-DE-B
Al UENOS.
FACULTAD <
E

2)

'

D &
CIENCIAS EXACTAS

Y NATURALES

UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales
Departamento de Computacion

Semantica dinamica de calculos de
sustituciones explicitas a distancia

Tesis presentada para optar al titulo de
Doctor de la Universidad de Buenos Aires
en el area Ciencias de la Computacion

Pablo Barenbaum

Directores de tesis: Eduardo Bonelli
Delia Kesner
Consejero de estudios: Alejandro Rios

Buenos Aires, 2020

Semantica dinamica de calculos de

sustituciones explicitas a distancia

Los calculos de sustituciones explicitas son variantes del calculo-)\ en los que la operacion
de sustitucion no se define a nivel del metalenguaje, sino con reglas de reescritura que la
implementan. Nuestro principal objeto de estudio es un calculo de sustituciones explicitas
particular, el Linear Substitution Calculus (LSC), definido por Accattoli y Kesner en 2010. Se
caracteriza por el hecho de que las reglas de reescritura operan no localmente (a distancia).
En esta tesis, en primer lugar, definimos maquinas abstractas que implementan estrategias
de evaluacion en el LSC: call-by-name para evaluacion débil y fuerte, call-by-value y call-by-
need. Demostramos que dichas maquinas son correctas y preservan la complejidad temporal.
En segundo lugar, definimos una extension de la estrategia de evaluacion call-by-need en el
LSC para evaluacion fuerte. Demostramos que la estrategia es completa con respecto a call-by-
name, usando un sistema de tipos interseccion no idempotente, y mostramos como extenderla
para lidiar con pattern matching y recursion. Por ultimo, estudiamos la teoria de residuos y
familias de radicales en el LSC. Para ello definimos una variante del LSC con etiquetas de
Lévy, lo que nos permite demostrar que cumple con la propiedad de Finite Family Develop-
ments. Aplicamos esta propiedad para obtener resultados de optimalidad, estandarizacion y
normalizacion de estrategias en el LSC, y generalizamos algunos de estos resultados al marco
axiomatico de Deterministic Family Structures.

Palabras clave: semantica de lenguajes de programacion, calculo-), sustituciones explicitas,
estrategias de evaluacion, evaluacion lazy, maquinas abstractas, sistemas de tipos, teoria de
residuos.

Dynamic Semantics of Calculi with

Explicit Substitutions at a Distance

Explicit substitution calculi are variants of the A-calculus in which the operation of substi-
tution is not defined at the metalanguage level, but rather implemented by means of rewriting
rules. Our main object of study is a particular explicit substitution calculus, the Linear Substi-
tution Calculus (LSC), introduced by Accattoli and Kesner in 2010. Its distinguishing feature
is that rewriting rules operate non-locally (at a distance). In this thesis, first, we define ab-
stract machines to implement evaluation strategies in the LSC: call-by-name for weak and
strong evaluation, call-by-value, and call-by-need. We prove that these machines are correct
and that they preserve computational time complexity. Second, we define an extension of
the call-by-need evaluation strategy in the LSC for strong reduction. We show that the strong
call-by-need strategy is complete with respect to call-by-name, using a non-idempotent inter-
section type system, and we show how to extend the strategy to deal with pattern matching
and recursion. Finally, we study the theory of residuals and redex families in the LSC. To this
aim, we define a variant of the LSC endowed with Lévy labels, which allows us to prove that
it enjoys the Finite Family Developments property. We apply this property to obtain results
on optimality, standardization, and normalization for the LSC, and we generalize some of this
results to the axiomatic framework of Deterministic Family Structures.

Keywords: programming language semantics, A-calculus, explicit substitutions, evaluation
strategies, lazy evaluation, abstract machines, type systems, residual theory.

Contents

(1__Introduction|

[1.1 Computation and A\-Calculif

[1.1.2 Evaluation Strategies|
[1.1.3 Explicit Substitutions|.
(1.2 ThisWorkl
(1.2.1 Background|
[1.2.2 Distilling Abstract Machines|.
[1.2.3 Foundations of Strong Call-by-Need
[1.2.4 Strong Call-by-Need for Pattern Matching and Fixed Points|
(.25 A Labeled Linear Substitution Calculus/.

