-IdL) and
reason as follows:

(λx.ρ)σ ≈(IdR) ((λx.ρ) ; (λx.s1))σ ≈(IdL) ((λx.ρ) ; (λx.s1)) (t0 ; σ)

These rewrites are syntactically valid since we allow composition inside an application.
Next, we allow application to commute with composition by introducing a rule ≈-App:
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2). Applying this equation leads us to:

((λx.ρ) ; (λx.s1)) (t0 ; σ) ≈(App) (λx.ρ) t0 ; (λx.s1)σ

Finally, we introduce β-equality on rewrites. Arbitrary β-reduction of rewrites is not allowed
a priori. It is only allowed when either the abstraction or the argument are unit rewrites, for
which the substitution operators mentioned above can be used. These equations take the
form (λx.s) ρ ≈ s{x\\ρ} and (λx.ρ) s ≈ ρ{x\s} and are called, ≈-BetaTR and ≈-BetaRT.

(λx.ρ) t0 ; (λx.s1)σ ≈(BetaRT) ρ{x\t0} ; (λx.s1)σ ≈(BetaTR) ρ{x\t0} ; s1{x\\σ}

In summary we have (λx.ρ)σ ≈ ρ{x\t0} ; s1{x\\σ}. We could equally well have deduced
(λx.ρ)σ ≈ s0{x\\σ} ; ρ{x\t1}. As it turns out, however, ρ{x\t0} ; s1{x\\σ} and s0{x\\σ} ;
ρ{x\t1} are permutation equivalent in our theory.

Permutation Equivalence for Rewrites: Definition and Properties. We collect the obser-
vations above in the following definition.
I Definition 12 (Permutation equivalence). Suppose Γ ` ρ : s _ t : A and Γ ` ρ′ : s′ _ t′ : A
are derivable. Permutation equivalence, written Γ ` (ρ : s _ t) ≈ (ρ′ : s′ _ t′) : A (or simply
ρ ≈ ρ′ if Γ, s, t, s′, t′, A are clear from the context), is defined as the reflexive, symmetric,
transitive, and contextual closure of the following axioms:

ρsrc ; ρ ≈ ρ ≈-IdL
ρ ; ρtgt ≈ ρ ≈-IdR

(ρ ; σ) ; τ ≈ ρ ; (σ ; τ) ≈-Assoc
(λx.ρ) ; (λx.σ) ≈ λx.(ρ ; σ) ≈-Abs
(ρ1ρ2) ; (σ1σ2) ≈ (ρ1 ; σ1)(ρ2 ; σ2) ≈-App

(λx.s) ρ ≈ s{x\\ρ} ≈-BetaTR
(λx.ρ) s ≈ ρ{x\s} ≈-BetaRT
λx.ρ x ≈ ρ if x /∈ fv(ρ) ≈-Eta

P. Barenbaum and E. Bonelli 11:9

Rules ≈-IdL, ≈-IdR and ≈-Assoc, state that rewrites together with rewrite composition have
a monoidal structure. Recall from Section 3 that ρsrc is a term and ρsrc is its corresponding
rewrite. Rules ≈-Abs and ≈-App state that rewrite composition commutes with abstraction
and application. An important thing to be wary of is that rules may be applied only if
both the left and the right-hand sides are well-typed. In particular, the right-hand side of
the ≈-App rule may not be well-typed even if the left-hand side is; for example given rule
symbols c : A→ B and d : A, the expression ((λx.x)(c d)) ; (c d) is well-typed, with source
and target c d, while ((λx.x) ; c) ((c d) ; d) is not well-typed.

Finally, rules ≈-BetaTR, ≈-BetaRT and ≈-Eta introduce βη-equivalence for rewrites. Note
that ≈-BetaTR and ≈-BetaRT restrict either the body of the abstraction or the argument to a
unit rewrite, thus avoiding the issue mentioned in the introduction where a naive combination
of composition and βη-equivalence can lead to invalid rewrites.

Note that there are no explicit sequencing equations such as the I/O equations2 defining
permutation equivalence in the first-order case [15] and the corresponding equations flat-l
and flat-r of [4] for the higher-order case. Nonetheless, we can derive the following coherence
equation (see Lem. 68 in [2] for the proof):

ρ{x\s′} ; t{x\\σ} ≈ s{x\\σ} ; ρ{x\t′} (≈-Perm)

where Γ, x : A ` ρ : s _ t : B and Γ ` σ : s′ _ t′ : A.

I Example 13. Consider the HRS of Ex. 4 and the reduction of Ex. 8. We recall the latter
below (R2) and present a second one (R1).

R1 : mu (λx.f x) _ mu (λx.g x) _ g (mu (λx.g x))
R2 : mu (λx.f x) _ f (mu (λx.f x)) _ f (mu (λx.g x)) _ g (mu (λx.g x))

Reduction sequence R1 can be encoded as the rewrite mu (λx.ϑ x); % (λx.g x) and R2 as
% (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)). These two rewrites are permutation equivalent:

mu (λx.ϑ x) ; % (λx.g x)
≈(Eta) muϑ ; %g
= (mu y){y\\ϑ} ; (% y){y\g}
≈(Perm) (% y){y\f} ; (y (mu y)){y\\ϑ}
= % f ; ϑ (muϑ)
≈(IdL) % f ; (f ; ϑ) (muϑ)
≈(IdR) % f ; (f ; ϑ) ((muϑ) ; (mu g))
≈(App) % f ; f (muϑ) ; ϑ (mu g)
≈(Eta) % (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x))

The ≈-Perm rule motivates the definition of rewrite/rewrite substitution, ρ{x\\\σ} def=
ρ{x\s′} ; t{x\\σ}, which defines a rewrite s{x\s′} _ t{x\t′}. Note that ρ{x\\\σ} depends
on t and s′, and hence on the particular typing derivations for ρ and σ. Congruence results
(Lem. 63 and Lem. 64 in the appendix) ensure that the value of ρ{x\\\σ} does not depend,
up to permutation equivalence, on those typing derivations. Rewrite/rewrite substitution
generalizes rewrite/term and term/rewrite substitution, in the sense that ρ{x\t} ≈ ρ{x\\\t}
and s{x\\ρ} ≈ s{x\\\ρ}.

Other important facts involving rewrite/rewrite substitution are the following. First, it
commutes with abstraction, application, and composition, that is (λy.ρ){x\\\σ} ≈ λy.ρ{x\\\σ},

2 I : %(σ1, ..., σn) ≈ l(σ1, ..., σn) · %(t1, ..., tn) and O : %(σ1, ..., σn) ≈ %(s1, ..., sn) · r(σ1, ..., σn)

CSL 2023

11:10 Reductions in Higher-Order Rewriting and Their Equivalence

(ρ1 ρ2){x\\\σ} ≈ ρ1{x\\\σ} ρ2{x\\\σ}, and (ρ1 ; ρ2){x\\\σ1 ; σ2} ≈ ρ1{x\\\σ1} ; ρ2{x\\\σ2}.
Second, permutation equivalence is a congruence with respect to rewrite/rewrite substitution,
that is, if ρ ≈ ρ′ and σ ≈ σ′ then ρ{x\\\σ} ≈ ρ′{x\\\σ′}. Third, an analog of the substitution
lemma holds, namely ρ{x\\\σ}{y\\\τ} ≈ ρ{y\\\τ}{x\\\σ{y\\\τ}}. Finally, as discussed above,
a β-rule for arbitrary rewrites holds in the form (λx.ρ)σ ≈ ρ{x\\\σ}. The full theory of
rewrite/rewrite substitution is not developed here for lack of space (but see Section B.2 in [2]).

5 Flattening

Allowing composition to be nested within application and abstraction can give rise to rewrites
in which it is not obvious what reduction sequences of steps are being denoted. An example
from the previous section might be the rewrite ((λx.f x) ; ϑ) ((mu (λx.ϑ x)) ; (mu (λx.g x)))
which denotes the reduction sequence f (mu (λx.f x)) _ g (mu (λx.g x)) that replaces both
occurrences of f with g simultaneously. This section shows how rewrites can be “flattened”
so as to expose an underlying reduction sequence, expressed as a canonical (flat) rewrite.
One additional use of flattening will be to use it to show that permutation equivalence is
decidable (cf. end of Sec. Section 6). Before introducing flat rewrites we define multisteps.

A multistep is a rewrite without any occurrences of the composition operator. We use
µ, ν, ξ, . . . to range over multisteps. The capture-avoiding substitution of the free occurrences
of x in µ by ν is written µ{x\ν}, which is in turn a multistep. A flat multistep (µ̂, ν̂, . . .),
is a multistep in β-normal form, i.e. without subterms of the form (λx.µ) ν. A flat rewrite
(ρ̂, σ̂, . . .), is a rewrite given by the grammar ρ̂ ::= µ̂ | ρ̂ ; σ̂. Flat rewrites use the composition
operator “;” at the top level, that is they are of the form µ̂1 ; . . . ; µ̂n (up to associativity of
“;”), where each µ̂i is a flat multistep. Note that we do not require the µ̂i to be in βη-normal
form nor in βη-normal form. As mentioned in the introduction, flattening is achieved by
means of a rewriting system whose objects are themselves rewrites (Def. 15) which is shown
to be confluent and terminating (Prop. 17).

We also formulate an equational theory defining a relation ρ ∼ σ of flat permutation
equivalence between flat rewrites (Def. 19). The main result of this section is that permutation
equivalence is sound and complete with respect to flat permutation equivalence (Thm. 20).

I Remark 14. A substitution µ{x\ν} in which µ is a term is a term/rewrite substitution,
i.e. s{x\ν} = s{x\\ν}. A substitution in which ν is a term is a rewrite/term substitution,
i.e. µ{x\s} = µ{x\s}.

I Definition 15 (Flattening Rewrite System F). The flattening system F is given by the
following rules, closed under arbitrary contexts, defined between typable rewrites:

λx.(ρ ; σ) [7→ (λx.ρ) ; (λx.σ) F-Abs
(ρ ; σ)µ [7→ (ρµsrc) ; (σ µ) F-App1
µ (ρ ; σ) [7→ (µρ) ; (µtgt σ) F-App2

(ρ1 ; ρ2) (σ1 ; σ2) [7→ ((ρ1 ; ρ2)σsrc
1) ; (ρtgt

2 (σ1 ; σ2)) F-App3
(λx.µ) ν [7→ µ{x\ν} F-BetaM
λx.µ x

[7→ µ if x /∈ fv(µ) F-EtaM

Note that rules F -BetaM and F -EtaM apply to multisteps only. The reduction relation [7→ is
the union of all these rules, closed by compatibility under arbitrary contexts. We write ρ[for
the unique [7→-normal form of ρ.

P. Barenbaum and E. Bonelli 11:11

I Example 16. Consider a rewriting rule % : c _ d : A. The rewrite (λx.(x ; x)) %, whose
meaning (as previously mentioned) is not obvious, can be flattened as follows:

(λx.(x ; x)) % [7→F-Abs ((λx.x) ; (λx.x)) % [7→F-App1 (λx.x) c ; (λx.x) %
[7→F-BetaM c ; (λx.x) % [7→F-BetaM c ; %

The following result is proved by noting that F -BetaM and F -EtaM steps can be postponed
after steps of other kinds and then providing a well-founded measure for steps in F without
F-BetaM and F-EtaM to prove it is SN. Confluence of F follows from Newman’s lemma.

I Proposition 17. The flattening system F is strongly normalizing and confluent.

Flat Permutation Equivalence. We now turn to the definition of the relation ρ ∼ σ of flat
permutation equivalence. The key notion to define is the following ternary relation:

I Definition 18 (Splitting). Let Γ ` µ : s _ t : A and Γ ` µ1 : s′ _ r1 : A and
Γ ` µ2 : r2 _ t′ : A be multisteps. We say that µ splits into µ1 and µ2 if the following
inductively defined ternary relation, written µ⇔ µ1 ; µ2, holds:

SVar
x⇔ x ; x

SCon
c⇔ c ; c

SRuleL
%⇔ % ; %tgt SRuleR

%⇔ %src ; %
µ⇔ µ1 ; µ2

SAbs
λx.µ⇔ λx.µ1 ; λx.µ2

µ⇔ µ1 ; µ2 ν ⇔ ν1 ; ν2
SApp

µ ν ⇔ µ1 ν1 ; µ2 ν2

I Definition 19 (Flat permutation equivalence). Flat permutation equivalence judgments are
of the form: Γ ` (ρ : s _ t) ∼ (ρ′ : s′ _ t′) : A, meaning that ρ and ρ′ are equivalent rewrites,
with sources s and s′ respectively, and targets t and t′ respectively. The rewrites ρ and ρ′

are assumed to be in [7→-normal form, which in particular means that they must be flat
rewrites. Sometimes we write ρ ∼ ρ′ if Γ, s, t, s′, t′, A are irrelevant or clear from the context.
Derivability is defined by the two following axioms, which are closed by reflexivity, symmetry,
transitivity, and closure under composition contexts (given by S ::= � | S ; ρ | ρ ; S):

(ρ ; σ) ; τ ∼ ρ ; (σ ; τ) ∼-Assoc
µ ∼ µ[1 ; µ[2 if µ⇔ µ1 ; µ2 ∼-Perm

Note that in ∼-Perm, −[operates over multisteps. So the only rules of F that are applied
here are the F-BetaM and F-EtaM rules.

I Theorem 20 (Soundness and completeness of flat permutation equivalence). Let Γ ` ρ : s _
t : A and Γ ` σ : s′ _ t′ : A. Then ρ ≈ σ if and only if ρ[∼ σ[.

Proof. The (⇐) direction is immediate, given that reduction [7→ in the flattening system F
is included in permutation equivalence (ρ [7→ σ implies ρ ≈ σ) and, similarly, flat permutation
equivalence is included in permutation equivalence (ρ ∼ σ implies ρ ≈ σ).
The (⇒) direction is by induction on the derivation of ρ ≈ σ. It is subtle and requires
numerous auxiliary results (see Section D.8 in [2]). J

I Example 21. With the same notation as in Ex. 13, it can be checked that the rewrites
mu (λx.ϑ x) ; % (λx.g x) and % (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)) are permutation
equivalent by means of flattening. Indeed, using the ∼-Perm rule three times:

muϑ ; %g ∼ % ϑ as % ϑ⇔ (λx.mu (λy.x y))ϑ ; % (λx.g x)
∼ % f ; ϑ (muϑ) as % ϑ⇔ % (λx.f x) ; (λx.x (mu (λy.x y)))ϑ
∼ % f ; (f(muϑ) ; ϑ(µg)) as ϑ (muϑ)⇔ (λx.f x) (muϑ) ; ϑ (mu (λx.g x))

CSL 2023

11:12 Reductions in Higher-Order Rewriting and Their Equivalence

Note that % ϑ⇔ (λx.mu (λy.x y))ϑ ; % (λx.g x) follows from SApp, SRuleR for the upper left
hypothesis and SRuleL for the upper right one. Hence

(mu (λx.ϑ x) ; % (λx.g x))[= muϑ ; %g
∼ % f ; (f(muϑ) ; ϑ(µg))
= (% (λx.f x) ; f (mu (λx.ϑ x)) ; ϑ (mu (λx.g x)))[

6 Projection

This section presents projection equivalence. Two rewrites ρ and σ are said to be projection
equivalent if the steps performed by ρ are included in those performed by σ and vice-
versa. We proceed in stages as follows. First, we define projection of multisteps over
multisteps (Def. 25) and prove some of its properties (Prop. 26). Second, we extend projection
to flat rewrites (Def. 28). Third, we extend projection to arbitrary rewrites (Def. 29) and,
again, we prove some of its properties (Prop. 30). Finally, we show that the induced notion
of projection equivalence turns out to coincide with permutation equivalence (Thm. 31).

Projection for Multisteps. Consider the rewrites muϑ and % f , using the notation of Ex. 13,
each representing one step. Since rewrites are subject to βη-equivalence, to define projection
one must “line up” rule symbols with the left-hand side of the rewrite rules they witness3.
For example, if the above two multisteps were rewritten as (λy.mu (λx.y x))ϑ and % (λx.f x),
respectively, then one can reason inductively as follows to compute the projection of the
former over the latter (the inference rules themselves are introduced in Def. 22):

ProjRuleR
λy.mu (λx.y x)///%⇒ λy.y (mu (λx.y x))

ProjRuleL
ϑ///λx.f x⇒ ϑ

ProjApp
(λy.mu (λx.y x))ϑ///% (λx.f x)⇒ (λy.y (mu (λx.y x)))ϑ

The flat normal form of (λy.y (mu (λx.y x)))ϑ is the rewrite ϑ (muϑ). Hence we would
deduce muϑ///% f ⇒ ϑ (muϑ). We begin by introducing an auxiliary notion of projection
on coinitial multisteps that may not be flat (i.e. may not be in F-BetaM,F-EtaM-normal
form) called weak projection. We then make use of this notion, to define projection for flat
multisteps (Def. 25).

I Definition 22 (Weak projection and compatibility). Let Γ ` µ : s _ t : A and Γ ` ν :
s′ _ r : A be multisteps, not necessarily in normal form, such that s =βη s

′. The judgment
µ///ν ⇒ ξ is defined as follows:

ProjVar
x///x⇒ x

ProjCon
c///c⇒ c

ProjRule
%///%⇒ %tgt

ProjRuleL
%///%src ⇒ %

ProjRuleR
%src///%⇒ %tgt

µ///ν ⇒ ξ
ProjAbs

λx.µ///λx.ν ⇒ λx.ξ

µ1///ν1 ⇒ ξ1 µ2///ν2 ⇒ ξ2
ProjApp

µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2

We say that µ and ν are compatible, written µ ↑ ν if, intuitively speaking, µ and ν are
coinitial, and are “almost” η-expanded and β-normal forms, with the exception that the head
of the term may be the source of a rule, i.e. a term of the form %src. Compatibility is defined
as follows:

(µi ↑ νi)mi=1

λx.y µ ↑ λx.y ν

(µi ↑ νi)mi=1

λx.cµ ↑ λx.c ν
(µi ↑ νi)mi=1

λx.% µ ↑ λx.% ν

(µi ↑ νi)mi=1

λx.% µ ↑ λx.%src ν

(µi ↑ νi)mi=1

λx.%src µ ↑ λx.% ν

3 See also the discussion on pg. 120 of [4].

P. Barenbaum and E. Bonelli 11:13

The interesting cases are the two last rules, which state essentially that a rule symbol is
compatible with its source term. Clearly if µ ↑ ν, then there exists a unique ξ such that
µ///ν ⇒ ξ. Moreover, weak projection is coherent with respect to flattening:

I Lemma 23 (Coherence of projection). Let µ1, ν1, µ2, ν2 be multisteps such that the following
are satisfied:
1. µ1 ↑ ν1 and µ2 ↑ ν2;
2. µ[1 = µ[2 and ν[1 = ν[2; and
3. µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2.
Then ξ[1 = ξ[2.

Thus for arbitrary, coinitial multisteps µ and ν, it suffices to show that we can always find
corresponding compatible “almost” η-expanded and β-normal forms, as mentioned above.

I Proposition 24 (Existence and uniqueness of projection). Let µ, ν be such that µsrc =βη ν
src.

Then:
1. Existence. There exist multisteps µ̇, ν̇, ξ̇ such that µ̇[= µ[and ν̇[= ν[and µ̇///ν̇ ⇒ ξ̇.
2. Compatibility. Furthermore, µ̇ and ν̇ can be chosen in such a way that µ̇ ↑ ν̇.
3. Uniqueness. If (µ̇′)[= µ[and (ν̇′)[= ν[and µ̇′///ν̇′ ⇒ ξ̇′ then (ξ̇′)[= ξ[.

Prop. 24 relies on the left-hand side of the rewrite rules of the HRS being patterns. This
ensures, among other things, that flattening is injective when applied to left-hand sides
of rewrite rules in the sense that if (%src µ1 . . . µn)[= (%src ν1 . . . νn)[then µ[i = ν[i for all
1 ≤ i ≤ n. We can now define projection on arbitrary coinitial rewrites as follows.

I Definition 25 (Projection operator for multisteps). Let µ, ν be such that µsrc =βη ν
src. We

write µ/ν for the unique multistep of the form ξ̇[such that there exist µ̇, ν̇ such that µ̇[= µ[

and ν̇[= ν[and µ̇///ν̇ ⇒ ξ̇, as guaranteed by Prop. 24. The proof is constructive (this relies
on the HRS being orthogonal), thus providing an effective method to compute µ/ν.

I Proposition 26 (Properties of projection for multisteps).
1. µ/ν = (µ/ν)[= µ[/ν[

2. Projection commutes with abstraction and application, that is, (λx.µ)/(λx.ν) = (λx.(µ/ν))[
and (µ1 µ2)/(ν1 ν2) = ((µ1/ν1) (µ2/ν2))[, provided that µ1/ν1 and µ2/ν2 are defined.

3. The set of multisteps with the projection operator form a residual system [15, Def. 8.7.2]:
3.1 (µ/ν)/(ξ/ν) = (µ/ξ)/(ν/ξ), known as the Cube Lemma.
3.2 µ/µ = (µtgt)[and, as particular cases: s/s = s[, x/x = x, c/c = c, and %/% = (%tgt)[.
3.3 (µsrc)[/µ = (µtgt)[and, as a particular case, (%src)[/% = (%tgt)[.
3.4 µ/(µsrc)[= µ[and, as a particular case, %/(%src)[= %.

I Example 27. Let ϑ : λx.f x→ λx.g x. Then:

(λx.(λx.f x)x)/(λx.ϑ x) = (λx.((λx.f x)x)/(ϑx))[= (λx.(((λx.f x)/ϑ)(x/x))[)[
= (λx.((λx.g x)x)[)[= (λx.g x)[= g

Projection for Flat Rewrites. The projection operator from Def. 25 is extended to operate
on flat rewrites. One may try to define ρ/σ using equations such as (ρ1 ; ρ2)/σ = (ρ1/σ) ;
(ρ2/(σ/ρ1)). However, it is not a priori clear that this recursive definition is well-founded4.
This is why the following definition proceeds in three stages:

4 Another way to prove well-foundedness is by interpretation, as done in [15, Example 6.5.43].

CSL 2023

11:14 Reductions in Higher-Order Rewriting and Their Equivalence

I Definition 28 (Projection operator for flat rewrites). We define:
1. projection of a flat multistep over a coinitial flat rewrite (µ /1 ρ), by induction on ρ;
2. projection of a flat rewrite over a coinitial flat multistep (ρ /2 µ), by induction on ρ; and
3. projection of a flat rewrite over a coinitial flat rewrite (ρ /3 σ) by induction on σ, as

follows:
µ /1 ν

def= µ/ν µ /1 (ρ1 ; ρ2) def= (µ /1 ρ1) /1 ρ2

ν /2 µ
def= ν/µ (ρ1 ; ρ2) /2 µ

def= (ρ1 /
2 µ) ; (ρ2 /

2 (µ /1 ρ1))
ρ /3 µ

def= ρ /2 µ ρ /3 (σ1 ; σ2) def= (ρ /3 σ1) /3 σ2

Note that /3 generalizes /2 and /1 in the sense that µ /1 ρ = µ /3 ρ and ρ /2 µ = ρ /3 µ.
With these definitions, the key equation (ρ1 ; ρ2) /3 σ = (ρ1 /

3 σ) ; (ρ2 /
3 (σ /3 ρ1)) can be

shown to hold.
From this point on, we overload ρ/σ to stand for either of these projection operators.

The key equation ensures that this abuse of notation is harmless. In the following, we
mention some important properties of projection for flat rewrites. First, projection of a
rewrite over a sequence, and of a sequence over a rewrite, obey the expected equations
ρ/(σ1 ; σ2) = (ρ/σ1)/σ2 and (ρ1 ; ρ2)/σ = (ρ1/σ) ; (ρ2/(σ/ρ1)). Second, flat permutation
equivalence is a congruence with respect to projection: more precisely, if ρ ∼ σ then τ/ρ = τ/σ

and ρ/τ ∼ σ/τ . Third, the projection of a rewrite over itself is always empty; specifically
ρ/ρ ∼ (ρtgt)[. Finally, an important property is that ρ ; (σ/ρ) ∼ σ ; (ρ/σ), corresponding to
a strong form of confluence. The proof of these properties is technical, by induction on the
structure of the rewrites. We do not develop the full theory of projection for flat rewrites
here for lack of space (but see Section E in [2] for more details).

Projection for Arbitrary Rewrites. As a final step, the projection operator of Def. 28 may
be extended to arbitrary rewrites by flattening first. The proof of Prop. 30 relies crucially on the
properties of projection for flat rewrites and on Thm. 20; it may be found in Section G in [2].

I Definition 29 (Projection operator for arbitrary rewrites). Let ρ, σ be arbitrary coinitial
rewrites. Their projection is defined as ρ//σ def= ρ[/σ[.

I Proposition 30 (Properties of projection for arbitrary rewrites).
1. Projection of a rewrite over a sequence and of a sequence over a rewrite obey the expected

equations ρ//(σ1 ; σ2) = (ρ//σ1)//σ2 and (ρ1 ; ρ2)//σ = (ρ1//σ) ; (ρ2//(σ//ρ1)).
2. Projection commutes with abstraction and application, that is:
2.1 (λx.ρ)//(λx.σ) ≈ λx.(ρ//σ), and more precisely (λx.ρ)//(λx.σ) [← [∗ λx.(ρ//σ).
2.2 If ρ1, σ1 are coinitial and ρ2, σ2 are coinitial, then (ρ1 ρ2)//(σ1 σ2) ≈ (ρ1//σ1) (ρ2//σ2),

and more precisely (ρ1 ρ2)//(σ1 σ2) [←[∗ (ρ1//σ1) (ρ2//σ2).
3. The projection of a rewrite over itself is always empty, ρ//ρ ≈ ρtgt.
4. Permutation equivalence is a congruence with respect to projection, namely if ρ ≈ σ then

τ//ρ = τ//σ and ρ//τ ≈ σ//τ .
5. The key equation ρ ; (σ//ρ) ≈ σ ; (ρ//σ) holds.

Characterization of Permutation Equivalence in Terms of Projection. Finally, we are
able to characterize permutation equivalence ρ ≈ σ as the condition that the projections ρ//σ
and σ//ρ are both empty. Indeed:

I Theorem 31 (Projection equivalence). Let ρ, σ be arbitrary coinitial rewrites. Then ρ ≈ σ
if and only if ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt.

P. Barenbaum and E. Bonelli 11:15

Proof. (⇒) Suppose that ρ ≈ σ. Then, by Prop. 30, ρ//σ ≈ σ//σ ≈ σtgt. Symmetrically,
σ//ρ ≈ ρtgt. (⇐) Let ρ//σ ≈ σtgt and σ//ρ ≈ ρtgt. Then, by Prop. 30, ρ ≈ ρ ; ρtgt ≈ ρ ;
(σ//ρ) ≈ σ ; (ρ//σ) ≈ σ ; σtgt ≈ σ. J

Since flattening and projection are computable, Thm. 20 and Thm. 31 together provide
an effective method to decide permutation equivalence ρ ≈ σ for arbitrary rewrites.
Indeed, to test whether ρ//σ ≈ σtgt, note by Thm. 20 that this is equivalent to testing whether
ρ//σ ∼ (σtgt)[, so it suffices to check that ρ//σ is empty, i.e. it contains no rule symbols. This
is justified by the fact that if µ has no rule symbols and µ ∼ ρ, then ρ has no rule symbols
(See Lem. 162 in [2]).

7 Related Work and Conclusions

As mentioned in the introduction, proof terms were introduced by van Oostrom and de Vrijer
for first-order left-linear rewrite systems to study equivalence of reductions in [17] and [15,
Chapter 9]. They are inspired in Rewriting Logic [13]. In the setting of HORs, Hilken [6]
introduces rewrites for βη-reduction together with a notion of permutation equivalence for
those rewrites. He does not study permutation equivalence for arbitrary HORs nor formulate
notions of projection. Hilken does, however, justify his equations through a categorical
semantics. We have already discussed Bruggink’s work extensively [4, 3]. Another attempt
at devising proof terms for HOR by the authors of the present paper is [1]. The latter uses a
term assignment for a minimal modal logic called Logic of Proofs (LP), to model rewrites.
LP is a refinement of S4 in which the modality �A is refined to [s]A, where s is said to be a
witness to the proof of A. The intuition is that terms and rewrites may be seen to belong
to different stages of discourse; rewrites verse about terms. Terms are typed with simple
types and rewrites are typed with a modal type [s]A where the term s is the source term
of the rewrite. However, the notion of substitution that is required for subject reduction
is arguably ad-hoc. In particular, substitution of a rewrite ρ : s _ s′ : A for x in another
rewrite σ : t _ t′ : A is defined as the composed rewrite ρ{x\t} ; s′{x\\σ}, where ρ is
substituted for x in t followed by σ where s′ is substituted for x.

Future work. It would be of interest to develop tools based on the work presented here
for reasoning about computations in higher-order rewriting, as has recently been explored for
first-order rewriting [9, 10]. One downside is that our rewrites cannot be treated as terms in
a higher-order rewrite system. Indeed, rewrites are not defined modulo βη (for good reason
since an expression such as (λx.ρ)σ should not be subject to β reduction).

One problem that should be addressed is that of formulating standardization (see e.g. [15,
Section 8.5]) using rewrites. This amounts to giving a procedure that reorders the steps of a
rewrite ρ, yielding a rewrite ρ∗ in which outermost steps are performed before innermost
ones. Standardization finds canonical representatives of ≈-equivalence classes, in the sense
that ρ ≈ σ if and only if ρ∗ = σ∗. The flattening rewrite system of Section 5 is a first
approximation to standardization, since ρ ≈ σ if and only if ρ[∼ σ[. In a preliminary version
of this work, we proposed a procedure to compute canonical representatives of ≈-equivalence
classes, based on the idea of repeatedly converting µ ; ν into µ′ ; ν′ whenever ν ⇔ ξ ; ν′ and
µ′ ⇔ µ ; ξ, an idea reminiscent of greedy decompositions [5]. Unfortunately, this procedure
does not always terminate, due to the fact that rewrites may have infinitely long “unfoldings”;
for instance, if % : c _ c and ϑ : f(x) _ d then ϑ(c) : f(c) _ d is equivalent to arbitrarily
long rewrites of the form f(%) ; . . . ; f(%) ; ϑ(c). A terminating procedure should probably
rely on a measure based on the notion of essential development [16, Definition 11].

CSL 2023

11:16 Reductions in Higher-Order Rewriting and Their Equivalence

Another avenue to pursue is to characterize permutation equivalence via labelling. The
application of a rewrite step leaves a witness in the term itself, manifested as a decoration
(a label). These labels thus collect and record the history of a computation. By comparing
them one can determine whether two computations are equivalent. Labelling equivalence for
first-order rewriting is studied by van Oostrom and de Vrijer in [17] and [15, Chapter 9].

We have given semantics to rewrites via Higher-Order Rewriting Logic. A categorical
semantics for a similar notion of rewrite and permutation equivalence was presented by
Hirshowitz [7] (projection equivalence and flattening are not studied though). Our s{x\\ρ}
is called left whiskering and ρ{x\s} right whiskering, using the terminology of 2-category
theory. These are then used to define ρ{x\\\σ}. A precise relation between the two notions
of rewrite should be investigated.

References
1 Pablo Barenbaum and Eduardo Bonelli. Rewrites as terms through justification logic. In PPDP

’20: 22nd International Symposium on Principles and Practice of Declarative Programming,
Bologna, Italy, 9-10 September, 2020, pages 11:1–11:13. ACM, 2020. Available from: https:
//doi.org/10.1145/3414080.3414091.

2 Pablo Barenbaum and Eduardo Bonelli. Reductions in higher-order rewriting and their
equivalence. CoRR, 2022.

3 Sander Bruggink. Residuals in higher-order rewriting. In Robert Nieuwenhuis, editor, Rewriting
Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain, June
9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Computer Science, pages 123–137.
Springer, 2003. Available from: https://doi.org/10.1007/3-540-44881-0_10.

4 Sander Bruggink. Equivalence of reductions in higher-order rewriting. PhD thesis, Utrecht
University, 2008. http://www.ti.inf.uni-due.de/publications/bruggink/thesis.pdf.

5 P. Dehornoy, F. Digne, E. Godelle, D. Krammer, and J. Michel. Foundations of Garside
Theory. EMS tracts in mathematics. European Mathematical Society, 2015. Available from:
https://books.google.com.ar/books?id=7ec_SGVzNhEC.

6 Barney P. Hilken. Towards a proof theory of rewriting: The simply typed 2λ-calculus.
Theor. Comput. Sci., 170(1-2):407–444, 1996. Available from: https://doi.org/10.1016/
S0304-3975(96)80713-4.

7 Tom Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-order
rewriting. Log. Methods Comput. Sci., 9(3), 2013. Available from: https://doi.org/10.2168/
LMCS-9(3:10)2013.

8 Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.
9 Christina Kohl and Aart Middeldorp. Protem: A proof term manipulator (system description).

In Hélène Kirchner, editor, 3rd International Conference on Formal Structures for Computation
and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 31:1–
31:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Available from: https:
//doi.org/10.4230/LIPIcs.FSCD.2018.31.

10 Christina Kohl and Aart Middeldorp. Composing proof terms. In Pascal Fontaine, editor,
Automated Deduction - CADE 27 - 27th International Conference on Automated Deduction,
Natal, Brazil, August 27-30, 2019, Proceedings, volume 11716 of Lecture Notes in Com-
puter Science, pages 337–353. Springer, 2019. Available from: https://doi.org/10.1007/
978-3-030-29436-6_20.

11 Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Université de Paris 7, 1978.

12 Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theor-
etical Computer Science, 192:3–29, 1998.

13 José Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput.
Sci., 96(1):73–155, 1992. Available from: https://doi.org/10.1016/0304-3975(92)90182-F.

https://doi.org/10.1145/3414080.3414091
https://doi.org/10.1145/3414080.3414091
https://doi.org/10.1007/3-540-44881-0_10
http://www.ti.inf.uni-due.de/publications/bruggink/thesis.pdf
https://books.google.com.ar/books?id=7ec_SGVzNhEC
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.1016/S0304-3975(96)80713-4
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.2168/LMCS-9(3:10)2013
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.1007/978-3-030-29436-6_20
https://doi.org/10.1007/978-3-030-29436-6_20
https://doi.org/10.1016/0304-3975(92)90182-F

P. Barenbaum and E. Bonelli 11:17

14 Tobias Nipkow. Higher-order critical pairs. In Proceedings 1991 Sixth Annual IEEE Symposium
on Logic in Computer Science, pages 342–343. IEEE Computer Society, 1991.

15 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

16 Vincent van Oostrom. Normalisation in weakly orthogonal rewriting. In Paliath Narendran
and Michaël Rusinowitch, editors, Rewriting Techniques and Applications, 10th International
Conference, RTA-99, Trento, Italy, July 2-4, 1999, Proceedings, volume 1631 of Lecture Notes
in Computer Science, pages 60–74. Springer, 1999. Available from: https://doi.org/10.
1007/3-540-48685-2_5.

17 Vincent van Oostrom and Roel C. de Vrijer. Four equivalent equivalences of reductions.
Electron. Notes Theor. Comput. Sci., 70(6):21–61, 2002. Available from: https://doi.org/
10.1016/S1571-0661(04)80599-1.

CSL 2023

https://doi.org/10.1007/3-540-48685-2_5
https://doi.org/10.1007/3-540-48685-2_5
https://doi.org/10.1016/S1571-0661(04)80599-1
https://doi.org/10.1016/S1571-0661(04)80599-1

11:18 Reductions in Higher-Order Rewriting and Their Equivalence

A Rewrites

Besides the typing rules given in Def. 7, we give explicit rules for reflexive, symmetric,
transitive, and contextual closure for term equivalence:

Γ ` s : A
EqRefl

Γ ` s =βη s : A
Γ ` s =βη t : A

EqSym
Γ ` t =βη s : A

Γ ` s =βη t : A Γ ` t =βη r : A
EqTrans

Γ ` s =βη r : A

Γ, x : A ` s =βη t : B
EqCongLam

Γ ` λx.s =βη λx.t : A→ B

Γ ` s =βη s
′ : A→ B Γ ` t =βη t

′ : A
EqCongApp

Γ ` s t =βη s
′ t′ : A

I Definition 32 (Notions of contexts).
1. A rewrite context is a rewrite R with a single free occurrence of a distinguished variable
� called the hole. Inductively, rewrite contexts are given by the grammar:

R ::= � | λx.R | R ρ | ρ R | R ; ρ | ρ ; R

The capturing substitution of the hole of a rewrite context R by the rewrite ρ is a rewrite,
written as R〈ρ〉.

2. The set of composition contexts is a subset of the set of rewrite contexts, given by the
grammar:

S ::= � | S ; ρ | ρ ; S

3. The set of composition trees is given by the grammar:

K ::= � | K ; K

For each n ≥ 1, an n-hole composition tree is a composition tree with n occurrences of
the hole �. If K is an n-hole composition tree, we write K〈ρ1, . . . , ρn〉 to stand for the
rewrite that results from replacing the i-th hole of K for ρi for each 1 ≤ i ≤ n.
For example ((� ; �) ; �) is a 3-hole composition tree and ((� ; �) ; �)〈ρ, σ, τ〉 = (ρ ;
σ) ; τ .

4. A rewrite context R is applicative if it is of the form R = R′〈S〈�〉 ρ〉.

I Lemma 33 (Source/target decomposition). Define the source and the target of a context
R by declaring �src = � and �tgt = �. Let us write −♦ to stand for either −src or −tgt. If
ρ♦ = C〈s〉 then there are two possibilities:

(A) ρ = R〈α〉 where R♦ = C and α is a rewrite such that α♦ = s.
(B) ρ = R〈%〉 where R♦ = C1 and % is a rule symbol such that %♦ = C2〈s〉 and C = C1〈C2〉.

Proof. We prove the property for the source; the proof for the target is similar. We proceed
by induction on ρ:
1. Variable, ρ = x. Then xsrc = x = C〈s〉 so C = � and s = x. Taking R = � and α = x

we are in situation (A).
2. Constant, ρ = c. Similar to the previous case.
3. Rule symbol, ρ = %. Then %src = C〈s〉. Taking R = � we are in situation (B).
4. Abstraction, ρ = λx.σ. Then λx.σsrc = C〈s〉. If C is empty, taking R = � and α = λx.σ

we are in situation (A). If C is non-empty, then C = λx.C′ and σ = C′〈s〉. By IH there are
two possibilities:

(A) σ = R′〈α〉 where R′src = C′ and αsrc = s. Taking R := λx.R′ we are again in situation
(A).

P. Barenbaum and E. Bonelli 11:19

(B) σ = R′〈%〉 where R′src = C′1 and %src = C2〈s〉 such that C′ = C′1〈C2〉. Taking R := λx.R′

we are again in situation (B).
5. Application, ρ = ρ1 ρ2. Then ρsrc

1 ρsrc
2 = C〈s〉. If C is empty, taking R = � and α = ρ1 ρ2

we are in situation (A). If C is non-empty, there are two cases, depending on whether the
hole is to the left or to the right of the application:

5.1 Left of the application. Then C = C′ ρsrc
2 and ρsrc

1 = C′〈s〉. Then by IH there are
two possibilities:

(A) ρ1 = R′〈α〉 with R′src = C′ and αsrc = s. Taking R = R′ ρ2 we are again in
situation (A).

(B) ρ1 = R′〈%〉 with R′src = C′1 and %src = C2〈s〉 such that C′ = C′1〈C2〉. Taking R = R′ ρ2
we are again in situation (B).

5.2 Right of the application. Then C = ρsrc
1 C′. The proof is similar to the previous

case.
6. Composition, ρ = ρ1 ; ρ2. Then ρsrc

1 = C〈s〉. By IH on ρ1 there are two possibilities:
(A) ρ1 = R′〈α〉 with R′src = C and αsrc = s. Taking R := R′ ; ρ2 we are again in situation

(A).
(B) ρ1 = R′〈%〉 with R′src = C1 and %src = C2〈s〉 such that C = C1〈C2〉. Taking R := R′ ; ρ2

we are again in situation (B).
J

We formulate a variant of the standard substitution lemma:

I Lemma 34 (Substitution Lemma). The equation X{x\s}{y\t} = X{y\t}{x\s{y\t}}
holds for any term or rewrite X as long as x 6= y and x /∈ fv(t).

Proof. By induction on X. J

I Lemma 35 (Weakening). Let x /∈ Γ. Then:
1. If Γ ` s : A then Γ, x : B ` s : A.
2. If Γ ` s =βη t : A then Γ, x : B ` s =βη t : A.
3. If Γ ` ρ : s _ t : A then Γ, x : B ` ρ : s _ t : A.