2

Background|

[2.1 Abstract Rewriting|

[22 Residual Theory|
[2.2.1 Properties of Orthogonal Axiomatic Rewriting Systems|

[3.2 Reduction Strategies|.
3.2.1 Call-by-Name|
[3.2.2 Call-by-Value|
[3.23 Call-by-Need|
[3.2.4 Strong Call-by-Name|.

[3.3 Structural Equivalences| oo oo

41
41
52
55
65
65
66
68

B.41 Reflective Distilleries| 92

B.5 _Abstract Machinesl. 93
[3.5.1 Call-by-Name: the KAM| 93

[3.5.2 Call-by-Name with Global Environment: the MAM| 96

[3.5.3 Left-to-Right Call-by-Value: the CEK| 98

[3.5.4 Left-to-Right Call-by-Value: the Split CEK| 100

[3.5.5 Right-to-Left Call-by-Value: the LAM|. 103

[3.5.6 Call-by-Need: the MAD| 104

[3.5.7 Call-by-Need: the Merged MADJ|. 107

[3.5.8 Call-by-Need: the Pointing MAD| 108

[3.5.9 Strong Call-by-Name: the Strong MAM| 111

[3.6 Complexity Analysis| 119
[3.6.1 Call-by-name and call-by-value| 119

[3.6.2 Call-by-need| 0 . 120

[3.6.3 Strong call-by-name|o o000 L 121

4 Foundations of Strong Call-by-Need| 124
41 Introductionl 124
[4.1.1 Call-by-Need for Weak Reduction|. 124

[4.1.2 Call-by-Need for Strong Reduction| 128
413 OurWorkl 132

(4.2 Strong Call-by-Need|. 133
{4.2.1 The Theory of Sharing| 134

{4.2.2 The Strong Call-by-Need Strategy|. 135

[4.2.3 Basic Properties of Strong Call-by-Need| 141

[4.3 Completeness of Strong Call-by-Need| 145
[4.3.1 The Non-Idempotent Intersection Type System HWV| 147

[4.3.2 Completeness of the Theory of Sharing|. 155

[4.3.3 Factorization of the Theory of Sharing| 156

[5 Strong Call-by-Need for Pattern Matching and Fixed Points| 160
B Introductionl 160
Bl OurWorkl 163

[5.2 Extending the Theory of Sharing|. 164
521 The Extended A-Calculus|. 164

[5.2.2 The Extended Theory of Sharing| 165

[5.3 Extending the Type System|. 167
[5.3.1 The Extended Non-Idempotent Intersection Type System|. 167

[5.3.2 Characterization of Weakly Normalizing Terms| 169

[5.4 Extending the Strong Call-by-Need Strategy| 171

[5.4.1 'The Extended Strong Call-by-Need Strategy| 172

6 A Labeled Linear Substitution Calculus| 176
6.1 TIntroductionl 176
[6.1.1 Optimality and Redex Families| 176

612 OurWorkl 185

[6.2 The LSC with Levy Labels| 185
[6.2.1 What is a Calculus with Levy Labels?. 185

[6.2.2 Residual Theory forthe LSC| 190

[6.2.3 Definition of the Labeled LSC Withoutgc| 194

[6.2.4 Definition of the Labeled LSC — Extension withgc| 199

[6.3 Properties of the LSC with Levy Labels| 203
[6.3.1 Basic Properties|. oL 204

[6.3.2 Orthogonality|. 212

6.3.3 Weak Normalization for Bounded Reduction|. 215

[6.3.4 Strong Normalization for Bounded Reduction| 220

635 Confluencel 223

|7 Applications of the Labeled Linear Substitution Calculus| 225
[Z1 Introduction] 225
Z11 OurWorkl 225
.. 226
73 RedexFamilies, 228
[7.4 Optimal Reduction|. 236
5 Standardizationl 243
[7.6 Normalization of Strategies|., 250
8__Conclusion 256
[8.1 An Abstract Machine for Strong Call-by-Need Reduction| 256

(8.2 Difficulties Defining an Extraction Procedure|. 258

A" Technical appendix| 262
IA.1 Proofs of Chapter [3[- Distilling Abstract Machines|. 262
[A.1.1 Determinism — proof of Prop.[3.11| 262

[A.1.2 Structural equivalence is a strong bisimulation — proof of Prop.[3.11] . 266