Proof. Straightfoward by induction on the derivation of the target judgment. J

I Lemma 36 (Endpoint coherence). Let Γ ` ρ : p0 _ p1 : A. Then Γ ` p0 =βη ρ
src : A and

Γ ` p0 =βη ρ
tgt : A.

Proof. By induction on the derivation of Γ ` ρ : p0 _ p1 : A.
1. RVar, RCon: Immediate by EqRefl.
2. RRule: Let Γ ` % : s _ t : A be derived from · ` s : A and · ` t : A where (% : s _ t :

A) ∈ R. Then by weakening Lem. 35 we have that Γ ` s : A and Γ ` t : A. Applying
EqRefl we have that Γ ` s =βη s : A and Γ ` t =βη t : A, as required.

3. RAbs: Straightforward by IH. More precisely, let Γ ` λx.ρ : λx.s0 _ λx.s1 : A→ B be
derived from Γ, x : A ` ρ : s0 _ s1 : B. By IH we have that Γ, x : A ` s0 =βη ρ

src : B
and Γ, x : A ` s1 =βη ρ

tgt : B. Applying EqCongLam we have that Γ ` λx.s0 =βη λx.ρ
src :

A→ B and Γ ` λx.s1 =βη λx.ρ
tgt : A→ B as required.

4. RApp: Straightforward by IH, using EqCongApp.
5. RTrans: Let Γ ` ρ ; σ : s0 _ s2 : A be derived from Γ ` ρ : s0 _ s1 : A and

Γ ` σ : s1 _ s2 : A. By IH we have that Γ ` s0 =βη ρ
src : A and Γ ` s2 =βη σ

tgt : A.
Hence Γ ` s0 =βη (ρ ; σ)src : A and Γ ` s2 =βη (ρ ; σ)tgt : A.

CSL 2023

11:20 Reductions in Higher-Order Rewriting and Their Equivalence

6. RConv: Let Γ ` ρ : s _ t : A be derived from Γ ` ρ : s′ _ t′ : A where Γ ` s =βη s
′ : A

and Γ ` t′ =βη t : A. By IH we have that Γ ` s′ =βη ρ
src : A and Γ ` t′ =βη ρ

tgt : A, so
applying EqTrans we have that Γ ` s =βη ρ

src : A and Γ ` t =βη ρ
tgt : A, as required.

J

I Lemma 37 (Strengthening). Let x /∈ fv(s). If Γ, x : A ` s : B then Γ ` s : B.

Proof. Straightfoward by induction on the derivation of the target judgment. J

I Lemma 38 (Free variables must be typed).
1. If Γ ` s : A then fv(s) ⊆ dom(Γ).
2. If Γ ` ρ : s _ t : A then fv(ρ) ∪ fv(s) ∪ fv(t) ⊆ dom(Γ).

Proof. Straightfoward by induction on the derivation of the judgment. J

I Lemma 39 (Free term variables of endpoints). Let Γ ` ρ : s _ t : A. Then fvt(s), fvt(t) ⊆
fvt(ρ).

Proof. Straightforward by induction on the derivation of Γ ` ρ : s _ t : A. In the RRule
case, note that Γ ` % : s _ t : A is derived from · ` s : A and · ` t : A so by Lem. 38 we have
that s, t are closed terms. J

I Lemma 40 (Reflexivity). If Γ ` s : A then Γ ` s : s _ s : A.

Proof. Straightforward by induction on the derivation of the judgment. J

I Lemma 41 (Substitution). Let Γ ` q : A. Then:
1. If Γ, x : A ` s : B then Γ ` s{x\q} : B.
2. If Γ, x : A ` s =βη t : B then Γ ` s{x\q} =βη t{x\q} : B.
3. If Γ, x : A ` ρ : s _ t : B then Γ ` ρ{x\q} : s{x\q} _ t{x\q} : B.

Proof. Each item is by induction on the derivation of the target judgment:
1. Var, Con: immediate.
2. Abs: let Γ, x : A ` λy.s : B → C be derived from Γ, x : A, y : B ` s : C. Note that the

hypothesis Γ ` q : A may be weakened to Γ, y : B ` q : A. using Lem. 35. Hence we may
apply the IH to obtain Γ, y : B ` s{x\q} : C. Applying the Abs rule Γ ` λx.s{x\q} :
B → C.

3. App: let Γ, x : A ` s t : C be derived from Γ, x : A ` s : B → C and Γ, x : A ` t : B. By IH
Γ ` s{x\q} : B → C and Γ ` t{x\q} : B. Applying the App rule, Γ ` s{x\q} t{x\q} : C.

4. EqBeta: let Γ, x : A ` (λy.s) t =βη s{y\t} : C be derived from Γ, x : A, y : B ` s : C and
Γ, x : A ` t : B. By the first item of this lemma, Γ, y : B ` s{x\q} : C and Γ ` t{x\q} : B,
so applying the EqBeta rule we have that Γ ` ((λy.s) t){x\q} =βη s{x\q}{y\t{x\q}} : C.
Moreover, by the Substitution Lemma (Lem. 34), s{x\q}{y\t{x\q}} = s{y\t}{x\q} so
we are done.

5. EqEta: let Γ, x : A ` λy.s y =βη s : C be derived from Γ, x : A, y : B ` s : C with
y /∈ fv(s). By the first item of this lemma, Γ, y : B ` s{x\q} : C. Note that by
Barendregt’s convention, we may assume that y /∈ fv(q), hence y /∈ fv(s{x\q}), and we
may apply the EqEta rule to conclude Γ, y : B ` λy.s{x\q} y =βη s{x\q} : C.

6. EqRefl, EqSym, EqTrans, EqCongLam, EqCongApp: straightforward by IH.
7. RVar: let Γ, x : A ` y : y _ y : B with (y : B) ∈ (Γ, x : A). There are two cases,

depending on whether x = y or not. If x = y, then by reflexivity (Lem. 40) we have
that Γ ` q : q _ q : B. If x 6= y then Γ = Γ′, y : B. and applying the RVar rule
Γ′, y : B ` y : y _ y : B.

P. Barenbaum and E. Bonelli 11:21

8. RCon: let Γ, x : A ` c : c _ c : B with (c : B) ∈ C. Applying the RCon rule, we have
that Γ ` c : c _ c : B.

9. RRule: let Γ, x : A ` % : s _ t : B be derived from · ` s : B and · ` t : B where
(% : s _ t : B) ∈ R. Note that, by Lem. 38, we have that ρ, s and t have no free
occurrences of x. Applying the RRule rule on the (unchanged) premises, we have that
Γ ` % : s _ t : B, that is Γ ` % : s{x\q} _ t{x\q} : B, as required.

10. RAbs, RApp: similar to the Abs and App cases respectively.
11. RTrans: Let Γ, x : A ` ρ ; σ : s0 _ s2 : B be derived from Γ, x : A ` ρ : s0 _ s1 : B

and Γ, x : A ` σ : s1 _ s2 : B. Then by IH Γ ` ρ{x\q} : s0{x\q} _ s1{x\q} : B and
Γ ` σ{x\q} : s1{x\q} _ s2{x\q} : B. Applying the RTrans rule, Γ ` ρ{x\q} ; σ{x\q} :
s0{x\q} _ s2{x\q} : B

12. RConv: Let Γ, x : A ` ρ : s _ t : B be derived from Γ, x : A ` ρ : s′ _ t′ : B,
where Γ, x : A ` s =βη s

′ : B and Γ, x : A ` t′ =βη t : B. Then by IH Γ ` ρ{x\q} :
s′{x\q} _ t′{x\q} : B. Moreover, by the second item of this lemma, we have that
Γ ` s{x\q} =βη s

′{x\q} : B and Γ ` t′{x\q} =βη t{x\q} : B. Applying the RConv rule,
Γ ` ρ{x\q} : s{x\q} _ t{x\q} : B.

J

I Lemma 42 (Equal terms are typable). If Γ ` s =βη t : A then Γ ` s : A and Γ ` t : A.

Proof. By induction on the derivation of Γ ` s =βη t : A.
1. EqBeta: let Γ ` (λx.s) t =βη s{x\t} : B be derived from Γ, x : A ` s : B and Γ ` t : A.

Applying the Abs and App rules, we have that Γ ` (λx.s) t : B. Moreover, by Lem. 41 we
have that Γ ` s{x\t} : B.

2. EqEta: let Γ ` λx.s x =βη s : B be derived from Γ, x : A ` s : B and x /∈ fv(s). Applying
the App and Abs rules, we have that Γ ` λx.s x : B. Moreover, by Lem. 37, Γ ` s : B.

3. EqRefl, EqSym, EqTrans, EqCongLam, EqCongApp: straightforward by IH.
J

I Lemma 43 (Source and target inversion). If Γ ` ρ : s _ t : A then Γ ` s : A and Γ ` t : A.

Proof. By induction on the derivation of Γ ` ρ : s _ t : A.
1. RVar: let Γ, x : A ` x : x _ x : A. Then indeed Γ, x : A ` x : A.
2. RCon: let Γ ` c : c _ c : A with (c : A) ∈ C. Then indeed Γ ` c : A.
3. RRule: let Γ ` % : s _ t : A be derived from · ` s : A and · ` t : A with (% : s _ t : A) ∈ R.

Then it suffices to apply weakening (Lem. 35) to conclude.
4. RAbs: let Γ ` λx.ρ : λx.s0 _ λx.s1 : A → B be derived from Γ, x : A ` ρ : s0 _ s1 : B.

Then by IH the source of the premise is typable, i.e. Γ, x : A ` s0 : B. Appying the Abs
rule we are able to type the source of the conclusion, i.e. Γ ` λx.s0 : A→ B. The proof
for the target is similar.

5. RApp: let Γ ` ρ σ : s0 t0 _ s1 t1 : B be derived from Γ ` ρ : s0 _ s1 : A → B and
Γ ` σ : t0 _ t1 : A. By IH we have that the sources of the premises are typable, i.e. that
Γ ` s0 : A→ B and Γ ` t0 : A. Applying the App rule, we are able to type the source of
the conclusion, i.e. Γ ` s0 t0 : A→ B. The proof for the target is similar.

6. RTrans: let Γ ` ρ ; σ : s0 _ s2 : A be derived from Γ ` ρ : s0 _ s1 : A and
Γ ` σ : s1 _ s2 : A. By IH on the first premise, we have that Γ ` s0 : A, and by IH on
the second premise, we have that Γ ` s2 : A.

7. RConv: let Γ ` ρ : s _ t : A be derived from Γ ` ρ : s′ _ t′ : A with Γ ` s =βη s
′ : A and

Γ ` t′ =βη t : A. Then by Lem. 42 we have that Γ ` s : A and Γ ` t : A.
J

CSL 2023

11:22 Reductions in Higher-Order Rewriting and Their Equivalence

A.1 Term/rewrite substitution
I Lemma 44 (Typing rule for term/rewrite substitution). If Γ, x : A ` s : B and Γ ` ρ : q0 _
q1 : A then Γ ` s{x\\ρ} : s{x\q0} _ s{x\q1} : B.

Proof. By induction on the derivation of Γ, x : A ` s : B:
1. Var: let Γ, x : A ` y : B with y : B ∈ (Γ, x : A). We consider two subcases, depending on

whether x = y or not:
1.1 If x = y, then Γ ` ρ : s0 _ s1 : A holds by hypothesis.
1.2 If x 6= y, then note that y : B ∈ Γ so Γ ` y : B and applying the RVar rule, we have

that Γ ` y : y _ y : B.
2. Con: immediate applying the RCon rule.
3. Abs: let Γ, x : A ` λy.s : B → C be derived from Γ, x : A, y : B ` s : C. By IH we have

that Γ, y : B ` s{x\\ρ} : s{x\q0} _ s{x\q1} : C. Applying the RAbs rule, we obtain
Γ ` λy.s{x\\ρ} : λy.s{x\q0} _ λy.s{x\q1} : B → C as required.

4. App: let Γ, x : A ` s t : C be derived from Γ, x : A ` s : B → C and Γ, x : A ` t : B.
By IH we have that Γ ` s{x\\ρ} : s{x\q0} _ s{x\q1} : B → C and Γ ` t{x\\ρ} :
t{x\q0} _ t{x\q1} : B. Applying the RApp rule, we obtain Γ ` s{x\\ρ} t{x\\ρ} :
s{x\q0} t{x\q0} _ s{x\q1} t{x\q1} : C as required.

J

I Lemma 45 (Commutation of lifting and term substitution (I)). If Γ, x : A, y : B ` s : C and
Γ, y : B ` τ : p0 _ p1 : A and Γ ` q : B then:

s{x\\τ}{y\q} = s{y\q}{x\\τ{y\q}}

In particular, if y does not occur free in τ , then s{x\\τ}{y\q} = s{y\q}{x\\τ}.

Proof. By induction on the derivation of Γ, x : A, y : B ` s : C:
1. Var: let Γ, x : A, y : B ` z : C with z : C ∈ Γ. We consider three subcases, depending on

whether z = x, z = y, or z /∈ {x, y}.
1.1 If z = x: the left and the right-hand sides are both τ{y\q} by definition, so we are

done.
1.2 If z = y: then the left-hand side is q, and the right-hand side is q{x\τ}. By Lem. 38,

x does not occur free in q, so q = q{x\τ}.
1.3 If z /∈ {x, y}: then the left and the right-hand sides are both z so we are done.

2. Con: let Γ, x : A, y : B ` c : C with (c : C) ∈ C. Then the left and the right-hand sides
are both c so we are done.

3. Abs: let Γ, x : A, y : B ` λz.s : C → D be derived from Γ, x : A, y : B, z : C ` s : D.
Then:

(λz.s){x\\τ}{y\q} = λz.s{x\\τ}{y\q}
= λz.s{y\q}{x\\τ{y\q}} by IH
= (λz.s){y\q}{x\\τ{y\q}}

To apply the IH we use congruence of equivalence under abstractions, and weakening
(Lem. 35) on the hypotheses.

4. App: let Γ, x : A, y : B ` s t : D be derived from Γ, x : A, y : B ` s : C → D and
Γ, x : A, y : B ` t : C. Then:

(s t){x\\τ}{y\q} = s{x\\τ}{y\q} t{x\\τ}{y\q}
= s{y\q}{x\\τ{y\q}} t{y\q}{x\\τ{y\q}} by IH
= (s t){y\q}{x\\τ{y\q}}

P. Barenbaum and E. Bonelli 11:23

To apply the IH we use congruence of equivalence under applications.
J

I Remark 46. s{x\t} = s{x\t}

I Lemma 47 (Lifting reflexivity). Let Γ, x : A ` s : B and Γ ` t : A. Then s{x\t} = s{x\\t}.

Proof. By induction on the derivation of Γ, x : A ` s : B. J

I Lemma 48 (Source and target of rewrite/term substitution). If Γ, x : A ` ρ : q0 _ q1 : B
and Γ ` s : A then ρ{x\s}src = ρsrc{x\s} and ρ{x\s}tgt = ρtgt{x\s}.

Proof. Straightforward by induction on ρ. J

I Lemma 49 (Source and target of term/rewrite substitution). If Γ, x : A ` s : B and
Γ ` ρ : q0 _ q1 : A then s{x\\ρ}src = s{x\\ρsrc} and s{x\\ρ}tgt = s{x\\ρtgt}.

Proof. Straightforward by induction on s. J

B Permutation equivalence

I Lemma 50 (Term equivalence implies permutation equivalence). If Γ ` s =βη s
′ : A then

s ≈ s′.

Proof. By induction on the derivation of Γ ` s =βη s
′ : A. Reflexivity, symmetry, transitivity,

and congruence under term constructors are immediate. The interesting cases are:
1. EqBeta: Let s = (λx.t) r and s′ = t{x\r}. Then:

(λx.t) r ≈ t{x\\r} by ≈-BetaTR
= t{x\r} by Lem. 47

2. EqEta: Let s = λx.s′ x with x /∈ fv(s′). Then:

λx.s′ x ≈ s′ by ≈-Eta

J

I Lemma 51 (Generalized ≈-IdL and ≈-IdR rules). Let Γ ` ρ : p _ q : A. Then the following
generalized variants of ≈-IdL and ≈-IdR hold:
1. If Γ ` s =βη ρ

src : A, then (s ; ρ) ≈ ρ.
2. If Γ ` s =βη ρ

tgt : A, then (ρ ; s) ≈ ρ.
Sometimes by abuse we call these generalized rules ≈-IdL and ≈-IdR, without explicit reference
to this lemma.

Proof. Item 1. is immediate given that:

(s ; ρ) ≈ (ρsrc ; ρ) by Lem. 50
≈ ρ by ≈-IdL

Item 2. is similar. J

I Lemma 52 (Equivalence of endpoints of permutation equivalent rewrites). Let Γ ` ρ : p0 _
p1 : σ and Γ ` σ : q0 _ q1 : σ be such that ρ ≈ σ. Then ρsrc =βη σ

src and ρtgt =βη σ
tgt.

CSL 2023

11:24 Reductions in Higher-Order Rewriting and Their Equivalence

Proof. By induction on the derivation of ρ ≈ σ. Reflexivity, symmetry, transitivity, and
congruence under abstraction and application are immediate. The interesting case is when
ρ ≈ σ is deduced from an axiom:
1. ≈-IdL: Let ρsrc ; ρ ≈ ρ. Then (ρsrc)src = ρsrc, as can be easily shown by induction on ρ,

and ρtgt = ρtgt, so we conclude by EqRefl.
2. ≈-IdR: Let ρ ; ρtgt ≈ ρ. Then ρsrc = ρsrc, and (ρtgt)tgt = ρtgt, as can be easily shown by

induction on ρ, so we conclude by EqRefl.
3. ≈-Assoc: Let (ρ ; σ) ; τ ≈ ρ ; (σ ; τ). Then ((ρ ; σ) ; τ)src = ρsrc = (ρ ; (σ ; τ))src and

((ρ ; σ) ; τ)tgt = τ tgt = (ρ ; (σ ; τ))tgt, so we conclude by EqRefl.
4. ≈-Abs: Let (λx.ρ) ; (λx.σ) ≈ λx.(ρ ; σ). Then ((λx.ρ) ; (λx.σ))src = λx.ρsrc = (λx.(ρ ;

σ))src and ((λx.ρ) ; (λx.σ))tgt = λx.σtgt = (λx.(ρ ; σ))tgt, so we conclude by EqRefl.
5. ≈-App: Let (ρ1 ρ2) ; (σ1 σ2) ≈ (ρ1 ; σ1) (ρ2 ; σ2). Then ((ρ1 ρ2) ; (σ1 σ2))src = ρsrc

1 ρsrc
2 =

((ρ1 ; σ1) (ρ2 ; σ2))src and ((ρ1 ρ2) ; (σ1 σ2))tgt = σtgt
1 σtgt

2 = ((ρ1 ; σ1) (ρ2 ; σ2))tgt, so we
conclude by EqRefl.

6. ≈-BetaTR: Let (λx.s) ρ ≈ s{x\\ρ}. Then ((λx.s) ρ)src = (λx.s) (ρsrc) =βη s{x\ρsrc} =
s{x\\ρ}src and ((λx.s) ρ)tgt = (λx.s) (ρtgt) =βη s{x\ρtgt} = s{x\\ρ}tgt hold by Lem. 49.

7. ≈-BetaRT: Let (λx.ρ) s ≈ ρ{x\s}. Then ((λx.ρ) s)src = (λx.ρsrc) s =βη ρ
src{x\s} =

ρ{x\s}src and ((λx.ρ) s)tgt = (λx.ρtgt) s =βη ρ
tgt{x\s} = ρ{x\s}tgt hold by EqBeta and

Lem. 48.
8. ≈-Eta: Let λx.ρ x ≈ ρ. Then (λx.ρ x)src = λx.ρsrc x =βη ρsrc and (λx.ρ x)tgt =

λx.ρtgt x =βη ρ
tgt hold by EqEta.

J

I Lemma 53 (Term contexts distribute over composition). C〈ρ ; σ〉 ≈ C〈ρ〉 ; C〈σ〉

Proof. By induction on C:
1. Empty, C = �. Immediate.
2. Abstraction, C = λx.C′.

λx.C′〈ρ ; σ〉 ≈ λx.(C′〈ρ〉) ; C′〈σ〉) by IH
≈ (λx.C′〈ρ〉) ; (λx.C′〈σ〉) by ≈-Abs

3. Left of an application, C = C′ s.

C′〈ρ ; σ〉 s ≈ (C′〈ρ〉 ; C′〈σ〉) s by IH
≈ (C′〈ρ〉 ; C′〈σ〉) (s ; s) by ≈-IdL
≈ (C′〈ρ〉 s) ; (C′〈σ〉 s) by ≈-App

4. Right of an application, C = s C′. Similar to the previous case.
J

B.1 Properties of term/rewrite substitution, up to permutation
equivalence

I Lemma 54 (Transitivity under lifting substitution). Let Γ, x : A ` s : B and Γ ` ρ : p0 _
p1 : A and Γ ` σ : p1 _ p2 : A. Then:

s{x\\ρ} ; s{x\\σ} ≈ s{x\\ρ ; σ}

Proof. By induction on the derivation of Γ, x : A ` s : B:
1. Var: let Γ, x : A ` y : B with y : B ∈ (Γ, x : A). We consider two subcases, depending on

whether x = y or not:

P. Barenbaum and E. Bonelli 11:25

1.1 If x = y: then the left and the right-hand sides are both ρ ; σ, so we are done.
1.2 If x 6= y: then the left-hand side is y ; y and the right-hand side is y, and y ; y ≈ y by

the ≈-IdL rule.
2. Con: let Γ, x : A ` c : B with (c : B) ∈ C. Then the left-hand side is c ; c and the

right-hand side is c, and c ; c ≈ c by the ≈-IdL rule.
3. Abs: let Γ ` λy.s : B → C be derived from Γ, x : A, y : B ` s : C. Then:

(λy.s){x\\ρ} ; (λy.s){x\\σ} = (λy.s{x\\ρ}) ; (λy.s{x\\σ})
≈ λy.(s{x\\ρ} ; s{x\\σ}) by ≈-Abs
≈ λy.s{x\\ρ ; σ} by IH
= (λy.s){x\\ρ ; σ} by IH

4. App: let Γ, x : A ` s t : C be derived from Γ, x : A ` s : B → C and Γ, x : A ` t : B.
Then:

(s t){x\\ρ} ; (s t){x\\σ} = (s{x\\ρ} t{x\\ρ}) ; (s{x\\σ} t{x\\σ})
≈ (s{x\\ρ} ; s{x\\σ}) (t{x\\ρ} ; t{x\\σ}) by ≈-App
≈ s{x\\ρ ; σ} t{x\\ρ ; σ} by IH
= (s t){x\\ρ ; σ}

J

B.2 Rewrite/rewrite substitution
I Remark 55. Note that ρ{x\\\σ} depends on s′ and t, and hence on the particular typing
derivations for ρ and σ. These particular derivations will usually be clear from the context. If
there is any confusion we may write ρ{x\t} ; s′{x\\σ} explicitly. We shall prove congruence
results (in particular, Lem. 63 and Lem. 64) which ensure that the value of ρ{x\\\σ} does
not depend, up to permutation equivalence, on the particular typing derivations chosen.

I Lemma 56 (Rewrite/rewrite β-reduction rule). Let Γ, x : A ` ρ : s0 _ s1 : B and Γ ` σ :
t0 _ t1 : A. Then the following equivalence, called ≈-BetaRR, holds:

(λx.ρ)σ ≈ ρ{x\\\σ} (≈-BetaRR)

Proof.

(λx.ρ)σ ≈ ((λx.ρ) ; (λx.s1))σ ≈-IdR
≈ ((λx.ρ) ; (λx.s1)) (t0 ; σ) ≈-IdL
≈ (λx.ρ) t0 ; (λx.s1)σ ≈-App
≈ ρ{x\t0} ; (λx.s1)σ ≈-BetaRT
≈ ρ{x\t0} ; s1{x\\σ} ≈-BetaTR
= ρ{x\\\σ}

J

I Lemma 57 (Typing rule for rewrite/rewrite substitution). If Γ, x : A ` ρ : s _ s′ : B and
Γ ` σ : t _ t′ : A then:

Γ ` ρ{x\\\σ} : s{x\t} _ s′{x\t′} : B

Proof. An immediate consequence of Lem. 41 and Lem. 44. J

The notion of rewrite/rewrite substitution generalizes the notions of rewrite/term and
term/rewrite (lifting) substitution, as noted in the two following remarks:

CSL 2023

11:26 Reductions in Higher-Order Rewriting and Their Equivalence

I Remark 58 (Rewrite/rewrite generalizes rewrite/term substitution). If Γ, x : A ` ρ : s _ s′ : B
and Γ ` t : A then:

ρ{x\t} ≈ ρ{x\\\t}

Indeed:

ρ{x\t} ≈ ρ{x\t} ; s′{x\t} by ≈-IdR
= ρ{x\t} ; s′{x\\t} by Lem. 47
= ρ{x\\\t}

I Remark 59 (Rewrite/rewrite generalizes term/rewrite substitution). If Γ, x : A ` s : B and
Γ ` ρ : t _ t′ : A then:

s{x\\ρ} ≈ s{x\\\ρ}

Indeed:

s{x\\ρ} ≈ s{x\t} ; s{x\\ρ} by ≈-IdL
= s{x\t} ; s{x\\ρ} since s{x\t} = s{x\t} by definition
= s{x\\\ρ} by definition of s{x\\ρ}

I Lemma 60 (Trivial rewrite/rewrite substitution). Let Γ, x : A ` ρ : s0 _ s1 : B be such that
x /∈ fv(ρ), and let Γ ` σ : t0 _ t1 : A. Then ρ{x\\\σ} ≈ ρ.

Proof. Note that x /∈ fv(s1) by Lem. 39.

ρ{x\\\σ} = ρ{x\t0} ; s1{x\\σ} by definition
= ρ ; s1{x\\σ} since x /∈ fv(ρ)
= ρ ; s1 since x /∈ fv(s1)
≈ ρ by ≈-IdR

J

I Lemma 61 (Recursive equations for rewrite/rewrite substitution). Let Γ ` σ : q0 _ q1 : A.
The following recursive equations hold for rewrite/rewrite substitution:
1. If Γ, x : A, y : B ` ρ : s0 _ s1 : C, then:

(λy.ρ){x\\\σ} ≈ λy.ρ{y\\\σ}

2. If Γ, x : A ` ρ1 : s0 _ s1 : B → C and Γ, x : A ` ρ2 : t0 _ t1 : B, then:

(ρ1 ρ2){x\\\σ} ≈ ρ1{x\\\σ} ρ2{x\\\σ}

Proof. We check each item separately:
1. Abstraction:

(λy.ρ){x\\\σ} = (λy.ρ){x\q0} ; (λy.s1){x\\σ}
= (λy.ρ{x\q0}) ; (λy.s1{x\\σ})
≈ λy.(ρ{x\q0} ; s1{x\\σ}) by ≈-Abs
= λy.ρ{x\\\σ}

2. Application: similar to the previous case, using the ≈-App rule.
J

P. Barenbaum and E. Bonelli 11:27

I Lemma 62 (Commutation of lifting and term substitution (II)). If Γ, x : A, y : B ` s : C and
Γ, y : B ` q : A and Γ ` τ : p0 _ p1 : B then:

s{x\q}{y\\τ} ≈ s{y\\τ}{x\\\q{y\\τ}}

Proof. By induction on the derivation of Γ, x : A, y : B ` s : C.
1. Var: let Γ, x : A, y : B ` z : C with z : C ∈ (Γ, x : A, y : B). We consider three subcases,

depending on whether z = x, z = y, or z /∈ {x, y}:
1.1 If z = x: Then the left and the right-hand sides are both q{y\\τ}, so it is immediate

to conclude.
1.2 If z = y: Then the left-hand side is τ and the right-hand side is τ{x\\\q{y\\τ}} Note

that by Lem. 38, x does not occur free in τ , so by Lem. 60 we conclude.
1.3 If z /∈ {x, y}: Then the left and the right-hand sides are both z so we are done.

2. Con: let Γ, x : A, x : B ` c : C with (c : C) ∈ C. Then the left and the right-hand sides
are both c, so we are done.

3. Abs: let Γ, x : A, y : B ` λz.s : C → D be derived from Γ, x : A, y : B, z : C ` s : D.
Then:

(λz.s){x\q}{y\\τ} = λz.s{x\q}{y\\τ}
≈ λz.s{y\\τ}{x\\\q{y\\τ}} by IH
≈ (λz.s){y\\τ}{x\\\q{y\\τ}} by Lem. 61

4. App: let Γ, x : A, y : B ` s t : D be derived from Γ, x : A, y : B ` s : C → D and
Γ, x : A, y : B ` t : C Then:

(s t){x\q}{y\\τ} = s{x\q}{y\\τ} t{x\q}{y\\τ}
≈ s{y\\τ}{x\\\q{y\\τ}} t{y\\τ}{x\\\q{y\\τ}} by IH
≈ (s t){y\\τ}{x\\\q{y\\τ}} by Lem. 61

J

B.3 Congruence properties
I Lemma 63 (=βη under rewrite/term substitution). Let Γ, x : A ` ρ : s _ t : B and let
Γ ` q =βη q

′ : A. Then ρ{x\q} ≈ ρ{x\q′}.

Proof. By induction on the derivation of ρ:
1. RVar: let Γ, x : A ` y : y _ y : B with (y : B) ∈ (Γ, x : A). We consider two subcases,

depending on whether x = y or not.
1.1 If x = y, it suffices to note that q ≈ q′ by Lem. 50.
1.2 If x 6= y, then trivially y ≈ y.

2. RCon: let Γ, x : A ` c : c _ c : B with (c : B) ∈ C. Then trivially y ≈ y.
3. RRule: let Γ, x : A ` % : s _ t : B be derived from · ` s : B and · ` t : B with

(% : s _ t : B) ∈ R. Then trivially % ≈ %.
4. RAbs: let Γ, x : A ` λy.ρ : λy.s0 _ λy.s1 : B → C be derived from Γ, x : A, y : B ` ρ :

s0 _ s1 : C. Then by IH ρ{x\q} ≈ ρ{x\q′} so λy.ρ{x\q} ≈ λy.ρ{x\q′}.
5. RApp: let Γ, x : A ` ρ σ : s0 t0 _ s1 t1 : C be derived from Γ, x : A ` ρ : s0 _ s1 : B → C

and Γ, x : A ` σ : t0 _ t1 : B. Then, applying the IH:

ρ{x\q}σ{x\q} ≈ ρ{x\q′}σ{x\q} ≈ ρ{x\q′}σ{x\q′}

CSL 2023

11:28 Reductions in Higher-Order Rewriting and Their Equivalence

6. RTrans: let Γ, x : A ` ρ ; σ : s0 _ s2 : B be derived from Γ, x : A ` ρ : s0 _ s1 : B and
Γ, x : A ` σ : s1 _ s2 : B. Then applying the IH:

ρ{x\q} ; σ{x\q} ≈ ρ{x\q′} ; σ{x\q} ≈ ρ{x\q′} ; σ{x\q′}

7. RConv: immediate by IH.
J

I Lemma 64 (=βη under term/rewrite substitution). Let Γ, x : A ` s =βη s
′ : B and let

Γ ` ρ : q0 _ q1 : A. Then s{x\\ρ} ≈ s′{x\\ρ}.

Proof. By induction on the derivation of the judgment Γ, x : A ` s =βη s
′ : B. Reflexivity,

symmetry, transitivity, and congruence under term constructors are immediate by IH. The
interesting cases are:
1. EqBeta: let s = (λx.t) r and s′ = t{x\r}. Then:

((λx.t) r){x\\ρ} = (λx.t{x\\ρ}) r{x\\ρ}
≈ t{x\\ρ}{y\\\r{x\\ρ}} by ≈-BetaRR (Lem. 56)
≈ t{y\r}{x\\ρ} by Lem. 62

2. EqEta: let s = λy.s′ x with y /∈ fv(s′). Then:

(λy.s′ y){x\\ρ} = λy.s′{x\\ρ} y
≈ s′ by ≈-Eta, as y /∈ fv(s′{x\\ρ})

In the last step, note that we may assume that y /∈ fv(ρ) by Barendregt’s convention.
J

I Lemma 65 (Congruence for ≈ below rewrite/term substitution). Let Γ, x : A ` ρ : p0 _
p1 : B and Γ, x : A ` ρ′ : p′0 _ p′1 : B be such that ρ ≈ ρ′, and let Γ ` q : A. Then
ρ{x\q} ≈ ρ′{x\q}.

Proof.

ρ{x\q} ≈ (λx.ρ) q by ≈-BetaRT
≈ (λx.ρ′) q
≈ ρ′{x\q} by ≈-BetaRT

J

I Lemma 66 (Congruence for ≈ below term/rewrite substitution). Let Γ, x : A ` s : B and let
Γ ` ρ : p0 _ p1 : A and Γ ` ρ′ : p′0 _ p′1 : A such that ρ ≈ ρ′. Then s{x\\ρ} ≈ s{x\\ρ′}.

Proof.

s{x\\ρ} ≈ (λx.s) ρ by ≈-BetaTR
≈ (λx.s) ρ′
≈ s′{x\\ρ} by ≈-BetaTR

J

I Proposition 67 (Congruence for ≈ below rewrite/rewrite substitution). Let Γ, x : A ` ρ :
p0 _ p1 : B and Γ, x : A ` ρ′ : p′0 _ p′1 : B be such that ρ ≈ ρ′, and let Γ ` σ : q0 _ q1 : A
and Γ ` σ′ : q′0 _ q′1 : A be such that σ ≈ σ′. Then ρ{x\\\σ} ≈ ρ′{x\\\σ′}.

P. Barenbaum and E. Bonelli 11:29

Proof.

ρ{x\\\σ} = ρ{x\q0} ; p1{x\\σ}
≈ ρ′{x\q0} ; p1{x\\σ} by Lem. 65
≈ ρ′{x\q′0} ; p1{x\\σ} by Lem. 63
≈ ρ′{x\q′0} ; p′1{x\\σ} by Lem. 64
≈ ρ′{x\q′0} ; p′1{x\\σ′} by Lem. 66
= ρ′{x\\\σ′}

J

B.4 Permutation lemma
I Lemma 68 (Coherence of term variable substitution). Let Γ, x : A ` ρ : p0 _ p1 : B and
Γ ` σ : q0 _ q1 : A. Then:

ρ{x\q0} ; p1{x\\σ} ≈ p0{x\\σ} ; ρ{x\q1}

Proof. By induction on the derivation of Γ, x : A ` ρ : p0 _ p1 : B:
1. RVar: let Γ, x : A ` y : y _ y : B. We consider two subcases depending on whether x = y

or not:
1.1 If x = y, then:

q0 ; σ ≈ σ by ≈-IdL
≈ σ ; q1 by ≈-IdR

1.2 If x 6= y, then both the left and the right-hand side are y ; y, so we are done.
2. RCon: let Γ ` c : c _ c : B where (c : B) ∈ C. Then both the left and the right-hand

side are c ; c, so we are done.
3. RRule: let Γ, x : A ` % : s _ t : B be derived from · ` s : B and · ` t : B with

(% : p0 _ p1 : B) ∈ R. Note that, by Lem. 38, p0 and p1 have no free occurrences of x.
Hence p0{x\\σ} ≈ p0 and p1{x\\σ} ≈ p1, and we have:

% ; t{x\\σ} ≈ % ; t
≈ % by ≈-IdR
≈ s ; % by ≈-IdL
≈ s{x\\σ} ; %

4. RAbs: let Γ, x : A ` λy.ρ : λy.s0 _ λy.s1 : B → C be derived from Γ, x : A, y : B ` ρ :
s0 _ s1 : C. So:

(λy.ρ{x\\q0}) ; (λy.s1{x\\σ}) ≈ λy.(ρ{x\\q0} ; s1{x\\σ}) by ≈-Abs
≈ λy.(s0{x\\σ} ; ρ{x\\q1}) by IH
≈ (λy.s0{x\\σ}) ; (λy.ρ{x\\q1}) by ≈-Abs

5. RApp: let Γ, x : A ` ρ1 ρ2 : s0 t0 _ s1 t1 : C be derived from Γ, x : A ` ρ1 : s0 _ s1 :
B → C and Γ, x : A ` ρ2 : t0 _ t1 : B. Then:

(ρ1{x\q0} ρ2{x\q0}) ; (s1{x\\σ} t1{x\\σ})
≈ (ρ1{x\q0} ; s1{x\\σ}) (ρ2{x\q0} ; t1{x\\σ}) by ≈-App
≈ (s0{x\\σ} ; ρ1{x\q1}) (t0{x\\σ} ; ρ2{x\q1}) by IH
≈ (s0{x\\σ} t0{x\\σ}) ; (ρ1{x\q1} ρ2{x\q1}) by ≈-App

CSL 2023

11:30 Reductions in Higher-Order Rewriting and Their Equivalence

6. RTrans: let Γ, x : A ` ρ1 ; ρ2 : s0 _ s2 : B be derived from Γ, x : A ` ρ1 : s0 _ s1 : B
and Γ, x : A ` ρ2 : s1 _ s2 : B. Then:

(ρ1{x\q0} ; ρ2{x\q0}) ; s2{x\\σ} ≈ ρ1{x\q0} ; (ρ2{x\q0} ; s2{x\\σ}) by ≈-Assoc
≈ ρ1{x\q0} ; (s1{x\\σ} ; ρ2{x\q1}) by IH
≈ (ρ1{x\q0} ; s1{x\\σ}) ; ρ2{x\q1} by ≈-Assoc
≈ (s0{x\\σ} ; ρ1{x\q1}) ; ρ2{x\q1} by IH
≈ s0{x\\σ} ; (ρ1{x\q1} ; ρ2{x\q1}) by ≈-Assoc

7. RConv: let Γ, x : A ` ρ : p0 _ p1 : B be derived from Γ, x : A ` ρ : p′0 _ p′1 : B where
Γ, x : A ` p0 =βη p

′
0 : B and Γ, x : A ` p′1 =βη p1 : B. Then:

ρ{x\q0} ; p1{x\\σ} ≈ ρ{x\q0} ; p′1{x\\σ} by Lem. 64
≈ p′0{x\\σ} ; ρ{x\q1} by IH
≈ p0{x\\σ} ; ρ{x\q1} by Lem. 64

J

I Proposition 69 (Transitivity under rewrite/rewrite substitution). Suppose that:
Γ, x : A ` ρ1 : s0 _ s1 : B and Γ, x : A ` ρ2 : s1 _ s2 : B
Γ ` σ1 : t0 _ t1 : B and Γ ` σ2 : t1 _ t2 : B

Then:

(ρ1 ; ρ2){x\\\σ1 ; σ2} ≈ ρ1{x\\\σ1} ; ρ2{x\\\σ2}

Proof. We work implicitly modulo associativity of composition (“;”), using the ≈-Assoc rule:

(ρ1 ; ρ2){x\\\σ1 ; σ2} = (ρ1 ; ρ2){x\t0} ; s2{x\\σ1 ; σ2}
= ρ1{x\t0} ; ρ2{x\t0} ; s2{x\\σ1 ; σ2}
≈ ρ1{x\t0} ; ρ2{x\t0} ; s2{x\\σ1} ; s2{x\\σ2} by Lem. 54
≈ ρ1{x\t0} ; s1{x\\σ1} ; ρ2{x\t1} ; s2{x\\σ2} by Lem. 68
≈ ρ1{x\\\σ1} ; ρ2{x\\\σ2}

J

I Proposition 70 (Substitution property for rewrite/rewrite substitution). Suppose that:
Γ, x : A, y : B ` ρ : s0 _ s1 : C
Γ, y : B ` σ : t0 _ t1 : A
Γ ` τ : r0 _ r1 : B

Then:

ρ{x\\\σ}{y\\\τ} ≈ ρ{y\\\τ}{x\\\σ{y\\\τ}}

Proof. We work implicitly modulo associativity of composition (“;”), using the ≈-Assoc rule:

ρ{x\\\σ}{y\\\τ}
= (ρ{x\t0} ; s1{x\\σ}){y\\\τ} by definition of {x\\\σ}
= (ρ{x\t0} ; s1{x\\σ}){y\r0} ; s1{x\t1}{y\\τ} by definition of {y\\\τ}
= ρ{x\t0}{y\r0} ; s1{x\\σ}{y\r0} ; s1{x\t1}{y\\τ}
= ρ{y\r0}{x\t0{y\r0}} ; s1{x\\σ}{y\r0} ; s1{x\t1}{y\\τ} Substitution Lemma (?)
≈ ρ{y\r0}{x\t0{y\r0}} ; s1{y\r0}{x\\σ{y\r0}} ; s1{x\t1}{y\\τ} Lem. 45
≈ ρ{y\r0}{x\t0{y\r0}} ; s1{y\r0}{x\\σ{y\r0}} ; s1{y\\τ}{x\\\t1{y\\τ}} Lem. 62
= ρ{y\r0}{x\\\t0{y\r0}} ; s1{y\r0}{x\\σ{y\r0}} ; s1{y\\τ}{x\\\t1{y\\τ}} Rem. 58
≈ ρ{y\r0}{x\\\t0{y\r0}} ; s1{y\r0}{x\\\σ{y\r0}} ; s1{y\\τ}{x\\\t1{y\\τ}} Rem. 59
≈ (ρ{y\r0} ; s1{y\r0} ; s1{y\\τ}){x\\\t0{y\r0} ; σ{y\r0} ; t1{y\\τ}} Prop. 69 (twice)
≈ (ρ{y\r0} ; s1{y\\τ}){x\\\σ{y\r0} ; t1{y\\τ}} by ≈-IdL (??)
≈ ρ{y\\\τ}{x\\\σ{y\\\τ}} by ≈-IdL

P. Barenbaum and E. Bonelli 11:31

In the step marked with (?) we use a variant of the standard Substitution Lemma for capture-
avoiding substitution of a variable for a term. In the step marked with (??) we use the fact
that permutation equivalence is compatible with rewrite/rewrite substitution (Prop. 67). J

I Lemma 71 (Generalized ≈-App). Suppose that:
Γ ` ρ : s _ s′ : A1 → . . .→ An → B and Γ ` ρ′ : s′ _ s′′ : A1 → . . .→ An → B,
Γ ` σi : ti _ t′i : Ai and Γ ` σi : t′i _ t′′i : Ai for all 1 ≤ i ≤ n.