[A.1.3 Pointing MAD invariants — proof of Lem.|[3.57] 293

[A.1.4 Strong MAM invariants — proof of Lem.[3.64 297

[A.1.5 LO decoding invariant — proof of Lem.[3.67| 301

[A.2 Proofs of Chapter |4/ - Foundations of Strong Call-by-Need| 303
[A21 Technicaltools| 303

[A.2.2 Characterization of ¥-normal forms — proof of Lem.|4.15. 305

IA.2.3 Unique decomposition — proof of Lem.[4.17) 306

[A.2.4 Conservativity — proof of Thm.[4.23[. 310

[A.2.5 Commutation — proof of Lem.[4.49(and Lem.[4.50 316

[A.3 Proofs of Chapter|6|— A Labeled Linear Substitution Calculus|. 353

IA.3.1 Redex creation — proof of Prop.|6.4f 353
IA.3.2 Strong permutation — proof of Prop.|6.30[. 364
[A.3.3 Postponement of gc in the LLSC-calculus — proof of Lem.|6.50, 370
[A.4 Proots of Chapter|7|— Applications of the Labeled Linear Substitution Calculus| 374
[A.4.1 Contribution — auxiliary lemmas for Prop.|7.12 374
IA.4.2 Reachable normal forms are stable — proof of Prop.[7.27) 381
[A.4.3 Head linear reduction is normalizing — proof of Coro.[7.56[. 391
[A.4.4 Need linear reduction is normalizing — proof of Coro.|7.59. 397

Chapter 1

Introduction

1.1 Computation and \-Calculi

Computation is about solving problems by mechanically manipulating abstract representa-
tions of reality. We are exposed to computation since very early on in our daily lives. To
count objects, for example, we may use our fingers as a model of reality: one finger stands
for one object. This representation is abstract in that it discards all the irrelevant features of
the objects, such as size or color, and it keeps only the relevant ones: in this case, the abstract
quality we call quantity.

Computation is not inseparably tied to modern digital computers. Computers are of course
invaluable tools for implementing computational processes, but the study of computation
deals primarily with the underlying principles reigning the mechanical manipulation of ab-
stract representations, regardless of their potential implementation. The Babylonians, for ex-
ample, developed algorithms for solving equations nearly 4000 years before the advent of
digital computers [94].

Far from being a purely theoretical endeavor, computation has profound practical conse-
quences. In our times, software is ubiquituous. It governs most aspects of our societies, im-
pacting not only in seemingly personal matters such as entertainment and communication,
but also in public affairs such as news broadcasting, monetary transactions, weather forecast-
ing; in safety-critical systems such as medical equipment, nuclear reactors, and avionics; and
in sensitive emerging technologies such as self-driving cars and cryptocurrencies.

Traditionally, computation has been associated to the view of processes as mere input—
output relations, that is, in the final result that they yield when given particular input data.
Contrary to this traditional point of view, computational processes exhibit complex behaviors,
and usually many properties besides their output are of significant practical relevance. For
instance, how can one be sure that a computational process will not take too long to arrive to
the expected answer? How can one be sure that a third-party cannot tamper with a system so
that it behaves maliciously? How can one design programming languages so that programs
resemble declarative specifications—rather than machine code listings—but in such a way that
execution is still efficient?

Developing methods to answer these questions satisfactorily, and to aid the development

of correct programs, is of utmost importance, considering the already mentioned critical na-
ture of software. In the last decades, a vast repertoire of formal methods has been developed,
including formal specification languages, automatic theorem provers, program analyzers and
synthetizers, and verification techniques such as data-flow analysis, model-checking and ab-
stract interpretation, among others. In this thesis, we are specially interested in the theoret-
ical foundations that support the correct and efficient implementation of programming lan-
guages and proof assistants. These theoretical foundations encompass a broad range of topics
in rewriting theory, type theory, and formal semantics.

One of our main concerns is related to the observation that, in general, there may be
many different ways to carry out a particular computation. For example, in the expression
21234 .. (), we may perform the exponentiation first, or we may realize that the result will be 0
regardless of the value of 2'?34, The ways in which calculations may be carried out are known
as evaluation strategies. This thesis is about evaluation strategies in a very specific setting: a
variant of the A-calculus called the Linear Substitution Calculus.