Then:

(ρ σ1 . . . σn) ; (ρ′ σ′1 . . . σ′n) ≈ (ρ ; ρ′) (σ1 ; σ′1) . . . (σn ; σ′n)

Proof. By induction on n. The base case when n = 0 is immediate. In the inductive case:

(ρ σ1 . . . σn σn+1) ; (ρ′ σ′1 . . . σ′n σn+1)
≈ (ρ σ1 . . . σn ; ρ′ σ′1 . . . σ′n) (σn+1 ; σn+1) by ≈-App
≈ (ρ ; ρ′) (σ1 ; σ′1) . . . (σn ; σ′n) (σn+1 ; σn+1) by IH

J

I Lemma 72 (Generalized ≈-BetaRR rule). Suppose that:
Γ, x1 : A1, . . . , xn : An ` ρ : s _ s′ : B
Γ ` σi : ti _ t′i : Bi for all 1 ≤ i ≤ n

Then:

(λx1 . . . xn.ρ)σ1 . . . σn ≈ ρ{x1\\\σ1} . . .{xn\\\σn}

Proof. By induction on n. The base case when n = 0 is immediate. In the inductive case:

(λx1 x2 . . . xn.ρ)σ1 σ2 . . . σn
≈ ((λx2 . . . xn.ρ){x1\\\σ1})σ2 . . . σn by ≈-BetaRR (Lem. 56)
= ((λx2 . . . xn.ρ){x1\t1} ; (λx2 . . . xn.s){x1\\σ1})σ2 . . . σn
= ((λx2 . . . xn.ρ{x1\t1}) ; (λx2 . . . xn.s{x1\\σ1}))σ2 . . . σn
≈ (λx2 . . . xn.(ρ{x1\t1} ; s{x1\\σ1}))σ2 . . . σn by ≈-Abs (n− 1 times)
= (λx2 . . . xn.ρ{x1\\\σ1})σ2 . . . σn by definition
= ρ{x1\\\σ1}{x2\\\σ2} . . .{xn\\\σn} by IH

J

I Proposition 73 (Permutation). Suppose that:
Γ ` ρ : λx1 . . . xn.s _ λx1 . . . xn.s

′ : A1 → . . .→ An → B

Γ ` σi : ti _ t′i : Ai for each 1 ≤ i ≤ n.
Then:
1. ρ σ1 . . . σn ≈ ρ t1 . . . tn ; s′{x1\\\σ1} . . .{xn\\\σn}
2. ρ σ1 . . . σn ≈ s{x1\\\σ1} . . .{xn\\\σn} ; ρ t′1 . . . t′n

Proof. For item 1.:

ρ σ1 . . . σn ≈ (ρ ; λx1 . . . xn.s
′)σ1 . . . σn by ≈-IdR

≈ (ρ ; λx1 . . . xn.s
′) (t1 ; σ1) . . . (tn ; σn) by ≈-IdL (n times)

≈ (ρ t1 . . . tn) ; ((λx1 . . . xn.s
′)σ1 . . . σn) by generalized ≈-App (Lem. 71)

≈ (ρ t1 . . . tn) ; ((λx1 . . . xn.s
′)σ1 . . . σn) by ≈-1Abs (n times)

≈ (ρ t1 . . . tn) ; (s′{x1\\\σ1} . . .{xn\\\σn}) by generalized ≈-BetaRR (Lem. 72)

CSL 2023

11:32 Reductions in Higher-Order Rewriting and Their Equivalence

Item 2. is similar:

ρ σ1 . . . σn ≈ ((λx1 . . . xn.s) ; ρ)σ1 . . . σn by ≈-IdL
≈ ((λx1 . . . xn.s) ; ρ) (σ1 ; t′1) . . . (σn ; t′n) by ≈-IdR (n times)
≈ ((λx1 . . . xn.s)σ1 . . . σn) ; (ρ t′1 . . . t′n) by generalized ≈-App (Lem. 71)
≈ ((λx1 . . . xn.s)σ1 . . . σn) ; (ρ t′1 . . . t′n) by ≈-1Abs (n times)
≈ (s{x\\\σ1} . . .{x\\\σn}) ; (ρ t′1 . . . t′n) by generalized ≈-BetaRR (Lem. 72)

J

P. Barenbaum and E. Bonelli 11:33

B.5 Summary of properties of the substitution operators and ≈

s{x\\ρ}{y\t} = s{y\t}{x\\ρ{y\t}} (Lem. 45)
s{x\t} = s{x\t} (trivial)
s{x\t} = s{x\\t} (Lem. 47)
s =βη s

′ implies s ≈ s′ (Lem. 50)
ρ ≈ σ implies ρsrc =βη σ

src and ρtgt =βη σ
tgt (Lem. 52)

C〈ρ ; σ〉 ≈ C〈ρ〉 ; C〈σ〉 (Lem. 53)
s{x\\ρ} ; s{x\\σ} ≈ s{x\\ρ ; σ} (Lem. 54)
(λx.ρ)σ ≈ ρ{x\\\σ} (Lem. 56)
ρ{x\t} ≈ ρ{x\\\t} (Rem. 58)
s{x\\ρ} ≈ s{x\\\ρ} (Rem. 59)
ρ{x\\\σ} ≈ ρ if x /∈ fv(ρ) (Lem. 60)
(λy.ρ){x\\\σ} ≈ λy.ρ{y\\\σ} (Lem. 61)
(ρ1 ρ2){x\\\σ} ≈ ρ1{x\\\σ} ρ2{x\\\σ} (Lem. 61)
s{x\q}{y\\τ} ≈ s{y\\τ}{x\\\q{y\\τ}} (Lem. 62)
s =βη s

′ implies ρ{x\s} ≈ ρ{x\s′} (Lem. 63)
s =βη s

′ implies s{x\\ρ} ≈ s′{x\\ρ} (Lem. 64)
ρ ≈ ρ′ implies ρ{x\s} ≈ ρ′{x\s} (Lem. 65)
ρ ≈ ρ′ implies s{x\\ρ} ≈ s{x\\ρ′} (Lem. 66)
ρ ≈ ρ′ and σ ≈ σ′ imply ρ{x\\\σ} ≈ ρ′{x\\\σ′} (Prop. 67)
ρ{x\q0} ; p1{x\\σ} ≈ p0{x\\σ} ; ρ{x\q1} (Lem. 68)
(ρ1 ; ρ2){x\\\σ1 ; σ2} ≈ ρ1{x\\\σ1} ; ρ2{x\\\σ2} (Prop. 69)
ρ{x\\\σ}{y\\\τ} ≈ ρ{y\\\τ}{x\\\σ{y\\\τ}} (Prop. 70)
(ρ σ1 . . . σn) ; (ρ′ σ′1 . . . σ′n) ≈ (ρ ; ρ′) (σ1 ; σ′1) . . . (σn ; σ′n) (Lem. 71)
(λx1 . . . xn.ρ)σ1 . . . σn ≈ ρ{x1\\\σ1} . . .{xn\\\σn} (Lem. 72)
ρ σ1 . . . σn ≈ ρ t1 . . . tn ; s′{x1\\\σ1} . . .{xn\\\σn} (Prop. 73)
ρ σ1 . . . σn ≈ s{x1\\\σ1} . . .{xn\\\σn} ; ρ t′1 . . . t′n (Prop. 73)

CSL 2023

11:34 Reductions in Higher-Order Rewriting and Their Equivalence

C Restricted η-expansion

Recall from Def. 32 the notions of rewrite context (R, R′, . . .), applicative rewrite context
and strongly applicative term context.

I Definition 74. The relation of restricted η-expansion written →η , is defined as follows.
Let R〈ρ〉 be a rewrite such that ρ is of function type (i.e. A→ B), R is not applicative and ρ
is not a λ-abstraction nor a composition (“;”). Then given a variable x /∈ fv(ρ):

R〈ρ〉 →η R〈λx.ρ x〉

Observe that this notion is not closed by arbitrary contexts.

I Remark 75. If ρ →η σ then ρ ≈ σ using the ≈-Eta rule.

I Proposition 76. Restricted η-expansion is SN and CR.

Proof. Strong normalization. An η-redex occurrence of a rewrite ρ is a pair (R, ρ′) such
that R〈ρ′〉 = ρ where ρ is of function type, R is not applicative and ρ′ is not a λ-abstraction
nor a composition. The degree of a redex occurrence is the size of the type A → B. The
measure of a rewrite ρ is the multiset of all the degrees of redex occurrences of ρ. To prove
strong normalization, observe that η-expansion decreases the measure of the rewrite. In fact,
suppose that there is a step:

R〈ρ〉 →η R〈λx.ρ x〉

where the type of ρ is A→ B. Consider a redex occurrence (R′, ρ′) of the right-hand side,
i.e. R〈λx.ρ x〉 = R′〈ρ′〉 where ρ′ is of function type, R′ is not applicative, and ρ′ is not a
λ-abstraction nor a composition. We claim that either the degree of (R′, ρ′) is strictly less
than the degree of (R, ρ) or, otherwise, that (R′, ρ′) can be mapped injectively to a redex
occurrence (R′′, ρ′′) on the left-hand side. Note that R 6= R′ because λx.ρ x is a λ-abstraction
so (R, λx.ρ x) is not a redex occurrence. We consider three cases, depending on whether the
contexts R, R′ are disjoint, R is a prefix of R′, or R′ is a prefix of R:
1. If R and R′ are disjoint, then there is a two-hole context R̂ such that R = R̂〈�, ρ′〉 and

R′ = R̂〈(λx.ρ x),�〉. Then (R′, ρ′) can be mapped to the redex occurrence (R̂〈ρ,�〉, ρ′) on
the left-hand side.

2. If R is a prefix of R′, then R′ = R〈R′′〉 and λx.ρ x = R′′〈ρ′〉. Note that R′′ is not empty
because, as we have already argued, R 6= R′. We proceed by case analysis on the shape of
R′′;

2.1 If R′′ = λx.�, then (R〈λx.�〉, ρ x) is a redex occurrence with degree strictly less than
the degree of (R, ρ), given that the type of ρ x is B.

2.2 If R′′ = λx.R′′′ x, then (R〈λx.R′′′ x〉, ρ′) can be mapped to the redex occurrence
(R〈R′′′〉, ρ′) on the left-hand side. Note that if R〈λx.R′′′ x〉 is not applicative, then
R〈R′′′〉 is also not applicative.

2.3 If R′′ = λx.ρ�, then (R〈λx.ρ�〉, x) is a redex occurrence with degree strictly less than
the degree of (R, ρ), given that the type of x is A.

3. If R′ is a prefix of R, then R = R′〈R′′〉 and ρ′ = R′′〈λx.ρ x〉. Then (R′, R′′〈λx.ρ x〉) can be
mapped to the redex occurrence (R′, R′′〈ρ〉) on the left-hand side. Note that if R′′〈λx.ρ x〉 is
not a λ-abstraction nor a composition then R′′ is non-empty, and the outermost constructor
is an application, hence R′′〈ρ〉 is also not a λ-abstraction nor a composition.

P. Barenbaum and E. Bonelli 11:35

The mapping thus defined is injective.
Confluence. By Newman’s lemma, it suffices to show that restricted η-expansion is WCR.
Indeed, suppose that ρ →η ρ1 and ρ →η ρ2, and let us show that there is a rewrite ρ3 such
that ρ1 →η

∗ ρ3 and ρ2 →η
∗ ρ3. More precisely, let:

ρ = R1〈ρ′1〉 →η R1〈λx.ρ′1 x〉 = ρ1 for x /∈ fv(ρ′1)
ρ = R2〈ρ′2〉 →η R2〈λy.ρ′2 y〉 = ρ2 for y /∈ fv(ρ′2)

where the contexts R1, R2 are not applicative, and the rewrites ρ1, ρ2 are of function type and
not abstractions nor compositions. If R1 = R2 then it is trivial to conclude in zero rewriting
steps. Otherwise, there are three subcases, depending on whether the contexts R1, R2 are
disjoint, or R1 is a prefix of R2, or R2 is a prefix of R1. The last two cases are symmetric so
we only consider the first one:
1. If R1 and R2 are disjoint, then there is a two-hole context R̂ such that R1 = R̂〈�, ρ′2〉 and

R2 = R̂〈ρ′1,�〉. Then the situation is:

R̂〈ρ′1, ρ′2〉 //

��

R̂〈(λx.ρ′1 x), ρ′2〉

��
R̂〈ρ′1, (λy.ρ′2 y)〉 // R̂〈(λx.ρ′1 x), (λy.ρ′2 y)〉

To be able to close the diagram, note that R̂〈�, ρ′2〉 is applicative if and only if R̂〈�, (λy.ρ′2)〉
is applicative. Similarly, R̂〈ρ′1,�〉 is applicative if and only if R̂〈(λx.ρ′1 x),�〉 is applicative.

2. If R1 is a prefix of R2, then R2 = R1〈R′〉 and ρ′1 = R′〈ρ′2〉. Then the situation is:

R1〈R′〈ρ′2〉〉 //

��

R1〈λx.R′〈ρ′2〉x〉

��
R1〈R′〈λy.ρ′2 y〉〉 // R1〈λx.R′〈λy.ρ′2 y〉x〉

To justify the step on the right-hand side of the diagram, note that R′ is not empty
because we already know that R1 6= R2. Moreover, the outermost constructor of R′ cannot
be a λ-abstraction nor a composition, because ρ1 = R′〈ρ′2〉 is not a λ-abstraction nor a
composition. This means that R′ must be either of the form R′′ σ or of the form σ R′′

and it is not applicative. Hence, in any of these two cases, the context R1〈λx.R′ x〉 is not
applicative.
To justify the step on the bottom of the diagram, note, again, that R′ is non-empty and
its outermost constructor is an application, hence R′〈λy.ρ′2 y〉 is not a λ-abstraction nor a
composition.

J

C.1 η-normal forms
I Definition 77 (η-normal form). We recall the standard notion of η-normal form for terms:
a typable term Γ ` s : A. is in η-normal form if whenever s can be written as of the form
s = C〈s′〉 such that s′ is of function type (i.e. A→ B) then either C is strongly applicative or
s′ is a λ-abstraction.

The notion is extended for rewrites as follows. A typable rewrite Γ ` ρ : s _ t : A is in
η-normal form if whenever ρ can be written as of the form ρ = R〈ρ′〉 such that ρ′ is of function
type (i.e. A→ B) then either R is applicative or ρ′ is a λ-abstraction or a composition.

CSL 2023

11:36 Reductions in Higher-Order Rewriting and Their Equivalence

I Remark 78. A rewrite is in η-normal form precisely if it is a normal form for →η .

I Remark 79. A term s is in η-normal form in the standard sense if and only if the
corresponding rewrite s is in η-normal form. This is a consequence of the two following
observations:
1. A term context C is applicative if and only if it is strongly applicative, given that it has

no compositions.
2. A term s has no compositions.

I Definition 80 (η-condition). The set of rewriting rule symbols R is said to verify the
η-condition if for every % : s _ t : A ∈ R. the terms s and t are in η-normal form.

I Lemma 81 (Endpoints of rewrites in η-normal form). Assume that the set of rewriting rule
symbols R verifies the η-condition. Let Γ ` ρ : s _ t : A be a rewrite in η-normal form.
Then ρsrc and ρtgt are in η-normal form.

Proof. Let us prove that the source ρsrc is in η-normal form; the proof for the target ρtgt is
similar. By contradiction, suppose that ρsrc is not in η-normal form. Note that ρsrc is of the
form C〈s〉 where C is not applicative and s is not a λ-abstraction nor a composition. Since
ρsrc is a term, without compositions (“;”), this means that s is not a λ-abstraction and that
C is not strongly applicative. By Lem. 33 there are two possibilities:

(A) In this case, ρ = R〈α〉 where Rsrc = C and αsrc = s. Suppose, without loss of generality,
that α is the smallest possible term that satisfies these equations. In particular, note that
α cannot be a composition (α1 ; α2), because this would allow us to write ρ = R′〈α1〉
with R′ := R〈� ; α2〉 and this also verifies the equations.
Then R is not applicative, as this would imply that C is applicative. Note that α is
not a λ-abstraction, as this would imply that s is a λ-abstraction. Finally, α is not a
composition, as we have already noted. This contradicts the fact that ρ is in η-normal
form.

(B) In this case, ρ = R〈%〉 where Rsrc = C1 and %src = C2〈s〉 and C = C1〈C2〉. Note that C2 is
not strongly applicative, as this would imply that C is strongly applicative. Moreover, as
already noted before, s is not a λ-abstraction. This means that %src is not in η-normal
form, contradicting the hypothesis that the set of rewriting rule symbols R verifies the
η-condition.

J

D Flattening

I Lemma 82 (Typing rule for multistep substitution). If Γ, x : A ` µ : s0 _ s1 : B and
Γ ` ν : t0 _ t1 : A then Γ ` µ{x\ν} : s0{x\t0} _ s1{x\t1} : B.

Proof. Straightforward by induction on the derivation of the judgment. J

I Lemma 83 (Substitution lemma for multisteps). The following substitution property holds:

µ{x\ν}{y\ν′} = µ{y\ν′}{x\ν{y\ν′}}

Note, in particular, that µ{x\ν}{y\s} = µ{y\s}{x\ν{y\s}}.

Proof. Routine by induction on µ. J

P. Barenbaum and E. Bonelli 11:37

D.1 Termination of flattening

I Remark 84. If ρ [7→x σ and x /∈ {F-BetaM,F-EtaM} then ρsrc = σsrc and ρtgt = σtgt.

I Remark 85. Let ρ [7→x σ where x 6= {F-BetaM,F-EtaM}. Then neither ρ nor σ are
multisteps. Indeed, note that, in all the rules other than F-BetaM and F-EtaM, there must
be at least one composition (“;”) on the left-hand side, and at least one composition on the
right-hand side.

I Lemma 86. Let µ, ν be arbitrary multisteps. Then:
1. µ{x\ν}src = µsrc{x\νsrc}
2. µ{x\ν}tgt = µtgt{x\νtgt}

Proof. Straightforward by induction on µ. J

I Lemma 87. If ρ [7→x σ where x ∈ {F-BetaM,F-EtaM}, then ρsrc [7→=
x σsrc and ρtgt [7→=

x σtgt.
Here [7→=

x denotes the reflexive closure of [7→x.

Proof. By induction on ρ:
1. Variable (ρ = x), constant (ρ = c), or rule symbol (ρ = %). There cannot be a

step ρ [7→x σ using the F-BetaM or F-EtaM rules, so this case trivially holds.
2. Abstraction (ρ = λx.ρ′). There are two subcases, depending on whether the step takes

place at the root or under the abstraction:
2.1 Reduction at the root: then ρ′ is a multistep of the form µx where x /∈ fv(µ),

and the step is of the form λx.µ x
[7→F-EtaM µ. Then for the source we have that

λx.µsrc x
[7→F-EtaM µsrc, observing that x cannot occur free in µsrc, and similarly for the

target.
2.2 Under the abstraction: then the step is of the form λx.ρ′

[7→x λx.σ
′ with ρ′ [7→x σ

′. By
IH we have that ρ′src [7→=

x σ′src so also λx.ρ′src [7→=
x λx.σ′src, and similarly for the target.

3. Application (ρ = ρ1 ρ2). There are three subcases, depending on whether the step
takes place at the root, to the left, or to the right of the application:

3.1 Reduction at the root: then ρ1 and ρ2 must be multisteps of the forms ρ1 = λx.µ and
ρ2 = ν, and the step is of the form (λx.µ) ν [7→F-BetaM µ{x\ν}. Then for the source we
have that (λx.µsrc) νsrc [7→F-BetaM µsrc{x\νsrc} = µ{x\ν}src by Lem. 86, and similarly
for the target.

3.2 Left of the application: then the step is of the form ρ1 ρ2
[7→x ρ

′
1 ρ2 with ρ1

[7→x ρ
′
1.

By IH we have that ρsrc
1

[7→=
x ρ′1

src so also ρsrc
1 ρsrc

2
[7→=

x ρ′1
src
ρsrc

2 , and similarly for the
target.

3.3 Right of the application: symmetric to the previous case.
4. Composition, (ρ = ρ1 ; ρ2). There are two subcases, depending on whether the step

takes place to the left or to the right of the composition:
4.1 Left of the composition: then the step is of the form ρ1 ; ρ2

[7→x ρ′1 ; ρ2 with
ρ1

[7→x ρ
′
1. For the source, note that by IH we have that ρsrc

1
[7→=

x ρ′1
src so indeed

(ρ1 ; ρ2)src = ρsrc
1

[7→=
x ρ′1

src = (ρ′1 ; ρ2)src. For the target, simply note that (ρ1 ; ρ2)tgt =
ρtgt

2 = (ρ′1 ; ρ2)tgt, so we conclude in zero reduction steps.
4.2 Right of the composition: symmetric to the previous case.

J

CSL 2023

11:38 Reductions in Higher-Order Rewriting and Their Equivalence

I Lemma 88 (F-BetaM and F-EtaM postponement). Let ρ [7→x σ
[7→y τ where x ∈

{F-BetaM,F-EtaM} and y /∈ {F-BetaM,F-EtaM}. Then there is a rewrite υ such that

ρ
[7→y υ

[7→
+
x τ .

Proof. By induction on the context under which the step ρ [7→x σ takes place. We analyze
the cases for reduction at the root as well as for congruence closure:
1. F-BetaM reduction at the root. Let (λx.µ) ν [7→F-BetaM µ{x\ν} [7→y τ . It suffices to

note that the left-hand side of y contains at least one composition (Rem. 85), given that
y /∈ {F-BetaM,F-EtaM}. Hence the step µ{x\ν} [7→y τ is impossible.

2. F-EtaM reduction at the root. Similar to the previous case.
3. Under a λ-abstraction. Let λx.ρ′ [7→x λx.σ

′ [7→y τ where ρ′ [7→x σ
′.

If the second step is internal to σ′, then the conclusion follows easily by IH. More
precisely, suppose that τ = λx.τ ′ with σ′ [7→y τ

′. By IH there exists a rewrite υ′ such that

ρ′
[7→y υ

′ [7→
+
x τ ′. Taking υ := λx.υ′ we have that λx.ρ′ [7→y λx.υ

′ [7→
+
x λx.τ ′ as required.

If the second step is at the root, then the only rule that can apply is F-Abs, so σ′ = (σ1 ; σ2)
and τ = (λx.σ1) ; (λx.σ2), that is, the situation is:

λx.ρ′
[7→x λx.(σ1 ; σ2) [7→F-Abs (λx.σ1) ; (λx.σ2)

Note that the right-hand side of the first step is a multistep which does not contain any
composition (“;”), because it is either a F-BetaM or a F-EtaM step. Hence ρ′ must be of
the form (ρ1 ; ρ2) where the first step is either internal to ρ1 or internal to ρ2. So there
are two subcases:

3.1 First step internal to ρ1: then λx.(ρ1 ; σ2) [7→x λx.(σ1 ; σ2) [7→F-Abs (λx.σ1) ; (λx.σ2)
where ρ1

[7→x σ1. Taking υ := λx.(ρ1 ; σ2) we have that λx.(ρ1 ; σ2) [7→F-Abs (λx.ρ1) ;
(λx.σ2) [7→x (λx.σ1) ; (λx.σ2) as required.

3.2 First step internal to ρ2: symmetric to the previous case.
4. Left of an application. Let ρ′ α [7→x σ

′ α
[7→y τ where ρ′ [7→x σ

′.
If the second step is internal to σ′, then the conclusion follows easily by IH. More precisely,
suppose that τ = τ ′ α with σ′

[7→y τ
′. Then by IH there exists a rewrite υ′ such that

ρ′
[7→y υ

′ [7→
+
x τ ′. Taking υ := υ′ α we have that ρ′ α [7→y υ

′ α
[7→

+
x τ ′ α as required.

If the second step is internal to α, then the conclusion follows easily given that the steps
are disjoint. More precisely, suppose that τ = σ′ β with α [7→y β. Taking υ := ρ′ β we
have that ρ′ α [7→y ρ

′ β
[7→x σ

′ β as required.
If the second step is at the root, there are only three rules that can apply (F-App1,
F-App2, and F-App3), so we consider three subcases:

4.1 F-App1: then σ′ = (σ1 ; σ2), and α = µ is a multistep, and moreover τ = (σ1 µ
src) ;

(σ2 µ). The situation is:

ρ′ µ
[7→x (σ1 ; σ2)µ [7→F-App1 (σ1 µ

src) ; (σ2 µ)

where ρ′ [7→x σ1 ; σ2. Note that the right-hand side of the first step must be a multistep
which does not contain any composition (“;”), given that x ∈ {F-BetaM,F-EtaM}.
Hence ρ′ must be of the form (ρ1 ; ρ2) where the first step is either internal to ρ1 or
internal to ρ2. So there are two subcases:

P. Barenbaum and E. Bonelli 11:39

4.1.1 First step internal to ρ1: then (ρ1, σ2)µ [7→x (σ1 ; σ2)µ [7→F-App1 (σ1 µ
src) ; (σ2 µ)

where ρ1
[7→x σ1. Taking υ := (ρ1 µ

src) ; (σ2 µ) we have that: (ρ1, σ2)µ [7→F-App1

(ρ1 µ
src) ; (σ2 µ) [7→x (σ1 µ

src) ; (σ2 µ) as required.
4.1.2 First step internal to ρ2: symmetric to the previous case.
4.2 F-App2: then σ′ = µ is a multistep, and α = (α1 ; α2), and moreover τ = (µα1) ;

(µtgt α2). The situation is:

ρ′ (α1 ; α2) [7→x µ (α1 ; α2) [7→F-App2 (µα1) ; (µtgt α2)

where ρ′ [7→x µ. Note that the first step step is either a F-BetaM or an F-EtaM step,
so it cannot erase compositions (“;”). Therefore ρ′ does not contain any composition,
i.e. ρ′ = µ0 is also a multistep. Hence taking υ := (µ0 α1) ; (µtgt

0 α2) we have that

µ0 (α1 ; α2) [7→F-App2 (µ0 α1) ; (µtgt
0 α2)

[7→x (µα1) ; (µtgt
0 α2)

[7→=
x (µα1) ; (µtgt α2) by Lem. 87

4.3 F-App3: then σ′ = (σ1 ; σ2) and α = (α1 ; α2), and moreover τ = ((σ1 ; σ2)αsrc
1) ;

(σtgt
2 (α1 ; α2)). The situation is:

ρ′ (α1 ; α2) [7→x (σ1 ; σ2) (α1 ; α2) [7→F-App3 ((σ1 ; σ2)αsrc
1) ; (σtgt

2 (α1 ; α2))

Note that the right-hand side of the first step is a multistep which does not contain
any composition (“;”), given that x ∈ {F-BetaM,F-EtaM}. Hence ρ′ must be of the
form (ρ1 ; ρ2) where the first step is either internal to ρ1 or internal to ρ2. So there
are two subcases:

4.3.1 First step internal to ρ1: then (ρ1 ; σ2) (α1 ; α2) [7→x (σ1 ; σ2) (α1 ; α2) [7→F-App3

((σ1 ; σ2)αsrc
1) ; (σtgt

2 (α1 ; α2)) where ρ1
[7→x σ1. Taking υ := ((ρ1 ; σ2)αsrc

1) ;
(σtgt

2 (α1 ; α2)) we have that:

(ρ1 ; σ2) (α1 ; α2) [7→F-App3 ((ρ1 ; σ2)αsrc
1) ; (σtgt

2 (α1 ; α2))
[7→x ((σ1 ; σ2)αsrc

1) ; (σtgt
2 (α1 ; α2))

4.3.2 First step internal to ρ2: then (σ1 ; ρ2) (α1 ; α2) [7→x (σ1 ; σ2) (α1 ; α2) [7→F-App3

((σ1 ; σ2)αsrc
1) ; (σtgt

2 (α1 ; α2)) where ρ2
[7→x σ2. Taking υ := ((σ1 ; ρ2)αsrc

1) ;
(ρtgt

2 (α1 ; α2)) we have that:

(σ1 ; ρ2) (α1 ; α2) [7→F-App3 ((σ1 ; ρ2)αsrc
1) ; (ρtgt

2 (α1 ; α2))
[7→x ((σ1 ; σ2)αsrc

1) ; (ρtgt
2 (α1 ; α2))

[7→∗x ((σ1 ; σ2)αsrc
1) ; (σtgt

2 (α1 ; α2)) by Lem. 87

5. Right of an application. Symmetric to the previous case.
6. Left of a composition. Let ρ′ ; α [7→x σ

′ ; α [7→y τ where ρ′ [7→x σ
′. Note that there is

no rewriting rule whose left-hand side is a composition (“;”). Hence the second step must
necessarily be internal to σ′ or to α.
If the second step is internal to σ′, i.e. τ = τ ′ ; α with σ′ [7→y τ

′, then the conclusion
follows easily by IH (similarly as in the Left of an application case).

CSL 2023

11:40 Reductions in Higher-Order Rewriting and Their Equivalence

If the second step is internal to α, i.e. τ = σ′ ; β with α
[7→y β, then the conclusion

follows easily given that the steps are disjoint (similarly as in the Left of an application
case).

7. Right of a composition. Symmetric to the previous case.
J

IDefinition 89 (Heavy applications). An application ρ σ is heavy if ρ and σ are not multisteps,
i.e. if both ρ and σ contain compositions (“;”). We write #h(ρ) to stand for the number of
heavy applications in ρ. More precisely:

#h(x) = #h(c) = #h(%) def= 0
#h(λx.ρ) def= #h(ρ)

#h(ρ σ) def= #h(ρ) + #h(σ) +
{

1 if ρ σ is heavy
0 otherwise

#h(ρ ; σ) def= #h(ρ) + #h(σ)

I Remark 90. Multisteps and (lifted) terms have no heavy applications, i.e. #h(µ) = 0 and
#h(s) = 0.

I Lemma 91 (Decrease of heavy applications). Let ρ [7→x σ where x /∈ {F-BetaM,F-EtaM}.
Then #h(ρ) ≥ #h(σ). Furthermore if x = F-App3 then #h(ρ) > #h(σ).

Proof. By induction on the context under which the step ρ [7→x σ takes place. We consider
all the cases for reduction at the root as well as for congruence closure:
1. Root F-Abs step. Let λx.(ρ ; σ) [7→F-Abs (λx.ρ) ; (λx.σ). Then #h(λx.(ρ ; σ)) =

#h(ρ) + #h(σ) = #h((λx.ρ) ; (λx.σ)).
2. Root F-App1 step. Let (ρ ; σ)µ [7→F-App1 (ρµsrc) ; (σ µ). Note that all the explicitly

written applications, i.e. (ρ ; σ)µ, and ρµsrc, and σ µ are not heavy. Hence, using
the fact that multisteps and terms have no heavy applications (Rem. 90) we have that
#h((ρ ; σ)µ) = #h(ρ) + #h(σ) = #h((ρµsrc) ; (σ µ)).

3. Root F-App2 step. Symmetric to the previous case.
4. Root F-App3 step. Let (ρ1 ; ρ2) (σ1 ; σ2) [7→F-App3 ((ρ1 ; ρ2)σsrc

1) ; (ρtgt
2 (σ1 ; σ2)). Note

that the explicitly written application on the left-hand side, i.e. (ρ1 ; ρ2) (σ1 ; σ2) is heavy,
whereas the explicitly written applications on the right-hand side, i.e. (ρ1 ; ρ2)σsrc

1 and
ρtgt

2 (σ1 ; σ2), are not heavy. Hence #h((ρ1 ; ρ2) (σ1 ; σ2)) = 1+#h(ρ1)+#h(ρ2)+#h(σ1)+
#h(σ2) > #h(ρ1) + #h(ρ2) + #h(σ1) + #h(σ2) = #h(((ρ1 ; ρ2)σsrc

1) ; (ρtgt
2 (σ1 ; σ2))).

5. Congruence, under an abstraction. let λx.ρ [7→x λx.σ with ρ
[7→x σ. Note that

#h(λx.ρ) = #h(ρ) and #h(λx.σ) = #h(σ), so it is immediate to conclude by resorting to
the IH.

6. Congruence, left of an application. let ρα [7→x σ α with ρ [7→x σ. Recall that in a
reduction step (other than F-BetaM and F-EtaM) the left and the right-hand sides are
not multisteps (Rem. 85). This implies that ρ and σ are not multisteps. This means
that the application ρα is heavy if and only if the application σ α is heavy. Let k := 1
if ρα is heavy, and k := 0 otherwise. We have that #h(ρα) = k + #h(ρ) + #h(α) and
#h(σ α) = k + #h(σ) + #h(α). Hence it is immediate to conclude by resorting to the IH.

7. Congruence, right of an application. Symmetric to the previous case.

P. Barenbaum and E. Bonelli 11:41

8. Congruence, left of a composition. Let ρ ; α [7→x σ ; α with ρ
[7→x σ. Then

#h(ρ ; α) = #h(ρ) and #h(σ ; α) = #h(σ), so it is immediate to conclude by resorting to
the IH.

9. Congruence, right of a composition. Symmetric to the previous case.
J

I Definition 92. The weight of a rewrite ρ is a non-negative integer #w(ρ) defined inductively
as follows:

#w(x) = #w(c) = #w(%) def= 0
#w(λx.ρ) def= 2 #w(ρ)

#w(ρ σ) def= 2 #w(ρ) + 2 #w(σ)
#w(ρ ; σ) def= 1 + #w(ρ) + #w(σ)

I Remark 93. Multisteps and (lifted) terms have zero weight, i.e. #w(µ) = 0 and #w(s) = 0.

I Lemma 94 (Decrease of weight). Let ρ [7→x σ where x ∈ {F-Abs,F-App1,F-App2}. Then
#w(ρ) > #w(σ).

Proof. By induction on the context under which the step ρ [7→x σ takes place. We consider
all the cases for reduction at the root as well as for congruence closure:
1. Root F-Abs step. Let λx.(ρ ; σ) [7→F-Abs (λx.ρ) ; (λx.σ). Then:

#w(λx.(ρ ; σ)) = 2 (1 + #w(ρ) + #w(σ))
> 1 + 2 #w(ρ) + 2 #w(σ)
= #w((λx.ρ) ; (λx.σ))

2. Root F-App1 step. Let (ρ ; σ)µ [7→F-App1 (ρµsrc) ; (σ µ). Then:

#w((ρ ; σ)µ) = 2 (1 + #w(ρ) + #w(σ)) + 2 #w(µ)
> 1 + 2 #w(ρ) + 2 #w(σ) + 2 #w(µ)
= 1 + 2 #w(ρ) + 2 #w(µsrc) + 2 #w(σ) + 2 #w(µ) by Rem. 93
= #w((ρµsrc) ; (σ µ))

3. Root F-App2 step. Symmetric to the previous case.
4. Congruence closure. Congruence under abstraction, application and composition

are straightforward given that the functions #w(λx.−), #w(−−), and #w(− ; −) are
monotonic.

J

I Proposition 95. The flattening system F is strongly normalizing.

Proof. Recall that F -BetaM and F -EtaM steps can be postponed after steps of other kinds
(Lem. 88). Hence, by standard rewriting techniques, SN of F can be reduced to SN of
[7→F-BetaM ∪

[7→F-EtaM on one hand, plus SN of [7→F-Abs ∪
[7→F-App1 ∪

[7→F-App2 ∪
[7→F-App3 on

the other one.
It is immediate to show that the union of F -BetaM and F -EtaM is SN, given that (typable)

multisteps can be understood as simply typed λ-terms, by regarding constants (c,d, . . .) and
rule symbols (%, ϑ, . . .) as free variables of their corresponding types. Hence termination of
[7→F-BetaM ∪

[7→F-EtaM is reduced to termination of βη-reduction in the simply-typed λ-calculus.

CSL 2023

11:42 Reductions in Higher-Order Rewriting and Their Equivalence

To show that the system without F-BetaM and F-EtaM is SN, consider the measure on
rewrites given by #(ρ) def= (#h(ρ),#w(ρ)) with the lexicographic order. It is then easy to
show that if ρ [7→x σ with x /∈ {F-BetaM,F-EtaM} then #(ρ) > #(σ). Indeed, by Lem. 91
we know that F-App3 steps strictly decrease the first component and other kinds of steps
do not increase it. Moreover, by Lem. 94, we know that F-Abs, F-App1, and F-App2 steps
strictly decrease the second component. J

D.2 Confluence of flattening

I Proposition 96. The flattening system F is confluent.

Proof. By Newman’s lemma, given that F is SN (Prop. 95), it suffices to show that it is
WCR. Indeed, let ρ [7→ ρ1 and ρ [7→ ρ2 and let us show that there exists a rewrite ρ3 such
that ρ [7→∗ ρ3 and ρ1

[7→∗ ρ3. We proceed by induction on ρ.
1. Variable (ρ = x), constant (ρ = c), or rule symbol (ρ = %). A rewrite of any of

these shapes does not reduce, so the statements holds vacuously.
2. Abstraction (ρ = λx.ρ′). If both steps are internal to ρ′, it is immediate to conclude

by resorting to the IH. If both steps are at the root, note that the rules F-Abs and
F-EtaM are mutually exclusive, given that F-Abs requires that the left-hand side has a
composition, whereas F -EtaM requires that it be a multistep. So if both steps are at the
root, they must be instances of the same rule, and actually the same instance, so this
case is trivial.

The remaining case is when one of the steps is at the root and the other one is internal.
We proceed by case analysis, depending on the kind of step that is performed at the root:

2.1 F-Abs: Then the step at the root is of the form λx.(ρ1 ; ρ2) [7→F-Abs (λx.ρ1) ; (λx.ρ2).
Note that the internal step cannot be at the root of ρ1 ; ρ2 given that there are no
rewriting rules whose left-hand side is a composition (“;”). Hence the internal step
must be either internal to ρ1 or internal to ρ2, so there are two subcases:

2.1.1 If the internal step is of the form λx.(ρ1 ; ρ2) [7→ λx.(ρ′1 ; ρ2) with ρ1
[7→ ρ′1, the

situation is:

λx.(ρ1 ; ρ2) //

��

(λx.ρ1) ; (λx.ρ2)

��
λx.(ρ′1 ; ρ2) // (λx.ρ′1) ; (λx.ρ2)

2.1.2 If the internal step is of the form λx.(ρ1 ; ρ2) [7→ λx.(ρ1 ; ρ′2) with ρ2
[7→ ρ′2, the

proof is similar as for the previous case.