In the following subsections, we intend to give a bird’s-eye overview of various topics that
we will touch on in this thesis.

The A-calculus
The Static View of the A-Calculus: as a Logic
The Dynamic View of the A-Calculus: as a Programming Language

Evaluation strategies
Abstract Machines and Reasonable Cost Models
Weak vs. Strong Reduction Strategies

Normalization

Residuals and Developments

Sharing and Optimality

Explicit substitutions

The Linear Substitution Calculus

1.1.1 The)\-Calculus

In this thesis, the main object of study is a programming language proposed by Beniamino
Accattoli and Delia Kesner in 2010 [9]], the Linear Substitution Calculus (LSC). The LSC is a
descendant of the A-calculus, and it owes its existence to a long tradition, starting around
the beginning of the XX century, when logicians sought to lay out formal foundations for
mathematics. In that context, Alonzo Church developed the A-calculus [36], as a means to
formally define the notion of effectively computable method, corresponding to the modern
notions of algorithm or program. Other formalisms to define computation were independently
developed at about the same time, such as the renowned Turing machines [136]].

The A-calculus is itself an abstract model of computation, in which expressions repre-
sent mathematical functions, and execution proceeds by repeatedly transforming or rewriting
those expressions. Expressions in the A-calculus are formal syntactical objects called A-terms

10

(or terms for short). An expression of the form Ax.t represents a function that maps the vari-
able x to the term ¢, where ¢ is in turn an expression that might contain occurrences of the
variable . An expression of the form fa denotes the application of the function f to the
argument a.

For example, the expression Ax.x represents the function that receives a parameter x and
returns z, that is, the identity function. Occurrences of the variable x inside an expression of
the form Ax.t are said to be bound. Occurrences of variables that are not bound are said to be
free. The set of variables that occur free in a term ¢ is usually denoted by fv(¢)—for example
fv(z(Ay.yz)) = {z,z}. If a variable is bound, its scope is local, so its name is irrelevant
to outside observers, and it may be renamed as desired. For example, \y.y is another way
of writing the identity function: the terms Ax.x and \y.y are formally identified. For this
reason, and strictly speaking, \-terms are not merely expressions, but actually equivalence
classes of expressions, modulo renaming of bound variables. The equivalence relation that
identifies terms up to the names of its bound variables is called a-equivalence. We refer the
reader to standard bibliography, for example [95, Ch. 1, Sec. 2], for the precise definition of
a-equivalence, which requires some care. Throughout this work we always freely rename
bound variables, using Barendregt’s variable convention [22, 2.1.13]: during definitions and
proofs, we may assume that bound variables have been chosen so that their names are apart
from free variables and from each other.

In the A-calculus there is only one possible kind of transformation, known as the /-
reduction rule:
Axt)s — t{x:=s}

The (-reduction rule means to reflect one of the most common mathematical practices: it
expresses the fact that in order to apply a function (A\x.t) to an argument (s) one should replace
all the occurrences of the formal parameter (x) in the body of the function () by the actual
argument (s). The expression t{x := s} represents the operation of substitution of all the free
occurrences of the variable z in the term ¢ by the term s. An example computation is given
by the following sequence of rewrite stepg] Sequences of rewrite steps are sometimes called
derivations or reductions:

M.f2) A xzx+z) - (Aaox+z)2 — 2+2

Even though the definition of 5-reduction reflects common mathematical practice, the \-
calculus was novel, at the time it was conceived, in that substitution was an explicitly defined
operation. Explicit definition allows one to reason rigorously about its behavior.

In this thesis we aim, in fact, to reason rigorously about the behavior of programs. For
example, we may want to prove that a certain way of executing a program always reaches
a final answer, i.e. that it cannot “hang”. These properties can be formally stated using the
A-calculus and related calculi, which are based crucially on the notions of substitution and -
reduction. Even though these notions are simple from an intuitive standpoint, defining them
precisely is not without pitfalls, and the resulting systems turn out to be surprisingly complex.

'The pure A-calculus does not have a built-in notion of numbers or addition; we use them in this example for
clarity of exposition.