2.2 F-EtaM: Then the step at the root is of the form λx.µ x
[7→F-EtaM µ with x /∈ fv(µ).

There are two subcases, depending on whether the internal step is at the root of µx
or internal to µ:

2.2.1 If the internal step is at the root of µx then it can only be an instance of the
F-BetaM rule, given that the remaining rewriting rules whose left-hand side is an
application require that it contains at least one composition (“;”), while µx is a

P. Barenbaum and E. Bonelli 11:43

multistep. Hence µ = λy.ν and the situation is:

λx.(λy.ν)x //

��

λy.ν

λx.ν{y\x}

Note that the two rewrites are α-equivalent because x /∈ fv(ν).
2.2.2 If the internal step is internal to µ, then the situation is:

λx.µ x //

��

µ

��
λx.µ′ x // µ′

3. Application (ρ = ρ1 ρ2). If both steps are internal to ρ1, it is immediate to conclude by
resorting to the IH. Similarly, if both steps are internal to ρ2, it is immediate to conclude
by IH. If one step is internal to ρ1 and the other one is internal to ρ2, it is also immediate
to conclude given that the steps are disjoint. If both steps are at the root, note that the
rules F-App1, F-App2, F-App3, F-BetaM are all mutually exclusive; for example there
cannot simultaneously be a F-App1 step and a F-BetaM step at the root, given that
F -App1 requires that the rewrite on the left is not a multistep whereas F -BetaM requires
that it be a multistep. So if both steps are at the root they must be instances of the
same rule, and actually the same instance, so this case is trivial.
The remaining case is when one of the steps it at the root and the other one is internal.
We proceed by case analysis, depending on the kind of step that is performed at the root:

3.1 F-App1: Then ρ1 = σ1 ; σ2 and ρ2 = µ is a multistep, and the step at the root is
of the form (σ1 ; σ2)µ [7→F-App1 (σ1 µ

src) ; (σ2 µ). Note that the internal step must
cannot be at the root of σ1 ; σ2 given that there are no rewriting rules whose left-hand
side is a composition (“;”). Hence there are three subcases, depending on whether the
internal step is internal to σ1, internal to σ2, or internal to µ:

3.1.1 If the internal step is of the form (σ1 ; σ2)µ [7→ (σ′1 ; σ2)µ with σ1
[7→ σ′1, the

situation is:

(σ1 ; σ2)µ //

��

(σ1 µ
src) ; (σ2 µ)

��
(σ′1 ; σ2)µ // (σ′1 µsrc) ; (σ2 µ)

3.1.2 If the internal step is of the form (σ1 ; σ2)µ [7→ (σ1 ; σ′2)µ with σ2
[7→ σ′2, the proof

is similar as for the previous case.
3.1.3 If the internal step is of the form (σ1 ; σ2)µ [7→ (σ1 ; σ2)µ′ with µ

[7→ µ′, then
note that it must be either a F -BetaM or a F -EtaM step given that the other rules
cannot reduce a multistep (Rem. 85). Then the situation is:

(σ1 ; σ2)µ //

��

(σ1 µ
src) ; (σ2 µ)

��
(σ1 µ

src) ; (σ2 µ
′)

Lem. 87����
(σ1 ; σ2)µ′ // (σ1 µ

′src) ; (σ2 µ
′)

CSL 2023

11:44 Reductions in Higher-Order Rewriting and Their Equivalence

3.2 F-App2: Symmetric to the previous case.
3.3 F-App3: Then ρ1 = σ1 ; σ2 and ρ2 = τ1 ; τ2, and the step at the root is of the

form (σ1 ; σ2) (τ1 ; τ2) [7→ ((σ1 ; σ2) τ src
1) ; (σtgt

2 (τ1 ; τ2)). Note that the internal step
must cannot be at the root of σ1 ; σ2 nor at the root of τ1 ; τ2 given that there are
no rewriting rules whose left-hand side is a composition (“;”). Hence there are four
subcases, depending on whether the internal step is internal to σ1, internal to σ2,
internal to τ1, or internal to τ2.

3.3.1 If the internal step is of the form (σ1 ; σ2) (τ1 ; τ2) [7→ (σ′1 ; σ2) (τ1 ; τ2) with
σ1

[7→ σ′1, then the situation is:

(σ1 ; σ2) (τ1 ; τ2) //

��

((σ1 ; σ2) τ src
1) ; (σtgt

2 (τ1 ; τ2))

��
(σ′1 ; σ2) (τ1 ; τ2) // ((σ′1 ; σ2) τ src

1) ; (σtgt
2 (τ1 ; τ2))

3.3.2 If the internal step is of the form (σ1 ; σ2) (τ1 ; τ2) [7→ (σ1 ; σ′2) (τ1 ; τ2) with
σ2

[7→ σ′2, then we claim that σtgt
2

[7→∗ σ′2
tgt. Indeed, if the step σ2

[7→ σ′2 is a
F-BetaM or an F-EtaM step this is a consequence of Lem. 87, and if the step is
not an instance of the F -BetaM rule, we have that σtgt

2 = σ′2
tgt as has already been

observed (Rem. 84). In any case, the situation is:

(σ1 ; σ2) (τ1 ; τ2) //

��

((σ1 ; σ2) τ src
1) ; (σtgt

2 (τ1 ; τ2))

��
((σ1 ; σ′2) τ src

1) ; (σtgt
2 (τ1 ; τ2))

by the claim����
(σ1 ; σ′2) (τ1 ; τ2) // ((σ1 ; σ′2) τ src

1) ; (σ′2
tgt (τ1 ; τ2))

3.3.3 If the internal step is of the form (σ1 ; σ2) (τ1 ; τ2) [7→ (σ1 ; σ2) (τ ′1 ; τ2) with
τ1

[7→ τ ′1, the proof is similar as for the previous case.
3.3.4 If the internal step is of the form (σ1 ; σ2) (τ1 ; τ2) [7→ (σ1 ; σ2) (τ1 ; τ ′2) with τ2

[7→ τ ′2,
the proof is similar as for when the internal step is internal to σ1 (subcase 3.3.1).

3.4 F-BetaM: Then ρ1 = λx.µ and ρ2 = ν are both multisteps. The internal step may be
an F-EtaM step at the root of λx.µ, or a step internal to µ or a step internal to ν.
Note by Rem. 85 that all of these steps must necessarily be F -BetaM or F -EtaM steps.
Therefore these cases correspond to typical critical pairs for βη-reduction, namely:

(λx.µ x) ν //

��

µ ν

µ ν

where x /∈ fv(µ)

(λx.µ) ν //

��

µ{x\ν}

��
(λx.µ′) ν // µ′{x\ν}

(λx.µ) ν //

��

µ{x\ν}

����
(λx.µ) ν′ // µ{x\ν′}

The diagrams on the bottom rely, respectively, on the following properties. If x ∈
{F-BetaM,F-EtaM} then:

P. Barenbaum and E. Bonelli 11:45

µ
[7→x µ

′ implies µ{x\ν} [7→x µ
′{x\ν}

ν
[7→x ν

′ implies µ{x\ν} [7→∗x µ{x\ν′}.
These are straightforward to prove, resorting to Lem. 83 when appropriate.

4. Composition (ρ = ρ1 ; ρ2). Note that the steps cannot be at the root, given that
there are no rewriting rules whose left-hand side is a composition (“;”). If both steps are
internal to ρ1, it is immediate to conclude by resorting to the IH. Similarly, if both steps
are internal to ρ2, it is immediate to conclude by IH. Finally, if one step is internal to ρ1
and the other one is internal to ρ2, it is also immediate to conclude given that the steps
are disjoint.

J

I Definition 97. The reduction relation ◦7→ is defined as [7→ but excluding the F-EtaM rule.

I Remark 98. The reduction relation ◦7→ is also SN and CR. Strong normalization is immediate
by Prop. 95, since ◦7→⊆ [7→. The proof of confluence is the same as in Prop. 96, ignoring all
the cases involving the F-EtaM rule, and observing that peaks not involving the F-EtaM
rule may be closed without using the F-EtaM rule.

D.3 Soundness with respect to permutation equivalence
I Lemma 99. Let Γ, x : A ` µ : p0 _ p1 : B and Γ ` ν : q0 _ q1 : A. Then µ{x\ν} ≈
µ{x\\\ν}.

Proof. By induction on the derivation of Γ, x : A ` µ : p0 _ p1 : B:
1. RVar: Let Γ, x : A ` y : y _ y : B with (y : B) ∈ Γ. There are two subcases, depending

on whether x = y or not.
1.1 If x = y then: x{x\ν} = ν ≈ (t0 ; ν) = x{x\\\ν} by ≈-IdL.
1.2 If x 6= y then y{x\ν} = y ≈ (y ; y) = y{x\\\ν} by ≈-IdL.

2. RCon: Let Γ, x : A ` c : c _ c : B with (c : B) ∈ C. Then c{x\ν} = c ≈ (c ; c) =
c{x\\\ν} by ≈-IdL.

3. RRule: Let Γ, x : A ` % : s0 _ s1 : B be derived from · ` s0 : B and · ` s1 : B with
(% : s0 _ s1 : B) ∈ R. Then %{x\ν} = % ≈ (% ; s1) = %{x\\\ν} by ≈-IdR. Note that s1 is
a closed term by Lem. 38, so s1{x\\ν} = s1.

4. RAbs: Let Γ, x : A ` λy.µ : λy.s0 _ λy.s1 : B → C be derived from Γ, x : A, y : B ` µ :
s0 _ s1 : C. Then:

(λy.µ){x\ν} = λy.µ{x\ν}
≈ λy.µ{x\\\ν} by IH
≈ (λy.µ){x\\\ν} by Lem. 61

5. RApp: Let Γ, x : A ` µ1 µ2 : s0 t0 _ s1 t1 : C be derived from Γ, x : A ` µ1 : s0 _ s1 :
B → C and Γ, x : A ` µ2 : t0 _ t1 : B. Then:

(µ1 µ2){x\ν} = µ1{x\ν}µ2{x\ν}
≈ µ1{x\\\ν}µ2{x\\\ν} by IH
≈ (µ1 µ2){x\\\ν} by Lem. 61

6. RTrans: Impossible, as µ is a multistep without compositions (“;”).

CSL 2023

11:46 Reductions in Higher-Order Rewriting and Their Equivalence

7. REq: Let Γ, x : A ` µ : s0 _ s1 : B be derived from Γ, x : A ` µ : s′0 _ s′1 : B with
Γ, x : A ` s0 =βη s

′
0 : B and Γ, x : A ` s′1 =βη s1 : B. Then:

µ{x\ν} ≈ µ{x\q0} ; s′1{x\\ν} by IH
≈ µ{x\q0} ; s1{x\\ν} by Lem. 64
= µ{x\\\ν}

J

I Lemma 100 (Soundness). If ρ [7→ σ then ρ ≈ σ.

Proof. It suffices to show that all the axioms of the flattening system F relate permutation
equivalent rewrites:
1. F-Abs:

λx.(ρ ; σ) ≈ (λx.ρ) ; (λx.σ) by ≈-Abs

2. F-App1:

(ρ ; σ)µ ≈ (ρ ; σ) (µsrc ; µ) by ≈-IdL
≈ (ρµsrc) ; (σ µ) by ≈-App

3. F-App2:

µ (ρ ; σ) ≈ (µ ; µtgt) (ρ ; σ) by ≈-IdR
≈ (µρ) ; (µtgt σ) by ≈-App

4. F-App3:

(ρ1 ; ρ2)(σ1 ; σ2) ≈ ((ρ1 ; ρ2) ; ρtgt
2)(σsrc

1 ; (σ1 ; σ2)) by ≈-IdL and ≈-IdR
≈ ((ρ1 ; ρ2)σsrc

1) ; (ρtgt
2 (σ1 ; σ2)) by ≈-App

5. F-BetaM:

(λx.µ) ν ≈ µ{x\\\ν} by ≈-BetaRR (Lem. 56)
≈ µ{x\ν} by Lem. 99

6. F-EtaM:

(λx.µ)x ≈ µ by ≈-Eta, if x /∈ fv(µ)

J

D.4 Characterization of normal forms
I Lemma 101 (Characterization of normal multisteps).
1. The set of multisteps in ◦7→-normal form is exactly the set of (typable) flat multisteps.
2. The set of multisteps in [7→-normal form is a subset of the set of (typable) flat multisteps.

Proof. Recall that multisteps are only subject to [7→F-BetaM,F-EtaM reduction (Rem. 85),
so this result is immediate if typable multisteps are understood as simply typed λ-terms
where constants (c,d, . . .) and rule symbols (%, ϑ, . . .) are regarded as free variables of their
corresponding types. J

I Proposition 102 (Characterization of normal rewrites).

P. Barenbaum and E. Bonelli 11:47

1. The set of rewrites in ◦7→-normal form is exactly the set of (typable) flat rewrites.
2. The set of rewrites in [7→-normal form is a subset of the set of (typable) flat rewrites.

Proof. Item 2. is an easy consequence of item 1. For item 1., we prove the two implications:
(⇒) Let ρ be a rewrite in ◦7→-normal form, and let us show that it is a flat rewrite. We proceed

by induction on ρ:
1. Variable (ρ = x), constant (ρ = c), or rule symbol (ρ = %). Immediate.
2. Abstraction (ρ = λx.σ). By IH σ is a flat rewrite. If σ = µ̂ is a flat multistep, it is

easy to check that λx.µ̂ is also a flat multistep. If σ = (σ̂1 ; σ̂2) is a composition then
ρ = λx.(σ̂1 ; σ̂2) [7→F-Abs (λx.σ̂1) ; (λx.σ̂2) contradicting the fact that it is a ◦7→-normal
form.

3. Application (ρ = σ τ). By IH σ and τ are flat rewrites. Note that σ cannot be a
composition of the form σ = (σ̂1 ; σ̂2) because then ρ = (σ̂1 ; σ̂2) τ would reduce,
either applying F -App1 at the root (if τ is a multistep) or F -App3 at the root (if τ is
a composition), and this would contradict the fact that ρ is ◦7→-normal. Hence σ = µ̂

is a flat multistep. Moreover, τ cannot be a composition of the form τ = (τ̂1 ; τ̂2)
because then ρ = µ̂ (τ̂1 ; τ̂2) would reduce applying F -App2 at the root, and this would
contradict the fact that ρ is ◦7→-normal. Hence τ = ν̂ is also a flat multistep. Finally,
ρ = µ̂ ν̂ is a multistep in ◦7→-normal form, so by Lem. 101 it is a flat multistep.

4. Composition (ρ = σ ; τ). By IH, σ = σ̂ and τ = τ̂ are flat rewrites, so σ̂ ; τ̂ is also
a flat rewrite.

(⇐) Let ρ̂ be a flat rewrite. Let us prove that it is ◦7→-normal by induction on the derivation
that it is a flat rewrite.
1. Flat multistep, ρ̂ = µ̂. Then µ̂ is in ◦7→-normal form by Lem. 101.
2. Composition, ρ̂ = ρ̂1 ; ρ̂2. Then by IH ρ̂1 and ρ̂2 are ◦7→-normal. Moreover, there

cannot be a reduction step at the root, given there are no rewriting rules in the
flattening system F whose left-hand side is a composition (“;”).

J

D.5 η-normal forms are closed by flattening
I Lemma 103 (Flattening preserves η-normal forms). Assume that the set of rewriting rule
symbols R verifies the η-condition. Let Γ ` ρ : s _ t : A be a η-normal form, and suppose
that ρ ◦7→ σ is a step other than an F-EtaM step. Then σ is also a η-normal form.

Proof. The rewriting step must be of the form R〈ρ1〉
◦7→ R〈ρ2〉 where ρ1

[7→ ρ2 is an instance
of one of the axioms of the flattening system F other than the F -EtaM rule. By hypothesis,
R〈ρ1〉 is in η-normal form, and we are to show that R〈ρ2〉 is also in η-normal form. By
contradiction, suppose that the right-hand side can be written as of the form R〈ρ2〉 = R′〈α〉
such that R′ is not applicative and α is not a λ-abstraction nor a composition.
The proof proceeds by case analysis on the relative positions of the holes of R and R′. We
consider three cases, depending on whether the holes of R and R′ lie at disjoint positions, or
R′ is a prefix of R (with R 6= R′), or R is a prefix of R′ (including the case R = R′).
1. R and R′ are disjoint. That is, there is a context R̂ with two holes such that R = R̂〈�, α〉

and R′ = R̂〈ρ2,�〉. Then the left-hand side of the step is of the form R〈ρ1〉 = R̂〈ρ1, α〉.
Take R′′ := R̂〈ρ1,�〉. Note that R′′ cannot be applicative, since this would imply that
R′ is applicative. Hence the left-hand side of the step can be written as of the form
R〈ρ1〉 = R′′〈α〉 where R′′ is not applicative and α is not a λ-abstraction nor a composition.
This contradicts the fact that the left-hand side of the step is in η-normal form.

CSL 2023

11:48 Reductions in Higher-Order Rewriting and Their Equivalence

2. R′ is a strict prefix of R. That is, R = R′〈R′′〉 with R′′ 6= � and α = R′′〈ρ2〉. Then the
left-hand side of the step is of the form R〈ρ1〉 = R′〈R′′〈ρ1〉〉. But R′ is not applicative and
R′′〈ρ1〉 is not a λ-abstraction nor a composition, because we know that R′′ is non-empty
and that α is not a λ-abstraction nor a composition. This contradicts the fact that the
left-hand side of the step is in η-normal form.

3. R is a non-strict prefix of R′. That is, R′ = R〈R′′〉 with ρ2 = R′′〈α〉. We analyze all the
possible cases, depending on the axiom used to derive the step ρ1

[7→ ρ2. Recall that, by
hypothesis, the step is not an F-EtaM step:

3.1 F-Abs: Let ρ1 = λx.(σ ; τ) [7→ (λx.σ) ; (λx.τ) = ρ2. Note that α cannot be at the
root of ρ2 because it is assumed that α is not a composition. Similarly, α it cannot be
immediately to the left or to the right of the composition, because it is assumed that
α is not a λ-abstraction. Hence there are two subcases, depending on the position of
α on the right-hand side, i.e. on the shape of R′′:

3.1.1 If α is internal to σ, i.e. R′′ = (λx.R′′′) ; (λx.τ). Note that R′′′ is not applicative.
Then the left-hand side of the step is of the form R〈λx.(R′′′〈α〉 ; τ)〉 where the
context R〈λx.(R′′′〈�〉 ; τ)〉 is still not applicative. This contradicts the fact that the
left-hand side is in η-normal form.

3.1.2 If α is internal to τ , i.e. R′′ = (λx.σ) ; (λx.R′′′). Then the proof is similar as for
the previous case.

3.2 F-App1: Let ρ1 = (σ ; τ)µ [7→ (σ µsrc) ; (τ µ) = ρ2. Note that α cannot be at the
root of ρ2, i.e. it cannot be the case that R′′ = �, because α is assumed not to
be a composition. We consider six subcases, depending on the position of α on the
right-hand side, i.e. on the shape of R′′:

3.2.1 If α is immediately to the left, i.e. R′′ = � ; (τ µ). Then the expression α = σ µsrc

is of function type, and R′ = R〈� ; (τ µ)〉 is not applicative. Hence the expression
ρ1 = (σ ; τ)µ on the left-hand side is also of function type. Moreover, it is not
a λ-abstraction nor a composition, and it lies below the context R, which is not
applicative (because this would imply that R′ is applicative). This contradicts the
fact that the left-hand side of the step is in η-normal form.

3.2.2 If α is immediately to the right, i.e. R′′ = (σ µsrc) ; �. Similar to the previous case.
3.2.3 If α is internal to σ, i.e. R′′ = (R′′′ µsrc) ; (τ µ). Then σ = R′′′〈α〉 and R′′ is not

applicative. So the left-hand side is of the form R〈R′′′〈α〉µ〉. Note that the context
R〈R′′′ µ〉 cannot be applicative, for this would imply that R′′ is applicative. This
contradicts the fact that the left-hand side of the step is in η-normal form.

3.2.4 If α is internal to µsrc, i.e. R′′ = (σ R′′′) ; (τ µ). Then µsrc = R′′′〈α〉 and R′′ is not
applicative. In particular, R′′′ is not applicative. This means that µsrc is not in
η-normal form. We claim that this is impossible. To justify the claim, it suffices
to show that µ is in η-normal form, since by Lem. 81 this implies that µsrc is in
η-normal form. Indeed, suppose that µ = R∗〈β〉 where R∗ is not applicative and β
is not a λ-abstraction nor a composition. Then the left-hand side of the step is of
the form R〈(σ ; τ) R∗〈β〉〉. Note that R〈(σ ; τ) R∗〉 is not applicative given that R∗ is
not applicative. This contradicts the fact that the left-hand side of the step is in
η-normal form.

3.2.5 If α is internal to τ , i.e. R′′ = (σ µsrc) ; (R′′′ µ). Similar to the case in which α is
internal to σ (subcase 3.2.3).

3.2.6 If α is internal to µ, i.e. R′′ = (σ µsrc) ; (τ R′′′). Similar to the case in which α is
internal to σ (subcase 3.2.3).

P. Barenbaum and E. Bonelli 11:49

3.3 F-App2: Let ρ1 = µ (σ ; τ) [7→ (µσ) ; (µtgt τ) = ρ2. The proof is similar as for the
previous case.

3.4 F -App3: Let ρ1 = (σ1 ; σ2) (τ1 ; τ2) [7→ ((σ1 ; σ2) τ src
1) ; (σtgt

2 (τ1 ; τ2)) = ρ2. The proof
is similar as for the previous case.

3.5 F -BetaM: Let ρ1 = (λx.µ) ν [7→ µ{x\ν} = ρ2. Note that ρ2 has no compositions (“;”),
so the proof of this case is a straightforward adaptation of the proof that β-reduction
preserves η-normal forms in the simply typed λ-calculus.

J

D.6 More properties of flattening
The following properties are used to prove completeness of flat permutation equivalence.

I Definition 104 (Flattening to normal form). If ρ is a rewrite, we write ρ[to denote the
[7→-normal form of ρ. Note that the F-EtaM reduction rule is included. The expressions ρJ

and ρI denote the [7→-normal forms of the source and target, respectively, that is, (ρsrc)[and
(ρtgt)[.

I Lemma 105 (Coherence of the flat source and target).
1. ρJ ≈ (ρ[)src and, even more strongly, (ρ[)src [7→∗ ρJ.

2. ρI ≈ (ρ[)tgt and, even more strongly, (ρ[)tgt [7→∗ ρI.

Proof. We prove item 1, the proof for item 2. is similar. By definition, ρJ = (ρsrc)[. Note
that ρ [7→∗ ρ[. Recall by Rem. 84 that steps other than F-BetaM and F-EtaM preserve
the endpoints, while by Lem. 87 we know that F-BetaM and F-EtaM reduction steps
commute with taking the endpoints. Hence we have that ρsrc [7→∗ (ρ[)src. By confluence of

flattening Prop. 96, (ρ[)src [7→∗ (ρsrc)[= ρJ. Moreover, by soundness of flattening (Lem. 100)
we have that (ρ[)src ≈ ρJ as required. J

I Lemma 106 (Generalized flattening for composition trees).
1. Generalized F-Abs. λx.K〈ρ1, . . . , ρn〉

[7→∗ K〈λx.ρ1, . . . , λx.ρn〉.
2. Generalized F-App1. K〈ρ1, . . . , ρn−1, ρn〉µ

[7→∗ K〈(ρ1 µ
src), . . . , (ρn−1 µ

src), (ρn µ)〉.
3. Generalized F-App2. µ K〈ρ1, ρ2, . . . , ρn〉

[7→∗ K〈(µρ1), (µtgt ρ2), . . . , (µtgt ρn)〉.
4. Generalized F-App3. If n,m > 1 then:

K〈ρ1, . . . , ρn〉 K′〈σ1, . . . , σm〉
[7→∗ K〈(ρ1 σ

src
1), . . . , (ρn σsrc

1)〉 ; K′〈(ρtgt
n σ1), . . . , (ρtgt

n σm)〉

Proof. We prove each item:
1. Generalized F-Abs. By induction on K. If K = �, then n = 1 and we have that

λx.ρ1
[7→∗ λx.ρ1 in zero reduction steps. If K = K1 K2 then K1 and K2 have at least one

hole each, so there is an index 1 ≤ i ≤ n − 1 such that K〈ρ1, . . . , ρn〉 = K1〈ρ1, . . . , ρi〉 ;
K2〈ρi+1, . . . , ρn〉. Then:

λx.K〈ρ1, . . . , ρn〉
= λx.(K1〈ρ1, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn〉)
[7→ (λx.K1〈ρ1, . . . , ρi〉) ; (λx.K2〈ρi+1, . . . , ρn〉) by F-Abs
[7→∗ K1〈λx.ρ1, . . . , λx.ρi〉 ; (λx.K2〈ρi+1, . . . , ρn〉) by IH
[7→∗ K1〈λx.ρ1, . . . , λx.ρi〉 ; K2〈λx.ρi+1, . . . , λx.ρn〉 by IH

= K〈λx.ρ1, . . . , λx.ρn〉

CSL 2023

11:50 Reductions in Higher-Order Rewriting and Their Equivalence

2. Generalized F-App1. By induction on K. If K = �, then n = 1 and we have that
ρ1 µ

[7→∗ ρ1 µ in zero reduction steps. If K = K1 K2 then K1 and K2 have at least one hole
each, so there is an index 1 ≤ i ≤ n − 1 such that K〈ρ1, . . . , ρn−1, ρn〉 = K1〈ρ1, . . . , ρi〉 ;
K2〈ρi+1, . . . , ρn−1, ρn〉. Then:

K〈ρ1, . . . , ρn−1, ρn〉µ
= (K1〈ρ1, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn−1, ρn〉)µ
[7→ (K1〈ρ1, . . . , ρi〉µsrc) ; (K2〈ρi+1, . . . , ρn−1, ρn〉µ) by F-App1
[7→∗ K1〈(ρ1 µ

src), . . . , (ρi µsrc)〉 ; (K2〈ρi+1, . . . , ρn−1, ρn〉µ) by IH
[7→∗ K1〈(ρ1 µ

src), . . . , (ρi µsrc)〉 ; K2〈(ρi+1, µ
src), . . . , (ρn−1 µ

src), (ρn µ)〉 by IH
= K〈(ρ1 µ

src), . . . , (ρn−1 µ
src), (ρn µ)〉

3. Generalized F-App2. By induction on K. If K = �, then n = 1 and we have that
µρ1

[7→∗ µρ1 in zero reduction steps. If K = K1 K2 then K1 and K2 have at least one hole
each, so there is an index 1 ≤ i ≤ n− 1 such that K〈ρ1, ρ2, . . . , ρn〉 = K1〈ρ1, ρ2, . . . , ρi〉 ;
K2〈ρi+1, . . . , ρn〉. Then:

µ K〈ρ1, ρ2, . . . , ρn〉
= µ (K1〈ρ1, ρ2, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn〉)
[7→ (µ K1〈ρ1, ρ2, . . . , ρi〉) ; (µtgt K2〈ρi+1, . . . , ρn〉) by F-App2
[7→∗ K1〈(µρ1), (µtgt ρ2), . . . , (µtgt ρi)〉 ; (µtgt K2〈ρi+1, . . . , ρn〉) by IH
[7→∗ K1〈(µρ1), (µtgt ρ2), . . . , (µtgt ρi)〉 ; K2〈(µtgt ρi+1), . . . , (µtgt ρn)〉 by IH

= K〈(µρ1), (µtgt ρ2), . . . , (µtgt ρn)〉

4. Generalized F-App3. Let n,m > 1. Since n > 1, the composition tree K has at least
two holes, so it must be of the form K = K1 ; K2. Similarly, since m > 1, the composition
tree K′ has at least two holes, so it must be of the form K′ = K′1 ; K′2. Moreover, since
each of K1, K2 K′1, and K′2 have at least one hole, there must be indices 1 ≤ i ≤ n− 1 and
1 ≤ j ≤ n− 1 such that:

K〈ρ1, . . . , ρn〉 = K1〈ρ1, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn〉
K′〈σ1, . . . , σn〉 = K′1〈σ1, . . . , σj〉 ; K′2〈σj+1, . . . , σm〉

Hence we have that:

K〈ρ1, . . . , ρn〉 K′〈σ1, . . . , σn〉
= (K1〈ρ1, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn〉) (K′1〈σ1, . . . , σj〉 ; K′2〈σj+1, . . . , σm〉)
[7→ ((K1〈ρ1, . . . , ρi〉 ; K2〈ρi+1, . . . , ρn〉)σsrc

1) ; (ρtgt
n (K′1〈σ1, . . . , σj〉 ; K′2〈σj+1, . . . , σm〉))

by F-App3
= (K〈ρ1, . . . , ρn〉σsrc

1) ; (ρtgt
n K′〈σ1, . . . , σm〉)

[7→∗ K〈(ρ1 σ
src
1), . . . , (ρn σsrc

1)〉 ; (ρtgt
n K′〈σ1, . . . , σm〉) by generalized F-App1

[7→∗ K〈(ρ1 σ
src
1), . . . , (ρn σsrc

1)〉 ; K′〈(ρtgt
n σ1), . . . , (ρtgt

n σm)〉 by generalized F-App2

We implicitly use the fact that, in general, K〈ρ1, . . . , ρn〉src = ρsrc
1 and K〈ρ1, . . . , ρn〉tgt =

ρtgt
n , which is easy to check by induction on K.

J

I Lemma 107 (Flattening term/rewrite substitution of a composition). Let s be a term with n
free occurrences of x, that is s = s〈x, x, . . . , x〉 where, by abuse of notation, we write s for the

P. Barenbaum and E. Bonelli 11:51

term itself and also for a context with n holes that do not bind x. Moreover, let ρ1, . . . , ρm
be fixed rewrites with m > 0. If i is an index 1 ≤ i ≤ n, and τ is a rewrite, we write s〈τ〉i
for the rewrite that results from replacing the i-th free occurrence of x in s by τ , the free
occurrences of x at positions j < i by ρtgt

m , and the free occurrences of x at positions j > i by
ρsrc

1 . That is:

s〈τ〉xi := s〈ρtgt
m , . . . , ρtgt

m︸ ︷︷ ︸
i− 1

, τ, ρsrc
1 , . . . , ρsrc

1︸ ︷︷ ︸
n− i

〉

Then, if n > 0, for any m-hole composition tree K there exists an (n ·m)-hole composition
tree K′ such that:

s{x\\K〈ρ1, . . . , ρm〉}
[7→∗ K′〈s〈ρ1〉x1 , . . . s〈ρm〉x1︸ ︷︷ ︸

(m rewrites)

, s〈ρ1〉x2 , . . . s〈ρm〉x2 ,︸ ︷︷ ︸
(m rewrites)

. . . s〈ρ1〉xn, . . . s〈ρm〉xn︸ ︷︷ ︸
(m rewrites)

〉

Informally, this expresses that the flattening of s{x\\K〈ρ1, . . . , ρm〉} is the composition of
substituting first the first occurrence of x by ρ1, . . . , ρm, leaving the remaining ocurrences
fixed, then substituting the second occurrence of x by ρ1, . . . , ρm, and so on.

Proof. We proceed by induction on s. If s is a variable other than x, a constant, or a rule
symbol, then n = 0 and the implication holds vacuously. The remaining cases are:
1. Substituted variable, s = x. Taking K′ := K we have that

x{x\\K〈ρ1, . . . , ρm〉} = K〈ρ1, . . . , ρm〉 = K〈x〈ρ1〉x1 , . . . , x〈ρm〉x1〉

2. Abstraction, λy.s. Note that there are n free occurrences of x in s. Then:

λy.s{x\\K〈ρ1, . . . , ρm〉}
[7→∗ λy.K′〈s〈ρ1〉x1 , . . . s〈ρm〉x1 , . . . s〈ρ1〉xn, s〈ρm〉xn〉

by IH
[7→∗ K′〈λy.s〈ρ1〉x1 , . . . λy.s〈ρm〉x1 , . . . λy.s〈ρ1〉xn, . . . λy.s〈ρm〉xn〉

by generalized F-Abs Lem. 106
3. Application, s t. Then n = i+ j where i is the number of free occurrences of x in s, and

j is the number of free occurrences of x in t. By hypothesis, n > 0. We consider three
subcases, depending on whether i = 0, or j = 0, or both i and j are strictly positive:

3.1 If i = 0 and j = n, then:

s{x\\K〈ρ1, . . . , ρm〉} t{x\\K〈ρ1, . . . , ρm〉}
= s t{x\\K〈ρ1, . . . , ρm〉}
[7→∗ s K′〈t〈ρ1〉x1 , . . . , t〈ρm〉x1 , . . . t〈ρ1〉xn, . . . , t〈ρm〉xn〉 by IH
[7→∗ K′〈(s t〈ρ1〉x1), . . . , (s t〈ρm〉x1), . . . (s t〈ρ1〉xn), . . . , (s t〈ρm〉xn)〉

by generalized F-App2 Lem. 106
3.2 If j = 0 and i = n, the proof is symmetric to the previous case.
3.3 If i > 0 and j > 0, note that (t〈ρ1〉x1)src = t{x\\ρsrc

1 } and that (s〈ρm〉xi)tgt = s{x\\ρtgt
m }.

Then:
s{x\\K〈ρ1, . . . , ρm〉} t{x\\K〈ρ1, . . . , ρm〉}

[7→∗ K1〈s〈ρ1〉x1 , . . . , s〈ρm〉x1 , . . . , s〈ρ1〉xi , . . . , s〈ρm〉xi 〉
K2〈t〈ρ1〉x1 , . . . , t〈ρm〉x1 , . . . , t〈ρ1〉xj , . . . , t〈ρm〉xj 〉

by IH
[7→∗ K1〈s〈ρ1〉x1 t{x\\ρsrc

1 }, . . . , s〈ρm〉x1 t{x\\ρsrc
1 }, . . . , s〈ρ1〉xi t{x\\ρsrc

1 }, . . . , s〈ρm〉xi t{x\\ρsrc
1 }〉 ;

K2〈s{x\\ρtgt
m } t〈ρ1〉x1 , . . . , s{x\\ρtgt

m } t〈ρm〉x1 , . . . , s{x\\ρtgt
m } t〈ρ1〉xj , . . . , s{x\\ρtgt

m } t〈ρm〉xj 〉
by generalized F-App3 Lem. 106

= K1〈(s t)〈ρ1〉x1 , . . . , (s t)〈ρm〉x1 , . . . , (s t)〈ρ1〉xi , . . . , (s t)〈ρm〉xi 〉 ;
K2〈(s t)〈ρ1〉xi+1, . . . , (s t)〈ρm〉xi+1, . . . , (s t)〈ρ1〉xn, . . . , (s t)〈ρm〉xn〉

CSL 2023

11:52 Reductions in Higher-Order Rewriting and Their Equivalence

Taking K′ := K1 ; K2 we conclude.
J

I Lemma 108 (Flattening below term/rewrite substitution). If ρ [7→ ρ′ then s{x\\ρ} [7→∗
s{x\\ρ′}.

Proof. Straightforward by induction on s. J

I Lemma 109 (Flattening below rewrite/term substitution). If ρ [7→ ρ′ then ρ{x\s} [7→ ρ′{x\s}.

Proof. By induction on the context under which the step ρ [7→ ρ′ takes place. Congruence
closure is straightforward by resorting to the induction hypothesis, for example if ρ1 ρ2

[7→ ρ′1 ρ2

with ρ1
[7→ ρ′1 then by IH ρ1{x\s} [7→ ρ′1{x\s}, so ρ1{x\s} ρ2{x\s} [7→ ρ′1{x\s} ρ2{x\s}.

The interesting cases is when a rewriting rule is applied at the root:
1. F-Abs: Let λy.(ρ ; σ) [7→F-Abs (λy.ρ) ; (λx.σ). Then λy.(ρ{x\s} ; σ{x\s}) [7→F-Abs

(λy.ρ{x\s}) ; (λx.σ{x\s}).
2. F -App1: Let (ρ ; σ)µ [7→F-App1 (ρµsrc) ; (σ µ). Then note that µ{x\s} is a multistep and

that µsrc{x\s} = µ{x\s}src by Lem. 48. Hence:

(ρ{x\s} ; σ{x\s})µ{x\s} [7→F-App1 (ρ{x\s}µ{x\s}src) ; (σ{x\s}µ{x\s})

3. F-App2: Symmetric to the previous case.
4. F-App3: Let (ρ1 ; ρ2) (σ1 ; σ2) [7→F-App3 ((ρ1 ; ρ2)σsrc

1) ; (σtgt
2 (σ1 ; σ2)). Note that

σsrc
1 {x\s} = σ1{x\s}src and σtgt

2 {x\s} = σ2{x\s}tgt by Lem. 48. Hence:

(ρ1{x\s} ; ρ2{x\s}) (σ1{x\s} ; σ2{x\s})
[7→F-App3 ((ρ1{x\s} ; ρ2{x\s})σ1{x\s}src) ; (σ2{x\s}tgt (σ1{x\s} ; σ2{x\s}))

5. F-BetaM: Let (λy.µ) ν [7→F-BetaM µ{y\ν}. Then:

(λy.µ{x\s}) ν{x\s} [7→F-BetaM µ{x\s}{y\ν{x\s}} = µ{y\ν}{x\s}

The last equality is justified using Lem. 83.
6. F -EtaM: Let λy.µ y [7→F-EtaM µ, where y /∈ fv(µ). We may assume that y /∈ fv(s), renaming

y if needed, so in particular y /∈ fv(µ{x\s}). Then we have that λy.µ{x\s} y [7→F-EtaM
µ{x\s}.

J

I Lemma 110 (Flattening of η-expanded multisteps). Let µ, ν be multisteps in η-normal form
such that µ[= ν[. Then µ◦ = ν◦.

Proof. Consider the reduction sequences µ [7→∗ µ[and ν
[7→∗ ν[. Since F-EtaM-redexes

may be postponed after F-BetaM-redexes (a standard result, regarding multisteps as terms
of the simply-typed λ-calculus), these reductions factorize as µ [7→∗F-BetaM µ◦

[7→∗F-EtaM µ[

and ν
[7→∗F-BetaM ν◦

[7→∗F-EtaM ν[. Moreover, recall that flattening preserves η-normal
forms (Lem. 103), so µ◦ and ν◦ are η-normal forms. As an auxiliary claim, observe that
if ξ is a multistep in F-BetaM-normal form then any F-EtaM reduction step ξ [7→F-EtaM ξ′

corresponds to a backwards expansion step ξ′ →η ξ; this can be easily checked by induction
on ξ following the characterization of flat multisteps (Lem. 101). Hence µ[→η µ◦ and
µ[= ν[→η ν

◦. Finally, since µ◦ and ν◦ are η-normal forms and the expansion relation →η

is confluent (Prop. 76), we obtain that µ◦ = ν◦, as required. J

P. Barenbaum and E. Bonelli 11:53

D.7 Flat permutation equivalence
I Remark 111. Every time that flattening −[is used in the rules defining ∼, it operates over
a multistep. So the only rules that are needed are the F-BetaM and F-EtaM rules.

I Remark 112. Recall that, by definition, flat rewrites are given by the grammar ρ̂ ::= µ̂ | ρ̂ ; ρ̂.
This corresponds to the set of all and only the rewrites of the form K〈µ̂1, . . . , µ̂n〉.

I Lemma 113 (Soundness of splitting with respect to permutation equivalence). Let Γ ` µ :
s _ t : A and Γ ` µ1 : s′ _ r1 : A and Γ ` µ2 : r2 _ t′ : A be such that µ⇔ µ1 ; µ2. Then
µ ≈ µ1 ; µ2

Proof. By induction on the derivation of µ⇔ µ1 ; µ2:
1. SVar: Let x⇔ x ; x. Then x ≈ x ; x by ≈-IdL.
2. SCon: Let c⇔ c ; c. Then c ≈ c ; c by ≈-IdL.
3. SRuleL: Let %⇔ % ; %tgt. Then % ≈ % ; %tgt by ≈-IdR.
4. SRuleR: Let %⇔ %src ; %. Then % ≈ %src ; % by ≈-IdL.
5. SAbs: Let λx.µ⇔ λx.µ1 ; λx.µ2 be derived from µ⇔ µ1 ; µ2. Then:

λx.µ ≈ λx.(µ1 ; µ2) by IH
≈ (λx.µ1) ; (λx.µ2) by ≈-Abs

6. SApp: Let µ ν ⇔ µ1 ν1 ; µ2 ν2 be derived from µ⇔ µ1 ; µ2 and ν ⇔ ν1 ; ν2. Then:

µ ν ≈ (µ1 ; µ2) ν by IH
≈ (µ1 ; µ2) (ν1 ; ν2) by IH
≈ (µ1 ν1) ; (µ2 ν2) by ≈-App

J

I Lemma 114 (Soundness of flat permutation equivalence with respect to permutation equi-
valence). Let Γ ` ρ : s _ t : A and Γ ` σ : s′ _ t′ : A be such that ρ ∼ σ. Then
ρ ≈ σ.

Proof. By induction on the derivation of ρ ∼ σ. Reflexivity, transitivity, symmetry, and
closure under composition contexts is immediate. The interesting case is when an axiom is
applied at the root:
1. ∼-Assoc: Let (ρ ; σ) ; τ ∼ ρ ; (σ ; τ). Then by ≈-Assoc also (ρ ; σ) ; τ ≈ ρ ; (σ ; τ).
2. ∼-Perm: Let µ ∼ µ1 ; µ2 where µ⇔ µ1 ; µ2. Then by Lem. 113 we have that µ ≈ µ1 ; µ2.

J

D.8 Completeness of flat permutation equivalence with respect to
permutation equivalence

Before proving completeness, we need a few auxiliary results.

I Lemma 115 (Generalized ∼-Assoc rule). Let µ, ν1, . . . , νn be multisteps where n ≥ 1, and
let K be a composition tree. Then:
1. µ ; K〈ν1, ν2, . . . , νn〉 ∼ K〈(µ ; ν1), ν2, . . . , νn〉
2. K〈ν1, ν2, . . . , νn〉 ; µ ∼ K〈ν1, ν2, . . . , (νn ; µ)〉

Proof. We only prove item 1. (item 2. is similar). We proceed by induction on K:
1. Empty, K = �. Then µ ; ν1 ∼ µ ; ν1 by reflexivity.

CSL 2023

11:54 Reductions in Higher-Order Rewriting and Their Equivalence

2. Composition, K = K1 ; K2. Then n > 1 and there is an index 1 ≤ i ≤ n such that
K〈ν1, . . . , νn〉 = K1〈ν1, ν2, . . . , νi〉 ; K2〈νi+1, . . . , νn〉. Hence:

µ ; K〈ν1, . . . , νn〉 = µ ; (K1〈ν1, ν2, . . . , νi〉 ; K2〈νi+1, . . . , νn〉)
∼ (µ ; K1〈ν1, ν2, . . . , νi〉) ; K2〈νi+1, . . . , νn〉 by ∼-Assoc
∼ K1〈(µ ; ν1), ν2, . . . , νi〉 ; K2〈νi+1, . . . , νn〉 by IH
= K〈(µ ; ν1), ν2, . . . , νn〉

J

I Lemma 116 (Left/right splitting). Let µ be a multistep. Then:
1. µ⇔ µ ; µtgt

2. µ⇔ µsrc ; µ

Proof. We only prove item 1. (item 2. is similar). We proceed by induction on µ:
1. Variable, µ = x. By SVar, x⇔ x ; x.
2. Constant, µ = c. By SCon, c⇔ c ; c.
3. Rule symbol, µ = %. By SRuleL, %⇔ % ; %tgt.
4. Abstraction, µ = λx.ν. By IH ν ⇔ ν ; νtgt so by SAbs, λx.ν ⇔ λx.ν ; λx.νtgt.
5. Application, µ = ν1 ν2. By IH ν1 ⇔ ν1 ; νtgt

1 and ν2 ⇔ ν2 ; νtgt
2 so ν1 ν2 ⇔ ν1 ν2 ;

νtgt
1 νtgt

2 .
J

I Lemma 117 (Free variables of splitting). If µ⇔ µ1 ; µ2 then fv(µ) = fv(µ1) ∪ fv(µ2).

Proof. Straightforward by induction on the derivation of µ ⇔ µ1 ; µ2. The interesting
cases are the SRuleL and SRuleR rules. For example, for the SRuleL case, note that fv(%) =
fv(%) ∪ fv(%tgt) given that fv(%tgt) = ∅, as the source and the target of a given rule symbol
are closed terms. J

I Lemma 118 (Splitting commutes with substitution). If µ⇔ µ1 ; µ2 and ν ⇔ ν1 ; ν2 then
µ{x\ν}⇔ µ1{x\ν1} ; µ2{x\ν2}.

Proof. By induction on the derivation of µ⇔ µ1 ; µ2:
1. SVar: Let y ⇔ y ; y. If x 6= y, it is immediate. If x = y, then indeed ν ⇔ ν1 ; ν2.
2. SCon: Immediate.
3. SRuleL: Let %⇔ % ; %tgt. Recall that the target of a rule symbol is always a closed term,

so %tgt{x\ξ} = %tgt. Then it is immediate, given that %⇔ % ; %tgt.
4. SRuleR: Similar to the previous case.
5. SAbs: Let λy.µ⇔ λy.µ1 ; λy.µ2 be derived from µ⇔ µ1 ; µ2. Then by IH we have that

µ{x\ν}⇔ µ1{x\ν1} ; µ2{x\ν2}, so applying the SAbs rule λy.µ{x\ν}⇔ λy.µ1{x\ν1} ;
λy.µ2{x\ν2}.

6. SApp: Let µ1 µ2 ⇔ µ11 µ21 ; µ12 µ22 be derived from µ1 ⇔ µ11 ; µ12 and µ1 ⇔ µ21 ;
µ22. Then by IH we have that µ1{x\ν} ⇔ µ11{x\ν1} ; µ12{x\ν2} and µ2{x\ν} ⇔
µ21{x\ν1} ; µ22{x\ν2}, so applying the SApp rule (µ1 µ2){x\ν} ⇔ (µ11 µ21){x\ν1} ;
(µ12 µ22){x\ν2}.

J

I Lemma 119 (Coherence of splitting and flattening). Let µ, µ1, µ2 be multisteps not necessarily
in normal form, and suppose that µ⇔ µ1 ; µ2. Then µ[⇔ µ′1 ; µ′2 where µ′1 and µ′2 are such
that µ1

[7→∗ µ′1 and µ2
[7→∗ µ′2.

P. Barenbaum and E. Bonelli 11:55

Proof. It suffices to show that if µ [7→ ν then there exist multisteps ν1 and ν2 such that
µ1

[7→∗ ν1 and µ2
[7→∗ ν2 and ν ⇔ ν1 ; ν2. With this property, the proof of the lemma is

immediate by induction on the length of a reduction to normal form µ
[7→∗ µ[.

We proceed by induction on µ. If µ is a variable, a constant, or a rule symbol, it is
immediate as there cannot be a reduction step µ [7→ ν. There are two remaining cases:
1. Abstraction, µ = λx.ξ. Then note that µ ⇔ µ1 ; µ2 must be derived using the SAbs

rule, so ξ ⇔ ξ1 ; ξ2 where µ1 = λx.ξ1 and µ2 = λx.ξ2. We consider two subcases,
depending on whether the step µ = λx.ξ

[7→ ν, is internal to ξ or an F-EtaM step at the
root:

1.1 If the step is internal to ξ, i.e. ξ
[7→ ψ and ν = λx.ψ, then by IH we have that

ψ ⇔ ψ1 ; ψ2 such that ξ1
[7→∗ ψ1 and ξ2

[7→∗ ψ2. Therefore, by the SAbs rule,
ν ⇔ λx.ψ1 ; λx.ψ2 where µ1 = λx.ξ1

[7→∗ λx.ψ1 and µ2 = λx.ξ2
[7→∗ λx.ψ2, as

required.
1.2 If the step is an F-EtaM step at the root, i.e. ξ = ν x with x /∈ fv(ν), then note

that ξ ⇔ ξ1 ; ξ2 must be derived using the SApp rule, so ν ⇔ ν1 ; ν2 where
ξ1 = ν1 x and ξ2 = ν2 x. To conclude, note that µ1 = λx.ν1 x

[7→F-EtaM ν1 and
µ2 = λx.ν2 x

[7→F-EtaM ν2 noting that fv(ν1), fv(ν2) ⊆ fv(ν) by Lem. 117.
2. Application, µ = ξ1 ξ2. Then note that µ ⇔ µ1 ; µ2 must be derived using the SApp

rule, so ξ1 ⇔ ξ11 ; ξ12 and ξ2 ⇔ ξ21 ; ξ22 where µ1 = ξ11 ξ21 and µ2 = ξ12 ξ22. We
consider three subcases, depending on whether the step µ = ξ1 ξ2

[7→ ν is internal to ξ1,
internal to ξ2, or a F-Beta step at the root:

2.1 If the step is internal to ξ1, i.e. ξ1
[7→ ψ1 and ν = ψ1 ξ2, then by IH we have that

ψ1 ⇔ ψ11 ; ψ12 such that ξ11
[7→∗ ψ11 and ξ12

[7→∗ ψ12. Therefore, by the SApp rule,
ν ⇔ ψ11 ξ21 ; ψ12 ξ22 where µ1 = ξ11 ξ21

[7→∗ ψ11 ξ21 and µ2 = ξ12 ξ22
[7→∗ ψ12 ξ22.

2.2 If the step is internal to ξ2, i.e. ξ2
[7→ ψ2 then by IH we have that ψ2 ⇔ ψ21 ; ψ22 such

that ξ21
[7→∗ ψ21 and ξ22

[7→∗ ψ22. Therefore, by the SApp rule, ν ⇔ ξ11 ψ21 ; ξ12 ψ22

where µ1 = ξ11 ξ21
[7→∗ ξ11 ψ21 and µ2 = ξ12 ξ22

[7→∗ ξ12 ψ22.
2.3 If the step is a F-Beta step at the root, i.e. the step is of the form µ = (λx.ξ′1) ξ2

[7→
ξ′1{x\ξ2} = ν with ξ1 = λx.ξ′1, then note that ξ1 ⇔ ξ11 ; ξ12 must be derived using
the SAbs rule, so ξ′1 ⇔ ξ′11 ; ξ′12 with ξ11 = λx.ξ′11 and ξ12 = λx.ξ′12. Then by
Lem. 118 we have that ν ⇔ ξ′11{x\ξ21} ; ξ′12{x\ξ22} where, moreover, we have that
µ1 = (λx.ξ′11) ξ21

[7→F-Beta ξ
′
11{x\ξ21} and µ2 = (λx.ξ′12) ξ22

[7→F-Beta ξ
′
12{x\ξ22}.

J

I Lemma 120 (Canonical 7→◦, η-normal splitting). If µ1 ⇔ µ2 ; µ3 then there exist µ′1, µ′2, µ′3
such that µ′1 ⇔ µ′2 ; µ′3 where µ[1 = (µ′1)[and µ[2 = (µ′2)[and µ[3 = (µ′3)[, and moreover µ′ is
in ◦7→, η-normal form.

Proof. By Lem. 119, we know that µ′′1 ⇔ µ′′2 ; µ′′3 where µ′′1 = µ[1 and µ2
[7→ µ′′2 and µ3

[7→ µ′′3 .
By induction on the shape of µ′′1 , it suffices to show that there exist µ′1, µ′2, µ′3 such that
µ′1 ⇔ µ′2 ; µ′3 where (µ′1)[= (µ′′1)[and (µ′2)[= (µ′′2)[and (µ′3)[= (µ′′3)[, and moreover µ′1 is
in ◦7→, η-normal form:
1. µ′′1 headed by a variable. Then µ′′1 = λx1 . . . xn.y µ

′′
11 . . . µ

′′
1m and µ′′2 = λx1 . . . xn.y µ

′′
21 . . . µ

′′
2m

and µ′′3 = λx1 . . . xn.y µ
′′
31 . . . µ

′′
3m where µ′′1i ⇔ µ′′2i ; µ′′3i for each 1 ≤ i ≤ m. By IH there

are multisteps such that µ′1i ⇔ µ′2i ; µ′3i where (µ′′1i)[= (µ′1i)[and (µ′′2i)[= (µ′2i)[and

CSL 2023

11:56 Reductions in Higher-Order Rewriting and Their Equivalence

(µ′′3i)[= (µ′3i)[, and moreover µ′1i is in
◦7→, η-normal form. Suppose that µ′′1 is of arity N ,

i.e. that its type is of the form A1 → . . .→ AN → α with α a base type. Take:

µ′1 := λx1 . . . xnxn+1 . . . xN .y µ
′
11 . . . µ

′
1m xn+1 . . . xN

µ′2 := λx1 . . . xnxn+1 . . . xN .y µ
′
21 . . . µ

′
2m xn+1 . . . xN

µ′3 := λx1 . . . xnxn+1 . . . xN .y µ
′
31 . . . µ

′
3m xn+1 . . . xN

Then it is straightforward to check that µ′1 ⇔ µ′2 ; µ′3 and (µ′1)[= (µ′′1)[and (µ′2)[= (µ′′2)[
and (µ′3)[= (µ′′3)[, and moreover µ′1 is in ◦7→, η-normal form.

2. µ′′1 headed by a constant. Similar to the previous case.
3. µ′′1 headed by a rule symbol. Similar to the previous case.

J

I Proposition 121 (Generalized ∼-Perm rule). If µ⇔ µ1 ; µ2 then µ[∼ µ[1 ; µ[2.
Note that this generalizes the ∼-Perm rule, which requires µ to be in [7→-normal form.

Proof. By the previous coherence lemma (Lem. 119), we have that µ[⇔ µ′1 ; µ′2 such that
µ1

[7→∗ µ′1 and µ2
[7→∗ µ′2. By the ∼-Perm rule, µ[∼ (µ′1)[; (µ′2)[. Moreover, by strong

normalization (Prop. 95) and confluence (Prop. 96) of flattening, µ[1 = (µ′1)[and µ[2 = (µ′2)[,
which means that µ[∼ µ[1 ; µ[2. J

I Lemma 122 (Swap).
1. (µ ν)[∼ (µsrc ν)[; (µ νtgt)[

2. (µ ν)[∼ (µ νsrc)[; (µtgt ν)[

In particular, combining items 1. and 2. one has:

(µsrc ν)[; (µ νtgt)[∼ (µ νsrc)[; (µtgt ν)[

Proof. For item 1. note that, by Prop. 121, it suffices to show that µ ν ⇔ µsrc ν ; µ νtgt.
Indeed, by Lem. 116 we have that µ ⇔ µsrc ; µ and that ν ⇔ ν ; νtgt, so by SApp
µ ν ⇔ µsrc ν ; µ νtgt. The proof of item 2. is symmetric. J

I Lemma 123 (Generalized swap). The following equivalence holds for arbitrary composition
trees K1, K2 and arbitrary multisteps µ1, . . . , µn, ν1, . . . , νm:

K1〈(µ1 ν
src
1)[, . . . , (µn νsrc

1)[〉 ; K2〈(µtgt
n ν1)[, . . . , (µtgt

n νm)[〉
∼ K2〈(µsrc

1 ν1)[, . . . , (µsrc
1 νm)[〉 ; K1〈(µ1 ν

tgt
m)[, . . . , (µn νtgt

m)[〉

Proof. We proceed by induction on K1. To alleviate the notation we use the associativity
rule (∼-Assoc) implicitly.
1. Empty, K1 = �. Then n = 1. We proceed by a nested induction on K2:
1.1 Empty, K2 = �. Then m = 1 and the following equivalence holds by Lem. 122:

(µ1 ν
src
1)[; (µtgt

1 ν1)[∼ (µsrc
1 ν1)[; (µ1 ν

tgt
1)[

1.2 Composition, K2 = K21 ; K22. Then m > 1 and there is an index 1 ≤ j ≤ m such

P. Barenbaum and E. Bonelli 11:57

that K21 has j holes and K22 has m− j holes. Then:

(µ1 ν
src
1)[; K2〈(µtgt

1 ν1)[, . . . , (µtgt
1 νm)[〉

= (µ1 ν
src
1)[; K21〈(µtgt

1 ν1)[, . . . , (µtgt
1 νj)[〉 ; K22〈(µtgt

1 νj+1)[, . . . , (µtgt
1 νm)[〉

∼ K21〈(µsrc
1 ν1)[, . . . , (µsrc

1 νj)[〉 ; (µ1 ν
tgt
j)[; K22〈(µtgt

1 νj+1)[, . . . , (µtgt
1 νm)[〉

by IH
= K21〈(µsrc

1 ν1)[, . . . , (µsrc
1 νj)[〉 ; (µ1 ν

src
j+1)[; K22〈(µtgt

1 νj+1)[, . . . , (µtgt
1 νm)[〉

as νtgt
j =βη ν

src
j+1

∼ K21〈(µsrc
1 ν1)[, . . . , (µsrc

1 νj)[〉 ; K22〈(µsrc
1 νj+1)[, . . . , (µsrc

1 νm)[〉 ; (µ1 ν
tgt
m)[

by IH
= K2〈(µsrc

1 ν1)[, . . . , (µsrc
1 νm)[〉 ; (µ1 ν

tgt
m)[

2. Composition, K1 = K11 ; K12. Then n > 1 and there is an index 1 ≤ i ≤ n such that
K11 has i holes and K12 has n− i holes. Then:

K1〈(µ1 ν
src
1)[, . . . , (µn νsrc

1)[〉 ; K2〈(µtgt
n ν1)[, . . . , (µtgt

n νm)[〉
= K11〈(µ1 ν

src
1)[, . . . , (µi νsrc

1)[〉 ;
K12〈(µi+1 ν

src
1)[, . . . , (µn νsrc

1)[〉 ; K2〈(µtgt
n ν1)[, . . . , (µtgt

n νm)[〉
∼ K11〈(µ1 ν

src
1)[, . . . , (µi νsrc

1)[〉 ;
K2〈(µsrc

i+1 ν1)[, . . . , (µsrc
i+1 νm)[〉 ; K12〈(µi+1 ν

tgt
m)[, . . . , (µn νtgt

m)[〉
by IH

= K11〈(µ1 ν
src
1)[, . . . , (µi νsrc

1)[〉 ;
K2〈(µtgt

i ν1)[, . . . , (µtgt
i νm)[〉 ; K12〈(µi+1 ν

tgt
m)[, . . . , (µn νtgt

m)[〉
since µtgt

i =βη µ
src
i+1

∼ K2〈(µsrc
1 ν1)[, . . . , (µsrc

1 νm)[〉 ;
K11〈(µ1 ν

tgt
m)[, . . . , (µi νtgt

m)[〉 ; K12〈(µi+1 ν
tgt
m)[, . . . , (µn νtgt

m)[〉
by IH

= K2〈(µsrc
1 ν1)[, . . . , (µsrc

1 νm)[〉 ; K1〈(µ1 ν
tgt
m)[, . . . , (µn νtgt

m)[〉

J

I Lemma 124 (Flattening of an application, up to ∼). Let ρ = K1〈µ1, . . . , µn〉 and σ =
K2〈ν1, . . . , νm〉 be flat rewrites. Then

ρ σ
[7→∗∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µIn ν1)[, . . . , (µIn νm)[〉

Proof. We consider four subcases, depending on whether n = 1 or n > 1, and on whether
m = 1 or m > 1:

1. If n = 1 and m = 1, then:

ρ σ
[7→∗ (µ1 ν1)[
∼ (µ1 ν

src
1)[; (µtgt

1 ν1)[by Lem. 122
= (µ1 ν

J
1)[; (µI1 ν1)[by confluence of flattening (Prop. 96)

CSL 2023

11:58 Reductions in Higher-Order Rewriting and Their Equivalence

2. If n = 1 and m > 1, then:

ρ σ
[7→∗ µ1 K2〈ν1, ν2, . . . , νm〉
[7→∗ K2〈µ1 ν1, µ

tgt
1 ν2, . . . , µ

tgt
1 νm〉

by generalized F-App2 (Lem. 106)
[7→∗ K2〈(µ1 ν1)[, (µtgt

1 ν2)[, . . . , (µtgt
1 νm)[〉

∼ K2〈((µ1 ν
src
1)[; (µtgt

1 ν1)[), (µtgt
1 ν2)[, . . . , (µtgt

1 νm)[〉 by Lem. 122
∼ (µ1 ν

src
1)[; K2〈(µtgt

1 ν1)[, (µtgt
1 ν2)[, . . . , (µtgt

1 νm)[〉 by Lem. 115
= (µ1 ν

J
1)[; K2〈(µI1 ν1)[, (µI1 ν2)[, . . . , (µI1 νm)[〉 by confluence of flattening (Prop. 96)

3. If n > 1 and m = 1, the proof is symmetric to the previous case.
4. If n > 1 and m > 1, then:

ρ σ
[7→∗ K1〈µ1, . . . , µn〉 K2〈ν1, . . . , νm〉
[7→∗ K1〈µ1 ν

src
1 , . . . , µn ν

src
1 〉 ; K2〈µtgt

n ν1, . . . , µ
tgt
n νm〉

by generalized F-App3 (Lem. 106)
[7→∗ K1〈(µ1 ν

src
1)[, . . . , (µn νsrc

1)[〉 ; K2〈(µtgt
n ν1)[, . . . , (µtgt

n νm)[〉
= K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µIn ν1)[, . . . , (µIn νm)[〉

by confluence of flattening (Prop. 96)

J

I Lemma 125 (Composition of a term with itself). If s is a term such that s is in [7→-normal
form, then s ∼ K〈s, . . . , s〉 for any composition tree K.

Proof. By induction on K. The key observation is that s ∼ s ; s given that s⇔ s ; s, as can
be checked easily by induction on s. J

I Lemma 126 (Arbitrary association). K〈ρ1, ρ2, . . . , ρn〉 ∼ ρ1 ; ρ2 . . . ; ρn where, on the right
hand side, we assume that ; is right-associative.

Proof. Straightforward by induction on K using the ∼-Assoc rule. J

I Lemma 127 (Equivalence for term/rewrite substitution of a composition). Let s be a term,
let µ1, . . . , µn arbitrary multisteps, and let K a composition tree. Then:

s{x\\K〈µ1, . . . , µn〉}
[7→∗∼ K〈s{x\\µ1}, . . . , s{x\\µn}〉[

Proof. If s has no free occurrences of x, the result holds trivially by Lem. 125. The interesting
case is when s has m > 0 free occurrences of x. Following the notation of Lem. 107, let
s = s〈x, . . . , x〉 where, by abuse of notation, we write s for the term itself and also for an
m-hole context that does not bind x.

Recall from the notation introduced in Lem. 107 that given indices 1 ≤ i ≤ m and
1 ≤ j ≤ n we write s〈µj〉xi to stand for the rewrite that results from substituting the i-th
free occurrence of x by µj , the free occurrences of x at positions i′ < i by µtgt

n , and the free
occurrences of x at positions i′ > i by µsrc

1 , i.e.

s〈µj〉xi = s〈µtgt
n , . . . , µtgt

n , µj︸︷︷︸
(i-th position)

, µsrc
1 , . . . , µsrc

1 〉

P. Barenbaum and E. Bonelli 11:59

In order to prove this lemma, we first prove two auxiliary results. Intuitively, the first result
allows one to swap consecutive multisteps that perform work at the positions of two different
free occurrences of x. The second result allows one to join consecutive multisteps performing
the same work for every position of x. Before we need to introduce some auxiliary notation:

Notation. Given a sequence of m indices (j1, . . . , jm) such that 0 ≤ jk ≤ n for all
1 ≤ k ≤ m and an index 1 ≤ i ≤ m such that ji > 0, we write ri(j1,...,jm) and Ri(j1,...,jm)
for the following multisteps:

ri(j1,...,jm)
def= s〈µtgt

j1
, . . . , µtgt

ji−1
, µji︸︷︷︸
(i-th position)

, µtgt
ji+1

, . . . , µtgt
jm
〉

Ri(j1,...,jm)
def= (ri(j1,...,jm))[

where by convention µtgt
0 := µsrc

1 . Note that (s〈µj〉xi)[= Ri(n,...,n,j,0,...,0) with j in the i-th
position. Intuitively, ri(j1,...,jm) represents the transition from a state in which, for each
1 ≤ k ≤ m, the k-th free ocurrence of x has been replaced by the sequence (µ1 ; . . . ; µjk

),
and to a state in which the sequence in the i-th free occurrence of x has been extended
with the multistep µji+1.
Swapping consecutive steps. Consecutive multisteps affecting different positions can
be swapped. More precisely, we claim that if 1 ≤ i < k ≤ m then:

Ri(j1,...,jm) ; Rk(j1,...,j(i−1),ji+1,j(i+1),...,jm) ∼ Rk(j1,...,jm) ; Ri(j1,...,j(k−1),jk+1,j(k+1),...,jm) (4)

Indeed, if we let r(i,k)
(j1,...,jm) denote the step which, intuitively, combines the computational

works of ri(j1,...,jm) and rk(j1,...,jm):

r(i,k)
(j1,...,jm)

def= s〈µtgt
j1
, . . . , µtgt

ji−1
, µji

, µtgt
ji+1

, . . . , µtgt
jk−1

, µjk
, µtgt
jk+1

, µtgt
jm
〉

then we may justify equation (4) by applying the generalized ∼-Perm rule (Prop. 121)
and observing that the two following splittings hold:

r(i,k)
(j1,...,jm) ⇔ ri(j1,...,jm) ; rk(j1,...,j(i−1),ji+1,j(i+1),...,jm)

r(i,k)
(j1,...,jm) ⇔ rk(j1,...,jm) ; ri(j1,...,j(k−1),jk+1,j(k+1),...,jm)

Joining consecutive steps. Consecutive multisteps performing the same computational
work in the positions of all the free occurrences of x can be joined. More precisely, we
claim that if 1 ≤ i < n then:

R1
(i+1,i,...,i) ; R2

(i+1,i+1,i,...,i) ; . . . ; Rm(i+1,i+1,...,i+1) ∼ s{x\µi+1}[(5)

Indeed, if for each 0 ≤ i < n and each 0 ≤ j ≤ m we let r0..j
i denote the step which,

intuitively, combines the computational works of the first j steps above:

r0..j
i

def= s〈µ(i+1), . . . , µ(i+1)︸ ︷︷ ︸
(j)

, µtgt
i , . . . , µtgt

i︸ ︷︷ ︸
(m− j)

〉

Then we may observe that the following splitting holds for every 0 ≤ j < m:

r0..(j+1)
i ⇔ r0..j

i ; rj+1
(i+ 1, . . . , i+ 1︸ ︷︷ ︸

(j + 1)

, i, . . . , i︸ ︷︷ ︸
(m − j − 1)

)

CSL 2023

11:60 Reductions in Higher-Order Rewriting and Their Equivalence

Thus applying the generalized ∼-Perm rule (Prop. 121), and using the ∼-Assoc rule
implicitly, we have that:

R1
(i+1,i,...,i) ; R2

(i+1,i+1,i,...,i) ; . . . ; Rm(i+1,...,i+1,i+1)
= (r0..1

i)[; R2
(i+1,i+1,i,...,i) ; . . . ; Rm(i+1,...,i+1,i+1)

∼ (r0..2
i)[; R3

(i+1,i+1,i+1,i,...,i) ; . . . ; Rm(i+1,...,i+1,i+1) by Prop. 121
. . .

∼ (r0..j
i)[; Rj+1

(i+ 1, . . . , i+ 1︸ ︷︷ ︸
(j + 1)

, i, . . . , i︸ ︷︷ ︸
(m − j − 1)

) ; . . . ; Rm(i+1,i+1,...,i+1,i) by Prop. 121

. . .

∼ (r0..m
i)[by Prop. 121

= s{x\\µi+1}[

To conclude the proof of this lemma, using the ∼-Assoc rule implicitly, note that:

s{x\\K〈µ1, . . . , µn〉}
[7→∗ K′〈s〈µ1〉x1 , . . . , s〈µn〉x1 , . . . , s〈µ1〉xm, . . . , s〈µn〉xm〉

by Lem. 107
[7→∗ K′〈(s〈µ1〉x1)[, . . . , (s〈µn〉x1)[, . . . , (s〈µ1〉xm)[, . . . , (s〈µn〉xm)[〉
∼ (s〈µ1〉x1)[; . . . ; (s〈µn〉x1)[; . . . ; (s〈µ1〉xm)[; . . . ; (s〈µn〉xm)[

by Lem. 126
= R1

(1,0,...,0) ; R1
(2,0,...,0) ; . . . ; R1

(n,0,...,0) ; . . . ; Rm(n,...,n,1) ; Rm(n,...,n,2) ; . . . ; Rm(n,...,n,n)
∼ R1

(1,0,...,0) ; R2
(1,1,0,...,0) ; . . . ; Rm(1,1,...,1) ; . . . ; R1

(n,n−1,...,n−1) ; R2
(n,n,n−1,...,n−1) ; . . . ; Rm(n,n,...,n)

reordering the steps with equation (4)
∼ s{x\\µ1}[; . . . ; s{x\\µn}[

joining the steps with equation (5)
∼ K〈s{x\\µ1}[, . . . , s{x\\µn}[〉

by Lem. 126

J

I Lemma 128 (Congruence for ∼ below abstraction). Let K1〈µ1, . . . , µn〉 ∼ K2〈ν1, . . . , νm〉.
Then:

K1〈(λx.µ1)[, . . . , (λx.µn)[〉 ∼ K2〈(λx.ν1)[, . . . , (λx.νm)[〉

Note. The multisteps µi and νi are in [7→-normal form because the ∼ relation only relates
flat rewrites. But observe that λx.µi and λx.νi may not necessarily be in [7→-normal form
because there may be an F-EtaM redex at the root.

Proof. If ρ is a flat rewrite, we define λλx.ρ as follows:

λλx.µ
def= (λx.µ)[

λλx.(ρ ; σ) def= (λλx.ρ) ; (λλx.σ)

Another way to state this lemma is to say that ρ ∼ σ implies λλx.ρ ∼ λλx.σ. The proof
proceeds by induction on the derivation of ρ ∼ σ. The reflexivity, symmetry, and transitivity
cases are immediate. We analyze the cases in which an axiom is applied at the root, as well
as closure under composition contexts:
1. Rule ∼-Assoc. Let ρ = ((ρ1 ; ρ2) ; ρ3) ∼ (ρ1 ; (ρ2 ; ρ3)) = σ. Then λλx.ρ = ((λλx.ρ1 ;

λλx.ρ2) ; λλx.ρ3) ∼ (λλx.ρ1 ; (λλx.ρ2 ; λλx.ρ3)) = λλx.σ can be derived applying the
∼-Assoc rule.

P. Barenbaum and E. Bonelli 11:61

2. Rule ∼-Perm. Let µ ∼ µ[1 ; µ[2 be derived from µ ⇔ µ1 ; µ2. Then note that
λx.µ ⇔ λx.µ1 ; λx.µ2 holds by the SAbs rule. Hence by the generalized ∼-Perm
rule (Prop. 121) we have that (λx.µ)[∼ (λx.µ1)[; (λx.µ2)[. Moreover, by confluence of
flattening (Prop. 96), we have that (λx.µ)[∼ (λx.µ[1)[; (λx.µ[2)[.

3. Congruence (left of a composition). Let ρ = (ρ′ ; τ) ∼ (σ′ ; τ) = σ be derived from
ρ′ ∼ σ′. Then by IH we have that λλx.ρ′ ∼ λλx.σ′, so λλx.ρ = (λλx.ρ′ ; λλx.τ) ∼ (λλx.σ′ ;
λλx.τ) = λλx.σ.

4. Congruence (right of a composition). Similar to the previous case.
J

I Lemma 129 (Congruence for ∼ below application). Let K1〈µ1, . . . , µn〉 ∼ K2〈ν1, . . . , νm〉
and let s be an arbitrary term. Then:
1. K1〈(µ1 s)[, . . . , (µn s)[〉 ∼ K2〈(ν1 s)[, . . . , (νm s)[〉
2. K1〈(s µ1)[, . . . , (s µn)[〉 ∼ K2〈(s ν1)[, . . . , (s νm)[〉

Proof. We only prove item 1. (item 2. is symmetric). If ρ is a flat rewrite, we define ρ@s as
follows:

µ@s def= (µ s)[

(ρ ; σ)@s def= (ρ@s) ; (σ@s)

Another way to state item 1. is to say that ρ ∼ σ implies ρ@s ∼ σ@s. The proof proceeds by
induction on the derivation of ρ ∼ σ. The reflexivity, symmetry, and transitivity cases are
immediate. We analyze the cases in which an axiom is applied at the root, as well as closure
under composition contexts:
1. Rule ∼-Assoc. Let ρ = ((ρ1 ; ρ2) ; ρ3) ∼ (ρ1 ; (ρ2 ; ρ3)) = σ. Then ρ@s = ((ρ1@s ;

ρ2@s) ; ρ3@s) ∼ (ρ1@s ; (ρ2@s ; ρ3@s)) = σ@s can be derived applying the ∼-Assoc rule.
2. Rule ∼-Perm. Let µ ∼ µ[1 ; µ[2 be derived from µ ⇔ µ1 ; µ2. Then note that

µ s⇔ µ1 s ; µ2 s holds by the SApp rule, also using the straightforward fact that s⇔ s ; s,
given that s is a term, i.e. it has no occurrences of rule symbols. Then by the generalized
∼-Perm rule (Prop. 121) we have that (µ s)[∼ (µ1 s)[; (µ2 s)[. Moreover, by confluence
of flattening (Prop. 96), we have that (µ s)[∼ (µ[1 s)[; (µ[2 s)[, as required.

3. Congruence (left of a composition). Let ρ = (ρ′ ; τ) ∼ (σ′ ; τ) = σ be derived from
ρ′ ∼ σ′. Then by IH we have that ρ′@s ∼ σ′@s, so ρ@s = (ρ′@s ; τ@s) ∼ (σ′@s ; τ@s) = σ@s.

4. Congruence (right of a composition). Similar to the previous case.
J

I Theorem 130 (Soundness and completeness of flat permutation equivalence). Let Γ ` ρ :
s _ t : A and Γ ` σ : s′ _ t′ : A. The following are equivalent:
1. ρ ≈ σ
2. ρ[∼ σ[

Proof. The implication (2 =⇒ 1) is immediate, given that reduction [7→ in the flattening
system F is included in permutation equivalence (Lem. 100) and, similarly, flat permutation
equivalence is included in permutation equivalence (Lem. 114).
For the implication (1 =⇒ 2), we proceed by induction on the derivation of ρ ≈ σ. In
the proof, sometimes we implicitly use the fact that [7→ is strongly normalizing (Prop. 95)
and confluent (Prop. 96). In particular, note that (ρ ; σ)[= ρ[; σ[and more in general
K〈ρ1, . . . , ρn〉[= K〈ρ[1, . . . , ρ[n〉. In the inductive proof, the cases for reflexivity, symmetry,
and transitivity are immediate. We analyze the cases when a rule is applied at the root, as
well as congruence closure under rewrite constructors:

CSL 2023

11:62 Reductions in Higher-Order Rewriting and Their Equivalence

1. ≈-IdL. Let ρsrc ; ρ ≈ ρ. Let ρ[= K〈µ1, . . . , µn〉. Note that (ρ[)src = µsrc
1 . Then:

(ρsrc ; ρ)[= (ρsrc)[; ρ[

= ((ρ[)src)[; ρ[since by Lem. 105 (ρ[)src [7→∗ (ρsrc)[

= (µsrc
1)[; ρ[since (ρ[)src = µsrc

1
= (µsrc

1)[; K〈µ1, . . . , µn〉
= K〈((µsrc

1)[; µ1), . . . , µn〉 by Lem. 115
∼ K〈µ1, . . . , µn〉 since µ1 ⇔ µsrc

1 ; µ1 by Lem. 116
= ρ[

2. ≈-IdR. Similar to the previous case. Let ρ ; ρtgt ≈ ρ. Let ρ[= K〈µ1, . . . , µn〉. Note that
(ρ[)tgt = µtgt

n .

ρ ; ρtgt[= ρ[; (ρtgt)[

= ρ[; ((ρ[)tgt)[since by Lem. 105 (ρ[)tgt [7→∗ (ρtgt)[

= ρ[; (µtgt
n)[since (ρ[)tgt = µtgt

n

= K〈µ1, . . . , µn〉 ; (µtgt
n)[since (ρ[)tgt = µtgt

n

∼ K〈µ1, . . . , (µn ; (µtgt
n)[)〉 by Lem. 115

∼ K〈µ1, . . . , µn〉 since µn ⇔ µn ; µtgt
n by Lem. 116

= ρ[

3. ≈-Assoc. Let (ρ ; σ) ; τ ≈ ρ ; (σ ; τ). Then

((ρ ; σ) ; τ)[= (ρ[; σ[) ; τ [
∼ ρ[; (σ[; τ [) by ∼-Assoc
= (ρ ; (σ ; τ))[

4. ≈-Abs. Let (λx.ρ) ; (λx.σ) ≈ λx.(ρ ; σ). It suffices to show that ((λx.ρ) ; (λx.σ))[=
λx.(ρ ; σ)[. Indeed:

λx.(ρ ; σ) [7→ (λx.ρ) ; (λx.σ) by F-Abs
[7→∗ (λx.ρ[) ; (λx.σ[)

= ((λx.ρ) ; (λx.σ))[

5. ≈-App. Let (ρ1 ρ2) ; (σ1 σ2) ≈ (ρ1 ; σ1) (ρ2 ; σ2). Consider the [7→-normal forms of each
rewrite:

ρ[1 = K1〈µ1, . . . , µn〉 ρ[2 = K2〈ν1, . . . , νm〉
σ[1 = K̃1〈µ̂1, . . . , µ̂p〉 σ[2 = K̃2〈ν̂1, . . . , ν̂q〉

Before going on, we make the following claim:

µIn = µ̂J1 and νIm = ν̂J1 (?)

For the first equality, note that ρ1 and σ1 are composable, so ρtgt
1 =βη σsrc

2 are βη-
equivalent terms. Moreover, by Rem. 84 and Lem. 87 we have that (ρ[1)tgt =βη ρ

tgt
1 and

(σ[1)src =βη σ
src
1 . This means that µtgt

n =βη µ̂
src
1 , so by confluence and strong normalization

of flattening µIn = µ̂J1 . Similarly, for the second equality, since ρ2 and σ2 are composable,
we have that νIm = ν̂J1 .
Furthermore, we claim that the two following conditions hold:

P. Barenbaum and E. Bonelli 11:63

(I) ρ1 ρ2
[7→∗∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µ̂J1 ν1)[, . . . , (µ̂J1 νm)[〉

(II) σ1 σ2
[7→∗∼ K̃1〈(µ̂1 ν

I
m)[, . . . , (µ̂p νIm)[〉 ; K̃2〈(µ̂Ip ν̂1)[, . . . , (µ̂Ip ν̂q)[〉

To prove (I), note that:

ρ1 ρ2
[7→∗∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µIn ν1)[, . . . , (µIn νm)[〉 by Lem. 124

= K1〈(µ1 ν
J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µ̂J1 ν1)[, . . . , (µ̂J1 νm)[〉 by the claim (?) above

The proof of (II) is symmetric to the proof of (I).
To conclude the proof of the ∼-App case, let us rewrite the left-hand side. We use the
associativity rule (∼-Assoc) implicitly:

(ρ1 ρ2) ; (σ1 σ2)
[7→∗∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µ̂J1 ν1)[, . . . , (µ̂J1 νm)[〉 ;

K̃1〈(µ̂1 ν
I
m)[, . . . , (µ̂p νIm)[〉 ; K̃2〈(µ̂Ip ν̂1)[, . . . , (µ̂Ip ν̂q)[〉

by claims (I) and (II)
∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K̃1〈(µ̂1 ν

J
1)[, . . . , (µ̂p νJ1)[〉 ;

K2〈(µ̂Ip ν1)[, . . . , (µ̂Ip νm)[〉 ; K̃2〈(µ̂Ip ν̂1)[, . . . , (µ̂Ip ν̂q)[〉
by Lem. 123

On the other hand, rewriting the right-hand side:

(ρ1 ; σ1) (ρ2 ; σ2)
[7→∗ (K1〈µ1, . . . , µn〉 ; K̃1〈µ̂1, . . . , µ̂p〉) (K2〈ν1, . . . , νm〉 ; K̃2〈ν̂1, . . . , ν̂q〉)
[7→∗ K1〈(µ1 ν

src
1), . . . , (µn νsrc

1)〉 ; K̃1〈(µ̂1 ν
src
1), . . . , (µ̂p νsrc

1)〉 ;
K2〈(µ̂tgt

p ν1), . . . , (µ̂tgt
p νm)〉 ; K̃2〈(µ̂tgt

p ν̂1), . . . , (µ̂tgt
p ν̂q)〉

by generalized F-App3 (Lem. 106)
[7→∗ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K̃1〈(µ̂1 ν

J
1)[, . . . , (µ̂p νJ1)[〉 ;

K2〈(µ̂Ip ν1)[, . . . , (µ̂Ip νm)[〉 ; K̃2〈(µ̂Ip ν̂1)[, . . . , (µ̂Ip ν̂q)[〉

6. ≈-BetaTR. Let (λx.s) ρ ≈ s{x\\ρ}, and suppose that ρ[= K〈µ1, . . . , µn〉. First note
that, (λx.s) ρ [7→∗ K〈((λx.s)µ1), . . . , ((λx.s)µn)〉. Indeed, if n = 1 this is immediate, and
if n > 1 this is a consequence of the generalized F-App2 rule (Lem. 106). Hence:

(λx.s) ρ [7→∗ K〈((λx.s)µ1), . . . , ((λx.s)µn)〉
[7→∗ K〈s{x\µ1}, . . . , s{x\µn}〉 by F-BetaM (n times)

= K〈s{x\\µ1}, . . . , s{x\\µn}〉 by Rem. 14
[7→∗ K〈s{x\\µ1}, . . . , s{x\\µn}〉[

∼ [←[∗ s{x\\K〈µ1, . . . , µn〉} by Lem. 127
[← [∗ s{x\\ρ} by Lem. 108

7. ≈-BetaRT. Let (λx.ρ) s ≈ ρ{x\s}, and suppose that ρ[= K〈µ1, . . . , µn〉. First note that
(λx.ρ) s [7→∗ K〈(λx.µ1) s, . . . , (λx.µn) s〉. Indeed, if n = 1 this is immediate, and if n > 1
this is a consequence of the generalized F-Abs and F-App1 rules (Lem. 106). Hence:

(λx.ρ) s [7→∗ K〈(λx.µ1) s, . . . , (λx.µn) s〉
[7→∗ K〈µ1{x\s}, . . . , µn{x\s}〉 by F-BetaM (n times)

= K〈µ1{x\s}, . . . , µn{x\s}〉 by Rem. 14
= K〈µ1, . . . , µn〉{x\s}
[←[∗ ρ{x\s} by Lem. 109

CSL 2023

11:64 Reductions in Higher-Order Rewriting and Their Equivalence

8. ≈-Eta. Let λx.ρ x ≈ ρ where x /∈ fv(ρ). Let ρ[= K〈µ1, . . . , µn〉. It suffices to note that
(λx.ρ x)[= ρ[. Indeed:

λx.ρ x
[7→∗ λx.ρ[x

= λx.K〈µ1, . . . , µn〉x
[7→∗ λx.K〈(µ1 x), . . . , (µn x)〉 by generalized F-App1 (Lem. 106)
[7→∗ K〈λx.(µ1 x), . . . , λx.(µn x)〉 by generalized F-Abs (Lem. 106)
[7→∗ K〈µ1, . . . , µn〉 by F-EtaM (n times)

= ρ[

Note that we may apply the F-EtaM rule because, for each 1 ≤ i ≤ n, we have that
x /∈ fv(µi). This in turn is justified by noting that x /∈ fv(K〈µ1, . . . , µn〉) = fv(ρ[), which
is a consequence of the fact that flattening does not create free variables.