11

A simple example of the richness of the A-calculus is that, even though functions for-
mally take only one argument, it still allows to simulate many-argument functions. This
can be achieved by resorting to the well-known technique of currying, attributed to Moses
Schonfinkel [133]. A function f(x,y) of two arguments can be curried by regarding it as a
single-argument function g such that g(z) is again a single-argument function, and in turn
g(x)(y) = f(x,y). More in general, the A-calculus is Turing-complete, which means that it
is expressive enough to define all partial computable functions f : N¥ — N, via a suitable
encoding. See for example [22] Section 6.3] for a proof.

Another illustration of the complexity of the phenomena that arise in the A-calculus is
that sequences of rewrite steps can be infinitely long. The term Q) := (Az.x z) (Az.x), for
instance, may be rewritten to itself in a single 5-reduction step: {2 — (2, which leads to the
infinite sequence:

N->0-0—-...

Ensuring that computations do terminate, under appropriate conditions, is a kind of problem
that we encounter very often.

For a further significant example of the kinds of structures that we are interested in, con-
sider the term (A\x.zz)((Ay.y)z), and note that there are many ways to rewrite it, depending
on the order in which computation steps are performed. This gives rise to a reduction graph:

(Az.zx)((Ay.y)2)
/ \
(Ay-y)2)((Ay.y)z) (A\z.xz)z
2((A\y.y)z) (A\y.y)z)z

|/

/
\ 2z
Ensuring that computations always reach the same final result, even in the presence of such
“forks”, is another kind of problem that we often confront. We are also sometimes interested in
the question of whether two different computations are equivalent in some sense. For example,
all the three reduction sequences leading from the term (Az.xx)((Ay.y)z) to the final result
2z seem to perform the same computational work, albeit in different order. There is indeed
a precise notion of equivalence, called permutation equivalence, which allows one to identify
these three sequences.

One of the most important theorems that we should mention about the A-calculus is the
Church—Rosser property, also known by the name of an equivalent property, confluence. We
use the following standard notation: if R is a binary relation, then R* stands for its reflexive
and transitive closure, and R~! stands for its inverse. One may understand the A-calculus as
an equational theory by defining 3-equivalence as the least equivalence relation containing
B-reduction. More precisely, two terms are said to be 3-equivalent, written t =4 s, whenever
t (— u —»71)* s. The following theorem is due to Alonzo Church and J. Barkley Rosser:

Theorem 1.1 (Confluence). Ift =g s thent and s have a common reduct, that is, there exists a
term u such thatt —* u and s —* u.

12

Proof. See [22, Theorem 11.1.10]. O

A corollary of this theorem is that the A-calculus is consistent as a logic, in the sense that
not every [3-equality holds—observe for example that x and y do not have a common reduct,
so the equality v =3 y cannot hold.

During the 1940s and 1950s, the group of Alonzo Church and his collaborators, including
Stephen Kleene, J. Barkley Rosser, Haskell Curry, Leon Henkin, and Alan Turing, developed
the core metatheory of the A-calculus. They studied not only the original A-calculus, but also
several of its variants, such as extensions and restrictions of the system, variants endowed
with type systems, and other related formalisms, such as combinatory logics. See [33] for an
excellent overview of the history of the A-calculus. Standard references for the theory of the
A-calculus itself are the books by Henk Barendregt ([22]]) and J. Roger Hindley and Jonathan
P. Seldin ([74]).

Interest in the A-calculus was originally motivated by specific theoretical concerns; in
particular, in formally characterizing the notion of effectively computable method. From this
point of view, the A-calculus attains some kind of local optimum: it is simultaneously concise,
reasonably readable, and Turing-complete.

Over the years, the A-calculus has been the object of continued interest from both the
logical and the computer science communities, and it is still an active area of research. The
wide range of concerns addressed by these communities has shifted the motivations to study
the A-calculus since its conception in the 1930s.

The Static View of the \-Calculus: as a Logic

In this thesis we are mostly concerned with the ways in which programs may be represented
and executed in run-time, so our point of view of the A-calculus is chiefly a dynamic one.
Nevertheless, there is a complementary, static view of A-calculi, in which the logical structure
of programs is the primary interest. The interplay between the static and the dynamic views
plays a major role in Chapters[4 and 5]

The static view of programs has its roots on mathematical logic. More specifically, variants
of the A-calculus provided with type systems, are interesting from the logical point of view,
because terms can be interpreted as encodings of deductions in formal logical systems. Gen-
erally speaking, a type is a category (in the ordinary sense of the word) that serves to classify
terms according to their inherent structure or their observable behavior.