9. Congruence under an abstraction. Let λx.ρ ≈ λx.σ be derived from ρ ≈ σ. Consider
their [7→-normal forms, ρ[= K1〈µ1, . . . , µn〉 and σ[= K2〈ν1, . . . , νm〉. By IH we have that
ρ[∼ σ[. Then:

λx.ρ
[7→∗ λx.K1〈µ1, . . . , µn〉
[7→∗ K1〈λx.µ1, . . . , λx.µn〉 by generalized F-Abs (Lem. 106)
[7→∗ K1〈(λx.µ1)[, . . . , (λx.µn)[〉
∼ K2〈(λx.ν1)[, . . . , (λx.νm)[〉 by Lem. 128, as ρ[∼ σ[
[← [∗ K2〈λx.ν1, . . . , λx.νm〉
[← [∗ λx.K2〈ν1, . . . , νm〉 by generalized F-Abs (Lem. 106)
[← [∗ λx.σ

10. Congruence under an application. Let ρ1 ρ2 ≈ σ1 σ2 be derived from ρ1 ≈ σ1 and
ρ2 ≈ σ2. Consider the

[7→-normal forms of each rewrite:

ρ[1 = K1〈µ1, . . . , µn〉 ρ[2 = K2〈ν1, . . . , νm〉
σ[1 = K̃1〈µ̂1, . . . , µ̂p〉 σ[2 = K̃2〈ν̂1, . . . , ν̂q〉

By IH we have that ρ[1 ∼ σ[1 and ρ[2 ∼ σ[2. Before going on, we make the following claim:

νJ1 = ν̂J1 and µJn = µ̂Jp (?)

For the first equality, note that ρ2 ≈ σ2, so ρsrc
2 =βη σsrc

2 are βη-equivalent terms
by Lem. 52. Moreover, by Rem. 84 and Lem. 87 we have that (ρ[2)src =βη ρ

src
2 and

(σ[2)src =βη σ
src
2 . This means that νsrc

1 =βη ν̂
src
1 , so by confluence and strong normalization

of flattening νJ1 = ν̂J1 . Similarly, for the second equality, since ρ1 ≈ σ1, we have that
µIn = µ̂Ip . Then:

ρ1 ρ2
[7→∗∼ K1〈(µ1 ν

J
1)[, . . . , (µn νJ1)[〉 ; K2〈(µIn ν1)[, . . . , (µIn νm)[〉 by Lem. 124

∼ K̃1〈(µ̂1 ν
J
1)[, . . . , (µ̂p νJ1)[〉 ; K2〈(µIn ν1)[, . . . , (µIn νm)[〉 by Lem. 129 as ρ[1 ∼ σ[1

∼ K̃1〈(µ̂1 ν
J
1)[, . . . , (µ̂p νJ1)[〉 ; K̃2〈(µIn ν̂1)[, . . . , (µIn ν̂q)[〉 by Lem. 129 as ρ[2 ∼ σ[2

= K̃1〈(µ̂1 ν̂
J
1)[, . . . , (µ̂p ν̂J1)[〉 ; K̃2〈(µ̂Ip ν̂1)[, . . . , (µ̂Ip ν̂q)[〉 by the claim (?) above

[←[∗ σ1 σ2 by Lem. 124

P. Barenbaum and E. Bonelli 11:65

11. Congruence under a composition. Let ρ1 ; ρ2 ≈ σ1 ; σ2 be derived from ρ1 ≈ σ1
and ρ2 ≈ σ2. Then:

(ρ1 ; ρ2)[= ρ[1 ; ρ[2
∼ σ[1 ; σ[2 by IH
= (σ1 ; σ2)[

J

E Projection for Flat Rewrites

E.1 Projection for multisteps
I Lemma 131 (Matching). If (%src µ1 . . . µn)[= (%src ν1 . . . νn)[then µ[i = ν[i for all 1 ≤ i ≤ n.

Proof. We begin with a few auxiliary definitions. Let N be the set of n-hole term contexts
generated by the following grammar:

N := � | λx.N | x N1 . . . Nn | c N1 . . . Nn

Moreover, if ~y = y1, . . . , yn is a sequence of variables, we write x~y for the application
x y1 . . . yn. We prove an auxiliary result.

Claim. Let V be a set of variables, and let N〈x1 ~y1, . . . , xn ~yn〉 be a term such that, for all
1 ≤ i ≤ n, the variable xi is not in V nor bound by the context N, and furthermore all the
variables in the sequence ~yi are either in V or bound by the context N. Suppose moreover
that µ1, . . . , µn, ν1, . . . , νm are multisteps whose free variables are disjoint from V , and
such that N〈µ1 ~y1, . . . , µn ~yn〉[= N〈ν1 ~y1, . . . , νn ~yn〉[. Then µ[i = ν[i for all 1 ≤ i ≤ n.
Proof of the claim. By induction on N:
1. N = �: Then n = 1 and by hypothesis (µ1 ~y1)[= (ν1 ~y1)[. Note that the variables in

~y1 do not occur free in µ1 nor in ν2. Then:

µ1
[← [∗ λ~y1.µ1 ~y1 repeatedly applying F-EtaM
[7→∗ λ~y1.(µ1 ~y1)[

= λ~y1.(ν1 ~y1)[by hypothesis
[← [∗ λ~y1.ν1 ~y1
[7→∗ ν1 repeatedly applying F-EtaM

Hence by confluence of flattening (Prop. 96) we have that µ[1 = ν[1, as required.
2. N = λz.N′: By hypothesis, we have that (λz.N′〈µ1 ~y1, . . . , µn ~yn〉)[= (λz.N′〈µ1 ~y1, . . . , µn ~yn〉)[.

Then:

N′〈µ1 ~y1, . . . , µn ~yn〉
[← [(λz.N′〈µ1 ~y1, . . . , µn ~yn〉) z by F-BetaM
[7→∗ (λz.N′〈µ1 ~y1, . . . , µn ~yn〉)[z

= (λz.N′〈ν1 ~y1, . . . , νn ~yn〉)[z by hypothesis
[← [∗ (λz.N′〈ν1 ~y1, . . . , νn ~yn〉) z
[7→ N′〈ν1 ~y1, . . . , νn ~yn〉 by F-BetaM

Hence by confluence of flattening (Prop. 96) we have that:

N′〈µ1 ~y1, . . . , µn ~yn〉[= N′〈ν1 ~y1, . . . , νn ~yn〉[

Applying the IH with the set of variables V ∪ {z} we conclude that µ[i = ν[i for all
1 ≤ i ≤ n.

CSL 2023

11:66 Reductions in Higher-Order Rewriting and Their Equivalence

3. N = z N1 . . . Nm: Then there exist non-negative integers 0 = i0 ≤ i1 ≤ i2 ≤ . . . ≤ im = n

such that z N1 . . . Nk has ik holes for every 1 ≤ k ≤ m. In particular:

N〈µ1 ~y1, . . . , µn ~yn〉[= z N1〈µi0 ~yi0 , . . . , µi1 ~yi1〉[. . . Nm〈µi(m−1) ~yi(m−1) , . . . , µim ~yim〉[

And similarly:

N〈ν1 ~y1, . . . , νn ~yn〉[= z N1〈νi0 ~yi0 , . . . , νi1 ~yi1〉[. . . Nm〈νi(m−1) ~yi(m−1) , . . . , νim ~yim〉[

So for each 1 ≤ k ≤ m we have that

Nk〈µi(k−1) ~yi(k−1) , . . . , µik ~yik〉[= Nk〈νi(k−1) ~yi(k−1) , . . . , νik ~yik〉[

Applying the IH for each value of k, we conclude µ[i = ν[i for all 1 ≤ i ≤ n.
4. N = c N1 . . . Nm: Similar to the previous case.

To conclude the proof of the lemma using the claim, recall that %src is in normal form and
a rule-pattern, so it can be written as %src = λx1 . . . xn.N〈(x1 ~y1), . . . , (xn ~yn)〉. Note that
all of the variables in ~yi are bound by N because %src is a rule-pattern. Moreover note that
(%src µ1 . . . µn)[= N〈µ1 ~y1, . . . , µn ~yn〉[= N〈ν1 ~y1, . . . , νn ~yn〉[= (%src ν1 . . . νn)[. By the claim,
taking the set V = ∅, we obtain that µ[i = ν[i for all 1 ≤ i ≤ n, as required. J

I Lemma 132 (Projection for compatible multisteps). Let µ ↑ ν. Then there exists a unique
ξ such that µ///ν ⇒ ξ.

Proof. Straightforward by induction on the derivation of µ ↑ ν. J

I Lemma 133 (Projection of variables). Let µ and ν be multisteps such that µ[= ν[= x and
µ ↑ ν. Moreover, let µ///ν ⇒ ξ. Then ξ[= x.

Proof. By induction on the derivation of µ ↑ ν. Note that this judgment can only be derived
by the CVar rule, given that, in any other case, the head of µ is either a constant c or a rule
symbol %, which in turn implies that the head of µ[is either a constant or a rule symbol,
contradicting the fact that µ[= x.

This means that µ = λy1 . . . yn.z µ1 . . . µm and ν = λy1 . . . yn.z ν1 . . . νm where µi ↑ νi
for all 1 ≤ i ≤ n. Note that the head of µ[must be z, so z = x. Moreover, by confluence
of flattening (Prop. 96), µ[= (λy1 . . . yn.x µ

[
1 . . . µ

[
m)[. The term λy1 . . . yn.x µ

[
1 . . . µ

[
m is

already in F-BetaM-normal form so, given that the contraction of an F-EtaM redex does
not create F -BetaM redexes, there is a reduction sequence λy1 . . . yn.x µ

[
1 . . . µ

[
m

[7→∗F-EtaM x

using only the F-EtaM rule. Given that each F-EtaM-reduction step erases exactly one
abstraction and exactly one application, it must be the case that n = m and µ[i = yi for all
1 ≤ i ≤ n. Using a symmetric argument, we have that ν[i = yi for all 1 ≤ i ≤ n.

To sum up, the situation is that µ = λy1 . . . yn.x µ1 . . . µn and ν = λy1 . . . yn.x ν1 . . . νn
with µ[i = ν[i = yi for all 1 ≤ i ≤ n. Note that µ///ν ⇒ ξ where ξ must be of the form
λy1 . . . yn.x ξ1 . . . ξn and µi///νi ⇒ ξi for all 1 ≤ i ≤ n. By IH, for each 1 ≤ i ≤ n we have
that ξ[i = yi. To conclude, note that:

ξ[= (λy1 . . . yn.x ξ1 . . . ξn)[
= (λy1 . . . yn.x y1 . . . yn)[by confluence of flattening (Prop. 96)
= x using the F-EtaM rule (n times)

J

P. Barenbaum and E. Bonelli 11:67

I Definition 134 (Compatibility). We give explicit names for the compatibility rules given in
the body:

(µi ↑ νi)mi=1 CVar
λ~x.y ~µ ↑ λ~x.y ~ν

(µi ↑ νi)mi=1 CCon
λ~x.c ~µ ↑ λ~x.c~ν

(µi ↑ νi)mi=1 CRule
λ~x.% ~µ ↑ λ~x.% ~ν

(µi ↑ νi)mi=1 CRuleL
λ~x.% ~µ ↑ λ~x.%src ~ν

(µi ↑ νi)mi=1 CRuleR
λ~x.%src ~µ ↑ λ~x.% ~ν

I Lemma 135 (Coherence of projection). Let µ1, ν1, µ2, ν2 be multisteps such that:
1. µ1 ↑ ν1 and µ2 ↑ ν2
2. µ[1 = µ[2 and ν[1 = ν[2
3. µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2
Then ξ[1 = ξ[2.

Proof. During this proof we use the following notion of arity: a multistep µ is said to be
n-ary if its type, under the corresponding typing context, is of the form A1 → . . .→ An → α

where α is a base type.
The proof proceeds by induction on the derivation of µ1 ↑ ν1. Note that the last rule

used to derive µ2 ↑ ν2 must be the same as the last rule used to derive µ1 ↑ ν1. For
instance, it cannot be the case that µ1 ↑ ν1 is derived using the CVar rule and µ2 ↑ ν2 is
derived using the CCon rule, because this would mean that µ1 = λx1 . . . xn.y µ11 . . . µ1m and
µ2 = λx1 . . . xn.cµ21 . . . µ2p and furthermore, by hypothesis, µ[1 = µ[2, which is impossible,
given that the head of µ[1 is a variable y whereas the head of µ[2 is a constant c. Recall that
the left-hand side of a rule must be headed by a constant, so using similar arguments this
can be shown for all the other cases as well.

The only remaining possibilities are when µ1 ↑ ν1 and µ2 ↑ ν2 are derived using the
same rule. The core of the argument in these cases is to apply the IH using the matching
lemma (Lem. 131). The difficulty is that, in the equalities µ[1 = µ[2 and ν[1 = ν[2, flattening
includes F-EtaM reduction, so we need to provide extra arguments to be able “align” the
normal forms.

We only study the CRuleL case (the remaining cases are similar). That is, suppose that
µ1 ↑ ν1 and µ2 ↑ ν2 are derived by the CRuleL rule. Then:

We have that µ1 = λx1 . . . xn.% µ11 . . . µ1m and ν1 = λx1 . . . xn.%
src ν11 . . . ν1m where

µ1i ↑ ν1i for all 1 ≤ i ≤ n.
We have that µ2 = λx1 . . . xp.ϑ µ21 . . . µ2q and ν2 = λx1 . . . xp.ϑ

src ν21 . . . ν2q where µ2i ↑
ν2i for all 1 ≤ i ≤ q.
Note that µ1///ν1 ⇒ λx1 . . . xn.% ξ11 . . . ξ1m where µ1i///ν1i ⇒ ξ1i for all 1 ≤ i ≤ n.
Note that µ2///ν2 ⇒ λx1 . . . xp.% ξ21 . . . ξ2q where µ2i///ν2i ⇒ ξ2i for all 1 ≤ i ≤ q.

Given that, by hypothesis, µ[1 = µ[2, we know that % = ϑ. Suppose that µ1 is N -ary for some
N ≥ 0 and that % is M -ary for some M ≥ 0. Then, since they all have the same types as
µ1, we know that ν1, µ2, ν2 must also be N -ary. Similarly, since %src has the same type as
%, we know that it is M -ary. Note that n, p ≤ N and m, q ≤ M . Moreover, note that µ1
has n explicit abstractions, it is N -ary, and its body is (M −m)-ary, so n+M −m ≤ N .
Similarly, p+M − q ≤ N . Consider the multisteps µ′1, ν′1, µ′2, ν′2 that result from µ1, ν1, µ2, ν2
by performing η-expansions in order to “complete” the number of arguments in the body, to
match the arity M :

µ′1 = λx1 . . . xnx(n+1) . . . x(n+M−m).% µ11 . . . µ1m x(n+1) . . . x(n+M−m)
ν′1 = λx1 . . . xnx(n+1) . . . x(n+M−m).%

src ν11 . . . ν1m x(n+1) . . . x(n+M−m)
µ′2 = λx1 . . . xpx(p+1) . . . x(p+M−q).% µ21 . . . µ2q x(p+1) . . . x(p+M−q)

CSL 2023

11:68 Reductions in Higher-Order Rewriting and Their Equivalence

ν′2 = λx1 . . . xpx(p+1) . . . x(p+M−q).%
src ν21 . . . ν2q x(p+1) . . . x(p+M−q)

Note that by defining:

µ1i = ν1i
def= xn+i−m for all m+ 1 ≤ i ≤M

µ2i = ν2i
def= xp+i−q for all q + 1 ≤ i ≤M

we have that the following equalities hold:

µ′1 = λx1 . . . x(n+M−m).ρ µ11 . . . µ1M
ν′1 = λx1 . . . x(n+M−m).ρ

src ν11 . . . ν1M
µ′2 = λx1 . . . x(p+M−q).ρ µ21 . . . µ2M
ν′2 = λx1 . . . x(p+M−q).ρ

src ν21 . . . ν2M

Before going on, we need to establish two auxiliary facts:
[A] Note that (µ′1)[= µ[1 = µ[2 = (µ′2)[. Then we have that:

ρµ11 . . . µ1M x(n+M−m+1) . . . xN
[←[∗ µ′1 x1 . . . xN by F-BetaM (N times)
[7→∗ (µ′1)[x1 . . . xN

= (µ′2)[x1 . . . xN as remarked
[7→∗ ρµ21 . . . µ2M x(p+M−q+1) . . . xN by F-BetaM (N times)

By confluence of flattening (Prop. 96) this implies that:

(ρµ11 . . . µ1M x(n+M−m+1) . . . xN)[= (ρµ21 . . . µ2M x(p+M−q+1) . . . xN)[

Since % is a “rigid” symbol, from this we obtain that µ[1i = µ[2i holds for all 1 ≤ i ≤M .
[B] On the other hand, note that (ν′1)[= ν[1 = ν[2 = (ν′2)[so we have that:

ρsrc ν11 . . . ν1M x(n+M−m+1) . . . xN
[←[∗ ν′1 x1 . . . xN by F-BetaM (N times)
[7→∗ (ν′1)[x1 . . . xN

= (ν′2)[x1 . . . xN as remarked
[7→∗ ρsrc ν21 . . . ν2M x(p+M−q+1) . . . xN by F-BetaM (N times)

By confluence of flattening (Prop. 96) this implies that:

(ρsrc ν11 . . . ν1M x(n+M−m+1) . . . xN)[= (ρsrc ν21 . . . ν2M x(p+M−q+1) . . . xN)[

By the matching lemma (Lem. 131), from this we obtain that ν[1i = ν[2i holds for all
1 ≤ i ≤M .

To conclude the proof, we consider two symmetric cases, depending on whether m ≤ q or
q ≤ m. Without loss of generality, suppose that m ≤ q. Note that:

[C] For every i such that 1 ≤ i ≤ m all of the following conditions hold:

µ1i ↑ ν1i µ2i ↑ ν2i
µ[1i = µ[2i ν[1i = ν[2i by [A] and [B]
µ1i///ν1i ⇒ ξ1i µ2i///ν2i ⇒ ξ2i

so by IH we have that ξ[1i = ξ[2i.

P. Barenbaum and E. Bonelli 11:69

[D] For every i such that m < i ≤ q we have that µ[1i = ν[1i = x(n+i−m) by definition,
and therefore µ[2i = ν[2i = x(n+i−m) by [A] and [B]. Hence by Lem. 133 we have that
ξ[2i = x(n+i−m).

[E] Thus we may build the following chain of reductions:

(λx1 . . . xn.% ξ11 . . . ξ1m)x1 . . . xN
[7→∗ % ξ11 . . . ξ1m x(n+1) . . . xN by F-BetaM (n times)
[7→∗ % ξ[11 . . . ξ

[
1m x(n+1) . . . xN

[7→∗ % ξ[21 . . . ξ
[
2m x(n+1) . . . xN by [C]

= % ξ[21 . . . ξ
[
2m ξ

[
2(m+1) . . . ξ

[
2q x(p+1) . . . xN by [D]

[←[∗ % ξ21 . . . ξ2q x(p+1) . . . xN
[←[∗ (λx1 . . . xp.% ξ21 . . . ξ2q)x1 . . . xN by F-BetaM (p times)

Finally, we have:

ξ[1 = (λx1 . . . xn.% ξ11 . . . ξ1m)[
= (λx1 . . . xN .(λx1 . . . xn.% ξ11 . . . ξ1m)x1 . . . xN)[by confluence using F-EtaM
= (λx1 . . . xN .(λx1 . . . xp.% ξ21 . . . ξ2q)x1 . . . xN)[by confluence and [E]
= (λx1 . . . xp.% ξ21 . . . ξ2q)[by confluence using F-EtaM
= ξ[2

J

I Definition 136 (η-expanded source). If µ is a multistep in η-normal form, we write µ<η
for the source of µ in which the sources of rule symbols are also η-expanded. More precisely:

x<η
def= x

c<η def= c
%<η

def= s′ if % : s _ t : A ∈ R and s′ is the η-normal form of s
(λx.µ)<η def= λx.s<η

(µ ν)<η def= µ<η ν<η

Note that µ<η [7→∗ µsrc so, in particular, (µ<η)[= (µsrc)[= µJ.

I Lemma 137 (Constructor/rule matching). Let µ = λx1 . . . xn.cµ1 . . . µm and ν = λy1 . . . yp.% ν1 . . . νq.
Let % : l0 _ r0 : A ∈ R and let l, r be the →η -normal forms of l0, r0 respectively. Suppose
that µsrc =βη ν

src and, moreover, that µ and ν are in ◦7→, η-normal form. Then there exist
multisteps ξ1, . . . , ξq such that:

µ = (λx1 . . . xn.l ξ1 . . . ξq)◦

and (ξ<ηi)◦ = (ν<ηi)◦ for all 1 ≤ i ≤ q.
Furthermore, the multisteps ξi can be chosen in such a way that they are in ◦7→, η-normal
form, and the number of applications in each multistep ξi, for all 1 ≤ i ≤ k, is strictly less
than the number of applications in µ.

Proof. Note that the condition µsrc =βη νsrc implies that (µsrc)[= (νsrc)[. Then also
(µ<η)[= (ν<η)[. By Lem. 110 this implies that:

(µ<η)◦ = (ν<η)◦ (6)

CSL 2023

11:70 Reductions in Higher-Order Rewriting and Their Equivalence

Suppose l = λz1. . . . λzk.d r1 . . . rk′ . From (6) we have:

(λx1 . . . xn.cµ<η1 . . . µ<ηm)◦ = (λy1 . . . yp.l ν
<η
1 . . . ν<ηq)◦

Since cµ<η1 . . . µ<ηm and l ν<η1 . . . ν<ηq have base types, then n = p and we may assume that
xi = yi, for all 1 ≤ i ≤ p. Moreover,

(cµ<η1 . . . µ<ηm)◦ = (l ν<η1 . . . ν<ηq)◦

Therefore d = c, q = k and m = k′, and:

(µ<ηi)◦ = (ri{z1\ν<η1 } . . .{zk\ν<ηk })◦

for all 1 ≤ i ≤ m. Note that each ri is part of the pattern of the rewrite rule l. By
orthogonality of R, there exist ξ1, . . . , ξk such that:

µi = (ri{z1\ξ1} . . .{zk\ξk})◦ for all 1 ≤ i ≤ m

and

(ξ<ηi)◦ = (ν<ηi)◦ for all 1 ≤ i ≤ k

Therefore:

µ = λx1 . . . xn.cµ1 . . . µm = (λx1 . . . xn.l ξ1 . . . ξk)◦

Furthermore, we claim that each ξi, for 1 ≤ i ≤ k, can be chosen in such a way that
it is in ◦7→, η-normal form and with strictly less applications than µ. First, note that if the
ξi are not in ◦7→-normal form, then we may take ξ̂i := ξ◦i instead, and we still have that
µ = (λx1 . . . xn.l ξ1 . . . ξk)◦ = (λx1 . . . xn.l ξ̂1 . . . ξ̂k)◦ by confluence of flattening (Prop. 96).
So let us assume that the ξi are in ◦7→-normal form. Furthermore, suppose that ξi is of
arity N , i.e. its type is of the form A1 → . . . → AN → α with α a base type, and
suppose that ξi = λw1 . . . wM .ξ

′
i where ξ′i is not a λ-abstraction. Note that M ≤ N . Take

ξ̂i := λw1 . . . wMwM+1 . . . wN .ξ
′
i wM+1 . . . wN . Note that each ξ̂i is in

◦7→-normal form.
To conclude, we claim that µ = (λx1 . . . xn.l ξ̂1 . . . ξ̂k)◦ and that each ξ̂i has strictly less

applications than µ. To see this, note that each variable z1, . . . , zk. occurs free exactly once
in the body of l, applied to different bound variables. More precisely, for a fixed index
1 ≤ i0 ≤ k there is exactly one 1 ≤ j0 ≤ m such that zi0 occurs free in rj . Then the multistep
that results from substituting in rj each zi by ξ̂i other than for i = i0 contains exactly one
occurrence of zi0 applied to N variables, where N is the arity of ξ̂i0 , that is, it is of the form:

rj{z1\ξ1} . . .{z(i0−1)\ξ(i0−1)}{z(i0+1)\ξ(i0+1)} . . .{zk\ξk} = C〈zi0 w1 . . . wN 〉

where w1, . . . , wN are bound by C and the hole of C is not applied. As a consequence, we
have that:

µ = λx1 . . . xn.cµ1 . . . µi0−1 C〈(ξ̂i0 w1 . . . wN)◦〉µi0+1 . . . µm
= λx1 . . . xn.cµ1 . . . µi0−1 C〈((λw1 . . . wN .ξi0 wM+1 . . . wN)w1 . . . wN)◦〉µi0+1 . . . µm
= λx1 . . . xn.cµ1 . . . µi0−1 C〈ξi0 wM+1 . . . wN 〉µi0+1 . . . µm

Hence, since µ is in η-normal form, and ξi0 wM+1 . . . wN is a subterm of µ which is not applied,
we know that ξi0 wM+1 . . . wN is in η-normal form. Hence ξ̂i0 = λw1 . . . wn.ξi0 wM+1 . . . wN
is also in η-normal form.

P. Barenbaum and E. Bonelli 11:71

Finally, note that (λx1 . . . xn.l ξ̂1 . . . ξ̂k)◦ is in ◦7→, η-normal form and that µ[= (λx1 . . . xn.l ξ1 . . . ξk)[=
(λx1 . . . xn.l ξ̂1 . . . ξ̂k)[so by Lem. 110 µ◦ = (λx1 . . . xn.l ξ̂1 . . . ξ̂k)◦. Moreover, for each
1 ≤ i0 ≤ k the multistep ξ̂i0 = λx1 . . . xN .ξi0 xM+1 . . . xN has the same number of applic-
ations as ξi0 xM+1 . . . xM , which is a subterm of µ, and has strictly less applications than
µ. J

I Lemma 138 (Compatibilization of coinitial multisteps). Let µ, ν be multisteps such that
µJ = νJ. Then there exist multisteps µ̂, ν̂ such that µ̂ ↑ ν̂ and moreover µ̂[= µ[and ν̂[= ν[.

Proof. We begin with a few observations. Recall that if µ [7→∗ µ′ then µsrc =βη µ
′src, which is

a consequence of Rem. 84 and Lem. 87. This means that, without loss of generality, we may
assume that µ, ν are in ◦7→, η-normal form. Note that, given this assumption, we have that
µ<η and µ<η are in η-normal form. Moreover, (µ<η)[= (µsrc)[= (νsrc)[= (ν<η)[. From
this, by Lem. 110, we have that (µ<η)◦ = (ν<η)◦.

The proof proceeds by induction on the sum of the number of applications in µ and ν,
using the characterization of flat multisteps (Lem. 101). We consider three cases, depending
on whether the head of µ is a variable, a constant, or a rule symbol:
1. Variable, µ = λx1 . . . xn.y µ1 . . . µm. Note that (µ<η)◦ = λx1 . . . xn.y (µ<η1)◦ . . . (µ<ηm)◦.

Since (µ<η)◦ = (ν<η)◦, the head of ν cannot be a constant or a rule symbol. Hence
the only possibility is that ν = λx1 . . . xp.y ν1 . . . νq. Furthermore, it can only be the
case that p = n and q = m and (µ<ηi)◦ = (ν<ηi)◦ for all 1 ≤ i ≤ m. This in turn
implies that µJi = νJi for all 1 ≤ i ≤ m. Hence, by IH, for each 1 ≤ i ≤ m, there exist
multisteps such that µ̂i ↑ ν̂i where µ̂[i = µ[i and ν̂[i = ν[i . To conclude, note that taking
µ̂ := λx1 . . . xn.y µ̂1 . . . µ̂m and ν̂ := λx1 . . . xn.y ν̂1 . . . ν̂m we have that µ̂ ↑ ν̂ by the CVar
rule, and moreover µ̂[= µ[and ν̂[= ν[.

2. Constant, µ = λx1 . . . xn.cµ1 . . . µm. Note that (µ<η)◦ = λx1 . . . xn.c (µ<η1)◦ . . . (µ<ηm)◦.
Since (ν<η)◦ = (µ<η)◦, the head of ν cannot be a variable. We consider two cases, de-
pending on whether the head of ν is a constant or a rule symbol:

2.1 Constant, ν = λx1 . . . xp.c ν1 . . . νq. The proof of this case proceeds similarly as for
case 1, when the heads of µ and ν are both variables.

2.2 Rule symbol, ν = λx1 . . . xp.% ν1 . . . νq. Recall that we assume that µ and ν are in
η-normal form. This implies that n = p. Then (ν<η)◦ = (λx1 . . . xn.%

<η ν<η1 . . . ν<ηq)◦.
By Lem. 137, there exist multisteps ξ1, . . . , ξq such that µ = (λx1 . . . xn.%

<η ξ1 . . . ξq)◦
and (ξ<ηi)◦ = (ν<ηi)◦ for all 1 ≤ i ≤ q. Moreover, each ξi has less applications than µ.
So by IH, for each 1 ≤ i ≤ q there exist multisteps such that ξ̂i ↑ ν̂i where ξ̂[i = ξ[i . and
ν̂[i = ν[i . Taking µ̂ := λx1 . . . xn.%

<η ξ̂1 . . . ξ̂q and ν̂ := λx1 . . . xn.% ν̂1 . . . ν̂q we have
that µ̂ ↑ ν̂. It is easy to note that ν̂[= ν[. Moreover:

µ̂[= (λx1 . . . xn.%
<η ξ̂1 . . . ξ̂q)[

= (λx1 . . . xn.%
<η ξ1 . . . ξq)[by confluence of flattening (Prop. 96)

= ((λx1 . . . xn.%
<η ξ1 . . . ξq)◦)[by confluence of flattening (Prop. 96)

= µ[

3. Rule symbol, µ = λx1 . . . xn.% µ1 . . . µm. Note that (µ<η)◦ = λx1 . . . xn.(%<η µ<η1 . . . µ<ηm)◦.
Since (ν<η)◦ = (µ<η)◦, the head of ν cannot be a variable. We consider two cases, de-
pending on whether the head of ν is a constant or a rule symbol:

3.1 Constant, ν = λx1 . . . xp.c ν1 . . . νq. The proof of this case proceeds symmetrically
as for case 2.2, when the head of µ is a constant and the head of ν is a rule symbol.

3.2 Rule symbol, ν = λx1 . . . xp.ϑ ν1 . . . νq. Recall that we assume that µ and ν are in
η-normal form. This implies that n = p. Then (ν<η)◦ = λx1 . . . xn.(ϑ<η ν<η1 . . . ν<ηq)◦.

CSL 2023

11:72 Reductions in Higher-Order Rewriting and Their Equivalence

Note that this implies that (%<η µ<η1 . . . ν<ηm)◦ = (ϑ<η ν<η1 . . . ν<ηq)◦. By orthogonality,
this means that % = ϑ and m = q, and moreover (µ<ηi)◦ = (ν<ηi)◦ for all 1 ≤ i ≤ m.
By IH, for each 1 ≤ i ≤ m, there exist multisteps such that µ̂i ↑ ν̂i, where µ̂[i = µ[i
and ν̂[i = ν[i . Taking µ̂ = λx1 . . . xn.% µ̂1 . . . µ̂m and ν̂ = λx1 . . . xn.% ν̂1 . . . ν̂m it is then
easy to check that µ̂ ↑ ν̂, and moreover µ̂[= µ[and ν̂[= ν[.

J

I Lemma 139 (Projection of a substitution). Let µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2. Then
µ1{x\µ2}///ν1{x\ν2}⇒ ξ1{x\ξ2}

Proof. By induction on the derivation of µ1///ν1 ⇒ ξ1:
1. ProjVar: Let y///y ⇒ y. If y 6= x, it is immediate. If y = x, note that µ2///ν2 ⇒ ξ2 by

hypothesis.
2. ProjCon: Let c///c⇒ c. This case is immediate, as c{x\µ2} = c{x\ν2} = c{x\ξ2} = c.
3. ProjRule: Let %///% ⇒ %tgt. This case is immediate, as %tgt is closed, so %{x\µ2} =

%{x\ν2} = % and %tgt{x\ξ2} = %tgt.
4. ProjRuleL: Let %///%src ⇒ %. This case is immediate, as %src is closed, so %{x\µ2} =

%{x\ξ2} = % and %src{x\ν2} = %src.
5. ProjRuleR: Let %src///% ⇒ %tgt. This case is immediate, as %src and %tgt are closed, so

%src{x\µ2} = %src and %{x\ν2} = % and %tgt{x\ξ2} = %tgt.
6. ProjAbs: Let λy.µ1///λy.ν1 ⇒ λy.ξ1 be derived from µ1///ν1 ⇒ ξ1. By IH µ1{x\µ2}///ν1{x\ν2}⇒

ξ1{x\ξ2}, so applying the ProjAbs rule λy.µ1{x\µ2}///λy.ν1{x\ν2}⇒ λy.ξ1{x\ξ2}.
7. ProjApp: Let µ11 µ12///ν11 ν12 ⇒ ξ11 ξ12 be derived from µ11///ν11 ⇒ ξ11 and µ12///ν12 ⇒

ξ12. Then by IH µ11{x\µ2}///ν11{x\ν2} ⇒ ξ11{x\ξ2} and µ12{x\µ2}///ν12{x\ν2} ⇒
ξ12{x\ξ2}, so applying the ProjApp rule (µ11 µ12){x\µ2}///(ν11 ν12){x\ν2}⇒ (ξ11 ξ12){x\ξ2}.

J

I Lemma 140 (Compatibilization of projection). Let µ///ν ⇒ ξ. Then there exist multisteps
µ̂, ν̂, ξ̂ such that:
1. µ [7→∗ µ̂ and ν [7→∗ ν̂ and ξ [7→∗ ξ̂
2. µ̂ ↑ ν̂
3. µ̂///ν̂ ⇒ ξ̂

Proof. If µ ↑ ν holds, we are done. By strong normalization of flattening (Prop. 95) it
suffices to show that if µ///ν ⇒ ξ and µ ↑ ν does not hold, then there exist steps µ [7→ µ̂ and
ν

[7→ ν̂ and ξ [7→ ξ̂ such that µ̂///ν̂ ⇒ ξ̂. The proof proceeds by induction on the derivation
of µ///ν ⇒ ξ. Note that rules ProjVar, ProjCon, ProjRule, ProjRuleL, and ProjRuleR cannot
apply, as then we would have that µ ↑ ν. The remaining possibilities are:
1. ProjAbs: Let λx.µ///λx.ν ⇒ λx.ξ be derived from µ///ν ⇒ ξ. By IH there exist steps

µ
[7→ µ̂ and ν [7→ ν̂ and ν [7→ ξ̂ such that µ̂///ν̂ ⇒ ξ̂. Applying the ProjAbs rule, we obtain

that λx.µ̂///λx.ν̂ ⇒ λx.ξ̂ as required.
2. ProjApp: Let µ1 µ2///ν1 ν2 ⇒ ξ1 ξ2 be derived from µ1///ν1 ⇒ ξ1 and µ2///ν2 ⇒ ξ2. We

consider three subcases:
2.1 If µ1 ↑ ν1 does not hold. Then by IH there exist steps µ1

[7→ µ̂1 and ν1
[7→ ν̂1 and

ξ1
[7→ ξ̂1 such that µ̂1///ν̂1 ⇒ ξ̂1. Then we have that µ1 µ2

[7→ µ̂1 µ2 and ν1 ν2
[7→ ν̂1 ν2

and ξ1 ξ2
[7→ ξ̂1 ξ2 and, applying the ProjApp rule, µ̂1 µ2///ν̂1 ν2 ⇒ ξ̂1 ξ2.

2.2 If µ1 ↑ ν1 holds and µ2 ↑ ν2 does not hold. Similar to the previous case.

P. Barenbaum and E. Bonelli 11:73

2.3 If both µ1 ↑ ν1 and µ2 ↑ ν2 hold. If µ1 and ν1 do not start with a λ-abstraction,
then it can be checked by case analysis on the rules defining the judgment µ1 ↑ ν1 that
µ1 µ2 ↑ ν1 ν2 holds, contradicting the hypothesis. For example, if µ1 ↑ ν1 is derived
using the CVar rule, with the assumption that µ1 does not start with a λ-abstraction, we
would have that µ1 = y µ11 . . . µ1n and ν1 = y ν11 . . . ν1n with µ1i ↑ ν1i for all 1 ≤ i ≤ n.
And from this we would have, using the CVar rule, that y µ11 . . . µ1n µ2 ↑ y ν11 . . . ν1n ν2.
The argument is similar for the other rules besides CVar.
This means that µ1 = λx.µ′1 and ν1 = λx.ν′1. Note, moreover, that the judgment
µ1///ν1 ⇒ ξ1 can only be derived by the ProjAbs rule, so ξ1 = λx.ξ′1 with µ′1///ν′1 ⇒ ξ′1.
To conclude note that by taking µ̂ := µ′1{x\µ2} and ν̂ := ν′1{x\ν2} and ξ̂ := ξ′1{x\ξ2}
we have that µ = (λx.µ′1)µ2

[7→∗ µ̂ and ν = (λx.ν′1) ν2
[7→∗ ν̂ and ξ = (λx.ξ′1) ξ2

[7→∗ ξ̂.
Moreover, µ̂///ν̂ ⇒ ξ̂ is a consequence of Lem. 139.

J

I Proposition 141 (Existence and uniqueness of projection). Let µ, ν be such that µsrc =βη ν
src.

Then:
1. Existence. There exist µ̂, ν̂, ξ̂ such that µ̂[= µ[and ν̂[= ν[and µ̂///ν̂ ⇒ ξ̂.
2. Compatibility. Furthermore, µ̂ and ν̂ can be chosen in such a way that µ̂ ↑ ν̂.
3. Uniqueness. If (µ̂′)[= µ[and (ν̂′)[= ν[and µ̂′///ν̂′ ⇒ ξ̂′ then (ξ̂′)[= ξ[.

Proof. Note that µJ = νJ, so by Lem. 138 there exist multisteps µ̂, ν̂ such that µ̂ ↑ ν̂ and
moreover µ̂[= µ[and ν̂[= ν[. By Lem. 132 this implies that there exists a multistep ξ̂ such
that µ̂///ν̂ ⇒ ξ̂. This proves items 1. and 2.

For item 3., suppose that µ̂′, ν̂′, ξ̂′ are such that (µ̂′)[= µ[and (ν̂′)[= ν[and µ̂′///ν̂′ ⇒ ξ̂′.
By Lem. 140 this implies that there exist multisteps µ̂′′, ν̂′′, ξ̂′′ such that µ̂′ [7→∗ µ̂′′ and
ν̂′

[7→∗ ν̂′′ and ξ̂′ [7→∗ ξ̂′′, and moreover µ̂′′ ↑ ν̂′′ and µ̂′′///ν̂′′ ⇒ ξ̂′′. Note that µ̂′[= µ̂′′[given
that µ̂′ [7→∗ µ̂′′. Similarly, ν̂′[= ν̂′′[and ξ̂′[= ξ̂′′[. Hence by Lem. 135 we may conclude that
ξ̂[= ξ̂′[, as required. J

I Proposition 142 (Properties of the projection operator).
1. µ/ν = (µ/ν)[
2. µ/ν = µ[/ν[

3. µ/µ = µI and, as particular cases:

s/s = s[x/x = x c/c = c %/% = %I

4. µ/µJ = µ[and, as a particular case, %/%J = %

5. µJ/µ = µI and, as a particular case, %J/% = %I

6. (λx.µ)/(λx.ν) = (λx.(µ/ν))[
7. (µ1 µ2)/(ν1 ν2) = ((µ1/ν1) (µ2/ν2))[provided that µ1/ν1 and µ2/ν2 are defined.

Proof. We prove each item:
1. µ/ν = (µ/ν)[: By definition there exist µ̂, ν̂, ξ̂ such that µ̂[= µ[and ν̂[= ν[and

µ̂///ν̂ ⇒ ξ̂ where µ/ν = ξ̂[. Then µ/ν = ξ̂[= (ξ̂[)[= (µ/ν)[.
2. µ/ν = µ[/ν[: By definition of µ/ν there exist µ̂, ν̂, ξ̂ such that µ̂[= µ[and ν̂[= ν[and

µ̂///ν̂ ⇒ ξ̂ where µ/ν = ξ̂[. Then since µ[= (µ[)[and ν[= (ν[)[, the triple µ̂, ν̂, ξ̂ also
fulfills the conditions for the definition of µ[/ν[. But Prop. 141 ensures uniqueness, so
µ/ν = ξ̂[= µ[/ν[.

3. µ/µ = µI: It suffices to note that µ///µ⇒ µtgt holds, as can be checked by induction on
µ.

CSL 2023

11:74 Reductions in Higher-Order Rewriting and Their Equivalence

4. µ/µJ = µ[: It suffices to note that µ///µsrc ⇒ µ, as can be checked by induction on µ.
5. µJ/µ = µI: It suffices to note that µsrc///µ⇒ µtgt, as can be checked by induction on µ.
6. (λx.µ)/(λx.ν) = (λx.(µ/ν))[: Observe that the left-hand side of the equation is defined

if and only if the right-hand side is defined, given that (λx.µ)src =βη (λx.ν)src if and only
if µsrc =βη ν

src, which is easy to check.
By definition of µ/ν there exist µ̂, ν̂, ξ̂ such that µ̂[= µ[and ν̂[= ν[and µ̂///ν̂ ⇒ ξ̂

where µ/ν = ξ̂[. Then note, by confluence of flattening (Prop. 96), that (λx.µ̂)[=
(λx.µ̂[)[= (λx.µ[)[= (λx.µ)[and, similarly, (λx.ν̂)[= (λx.ν)[. Moreover, by the
ProjAbs rule, λx.µ̂///λx.ν̂ ⇒ λx.ξ̂. By uniqueness of projection (Prop. 141) this means
that (λx.µ)/(λx.ν) = (λx.ξ̂)[= (λx.ξ̂[)[= (λx.(µ/ν))[.

7. (µ1 µ2)/(ν1 ν2) = ((µ1/ν1) (µ2/ν2))[: Observe that, if the right-hand side of the equation is
defined, then the left-hand side is also defined, given that if µsrc

1 =βη ν
src
1 and µsrc

2 =βη ν
src
2

then (µ1 µ2)src =βη (ν1 ν2)src.
Note that, by hypothesis, the right-hand side of the equation is defined. By definition
of µ1/ν1 there exist µ̂1, ν̂1, ξ̂1 such that µ̂[1 = µ[1 and ν̂[1 = ν[1 and µ̂1///ν̂1 ⇒ ξ̂1 where
µ1/ν1 = ξ̂[1. Similarly, by definition of µ2/ν2 there exist µ̂2, ν̂2, ξ̂2 such that µ̂[2 = µ[2 and
ν̂[2 = ν[2 and µ̂2///ν̂2 ⇒ ξ̂2 where µ2/ν2 = ξ̂[2.
Note, by confluence of flattening (Prop. 96), (µ̂1 µ̂2)[= (µ̂[1 µ̂[2)[= (µ[1 µ[2)[= (µ1 µ2)[
and, similarly, (ν̂1 ν̂2)[= (ν1 ν2)[. Moreover, by the ProjApp rule, µ̂1 µ̂2///ν̂1 ν̂2 ⇒ ξ̂1 ξ̂2.
By uniqueness of projection Prop. 141 this means that µ1 µ2/ν1 ν2 = (ξ̂1 ξ̂2)[= (ξ̂[1 ξ̂[2)[=
((µ1/ν1) (µ2/ν2))[.

J

I Example 143. Let % : λx.cx→ λx.dx. Then:

(λx.(λx.cx)x)/(λx.% x) = (λx.((λx.cx)x)/(% x))[
= (λx.(((λx.cx)/%)(x/x))[)[
= (λx.((λx.dx)x)[)[
= (λx.dx)[
= d

I Lemma 144 (Cube lemma). Given multisteps µ, ν, ξ such that µsrc =βη ν
src =βη ξ

src, the
following equality holds:

(µ/ν)/(ξ/ν) = (µ/ξ)/(ν/ξ)

Proof. The proof proceeds by induction on the number of applications in the ◦7→, η-normal
form of µ. Note by Prop. 142 that, without loss of generality, we may assume that µ, ν, and
ξ are in ◦7→, η-normal form. The head of µ may be a variable, a constant, or a rule symbol.
We consider three cases:
1. µ headed by a variable, µ = λ~x.y µ1 . . . µn. Then since µ and ν are coinitial, the

head of ν must be y, and since we assume that the multisteps are in η-normal form,
ν = λ~x.y ν1 . . . νn. Similarly, since µ and ξ are coinitial, ξ = λ~x.y ξ1 . . . ξn. Then:

(µ/ν)/(ξ/ν) = (λ~x.y ((µ1/ν1)/(ξ1/ν1)) . . . ((µn/νn)/(ξn/νn)))[by Prop. 142
= (λ~x.y ((µ1/ξ1)/(ν1/ξ1)) . . . ((µn/ξn)/(νn/ξn)))[by IH
= (µ/ξ)/(ν/ξ)

2. µ headed by a constant, µ = λ~x.cµ1 . . . µn. Then since µ and ν are coinitial, the
head of ν may be a constant or a rule symbol. We consider are two subcases:

P. Barenbaum and E. Bonelli 11:75

2.1 ν headed by a constant. Then the head of ν must be the constant c, and since the
multisteps are in η-normal form, ν = λ~x.c ν1 . . . νn. Note that, in turn, as µ and ξ are
coinitial, the head of ξ may be a constant or a rule symbol. So we consider two further
subcases:

2.1.1 ξ headed by a constant. Then the head of ξ must be the constant c, and since
the multisteps are in η-normal form, ξ = λ~x.c ξ1 . . . ξn. The proof of this case is
similar to case 1, when the heads of all three multisteps are variables.

2.1.2 ξ headed by a rule symbol. Then since the multisteps are in η-normal form,
ξ = λ~x.% ξ1 . . . ξq. Since µ and ξ are coinitial, by Lem. 137 there exist multisteps
µ′1, . . . , µ

′
q in ◦7→, η-normal form such that µ = (λ~x.%src µ′1 . . . µ

′
q)◦ where each µ′i has

strictly less applications than µ, and such that µ′i and ξi are coinitial. Similarly, since
ν and ξ are coinitial, by Lem. 137 there exist multisteps ν′1, . . . , ν′q in ◦7→, η-normal
form such that ν = (λ~x.%src ν′1 . . . ν

′
q)◦ and such that, for each 1 ≤ i ≤ q, ν′i and ξi

are coinitial.
Before proceeding, note that, using Prop. 142, we have:

(%src/%src)/(%/%src) = (%J/%J)/(%/%J)
= %J/%

= %I

= %I/%I

= (%J/%)/(%J/%)
= (%src/%)/(%src/%)

Then:

(µ/ν)/(ξ/ν)
= ((λ~x.%src µ′1 . . . µ

′
q)/(λ~x.%src ν′1 . . . ν

′
q))/((λ~x.% ξ1 . . . ξq)/(λ~x.%src ν′1 . . . ν

′
q))

by Prop. 142
= (λ~x.((%src/%src)/(%/%src)) ((µ′1/ν′1)/(ξ1/ν

′
1)) . . . ((µ′q/ν′q)/(ξq/ν′q)))[

by Prop. 142
= (λ~x.((%src/%)/(%src/%)) ((µ′1/ν′1)/(ξ1/ν

′
1)) . . . ((µ′q/ν′q)/(ξq/ν′q)))[

by the preceding remark
= (λ~x.((%src/%)/(%src/%)) ((µ′1/ξ1)/(ν′1/ξ1)) . . . ((µ′q/ξq)/(ν′q/ξq)))[

by IH
= ((λ~x.%src µ′1 . . . µ

′
q)/(λ~x.% ξ1 . . . ξq))/((λ~x.%src ν′1 . . . ν

′
q)/(λ~x.% ξ1 . . . ξq))

by Prop. 142
= (µ/ξ)/(ν/ξ)

by Prop. 142

2.2 ν headed by a rule symbol. Then since the multisteps are in η-normal form,
ν = λ~x.% ν1 . . . νq Note that, in turn, as µ and ξ are coinitial, the head of ξ may be
a constant or a rule symbol. If the head of ξ is a constant, this case is symmetric to
case 2.1.2, when ν is headed by a constant and ξ by a rule symbol. If the head of ξ is a
rule symbol, then since the multisteps are in η-normal form, ξ = λ~x.% ξ1 . . . ξq. Since µ
and ν are coinitial, by Lem. 137 there exist multisteps µ′1, . . . , µ′q in ◦7→, η-normal form
such that µ = (λ~x.%src µ′1 . . . µ

′
q)◦ where each µ′i has strictly less applications than µ,

CSL 2023

11:76 Reductions in Higher-Order Rewriting and Their Equivalence

and such that µ′i and νi are coinitial. Then:

(µ/ν)/(ξ/ν)
= ((λ~x.%src µ′1 . . . µ

′
q)/(λ~x.% ν1 . . . νq))/((λ~x.% ξ1 . . . ξq)/(λ~x.% ν1 . . . νq))

by Prop. 142
= (λ~x.((%src/%)/(%/%)) ((µ′1/ν1)/(ξ1/ν1)) . . . ((µ′q/νq)/(ξq/νq)))[

by Prop. 142
= (λ~x.((%src/%)/(%/%)) ((µ′1/ξ1)/(ν1/ξ1)) . . . ((µ′q/ξq)/(νq/ξq)))[

by IH
= ((λ~x.%src µ′1 . . . µ

′
q)/(λ~x.% ξ1 . . . ξq))/((λ~x.% ν1 . . . νq)/(λ~x.% ξ1 . . . ξq))

by Prop. 142
= (µ/ξ)/(ν/ξ)

by Prop. 142

3. µ headed by a rule symbol, µ = λ~x.% µ1 . . . µn. Then since µ and ν are coinitial, the
head of ν may be a constant or a rule symbol. We consider two subcases:

3.1 ν headed by a constant. Then since the multisteps are in η-normal form, ν =
λ~x.c ν1 . . . νm. By Lem. 137 there exist multisteps ν′1, . . . , ν′n in ◦7→, η-normal form such
that ν = (λ~x.%src ν′1 . . . ν

′
n)◦ where µi and ν′i are coinitial. Moreover, since µ and ξ are

coinitial, the head of ξ may be a constant or a rule symbol. We consider two further
subcases:

3.1.1 ξ headed by a constant. Then since the multisteps are in η-normal form,
ξ = λ~x.c ξ1 . . . ξm. By Lem. 137 there exist multisteps ξ′1, . . . , ξ′n in ◦7→, η-normal
form such that ξ = (λ~x.%src ξ′1 . . . ξ

′
n)◦ where µi and ξ′i are coinitial. Then the proof

proceeds similarly as for case 2.1.2.
3.1.2 ξ headed by a rule symbol. Then since the multisteps are in η-normal form

and by orthogonality, ξ = λ~x.% ξ1 . . . ξn. Then the proof proceeds similarly as for
case 2.1.2, noting that, by Prop. 142:

(%/%src)/(%/%src) = %[/%[

= %I

= %I/%I

= (%/%)/(%src/%)

3.2 ν headed by a rule symbol. Then since the multisteps are in η-normal form, the
head of ξ may be a constant or a rule symbol. If the head of ξ is a constant, this case
is symmetric to case 3.1.2, when ν is headed by a constant and ξ by a rule symbol.
If the head of ξ is a rule symbol, then by orthogonality, ξ = λ~x.% ξ1 . . . ξn. Then the
proof proceeds similarly as for case 2.1.2.

J

E.2 Projection for rewrites
I Lemma 145 (Rewrite/rewrite generalizes rewrite/multistep and multistep/rewrite projections).
If µ is a flat multistep and ρ a coinitial flat rewrite then:
1. µ /1 ρ = µ /3 ρ

2. ρ /2 µ = ρ /3 µ

Proof. Item 2. is immediate by definition of ρ /3 µ. For item 1, we proceed by induction on
ρ:
1. Multistep, ρ = ν. Then µ /1 ν = µ/ν = µ /2 ν = µ /3 ν.

P. Barenbaum and E. Bonelli 11:77

2. Composition, ρ = ρ1 ; ρ2. Then:

µ /1 (ρ1 ; ρ2) = (µ /1 ρ1) /1 ρ2
= (µ /1 ρ1) /3 ρ2 by IH
= (µ /3 ρ1) /3 ρ2 by IH
= µ /3 (ρ1 ; ρ2)

J

I Definition 146 (Size of a flat rewrite). If ρ is a flat rewrite, we write |ρ| for the number of
multisteps in ρ. More precisely:

|µ| def= 1
|ρ ; σ| def= |ρ|+ |σ|

I Lemma 147 (Size of a projection).
1. |µ /1 ρ| = |µ|
2. |ρ /2 µ| = |ρ|
3. |ρ /3 σ| = |ρ|

Proof.
1. By induction on ρ. If ρ = ν, then |µ /1 ν| = |µ/ν| = 1 = |µ|. If ρ = ρ1 ; ρ2, then by IH

we have that |µ /1 (ρ1 ; ρ2)| = |(µ /1 ρ1) /1 ρ2| = |µ /1 ρ1| = |µ|.
2. By induction on ρ. If ρ = ν, then |ν /2 µ| = |ν/µ| = 1 = |ν|. If ρ = ρ1 ; ρ2, then by IH

we have that |(ρ1 ; ρ2) /2 µ| = |(ρ1 /
2 µ) ; (ρ2 /

2 (µ /1 ρ1))| = |ρ1 /
2 µ| + |ρ2 /

2 (µ /1

ρ1)| = |ρ1|+ |ρ2| = |ρ1 ; ρ2|.
3. By induction on σ. If σ = µ, then by item 2. |ρ /3 µ| = |ρ /2 µ| = |ρ|. If σ = σ1 ; σ2 then

by IH we have that |ρ /3 (σ1 ; σ2)| = |(ρ /3 σ1) /3 σ2| = |ρ /3 σ1| = |ρ|.
J

I Lemma 148 (Rewrite/rewrite projection of a sequence). If (ρ1 ; ρ2) and σ are coinitial flat
rewrites, then:

(ρ1 ; ρ2) /3 σ = (ρ1 /
3 σ) ; (ρ2 /

3 (σ /3 ρ1))

Proof. We proceed by induction on |ρ1|+ |ρ2|+ |σ|. We consider two cases, depending on
whether σ is a multistep or a composition:
1. Multistep, σ = µ. Then:

(ρ1 ; ρ2) /3 µ = (ρ1 ; ρ2) /2 µ

= (ρ1 /
2 µ) ; (ρ2 /

2 (µ /1 ρ1))
= (ρ1 /

3 µ) ; (ρ2 /
3 (µ /3 ρ1)) by Lem. 145

2. Composition, σ = σ1 ; σ2. Then:

(ρ1 ; ρ2) /3 (σ1 ; σ2)
= ((ρ1 ; ρ2) /3 σ1) /3 σ2
= ((ρ1 /

3 σ1) ; (ρ2 /
3 (σ1 /

3 ρ1))) /3 σ2 by IH
= ((ρ1 /

3 σ1) /3 σ2) ; ((ρ2 /
3 (σ1 /

3 ρ1)) /3 (σ2 /
3 (ρ1 /

3 σ1))) by IH
= (ρ1 /

3 (σ1 ; σ2)) ; (ρ2 /
3 ((σ1 /

3 ρ1) ; (σ2 /
3 (ρ1 /

3 σ1)))) by definition
= (ρ1 /

3 (σ1 ; σ2)) ; (ρ2 /
3 ((σ1 ; σ2) /3 ρ1)) by IH

To apply the IH the first time, note that |ρ1| + |ρ2| + |σ1| < |ρ1| + |ρ2| + |σ1 ; σ2|. To
apply the IH the second time, note that by Lem. 147 we have that |ρ1 /

3 σ1| + |ρ2 /
3

(σ1 /
3 ρ1)|+ |σ2| = |ρ1|+ |ρ2|+ |σ2| < |ρ1|+ |ρ2|+ |σ1 ; σ2|. To apply the IH the third

time, note that |σ1|+ |σ2|+ |ρ1| < |ρ1|+ |ρ2|+ |σ1 ; σ2|.

CSL 2023

11:78 Reductions in Higher-Order Rewriting and Their Equivalence

J

I Convention 1. From this point on, we overload ρ/σ to stand for ρ /1 σ (if ρ is a multistep),
ρ /2 σ (if σ is a multistep), or ρ /3 σ (in the general case). Note that Lem. 145 and Lem. 148
ensure that this overloading is “safe”.

F Properties of Projection for Flat Rewrites

I Lemma 149 (Basic properties of rewrite projection). Let ρ stand for a flat rewrite. Then
the following hold:
1. ρJ/ρ = ρI

2. ρ/ρJ = ρ

Proof.
1. ρJ/ρ = ρI: By induction on ρ. If ρ = µ is a multistep, then µJ/µ = µI by Prop. 142. If

ρ = ρ1 ; ρ2, then:

(ρ1 ; ρ2)J/(ρ1 ; ρ2) = (ρJ1 /ρ1)/ρ2 by definition
= ρI1 /ρ2 by IH
= ρJ2 /ρ2 as ρtgt

1 =βη ρ
src
2

= ρI2 by IH
= (ρ1 ; ρ2)I

2. ρ/ρJ = ρ: By induction on ρ. If ρ = µ is a multistep, then µ/µJ = µ[= µ by Prop. 142,
using the fact that ρ is flat by hypothesis. If ρ = ρ1 ; ρ2 then:

(ρ1 ; ρ2)/(ρ1 ; ρ2)J
= (ρ1/(ρ1 ; ρ2)J) ; (ρ2/((ρ1 ; ρ2)J/ρ1)) by Lem. 148
= (ρ1/(ρ1 ; ρ2)J) ; (ρ2/(ρJ1 /ρ1))
= (ρ1/(ρ1 ; ρ2)J) ; (ρ2/ρ

I
1) by item 1. of this lemma

= (ρ1/ρ
J
1) ; (ρ2/ρ

J
2) as ρ1 ; ρsrc

2 = ρsrc
1 and ρtgt

1 = ρsrc
2

= ρ1 ; ρ2 by IH

J

I Definition 150 (Splitting, up to flattening). We write µ1
[⇔ µ2 ; µ3 if there exist multisteps

µ′1, µ
′
2, µ
′
3 such that µ′1 ⇔ µ′2 ; µ′3, and moreover (µ′1)[= µ1 and (µ′2)[= µ2 and (µ′3)[= µ3.

I Lemma 151 (Projection of a splitting over a multistep). If µ1 ⇔ µ2 ; µ3 and ν is an
arbitrary multistep coinitial to µ1, then (µ1/ν) [⇔ (µ2/ν) ; (µ3/(ν/µ2)).

Proof. Suppose that µ1 ⇔ µ2 ; µ3. Recall from Prop. 142 that µ1/ν does not depend on
the representative of µ1 (up to flattening), and similarly for µ2/ν and µ3/(ν/µ2). Hence
by Lem. 120 we may assume without loss of generality that µ1 is in ◦7→, η-normal form. We
may also assume without loss of generality that ν is in ◦7→, η-normal form. We show that
(µ1/ν) [⇔ (µ2/ν) ; (µ3/(ν/µ2)) holds, by induction on the number of applications in µ1 and
by case analysis on the head of µ1, using the fact that it is in ◦7→, η-normal form:
1. µ1 headed by a variable. Then µ1 = λ~x.y µ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3 must

be derived by a number of instances of the SAbs rule, followed by n instances of SApp
rule, followed by an instance of the SVar rule at the head. Hence µ2 = λ~x.y µ21 . . . µ2n
and µ3 = λ~x.y µ31 . . . µ3n with µ1i ⇔ µ2i ; µ3i for all 1 ≤ i ≤ n. Moreover, since µ1 and

P. Barenbaum and E. Bonelli 11:79

ν are coinitial and in ◦7→, η-normal form, we have that ν = λ~x.y ν1 . . . νn where µ1i and νi
are coinitial for each 1 ≤ i ≤ n. Then by Prop. 142 we have:

µ1/ν = (λ~x.y (µ11/ν1) . . . (µ1n/νn))[
µ2/ν = (λ~x.y (µ21/ν1) . . . (µ2n/νn))[

µ3/(ν/µ2) = (λ~x.y (µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n)))[

Note that, by IH we have that µ1i/νi
[⇔ µ2i/νi ; µ3i/(νi/µ2i). Hence:

λ~x.y (µ11/ν1) . . . (µ1n/νn) [⇔ λ~x.y (µ21/ν1) . . . (µ2n/νn)
; λ~x.y (µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n))

This in turn implies that (µ1/ν) [⇔ (µ2/ν) ; (µ3/(ν/µ2)).
2. µ1 headed by a constant. Then µ1 = λ~x.cµ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3 must

be derived by a number of instances of the SAbs rule, followed by n instances of SApp
rule, followed by an instance of the SConst rule at the head. Hence µ2 = λ~x.cµ21 . . . µ2n
and µ3 = λ~x.cµ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i for all 1 ≤ i ≤ n. Moreover, since µ1 and
ν are coinitial and in ◦7→, η-normal form, the head of ν must be either a constant or a rule
symbol. We consider two subcases:

2.1 ν headed by a constant. Then ν = λ~x.c ν1 . . . νn. The proof proceeds similarly as
for case 1, when the heads of µ1, µ2, µ3, ν are all variables.

2.2 ν headed by a rule symbol. Then ν = λ~x.% ν1 . . . νq. By Lem. 137 we have that µ1 =
(λ~x.%<η µ′11 . . . µ

′
1q)◦ and µ2 = (λ~x.%<η µ′21 . . . µ

′
2q)◦ and µ3 = (λ~x.%<η µ′31 . . . µ

′
3q)◦

where µ′1i and νi are coinitial for all 1 ≤ i ≤ q, and each µ′1i has strictly less
applications than µ1. By Prop. 142 we have that:

µ1/ν = (λ~x.(%J/%) (µ′11/ν1) . . . (µ′1q/νq))[
µ2/ν = (λ~x.(%J/%) (µ′21/ν1) . . . (µ′2q/νq))[

µ3/(ν/µ2) = (λ~x.(%J/(%/%J)) (µ′31/(ν1/µ
′
21)) . . . (µ′3q/(νq/µ′21)))[

Furthermore, note that, since %<η is a rule-pattern, µ′1i is of the form λy.µ′′1i and a
renaming of µ′′1i occurs in µ1 in a certain position. Similarly, µ′2i and µ′3i are of the form
λy.µ′′2i and λy.µ′′3i respectively, and they occur in µ2 and µ3 respectively, in the same
position. Then, since µ1 ⇔ µ2 ; µ3, we have that µ′1i ⇔ µ′2i ; µ′3i holds for all 1 ≤ i ≤ q.
So we may apply the IH to conclude that (µ′1i/νi)

[⇔ (µ′2i/νi) ; (µ′3i/(νi/µ′2i)) holds
for all 1 ≤ i ≤ q. Moreover, note that (%J/%) ⇔ (%J/%) ; (%J/(%/%I)), given that
%J/% = %I and %J/(%/%J) = %J/% = %I by Prop. 142, and %I ⇔ %I ; %I, which is
immediate given that %I has no rule symbols. Hence:

λ~x.(%J/%) (µ′11/ν1) . . . (µ′1q/νq)
[⇔ λ~x.(%J/%) (µ′21/ν1) . . . (µ′2q/νq)
; λ~x.(%J/(%/%I)) (µ′31/(ν1/µ

′
21)) . . . (µ′3q/(νq/µ′21))

This in turn implies that (µ1/ν) [⇔ (µ2/ν) ; (µ3/(ν/µ2)).
3. µ1 headed by a rule symbol. Then µ1 = λ~x.% µ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3

must be derived must be derived by a number of instances of the SAbs rule, followed by
n instances of SApp rule, followed by an instance of either SRuleL or SRuleL at the head.
We consider two subcases:

3.1 SRuleL: Then µ2 = λ~x.% µ21 . . . µ2n and µ3 = λ~x.%tgt µ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i
for all 1 ≤ i ≤ n. Since µ1 and ν are coinitial, the head of ν must be a constant or a
rule symbol. We consider two further subcases:

CSL 2023

11:80 Reductions in Higher-Order Rewriting and Their Equivalence

3.1.1 ν headed by a constant. By Lem. 137 we have that ν = (λ~x.%<η ν1 . . . νn)◦,
where µ1i and νi are coinitial for all 1 ≤ i ≤ n. By Prop. 142 we have that:

µ1/ν = (λx.(%/%src)(µ11/ν1) . . . (µ1n/νn))[
µ2/ν = (λx.(%/%src)(µ21/ν1) . . . (µ2n/νn))[

µ3/(ν/µ2) = (λx.(%tgt/(%src/%))(µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n)))[

By IH we know that (µ1i/νi)
[⇔ (µ2i/νi) ; (µ3i/(νi/µ2i)) for all 1 ≤ i ≤ n. Moreover,

note that %/%J = % and %I/(%J/%) = %I/%I = %I by Prop. 142, and that
%⇔ % ; %tgt. Hence:

λ~x.% (µ11/ν1) . . . (µ1n/νn) [⇔ λ~x.% (µ21/ν1) . . . (µ2n/νn)
; λ~x.%tgt (µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n))

This in turn implies that µ1/ν
[⇔ µ2/ν ; µ3/(ν/µ1).

3.1.2 ν headed by a rule symbol. Then by orthogonality ν = λ~x.% ν1 . . . νn. By Prop. 142
we have that:

µ1/ν = (λx.(%/%)(µ11/ν1) . . . (µ1n/νn))[
µ2/ν = (λx.(%/%)(µ21/ν1) . . . (µ2n/νn))[

µ3/(ν/µ2) = (λx.(%tgt/(%/%))(µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n)))[

Then the proof proceeds similarly as for case 3.1.1, when the head of ν is a constant,
noting that %/% = %I and that %I/(%/%) = %I/%I = %I by Prop. 142, and that
%tgt ⇔ %tgt ; %tgt.

3.2 SRuleR: Then µ2 = λ~x.%src µ21 . . . µ2n and µ3 = λ~x.% µ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i
for all 1 ≤ i ≤ n. Since µ1 and ν are coinitial, the head of ν must be a constant or a
rule symbol. We consider two further subcases:

3.2.1 ν headed by a constant. By Lem. 137 we have that ν = (λ~x.%<η ν1 . . . νn)◦,
where µ1i and νi are coinitial for all 1 ≤ i ≤ n. Hence:

µ1/ν = (λx.(%/%src) (µ11/ν1) . . . (µ1n/νn))[
µ2/ν = (λx.(%src/%src) (µ21/ν1) . . . (µ2n/νn))[

µ3/(ν/µ2) = (λx.(%/(%src/%src)) (µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n)))[

Then the proof proceeds similarly as for case 3.1.1, noting that %/%J = %, that
%J/%J = %J, and that %/(%J/%J) = %/%J = % by Prop. 142, and moreover that
%⇔ %src ; %.

3.2.2 ν headed by a rule symbol. Then by orthogonality ν = λ~x.% ν1 . . . νn. Hence:

µ1/ν = (λx.(%/%) (µ11/ν1) . . . (µ1n/νn))[
µ2/ν = (λx.(%src/%) (µ21/ν1) . . . (µ2n/νn))[

µ3/(ν/µ2) = (λx.(%/(%/%src)) (µ31/(ν1/µ21)) . . . (µ3n/(νn/µ2n)))[

Then the proof proceeds similarly as for case 3.1.1, noting that %/% = %I, that
%J/% = %I, and that %/(%/%J) = %/% = %I by Prop. 142, and moreover that
%tgt ⇔ %tgt ; %tgt.

J

I Lemma 152 (Projection of a splitting over a rewrite). If µ1 ⇔ µ2 ; µ3 and ρ is an arbitrary
flat rewrite coinitial to µ1, then (µ1/ρ) [⇔ (µ2/ρ) ; (µ3/(ρ/µ2)).

P. Barenbaum and E. Bonelli 11:81

Proof. By induction on ρ.
1. Multistep, ρ = ν. Then this is an immediate consequence of Lem. 151.
2. Composition, ρ = ρ1 ; ρ2. By IH, we have that: µ1/ρ1

[⇔ µ2/ρ1 ; µ3/(ρ1/µ2), that
is, there exist multisteps µ̂1, µ̂2, µ̂3 such that µ̂1 ⇔ µ̂2 ; µ̂3 and such that µ̂[1 = µ1/ρ1

and µ̂[2 = µ2/ρ1 and µ̂[3 = µ3/(ρ1/µ2). Applying the IH again, we have that µ̂1/ρ2
[⇔

µ̂2/ρ2 ; µ̂3/(ρ2/µ̂2). Finally, recall that by Prop. 142, projection does not depend on
the representative of the equivalence class (up to flattening), so we have the following
equalities:

µ1/(ρ1 ; ρ2) = (µ1/ρ1)/ρ2 = µ̂1/ρ2
µ2/(ρ1 ; ρ2) = (µ2/ρ1)/ρ2 = µ̂2/ρ2

µ3/((ρ1 ; ρ2)/µ2) = (µ3/(ρ1/µ2))/(ρ2/(µ2/ρ1)) = µ̂3/(ρ2/µ̂2)

This means that (µ1/(ρ1 ; ρ2)) [⇔ (µ2/(ρ1 ; ρ2)) ; (µ3/((ρ1 ; ρ2)/µ2)) holds, as required.
J

I Lemma 153 (Projection of a multistep over a splitting). If µ1 ⇔ µ2 ; µ3 and ν is an
arbitrary multistep coinitial to µ1, then ν/µ1 = (ν/µ2)/µ3.

Proof. Suppose that µ1 ⇔ µ2 ; µ3. Recall from Prop. 142 that ν/µ1 does not depend on the
representative of µ1 (up to flattening), and similarly for (µ/µ2)/µ3. Hence by Lem. 120 we
may assume without loss of generality that µ1 is in ◦7→, η-normal form. We may also assume
without loss of generality that ν is in ◦7→, η-normal form. We proceed by induction on the
number of applications in µ1 and by case analysis on the head of µ1, using the fact that it is
in ◦7→, η-normal form.

1. µ1 headed by a variable. Then µ1 = λ~x.y µ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3 must
be derived by a number of instances of the SAbs rule, followed by n instances of the SApp
rule, followed by an instance of the SVar rule at the head. Hence µ2 = λ~x.y µ21 . . . µ2n
and µ3 = λ~x.y µ31 . . . µ3n with µ1i ⇔ µ2i ; µ3i for all 1 ≤ i ≤ n. Moreover, since µ1 and
ν are coinitial and in ◦7→, η-normal form, we have that ν = λ~x.y ν1 . . . νn where µ1i and νi
are coinitial for all 1 ≤ i ≤ n. Then by Prop. 142 we have that:

ν/µ1 = (λ~x.y (ν1/µ11) . . . (νn/µ1n))[
(ν/µ2)/µ3 = (λ~x.y ((ν1/µ21)/µ31) . . . ((νn/µ2n)/µ3n))[

To conclude, note that, by IH we have that νi/µ1i = (νi/µ2i)/µ3i.
2. µ1 headed by a constant. Then µ1 = λ~x.cµ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3 must

be derived by a number of instances of the SAbs rule, followed by n instances of the SApp
rule, followed by an instance of the SCons rule at the head. Hence µ2 = λ~x.cµ21 . . . µ2n
and µ3 = λ~x.cµ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i for all 1 ≤ i ≤ n. Moreover, since µ1 and
ν are coinitial and in ◦7→, η-normal form, the head of ν must be either a constant or a rule
symbol. We consider two subcases:

2.1 ν headed by a constant. Then ν = λ~x.c ν1 . . . νn. The proof proceeds similarly as
for case 1, when the heads of µ1, µ2, µ3, ν are all variables.

2.2 ν headed by a rule symbol. Then ν = λ~x.% ν1 . . . νq. By Lem. 137 we have that µ1 =
(λ~x.%<η µ′11 . . . µ

′
1q)◦ and µ2 = (λ~x.%<η µ′21 . . . µ

′
2q)◦ and µ3 = (λ~x.%<η µ′31 . . . µ

′
3q)◦

where µ′1i and νi are coinitial for all 1 ≤ i ≤ q, and each µ′1i has strictly less
applications than µ1. By Prop. 142 we have that:

ν/µ1 = (λ~x.(%/%J) (ν1/µ
′
11) . . . (νq/µ′1q))[

(ν/µ2)/µ3 = (λ~x.((%/%J)/%J) ((ν1/µ
′
21)/µ′31) . . . ((νq/µ′2q)/µ′3q))[

CSL 2023

11:82 Reductions in Higher-Order Rewriting and Their Equivalence

To conclude, it suffices to note that %/%J = (%/%J)/%J by Prop. 142 and that by IH
we have that νi/µ′1i = (νi/µ′2i)/µ′3i holds for all 1 ≤ i ≤ q. To be able to apply the IH,
note that µ′1i ⇔ µ′2i ; µ′3i holds given that %src is a rule-pattern. (The proof of this fact
is discussed in the analogous case in the proof of Lem. 151).

3. µ1 headed by a rule symbol. Then µ1 = λ~x.% µ11 . . . µ1n. Note that µ1 ⇔ µ2 ; µ3
must be derived by a number of instances of the SAbs rule, followed by n instances of the
SApp rule, followed by an instance of SRuleL or SRuleR at the head. We consider two
subcases:

3.1 SRuleL: Then µ2 = λ~x.% µ21 . . . µ2n and µ3 = λ~x.%tgt µ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i
for all 1 ≤ i ≤ n. Since µ1 and ν are coinitial, the head of ν must be either a constant
or a rule symbol. We consider two further subcases:

3.1.1 ν headed by a constant. By Lem. 137 we have that ν = (λ~x.%<η ν1 . . . νn)◦.
By Prop. 142 we have that:

ν/µ1 = (λ~x.(%J/%) (ν1/µ11) . . . (νn/µ1n))[
(ν/µ2)/µ3 = (λ~x.((%J/%)/%I) ((ν1/µ21)/µ31) . . . ((νn/µ2q)/µ3n))[

To conclude, it suffices to note that %J/% = %I = %I/%I = (%J/%)/%I by Prop. 142
and that by IH we have that νi/µ1i = (νi/µ2i)/µ3i holds for all 1 ≤ i ≤ n.

3.1.2 ν headed by a rule symbol. Then by orthogonality ν = λx.% ν1 . . . νn. By Prop. 142
we have that:

ν/µ1 = (λ~x.(%/%) (ν1/µ11) . . . (νn/µ1n))[
(ν/µ2)/µ3 = (λ~x.((%/%)/%I) ((ν1/µ21)/µ31) . . . ((νn/µ2q)/µ3n))[

To conclude, it suffices to note that %/% = %I = %I/%I = (%/%)/%I by Prop. 142
and that by IH we have that νi/µ1i = (νi/µ2i)/µ3i holds for all 1 ≤ i ≤ n.

3.2 SRuleR: Then µ2 = λ~x.%src µ21 . . . µ2n and µ3 = λ~x.% µ31 . . . µ3n where µ1i ⇔ µ2i ; µ3i
for all 1 ≤ i ≤ n. Since µ1 and ν are coinitial, the head of ν must be either a constant
or a rule symbol. We consider two further subcases:

3.2.1 ν headed by a constant. By Lem. 137 we have that ν = (λ~x.%<η ν1 . . . νn)◦.
By Prop. 142 we have that:

ν/µ1 = (λ~x.(%J/%) (ν1/µ11) . . . (νn/µ1n))[
(ν/µ2)/µ3 = (λ~x.((%J/%J)/%) ((ν1/µ21)/µ31) . . . ((νn/µ2q)/µ3n))[

To conclude, it suffices to note that %J/% = %I = %J/% = (%J/%J)/% by Prop. 142
and that by IH we have that νi/µ1i = (νi/µ2i)/µ3i holds for all 1 ≤ i ≤ n.

3.2.2 ν headed by a rule symbol. Then by orthogonality ν = λ~x.% ν1 . . . νn. By Prop. 142
we have that:

ν/µ1 = (λ~x.(%/%) (ν1/µ11) . . . (νn/µ1n))[
(ν/µ2)/µ3 = (λ~x.((%/%J)/%) ((ν1/µ21)/µ31) . . . ((νn/µ2q)/µ3n))[

To conclude, it suffices to note that %/% = %I = %/% = (%/%J)/% by Prop. 142 and
that by IH we have that νi/µ1i = (νi/µ2i)/µ3i holds for all 1 ≤ i ≤ n.

J

I Lemma 154 (Projection of a rewrite over a splitting). If µ1 ⇔ µ2 ; µ3 and ρ is an arbitrary
flat rewrite coinitial to µ1, then ρ/µ1 = (ρ/µ2)/µ3.

Proof. By induction on ρ.