The notion of type can be traced back to the effort by Bertrand Russell to mend the contra-
dictions found in Gottlob Frege’s set theory [128, Appendix B]. The purpose of types in this
setting is to stratify the universe of discourse, differentiating between objects and predicates
about objects. This prevents contradictions that spring from diagonalization arguments, such
as Russell’s celebrated paradox: in the absence of such stratification, one may consider the set
of sets A := {X | X ¢ X} and obtain a contradiction by noting that A € A holds if and only
if A¢ Aholds.

As part of the attempt to obtain consistent foundations for mathematics, Church intro-
duced his simple theory of types in 1940 [37]. In this system, terms of the \-calculus are

13

assigned types by means of a formal deductive system. One may assume that there is a set of
basic types (o, [, 7, etc.) and that for any two types A and B there is an arrow type A — B,
reserved for functions mapping elements of type A to elements of type B. Variables are intrin-
sically decorated with their type, writing 2 for an occurrence of a variable of type A. Formal
parameters of functions are also decorated with their corresponding type, writing Az*. t for
a function that maps a parameter x of type A to the term ¢. For example, the identity function
\x?. 24 is of type A — A, and an operator of function composition might be defined as the

term
AgBC.)\fAHB. Azt gEHC (fAHB xA)

whose type is (B — C) — ((A - B) — (A — ().
The assignment of types to terms is defined by means of a typing judgment of the form

It : A, representing the knowledge that the term ¢ is of type A. A term of type A is said to
be an inhabitant of A. Valid judgments are defined by the following inductive typing rules:

Ft: B Ft:A—->B |s:A
at A Y A Ny —ts: B

For example, the third rule states that if we know that ¢ is a term of type A — B and s is a
term of type A, then we may conclude that the application ¢s is a term of type B.

A remarkable feature of these rules is that types in the simply typed A-calculus of Church
can be thought as formulas of propositional logid?] and terms of type A can be thought as wit-
nesses that the formula A is provable, that is, a proofof A. For example, the term Az®. \y®. 2
is of type @« — (8 — «), and it can be interpreted as a proof of the propositional formula
a — (B — «). Aterm Az®. t of type a — 3 corresponds to a proof of the implication o — /3
that proceeds by assuming a proof = of « as a hypothesis, and then providing a proof ¢ of 3,
possibly depending on this hypothesis. On the other hand, if ¢ is a proof of the implication
a — (3, and s is a proof of the antecedent «, then ¢s denotes the proof of 3 obtained by modus
ponens.

The realization that types correspond to formulas and terms correspond to proofs is some-
times known as the Curry-Howard isomorphism or the propositions as types correspondence.
The correspondence has far-reaching consequences. It can be extended to other logical con-
structs besides implication, including conjunction, disjunction, universal and existential quan-
tification, and classical reasoning. It can also be extended to relate other logical/computational
phenomena: for instance, reducing a term, i.e. performing a computation step ¢ — t, corre-
sponds to normalizing a proof. Achieving this realization took a number of decades, and it is
the result of the work of many logicians, mathematicians, and computer scientists, including
Haskell Curry [45], Robert Feys [46], Nicolas Goveert de Bruijn [50]], and William Howard [76]]

Since the 1970s, logical systems have been systematically studied from the type-theoretical
point of view suggested by the propositions as types paradigm. For instance, second order in-
tuitionistic logic corresponds to a variant of the A-calculus with parametric polymorphism,
known as System F. It was independently discovered by Jean-Yves Girard [59] and John Reynolds [126]].

ZMore precisely, formulas in minimal implicational logic.

14

In 1971, Per Martin-Lof proposed the system of intuitionistic type theory [114] as a founda-
tion for constructive mathematics, which has become a field of research on its own right. The
correspondence between propositions and types has been extended to other logical systems,
such as classical logic (in various works, remarkably [68]], [124], [44]) and linear logic, an
influential system defined originally by Jean-Yves Girard in [60]. It has also inspired other
systems such as the Calculus of Constructions [41] and Homotopy Type Theory [138]].