P. Barenbaum and E. Bonelli 11:83

1. Multistep, ρ = ν. Then this is an immediate consequence of Lem. 153.
2. Composition, ρ = ρ1 ; ρ2. Note by Lem. 152 that (µ1/ρ1) [⇔ (µ2/ρ1) ; (µ3/(ρ1/µ2))

holds, that is, there exist multisteps such that µ̂1 ⇔ µ̂2 ; µ̂3 and such that µ̂[1 = µ1/ρ1
and µ̂[2 = µ2/ρ1 and µ̂[3 = µ3/(ρ1/µ2). Then:

(ρ1 ; ρ2)/µ1 = (ρ1/µ1) ; (ρ2/(µ1/ρ1))
= ((ρ1/µ2)/µ3) ; (ρ2/(µ1/ρ1)) by IH
= ((ρ1/µ2)/µ3) ; (ρ2/µ̂1) by Prop. 142
= ((ρ1/µ2)/µ3) ; ((ρ2/µ̂2)/µ̂3) by IH
= ((ρ1/µ2)/µ3) ; ((ρ2/(µ2/ρ1))/(µ3/(ρ1/µ2))) by Prop. 142
= ((ρ1/µ2) ; (ρ2/(µ2/ρ1)))/µ3
= ((ρ1 ; ρ2)/µ2)/µ3

J

I Proposition 155 (Congruence of ∼ with respect to projection). Let ρ ∼ σ, and let τ be an
arbitrary flat rewrite coinitial to ρ. Then:
1. τ/ρ = τ/σ

2. ρ/τ ∼ σ/τ

Proof. We prove each item separately:
1. By induction on the derivation of ρ ∼ σ. The reflexivity, symmetry, and transitivity cases

are immediate. We analyze the cases in which an axiom is applied at the root, as well as
congruence closure below composition contexts:

1.1 Rule ∼-Assoc. Let (ρ1 ; ρ2) ; ρ3 ∼ ρ1 ; (ρ2 ; ρ3). Then:

τ/((ρ1 ; ρ2) ; ρ3) = ((τ/ρ1)/ρ2)/ρ3 = τ/(ρ1 ; (ρ2 ; ρ3))

1.2 Rule ∼-Perm. Let µ1 ∼ µ[2 ; µ[3 be derived from µ1 ⇔ µ2 ; µ3. Then:

τ/µ1 = (τ/µ2)/µ3 by Lem. 154
= (τ/µ[2)/µ[3 by Prop. 142

1.3 Congruence, left of a composition. Let ρ ; υ ∼ σ ; υ be derived from ρ ∼ σ.
Then:

τ/(ρ ; υ) = (τ/ρ)/υ
= (τ/σ)/υ by IH
= τ/(σ ; υ)

1.4 Congruence, right of a composition. Let υ ; ρ ∼ υ ; σ be derived from ρ ∼ σ.
Then:

τ/(υ ; ρ) = (τ/υ)/ρ
= (τ/υ)/σ by IH
= τ/(υ ; σ)

2. By induction on the derivation of ρ ∼ σ. The reflexivity, symmetry, and transitivity cases
are immediate. We analyze the cases in which an axiom is applied at the root, as well as
congruence closure below composition contexts:

CSL 2023

11:84 Reductions in Higher-Order Rewriting and Their Equivalence

2.1 Rule ∼-Assoc. Let (ρ1 ; ρ2) ; ρ3 ∼ ρ1 ; (ρ2 ; ρ3). Then:

((ρ1 ; ρ2) ; ρ3)/τ = ((ρ1 ; ρ2)/τ) ; (ρ3/(τ/(ρ1 ; ρ2))) by Lem. 148
= ((ρ1/τ) ; (ρ2/(τ/ρ1))) ; (ρ3/(τ/(ρ1 ; ρ2))) by Lem. 148
∼ (ρ1/τ) ; ((ρ2/(τ/ρ1)) ; (ρ3/(τ/(ρ1 ; ρ2)))) by ∼-Assoc
= (ρ1/τ) ; ((ρ2/(τ/ρ1)) ; (ρ3/((τ/ρ1)/ρ2))))
= (ρ1/τ) ; ((ρ2 ; ρ3)/(τ/ρ1)) by Lem. 148
= (ρ1 ; (ρ2 ; ρ3))/τ by Lem. 148

2.2 Rule ∼-Perm. Let µ1 ∼ µ[2 ; µ[3 be derived from µ1 ⇔ µ2 ; µ3. Then by Lem. 152
we have that (µ1/τ) [⇔ (µ2/τ) ; (µ3/(τ/µ2)), that is, there exist multisteps such that
µ̂1 ⇔ µ̂2 ; µ̂3 and such that µ̂[1 = µ1/τ and µ̂[2 = µ2/τ and µ̂[3 = µ3/(τ/µ2). Hence:

µ1/τ = µ̂[1
∼ µ̂[1 ; µ̂[2 by Prop. 121, as µ̂1 ⇔ µ̂2 ; µ̂3
= (µ2/τ) ; (µ3/(τ/µ2))
= (µ[2/τ) ; (µ[3/(τ/µ2)) by Prop. 142
= (µ[2 ; µ[3)/τ

2.3 Congruence, left of a composition. Let ρ ; υ ∼ σ ; υ be derived from ρ ∼ σ.
Then:

(ρ ; υ)/τ = (ρ/τ) ; (υ/(τ/ρ)) by Lem. 148
∼ (σ/τ) ; (υ/(τ/ρ)) by IH
= (σ/τ) ; (υ/(τ/σ)) as τ/ρ = τ/σ, by item 1. of this proposition
= (σ ; υ)/τ by Lem. 148

2.4 Congruence, right of a composition. Let υ ; ρ ∼ υ ; σ be derived from ρ ∼ σ.
Then:

(υ ; ρ)/τ = (υ/τ) ; (ρ/(τ/υ)) by Lem. 148
∼ (υ/τ) ; (σ/(τ/υ)) by IH
= (υ ; σ)/τ by Lem. 148

J

I Lemma 156 (Self-erasure). ρ/ρ ∼ ρI

Proof. By induction on ρ. If ρ = µ is a multistep, then µ/µ = µI by Prop. 142. If ρ = ρ1 ; ρ2
then:

(ρ1 ; ρ2)/(ρ1 ; ρ2) = ((ρ1 ; ρ2)/ρ1)/ρ2
= ((ρ1/ρ1) ; (ρ2/(ρ1/ρ1)))/ρ2 by Lem. 148
= ((ρ1/ρ1)/ρ2) ; ((ρ2/(ρ1/ρ1))/(ρ2/(ρ1/ρ1))) by Lem. 148
∼ (ρI1 /ρ2) ; ((ρ2/(ρ1/ρ1))/(ρ2/(ρ1/ρ1))) by IH and Prop. 155
= (ρJ2 /ρ2) ; ((ρ2/(ρ1/ρ1))/(ρ2/(ρ1/ρ1))) as ρtgt

1 =βη ρ
src
2

= ρI2 ; ((ρ2/(ρ1/ρ1))/(ρ2/(ρ1/ρ1))) by Lem. 149
= (ρ2/(ρ1/ρ1))/(ρ2/(ρ1/ρ1)) by ≈-IdL and Thm. 130
= (ρ2/ρ

I
1)/(ρ2/ρ

I
1) by IH and Prop. 155

= (ρ2/ρ
J
2)/(ρ2/ρ

J
2) as ρtgt

1 =βη ρ
src
2

= ρ2/ρ2 by Lem. 149
∼ ρI2 by IH
= (ρ1 ; ρ2)I

J

P. Barenbaum and E. Bonelli 11:85

I Lemma 157 (Multistep permutation). Let µ, ν be coinitial multisteps. Then:

µ ; (ν/µ) ≈ ν ; (µ/ν)

Proof. Recall that if µ[= (µ′)[and ν[= (ν′)[, then µ/ν = µ′/ν′ by Prop. 142. Moreover,
by soundness of flattening Lem. 100 if µ is a step and µ′ is its ◦7→, η-normal form, then µ ≈ µ′.
Hence, to prove the statement of the lemma, it suffices to show that µ ; (ν/µ) ≈ ν ; (µ/ν)
assuming that µ, ν are coinitial multisteps in ◦7→, η-normal form.

The proof proceeds by induction on the number of applications in µ, and by case analysis
on the head of µ:
1. µ headed by a variable. Then µ = λ~x.y µ1 . . . µn. Since µ and ν are coinitial, the

head of ν cannot be a constant or a rule symbol, and in fact it must also be y, that is
ν = λ~x.y ν1 . . . νn. Note that:

µ ; (ν/µ)
= (λ~x.y µ1 . . . µn) ; ((λ~x.y ν1 . . . νn)/(λ~x.y µ1 . . . µn))
= (λ~x.y µ1 . . . µn) ; (λ~x.y (ν1/µ1) . . . (νn/µn))[by Prop. 142
≈ (λ~x.y µ1 . . . µn) ; (λ~x.y (ν1/µ1) . . . (νn/µn)) by Lem. 100
≈ λ~x.y (µ1 ; (ν1/µ1)) . . . (µn ; (νn/µn)) by ≈-Abs, ≈-App

Similarly:

ν ; (µ/ν) ≈ λ~x.y (ν1 ; (µ1/ν1)) . . . (νn ; (µn/νn))

Moreover, by IH we have that µi ; (νi/µi) ≈ νi ; (µi/νi) for all 1 ≤ i ≤ n, so:

λ~x.y (µ1 ; (ν1/µ1)) . . . (µn ; (νn/µn)) ≈ λ~x.y (ν1 ; (µ1/ν1)) . . . (νn ; (µn/νn))

2. µ headed by a constant. Then µ = λ~x.cµ1 . . . µn. Since µ and ν are coinitial, the
head of ν can be either c or a rule symbol %. We consider two subcases:

2.1 ν headed by a constant. Then ν = λ~x.c ν1 . . . νn. The proof of this case proceeds
similarly as for case 1, when the heads of µ and ν are both variables.

2.2 ν headed by a rule symbol. Then ν = λ~x.% ν1 . . . νq. By Lem. 137 we have that
µ1 = (λ~x.%<η µ′1 . . . µ′q)◦ where µ′i and νi are coinitial for all 1 ≤ i ≤ q, and each µ′i
has strictly less applications than µ. Note that:

µ ; (ν/µ)
= (λ~x.%<η µ′1 . . . µ′q)◦ ; ((λ~x.% ν1 . . . νq)/(λ~x.%<η µ′1 . . . µ′q)◦)
= (λ~x.%<η µ′1 . . . µ′q)◦ ; (λ~x.(%/%src)(ν1/µ

′
1) . . . (νq/µ′q))[by Prop. 142

≈ (λ~x.%src µ′1 . . . µ
′
q) ; (λ~x.(%/%src)(ν1/µ

′
1) . . . (νq/µ′q)) by Lem. 100

≈ (λ~x.(%src ; (%/%src))(µ′1 ; (ν1/µ
′
1)) . . . (µ′q ; (νq/µ′q))) by ≈-Abs, ≈-App

Similarly:

ν ; (µ/ν) ≈ (λ~x.(% ; (%src/%))(ν1 ; (µ′1/ν1)) . . . (νq ; (µ′q/νq)))

Note that:

%src ; (%/%src) = %src ; % by Prop. 142
= % by ≈-IdL
= % ; %tgt by ≈-IdR
≈ % ; %I by Lem. 100
= % ; (%src/%)

CSL 2023

11:86 Reductions in Higher-Order Rewriting and Their Equivalence

Moreover, by IH we know that µ′i ; (νi/µ′i) ≈ νi ; (µ′i/νi) for all 1 ≤ i ≤ q. Hence:

λ~x.(%src ; (%/%src))(µ′1 ; (ν1/µ
′
1)) . . . (µ′q ; (νq/µ′q))

≈ λ~x.(% ; (%src/%))(ν1 ; (µ′1/ν1)) . . . (νq ; (µ′q/νq))

3. µ headed by a rule symbol. Then µ = λ~x.% µ1 . . . µn. Since µ and ν are coinitial, the
head of ν can be either c or a rule symbol %. We consider two subcases:

3.1 ν headed by a constant. Then the proof of this case proceeds similarly as the proof
for the symmetric case 2.2, when the head of µ is a constant and the head of ν is a
rule symbol.

3.2 ν headed by a rule symbol. Then by orthogonality ν = λ~x.% ν1 . . . νn. Proceeding
similarly as for case 1, we have that:

µ ; (ν/µ) ≈ λ~x.(%/(%/%)) (µ1 ; (ν1/µ1)) . . . (µn ; (νn/µn))
ν ; (µ/ν) ≈ λ~x.(%/(%/%)) (ν1 ; (µ1/ν1)) . . . (νn ; (µn/νn))

By IH we have that µi ; (νi/µi) ≈ νi ; (µi/νi) for all 1 ≤ i ≤ n, so:

λ~x.(%/(%/%)) (µ1 ; (ν1/µ1)) . . . (µn ; (νn/µn))
≈ λ~x.(%/(%/%)) (ν1 ; (µ1/ν1)) . . . (νn ; (µn/νn))

J

I Lemma 158 (Rewrite permutation). If ρ, σ are coinitial flat rewrites then:

ρ ; (σ/ρ) ∼ σ ; (ρ/σ)

Proof. We proceed by induction on ρ:
1. Multistep, ρ = µ. To prove µ ; (σ/µ) ∼ σ ; (µ/σ) we proceed by a nested induction on

σ:
1.1 Multistep, σ = ν. By Lem. 157 we have that µ ; (ν/µ) ≈ ν ; (µ/ν). By Thm. 130

this implies that µ[; (ν/µ)[∼ ν[; (µ/ν)[. But µ and ν are flat, and by Prop. 142 we
know that µ/ν = (µ/ν)[and ν/µ = (ν/µ)[. Hence µ ; (ν/µ) ∼ ν ; (µ/ν).

1.2 Composition, σ = σ1 ; σ2. To alleviate the notation, we work implicitly modulo the
∼-Assoc rule. Note that:

µ ; ((σ1 ; σ2)/µ) = µ ; (σ1/µ) ; (σ2/(µ/σ1))
∼ σ1 ; (µ/σ1) ; (σ2/(µ/σ1)) by IH
∼ σ1 ; σ2 ; ((µ/σ1)/σ2) by IH
= σ1 ; σ2 ; (µ/(σ1 ; σ2))

2. Composition, ρ = ρ1 ; ρ2. To alleviate the notation, we work implicitly modulo the
∼-Assoc rule. Note that:

ρ1 ; ρ2 ; (σ/(ρ1 ; ρ2)) = ρ1 ; ρ2 ; ((σ/ρ1)/ρ2)
∼ ρ1 ; (σ/ρ1) ; (ρ2/(σ/ρ1)) by IH
∼ σ ; (ρ1/σ) ; (ρ2/(σ/ρ1)) by IH
= σ ; ((ρ1 ; ρ2)/σ) by Lem. 148

J

P. Barenbaum and E. Bonelli 11:87

G Projection for Arbitrary Rewrites

In this subsection we prove properties of the generalized projection operator.

I Lemma 159 (Projection of abstraction). The following hold:
1. If µ is a flat multistep and ρ is a coinitial flat rewrite, then (λx.µ)[/1 (λx.ρ)[= (λx.(µ /1

ρ))[.
2. If ρ is a flat rewrite and µ is a coinitial flat multistep, then (λx.ρ)[/2 (λx.µ)[= (λx.(ρ /2

µ))[.
3. If ρ, σ are coinitial flat rewrites, then (λx.ρ)[/3 (λx.σ)[= (λx.(ρ /3 σ))[.

Proof. We prove each item separately:
1. We proceed by induction on ρ:
1.1 If ρ = ν, then:

(λx.µ)[/1 (λx.ν)[= (λx.µ)[/(λx.ν)[by definition
= ((λx.µ)/(λx.ν))[by Prop. 142
= (λx.(µ/ν))[by Prop. 142
= (λx.(µ /1 ν))[by definition

1.2 If ρ = ρ1 ; ρ2, then:

(λx.µ)[/1 (λx.(ρ1 ; ρ2))[= (λx.µ)[/1 ((λx.ρ1)[; (λx.ρ2)[) by Prop. 96
= ((λx.µ)[/1 (λx.ρ1)[) /1 (λx.ρ2)[by definition
= (λx.(µ /1 ρ1))[/1 (λx.ρ2)[by IH
= (λx.((µ /1 ρ1) /1 ρ2))[by IH
= (λx.(µ /1 (ρ1 ; ρ2)))[by definition

2. We proceed by induction on ρ:
2.1 If ρ = ν, then:

(λx.ν)[/2 (λx.µ)[= (λx.ν)[/(λx.µ)[by definition
= (λx.(ν/µ))[by Prop. 142
= (λx.(ν /2 µ))[by definition

2.2 If ρ = ρ1 ; ρ2, then:

(λx.(ρ1 ; ρ2))[/2 (λx.µ)[
= ((λx.ρ1)[; (λx.ρ2)[) /2 (λx.µ)[by Prop. 96
= ((λx.ρ1)[/2 (λx.µ)[) ; ((λx.ρ2)[/2 ((λx.µ)[/1 (λx.ρ1)[)) by definition
= ((λx.ρ1)[/2 (λx.µ)[) ; ((λx.ρ2)[/2 (λx.(µ /1 ρ1))[) by item 1 of this lemma
= (λx.(ρ1 /

2 µ))[; (λx.(ρ2 /
2 (µ /1 ρ1)))[) by IH

= (λx.((ρ1 /
2 µ) ; (ρ2 /

2 (µ /1 ρ1))))[by Prop. 96
= (λx.((ρ1 ; ρ2) /2 µ))[by definition

3. We proceed by induction on σ:
3.1 If σ = µ, then:

(λx.ρ)[/3 (λx.µ)[= (λx.ρ)[/2 (λx.µ)[by definition
= (λx.(ρ /2 µ))[by item 2 of this lemma
= (λx.(ρ /3 µ))[by definition

CSL 2023

11:88 Reductions in Higher-Order Rewriting and Their Equivalence

3.2 If σ = σ1 ; σ2, then:

(λx.ρ)[/3 (λx.(σ1 ; σ2))[
= (λx.ρ)[/3 ((λx.σ1)[; (λx.σ2)[) by Prop. 96
= ((λx.ρ)[/3 (λx.σ1)[) /3 (λx.σ2)[by definition
= (λx.(ρ /3 σ1))[/3 (λx.σ2)[by IH
= (λx.((ρ /3 σ1) /3 σ2))[by IH
= (λx.(ρ /3 (σ1 ; σ2)))[by definition

J

I Lemma 160 (Projection of application). The following hold:
1. If µ1, µ2 are flat multisteps and ρ1, ρ2 are flat rewrites such that µ1 and ρ1 are coinitial

and µ2 and ρ2 are coinitial, then (µ1 µ2)[/1 (ρ1 ρ2)[= ((µ1 /
1 ρ1) (µ2 /

1 ρ2))[.
2. If ρ1, ρ2 are flat rewrites and µ1, µ2 are flat multisteps such that ρ1 and µ1 are coinitial

and ρ2 and µ2 are coinitial, then (ρ1 ρ2)[/2 (µ1 µ2)[= ((ρ1 /
2 µ1) (ρ2 /

2 µ2))[.
3. If ρ1, ρ2, σ1, σ2 are flat rewrites such that ρ1 and σ1 are coinitial and ρ2 and σ2 are

coinitial, then (ρ1 ρ2)[/3 (σ1 σ2)[= ((ρ1 /
3 σ1) (ρ2 /

3 σ2))[.

Proof. We prove each item separately:
1. Using the fact that [7→ is strongly normalizing (Prop. 95), we proceed by induction on the

length of the longest reduction ρ1 ρ2
[7→∗ (ρ1 ρ2)[, considering four cases, depending on

whether each of ρ1 and ρ2 is a multistep or a composition:
1.1 If both are multisteps, i.e. ρ1 = ν1 and ρ2 = ν2:

(µ1 µ2)[/1 (ν1 ν2)[= (µ1 µ2)[/(ν1 ν2)[by definition
= ((µ1 µ2)/(ν1 ν2))[by Prop. 142
= ((µ1/ν1) (µ2/ν2))[by Prop. 142
= ((µ1 /

1 ν1) (µ2 /
1 ν2))[by definition

1.2 If ρ1 = ν1 is a multistep and ρ2 = ρ21 ; ρ22 is a sequence:

(µ1 µ2)[/1 (ν1 (ρ21 ; ρ22))[
= (µ1 µ2)[/1 ((ν1 ρ21)[; (νtgt

1 ρ22)[) by Prop. 96
= ((µ1 µ2)[/1 (ν1 ρ21)[) /1 (νtgt

1 ρ22)[by definition
= ((µ1 /

1 ν1) (µ2 /
1 ρ21))[/1 (νtgt

1 ρ22)[by IH
= (((µ1 /

1 ν1) /1 νtgt
1) ((µ2 /

1 ρ21) /1 ρ22))[by IH
= ((µ1 /

1 (ν1 ; νtgt
1)) (µ2 /

1 (ρ21 ; ρ22)))[by definition
= ((µ1 /

1 (ν1 ; νI1)) (µ2 /
1 (ρ21 ; ρ22)))[by Prop. 96

= ((µ1 /
1 ν1)) (µ2 /

1 (ρ21 ; ρ22)))[by Prop. 155, since ν1 ; νI1 ∼ ν1

To justify that the IH may be applied, note that ν1 (ρ21 ; ρ22) [7→ (ν1 ρ21) ; (νtgt
1 ρ22).

1.3 If ρ1 = ρ11 ; ρ12 is a sequence and ρ2 = ν2 is a multistep, the proof is similar as for
the previous case.

1.4 If both are sequences, i.e. ρ1 = ρ11 ; ρ12 and ρ2 = ρ21 ; ρ22:

(µ1 µ2)[/1 ((ρ11 ; ρ12) (ρ21 ; ρ22))[
= (µ1 µ2)[/1 (((ρ11 ; ρ12) ρsrc

21))[; (ρtgt
12 (ρ21 ; ρ22))[) by Prop. 96

= ((µ1 µ2)[/1 ((ρ11 ; ρ12) ρsrc
21))[) /1 (ρtgt

12 (ρ21 ; ρ22))[by definition
= ((µ1 /

1 (ρ11 ; ρ12)) (µ2 /
1 ρsrc

21))[/1 (ρtgt
12 (ρ21 ; ρ22))[by IH

= (((µ1 /
1 (ρ11 ; ρ12)) /1 ρtgt

12) ((µ2 /
1 ρsrc

21) /1 (ρ21 ; ρ22)))[by IH
= ((µ1 /

1 ((ρ11 ; ρ12) ; ρtgt
12)) (µ2 /

1 (ρsrc
21 ; (ρ21 ; ρ22))))[by definition

= ((µ1 /
1 ((ρ11 ; ρ12) ; ρI12)) (µ2 /

1 (ρJ21 ; (ρ21 ; ρ22))))[by Prop. 96
= ((µ1 /

1 (ρ11 ; ρ12)) (µ2 /
1 (ρ21 ; ρ22)))[by Prop. 155

P. Barenbaum and E. Bonelli 11:89

To justify that the IH may be applied, note that (ρ11 ; ρ12) (ρ21 ; ρ22) [7→ (ρ11 ; ρ12) ρsrc
21 ;

ρtgt
12 (ρ21 ρ22). To justify the last equality, note that (ρ11 ; ρ12) ; ρI12 ∼ ρ11 ; ρ12 and
ρJ21 ; (ρ21 ; ρ22) ∼ ρ21 ; ρ22.

2. Using the fact that [7→ is strongly normalizing (Prop. 95), we proceed by induction on the
length of the longest reduction ρ1 ρ2

[7→∗ (ρ1 ρ2)[, considering four cases, depending on
whether each of ρ1 and ρ2 is a multistep or a composition:

2.1 If both are multisteps, i.e. ρ1 = ν1 and ρ2 = ν2:

(ν1 ν2)[/2 (µ1 µ2)[= (ν1 ν2)[/(µ1 µ2)[by definition
= ((ν1 ν2)/(µ1 µ2))[by Prop. 142
= ((ν1/µ1) (ν2/µ2))[by Prop. 142
= ((ν1 /

2 µ1) (ν2 /
2 µ2))[by definition

2.2 If ρ1 = ν1 as a multistep and ρ2 = ρ21 ; ρ22 is a sequence:

(ν1 (ρ21 ; ρ22))[/2 (µ1 µ2)[
= ((ν1 ρ21)[; (νtgt

1 ρ22)[) /2 (µ1 µ2)[
by Prop. 96

= ((ν1 ρ21)[/2 (µ1 µ2)[) ; ((νtgt
1 ρ22)[/2 ((µ1 µ2)[/1 (ν1 ρ21)[))

by definition
= ((ν1 ρ21)[/2 (µ1 µ2)[) ; ((νtgt

1 ρ22)[/2 ((µ1 /
1 ν1) (µ2 /

1 ρ21))[)
by item 1. of this lemma

= ((ν1 /
2 µ1) (ρ21 /

2 µ2))[; (((νtgt
1 /2 (µ1 /

1 ν1)) (ρ22 /
2 (µ2 /

1 ρ21)))[
by IH

= ((ν1 /
2 µ1) (ρ21 /

2 µ2))[; (((ν1 /
2 µ1)tgt (ρ22 /

2 (µ2 /
1 ρ21)))[

by (?))
= ((ν1 /

2 µ1) ((ρ21 /
2 µ2) ; (ρ22 /

2 (µ2 /
1 ρ21))))[

by Prop. 96
= ((ν1 /

2 µ1) ((ρ21 ; ρ22) /2 µ2))[
by definition

To justify that the IH may be applied, note that ν1 (ρ21 ; ρ22) [7→ (ν1 ρ21) ; (νtgt
1 ρ22).

To justify the (?) step, note that:

(. . . νtgt
1 /2 (µ1 /

1 ν1) . . .)[
= (. . . νI1 /2 (µ1 /

1 ν1) . . .)[by Prop. 96
= (. . . (µ1 /

1 ν1)J /2 (µ1 /
1 ν1) . . .)[

= (. . . (µ1 /
1 ν1)I . . .)[by Lem. 149

= (. . . (ν1 /
1 µ1)I . . .)[by Lem. 157 and Lem. 52

= (. . . (ν1 /
1 µ1)tgt . . .)[by Prop. 96

2.3 If ρ1 = ρ11 ; ρ12 as a sequence and ρ2 = ν2 is a multistep, the proof is similar as for
the previous case.

2.4 If both are sequences, i.e. ρ1 = ρ11 ; ρ12 and ρ2 = ρ21 ; ρ22, let s = ((ρ21 ; ρ22) /2

CSL 2023

11:90 Reductions in Higher-Order Rewriting and Their Equivalence

(µ2 /
1 ρsrc

21))src and t = ((ρ11 ; ρ12) /2 µ1)tgt; then:

((ρ11 ; ρ12) (ρ21 ; ρ22))[/2 (µ1 µ2)[
= (((ρ11 ; ρ12) ρsrc

21))[; (ρtgt
12 (ρ21 ; ρ22))[) /2 (µ1 µ2)[

by Prop. 96
= (((ρ11 ; ρ12) ρsrc

21)[/2 (µ1 µ2)[) ; ((ρtgt
12 (ρ21 ; ρ22))[/2 ((µ1 µ2)[/1 ((ρ11 ; ρ12) ρsrc

21)[))
by definition

= (((ρ11 ; ρ12) ρsrc
21)[/2 (µ1 µ2)[) ; ((ρtgt

12 (ρ21 ; ρ22))[/2 ((µ1 /
1 (ρ11 ; ρ12)) (µ2 /

1 ρsrc
21))[)

by item 1. of this lemma
= (((ρ11 ; ρ12) /2 µ1) (ρsrc

21 /
2 µ2))[; ((ρtgt

12 /
2 (µ1 /

1 (ρ11 ; ρ12))) ((ρ21 ; ρ22) /2 (µ2 /
1 ρsrc

21)))[
by IH

= (((ρ11 ; ρ12) /2 µ1) s)[; ((ρtgt
12 /

2 (µ1 /
1 (ρ11 ; ρ12))) ((ρ21 ; ρ22) /2 (µ2 /

1 ρsrc
21)))[

by (?1)
= (((ρ11 ; ρ12) /2 µ1) s)[; (t ((ρ21 ; ρ22) /2 (µ2 /

1 ρsrc
21)))[

by (?2)
= (((ρ11 ; ρ12) /2 µ1)((ρ21 ; ρ22) /2 (µ2 /

1 ρsrc
21)))[

by Prop. 96
= (((ρ11 ; ρ12) /2 µ1)((ρ21 ; ρ22) /2 µ2))[

by (?2)

To justify the (?1) step, note that:

(. . . ρsrc
21 /

2 µ2 . . .)[= (. . . ρJ21 /
2 µ2 . . .)[by Prop. 96

= (. . . µJ2 /2 µ2 . . .)[
= (. . . µI2 . . .)[by Prop. 142
= (. . . (µ2 /

1 ρJ21)I . . .)[by Prop. 142
= (. . . (µ2 /

1 ρsrc
21)I . . .)[by Prop. 96

= (. . . ((ρ21 ; ρ22) /2 (µ2 /
1 ρsrc

21))J . . .)[
= (. . . ((ρ21 ; ρ22) /2 (µ2 /

1 ρsrc
21))src . . .)[by Prop. 96

= (. . . s . . .)[

To justify the (?2) step, note that:

(. . . ρtgt
12 /

2 (µ1 /
1 (ρ11 ; ρ12))) . . .)[

= (. . . ρI12 /
2 (µ1 /

1 (ρ11 ; ρ12))) . . .)[by Prop. 142
= (. . . (µ1 /

1 (ρ11 ; ρ12))J /2 (µ1 /
1 (ρ11 ; ρ12))) . . .)[by Prop. 142

= (. . . (µ1 /
1 (ρ11 ; ρ12))I . . .)[by Prop. 142

= (. . . ((ρ11 ; ρ12) /2 µ1)I . . .)[by Lem. 157 and Lem. 52
= (. . . ((ρ11 ; ρ12) /2 µ1)tgt . . .)[by Prop. 96
= (. . . t . . .)[

To justify the (?3) step, note that:

(. . . µ2 /
1 ρsrc

21 . . .)[= (. . . µ2/ρ
src
21 . . .)[by definition

= (. . . µ2/µ
J
2 . . .)[by Prop. 142, since µ2 and ρ21 are coinitial

= (. . . µ[2 . . .)[by Prop. 142
= (. . . µ2 . . .)[by Prop. 96

To justify that the IH may be applied, note that (ρ11 ; ρ12) (ρ21 ; ρ22) [7→ (ρ11 ; ρ12) ρsrc
21 ;

ρtgt
12 (ρ21 ρ22).

P. Barenbaum and E. Bonelli 11:91

3. Using the fact that [7→ is strongly normalizing (Prop. 95), we proceed by induction on the
length of the longest reduction σ1 σ2

[7→∗ (σ1 σ2)[, considering four cases, depending on
whether each of σ1 and σ2 is a multistep or a composition:

3.1 If both are multisteps, i.e. σ1 = µ1 and σ2 = µ2:

(ρ1 ρ2)[/3 (µ1 µ2)[= (ρ1 ρ2)[/2 (µ1 µ2)[by definition
= ((ρ1 /

2 µ1) (ρ2 /
2 µ2))[by item 2. of this lemma

= ((ρ1 /
3 µ1) (ρ2 /

3 µ2))[by definition

3.2 If σ1 = µ1 is a multistep and σ2 = σ21 ; σ22 is a sequence:

(ρ1 ρ2)[/3 (µ1 (σ21 ; σ22))[
= (ρ1 ρ2)[/3 ((µ1 σ21)[; (µtgt

1 σ22)[) by Prop. 96
= ((ρ1 ρ2)[/3 (µ1 σ21)[) /3 (µtgt

1 σ22)[by definition
= ((ρ1 /

3 µ1) (ρ2 /
3 σ21))[/3 (µtgt

1 σ22)[by IH
= (((ρ1 /

3 µ1) /3 µtgt
1) ((ρ2 /

3 σ21) /3 σ22))[by IH
= ((ρ1 /

3 (µ1 ; µtgt
1)) (ρ2 /

3 (σ21 ; σ22)))[by definition
= ((ρ1 /

3 (µ1 ; µI1)) (ρ2 /
3 (σ21 ; σ22)))[by Prop. 96

= ((ρ1 /
3 µ1) (ρ2 /

3 (σ21 ; σ22)))[by Prop. 155, since µ1 ; µI1 ∼ µ1

To justify that the IH may be applied, note that µ1 (σ21 ; σ22) [7→ (µ1, σ21) ; (µtgt
1 σ22).

3.3 If σ1 = σ11 ; σ12 is a sequence and σ2 = µ2 is a multistep, the proof is similar as for
the previous case.

3.4 If both are sequences, i.e. σ1 = σ11 ; σ12 and σ2 = σ21 ; σ22:

(ρ1 ρ2)[/3 ((σ11 ; σ12) (σ21 ; σ22))[
= (ρ1 ρ2)[/3 (((σ11 ; σ12)σsrc

21)[; (σtgt
12 (σ21 ; σ22))[) by Prop. 96

= ((ρ1 ρ2)[/3 ((σ11 ; σ12)σsrc
21)[) /3 (σtgt

12 (σ21 ; σ22))[by definition
= ((ρ1 /

3 (σ11 ; σ12)) (ρ2 /
3 σsrc

21))[/3 (σtgt
12 (σ21 ; σ22))[by IH

= (((ρ1 /
3 (σ11 ; σ12)) /3 σtgt

12) ((ρ2 /
3 σsrc

21) /3 (σ21 ; σ22)))[by IH
= ((ρ1 /

3 ((σ11 ; σ12) ; σtgt
12)) (ρ2 /

3 (σsrc
21 ; (σ21 ; σ22))))[by definition

= ((ρ1 /
3 ((σ11 ; σ12) ; σI12)) (ρ2 /

3 (σJ21 ; (σ21 ; σ22))))[by Prop. 96
= ((ρ1 /

3 (σ11 ; σ12)) (ρ2 /
3 (σ21 ; σ22)))[by Prop. 155

To justify that the IH may be applied, note that (σ11 ; σ12) (σ21 ; σ22) [7→ (σ11 ;
σ12)σsrc

21 ; σtgt
12 (σ21 σ22). To justify the last equality, note that (σ11 ; σ12) ; σI12 ∼ σ11 ;

σ12 and σJ21 ; (σ21 ; σ22) ∼ σ21 ; σ22.
J

I Proposition 161 (Properties of projection for arbitrary rewrites).
1. (λx.ρ)//(λx.σ) [←[∗ λx.(ρ/σ)
2. (ρ1 ρ2)//(σ1 σ2) [←[∗ (ρ1//σ1) (ρ2//σ2), if ρ1, σ1 are coinitial and ρ2, σ2 are coinitial.
3. ρ//(σ1 ; σ2) = (ρ//σ1)//σ2 and (ρ1 ; ρ2)//σ = (ρ1//σ) ; (ρ2//(σ//ρ1))
4. ρ//ρ ≈ ρtgt

5. If ρ ≈ σ then τ//ρ = τ//σ and ρ//τ ∼ σ//τ .
6. ρ ; (σ//ρ) ≈ σ ; (ρ//σ)

Proof. We prove each item separately:

CSL 2023

11:92 Reductions in Higher-Order Rewriting and Their Equivalence

1. Projection of abstraction:

(λx.ρ)//(λx.σ) = (λx.ρ)[/(λx.σ)[by definition
= (λx.ρ[)[/(λx.σ[)[by Prop. 96
= (λx.(ρ[/σ[))[by Lem. 159
[← [∗ λx.(ρ[/σ[)
= λx.(ρ//σ) by definition

2. Projection of application:

(ρ1 ρ2)//(σ1 σ2) def= (ρ1 ρ2)[/(σ1 σ2)[by definition
def= (ρ[1 ρ[2)[/(σ[1 σ[2)[by Prop. 96
def= ((ρ[1/σ[1) (ρ[2/σ[2))[by Lem. 160
[← [∗ (ρ[1/σ[1) (ρ[2/σ[2)
= (ρ1//σ1) (ρ2//σ2) by definition

3. Projection of composition:
On one hand:

ρ//(σ1 ; σ2) = ρ[/(σ[1 ; σ[2) by definition
= (ρ[/σ[1)/σ[2
= (ρ//σ1)/σ[2 by definition
= (ρ//σ1)[/σ[2 as ρ//σ1 is flat by construction
= (ρ//σ1)//σ2 by definition

On the other hand:

(ρ1 ; ρ2)//σ = (ρ1 ; ρ2)[/σ[by definition
= (ρ[1 ; ρ[2)/σ[
= (ρ[1/σ[) ; (ρ[2/(σ[/ρ[1))
= (ρ1//σ) ; (ρ[2/(σ//ρ1)) by definition
= (ρ1//σ) ; (ρ[2/(σ//ρ1)[) as σ//ρ1 is flat by construction
= (ρ1//σ) ; (ρ2//(σ//ρ1)) by definition

4. Self-erasure:

ρ//ρ = ρ[/ρ[by definition
∼ (ρtgt)[by Lem. 156
[← [∗ ρtgt

It suffices to recall that flat permutation equivalence (∼) and flattening ([7→) are both
included in permutation equivalence (≈).

5. Congruence of projection: Let ρ ≈ σ. By Thm. 130 this means that ρ[∼ σ[. Then:
On one hand:

τ//ρ = τ [/ρ[by definition
= τ [/σ[by Prop. 155
= τ//σ by definition

On the other hand:

ρ//τ = ρ[/τ [by definition
∼ σ[/τ [by Prop. 155
= σ//τ by definition

P. Barenbaum and E. Bonelli 11:93

6. Permutation:

ρ ; (σ//ρ) = ρ ; (σ[/ρ[) by definition
[7→∗ ρ[; (σ[/ρ[)
∼ σ[; (ρ[/σ[) by Lem. 158
[←[∗ σ ; (ρ[/σ[)
= σ ; (ρ//σ) by definition

It suffices to recall that flat permutation equivalence (∼) and flattening ([7→) are both
included in permutation equivalence (≈).

J

G.1 Characterization of empty multisteps
I Lemma 162 (Characterization of empty multisteps). Let µ be a flat multistep. Then the
following are equivalent:
1. µ is a term, i.e. µ = s.
2. There exists a term s such that µ ∼ s.
3. There exists a term s such that if µ ∼ ρ then there exists a composition context K such

that ρ = K〈s, . . . , s〉.
4. There exists a term s such that if µ ∼ ν then ν = s.

Proof.
(1 =⇒ 2) Let µ = s. Then it is immediate as µ ∼ s.
(2 =⇒ 3) Let µ ∼ s and suppose that µ ∼ ρ. We claim that there is a composition
context K such that ρ = K〈s, . . . , s〉. First, note that we have that s ∼ ρ. This means that
there is a sequence of applications of the axioms defining flat permutation equivalence
such that s = ρ0 ∼ ρ1 ∼ ρ2 . . . ∼ ρn = ρ. We proceed by induction on n. If n = 0, it is
trivial taking K := �. For the inductive step, it suffices to show that if ρi is of the form
ρi = K〈s, . . . , s〉 then ρi+1 is of the form ρi = K′〈s, . . . , s〉. The case for the ∼-Assoc rule
is immediate. The interesting case is the ∼-Perm rule. There are two subcases, depending
on whether the ∼-Perm rule is applied forwards or backwards:
1. Forwards application of ∼-Perm. That is, ρi = S〈s〉 and ρi+1 = S〈µ[1 ; µ[2〉 where

S is a composition context and s⇔ µ1 ; µ2. Given that s has no rule symbols, it is
easy to check by induction on s that µ1 = s and µ2 = s. This concludes the proof of
this case.

2. Backwards application of ∼-Perm. That is, ρi = S〈s ; s〉 and ρi+1 = S〈µ1〉 where
µ⇔ µ2 ; µ3 and µ[2 = µ[3 = s. Note that µ1 is a flat multistep. To finish the proof, it
suffices to show that, µ1 = µ2 = µ3. This is implied by the following claim.
Claim. Let µ1 ⇔ µ2 ; µ3 where µ[2 = µ[3 = s for some term s. Then µ1 = µ2 = µ3.
Proof of the claim. We proceed by induction on µ1, following the characterization of
[7→-normal multisteps, There are three subcases, depending on the head of µ1:

2.1 µ1 headed by a variable. Then µ1 = λ~x.x ν11 . . . ν1n. The judgment µ1 ⇔ µ2 ; µ3
must be derived by a number of applications of the SAbs rule, followed by n

applications of the SApp rule, followed by an application of the SVar rule. Hence
µ2 = λ~x.x ν21 . . . ν2n and µ3 = λ~x.x ν31 . . . ν3n, where moreover ν1i ⇔ ν2i ; ν3i for
all 1 ≤ i ≤ n. Since µ[2 = µ[3 then also µ[2i = µ[3i for all 1 ≤ i ≤ n, and moreover
µ[2i must be a term (i.e. without occurrences of rule symbols), for otherwise there

CSL 2023

11:94 Reductions in Higher-Order Rewriting and Their Equivalence

would be a rule symbol in µ[2. Then by IH we have that µ[1i = µ[2i = µ[3i for all
1 ≤ i ≤ n. This concludes the proof.

2.2 µ1 headed by a constant. Similar to the previous case, when µ1 is headed by a
variable.

2.3 µ1 headed by a rule symbol. We argue that this case is impossible. Indeed, if
µ1 is of the form λ~x.% ν11 . . . ν1n then the judgment µ1 ⇔ µ2 ; µ3 must be derived
by a number of applications of the SAbs rule, followed by n applications of the
SApp rule, followed by an application of either SRuleL or SRuleR at the head. If the
judgment is derived by an application of SRuleL at the head, then we have that
µ2 = λ~x.% ν21 . . . ν2n and µ3 = λ~x.%tgt ν31 . . . ν3n and moreover that µ1i ⇔ µ2i ; µ3i
for all 1 ≤ i ≤ n. But this is impossible, given that µ[2 would contain a rule symbol,
contradicting the fact that µ[2 = s. Using a similar argument, we note that the
judgment cannot be derived by an application of the SRuleR rule at the head.

(3 =⇒ 4) Suppose that there exists a term s such that if µ ∼ ρ then ρ is of the form
ρ = K〈s, . . . , s〉. Moreover, suppose that µ ∼ ν. Then by hypothesis ν must be of the
form K〈s, . . . , s〉. Since ν is a multistep, containing no compositions, then K〈=〉� and
indeed ν = s.
(4 =⇒ 1) Suppose that there exists a term s such that if µ ∼ ν then ν = s. Then in
particular, since µ ∼ µ, we have that µ = s.

J

I Definition 163 (Empty multistep). A multistep µ is said to be empty if µ = s for some
term s, i.e. if it does not contain rule symbols. Note that, when µ is flat, this condition is
equivalent to any/all of the conditions in Lem. 162.

I Remark 164. Even if µ[is empty, µ is not necessarily empty. For example, (λx.c) % is
non-empty, but its [7→-normal form is c, which is empty.

	1 Introduction
	2 Higher-Order Rewriting
	3 Rewrites
	4 Permutation equivalence
	5 Flattening
	6 Projection
	7 Related Work and Conclusions
	A Rewrites
	A.1 Term/rewrite substitution

	B Permutation equivalence
	B.1 Properties of term/rewrite substitution, up to permutation equivalence
	B.2 Rewrite/rewrite substitution
	B.3 Congruence properties
	B.4 Permutation lemma
	B.5 Summary of properties of the substitution operators and

	C Restricted -expansion
	C.1 -normal forms

	D Flattening
	D.1 Termination of flattening
	D.2 Confluence of flattening
	D.3 Soundness with respect to permutation equivalence
	D.4 Characterization of normal forms
	D.5 -normal forms are closed by flattening
	D.6 More properties of flattening
	D.7 Flat permutation equivalence
	D.8 Completeness of flat permutation equivalence with respect to permutation equivalence

	E Projection for Flat Rewrites
	E.1 Projection for multisteps
	E.2 Projection for rewrites

	F Properties of Projection for Flat Rewrites
	G Projection for Arbitrary Rewrites
	G.1 Characterization of empty multisteps