The study of type systems as encodings of logical deductions laid the basis for the devel-
opment of proof assistants. Proof assistants are computer programs that allow the user to
write (using a formal language) mathematical definitions, statements of theorems, and proofs
of those theorems, and verify that the proofs are correct. Many modern proof assistants such
as Coq [54], Isabelle [121]], and Agda [122] are based on type theory. The efficient implemen-
tation of proof assistants poses some of the questions that motivate our work.

Most of the type systems that were mentioned above are examples of type systems a la
Church. This means that types are an intrinsic part of the language. For example, in the simply
typed A-calculus of Church, types are an inseparable aspect of the syntax of terms, hence
Az®.x® is the identity function of type a — «, and A\z®~%.2%># is the identity function of
type (o« — 3) — (a — [3). Note that the two variants of the identity function are syntactically
different terms. In this system, it does not even make sense to speak of a term without types
such as \z.z.

There is another very common kind of type system in which types are not an intrinsic part
of the syntax of terms. These are known in the literature as type systems a la Curry. In these
systems, types are rather extrinsic annotations, representing properties that terms might or
might not have. For example, in the simply typed A-calculus of Curry, the expression \z.x
is a well-formed term representing the identity function. The identity Ax.x may be assigned
many types: in particular it has type o — «, and it also has type (o« —) — (o — (3), while
it does not have type @« — (8 — «). In type systems a la Curry typing judgments are typically
hypothetical judgments of the form I' - ¢ : A, where I is a typing context representing the
hypotheses required to conclude that the term ¢ has type A. Formally, contexts are lists of pairs
of the form x : A giving types to the free variables in t. Typing rules are slightly adapted for
the simply typed A-calculus a la Curry:

(x : A) is a hypothesis in T’ Fe:A-t:B '-t:A—-B I'-s: A
Nz:A '-Xet:A— B '-ts: B

Note that an abstraction A\z.t has type A — B in a given context [' whenever the body ¢ has
type B in the extended context I', x : A.

Intersection types. In most of this thesis, we will not work with type systems, since
we are interested in the dynamic view of A-calculi, and untyped A-calculi are a better fit for
this purpose. However, in Chapters [4 and |5, we will make use of intersection types to study
the dynamic behavior of programs. Intersection types systems are, usually, type systems
a la Curry, originally introduced by Mario Coppo and Mariangiola Dezani-Ciancaglini [38]]
to study termination. These systems are characterized by the presence of a type constructor

15

representing intersection: for any two types A and B there is a type A n B whose inhabitants
are the terms that simultaneously have type A and type B. Intersection type systems also are
accompanied with a relation of inclusion between types, A < B. Intersection and inclusion
respect all the laws that one would expect from their suggestive notation; for example An B <

A. Besides the usual three rules of the simply typed A-calculus, the two following typing rules

are added:
't:A I't¢t: B 't:A AcC B

't:An B '—t:B
The first rule states that a term has type A n B if it simultaneously has types A and B. The

second one states that a term of type A can be regarded as a term of type B whenever A
is a “subset” of B. The remarkable feature of this type system is that typability characterizes
exactly the seemingly unrelated property of normalization. A term t is said to be normalizing if
there exists a finite reduction sequence t — t; — to — ... — t,, such that ¢,, is a normal form,
i.e. there is no reduction step ¢,, — t,,1. The surprising result is that a term ¢ is normalizing if
and only if there exist I'and A such thatI' - ¢ : A. See [23] Part 3] for a complete presentation
and a survey of many related intersection type systems and their properties.

In typical intersection type systems, the type constructor () is idempotent, that is, the
relations A € An Aand An A € A are both declared to hold. In contrast, in non-idempotent
intersection type systems, the type constructor (n) is not declared to be idempotent. Non-
idempotent intersection type systems were originally formulated by Philippa Gardner [58]].
Pioneering works on this topic are also by Assaf Kfoury et al. [93} [92] and Daniel de Car-
valho [34]. The interest of non-idempotent intersection type systems is that, just as their
idempotent counterparts, they allow to characterize normalization properties but, as opposed
to their idempotent counterparts, the characterization of normalization provides an explicit
decreasing measure. This makes non-idempotent intersection types suitable for analyzing the
dynamic properties of reduction in a quantitative fashion.

Intersection types play an important role in Chapters[dand|5|of this thesis, in which we use
a system based on non-idempotent intersection types as a technical tool to ensure termination,
adapting a technique by Delia Kesner [86]].

The Dynamic View of the A\-Calculus: as a Programming Language

As we mentioned before, most of this thesis will be concerned with the dynamic view of
the A-calculus and related formalisms. The dynamic view of A-calculi is interesting from the
computational point of view, because it allows us to understand calculi as execution models for
programming languages in general, and for functional programming languages in particular.

Historically, the understanding of programming language semantics has evolved from
a concrete, machine-oriented perspective to an abstract, machine-independent perspective.
When the first programming languages were conceived, in the mid-1950s, they were seen as
auxiliary tools to mechanically translate mathematical expressions into machine code. A pro-
gramming language in this sense is a convenient way of abbreviating machine instructions,
relying on the remarkable observation that a mathematical expression implicitly encodes a
computation mechanism: the post-order traversal of the abstract syntax tree of an arithmetic

16

expression corresponds closely to a sequence of instructions that calculate its value on a stack-
based machine. This was the approach taken in languages like FORTRAN [18], developed at
IBM by John Backus and his team. Although FORTRAN was a revolutionary breakthrough at
the time, it lacked an intrinsic notion of semantics, and it was meant to be understood through
the semantics of the target machine.

On the other hand, programming languages can be defined much more abstractly, as for-
mal objects provided with rigorous notions of syntax and semantics. This perspective started
to emerge in the 1960s with languages like John McCarthy’s Lisp [116], based on the manip-
ulation of symbolic expressions in a way independent of the underlying machine; APL [81], a
mathematical notation devised by Kenneth Iverson to describe computational manipulations
on arrays; and Algol [112], an international effort to standardize the then incipient algorithmic
notation.

In the 1960s, Peter J. Landin published a series of influential papers [99, [100], proposing
a family of programming languages, or rather a framework for understanding programming
language semantics, named IswiM. It was based on the A-calculus, and it attempted to cap-
ture the common mechanism of abstraction underlying all existing programming languages.
Landin provided a formal semantics for Iswim by defining an abstract machine to execute
Iswim programs, the SECD machine. He also discussed how the semantics of languages like
Lisp and Algol could be understood by encoding Lisp and Algol programs in Iswim.

This abstract take on programming language semantics crystallized during the 1970s with
the advent of functional programming languages. These languages are characterized by being
built upon a A-calculus substratum. Some notable examples are Scheme [134], which intro-
duced some novel ideas like lexical closures and control operators (in particular, call/cc); and
the language ML [65], which was the first one to implement a Hindley—Milner type system.
It is remarkable that, still today, Scheme and ML are among the few relatively mainstream
programming languages whose standard specifications include a formally defined semantics
(see [131] and [119]). Another influential work from this era was John Backus’ 1977 Turing
award lecture, Can Programming be Liberated from the von Neumann style?, in which he en-
visioned a style of programming based on the functional composition of smaller subprograms.
Thereby, programs respect well-defined algebraic laws and they are subject to being reasoned
about mathematically.

Since the 1970s, the community surrounding functional programming languages has been
growing steadily, which has put forth the A-calculus as the quintessential programming lan-
guage. Most aspects of programming language theory, such as extensions with new features
and compilation techniques, have been routinely studied by considering suitable adaptations
of the A-calculus. Features that were first conceived and studied in theoretical settings, such as
parametric polymorphism, type-inference, inductive data-types, and pattern matching, have
been successfully exported to mainstream programming languages.

Let us end this subsection by mentioning a series of influential functional programming
languages that were designed in the 1980s and 1990s, namely Hope [32], Miranda [137], and
Haskell [83], in which all functions are required to be pure. This means that they behave like
actual mathematical functions: they are not allowed to perform side-effects like mutation or

17

external input/output. This restriction brings the execution model of these languages even
closer to the pure A-calculus. Some of these languages are also characterized by the fact that
they use lazy evaluation, that is, the evaluation of expressions is delayed until their value is ac-
tually needed. The evaluation strategy known as call-by-need (introduced below in Sec.[1.1.2),
closely related with lazy evaluation, is a recurring topic throughout this thesis.

1.1.2 Evaluation Strategies

In most of this thesis we will be interested in studying different “ways” of executing programs.
The way of executing a program depends on the execution model of the underlying program-
ming language, whose design space has many dimensions. For example, one dimension that
drew the attention of early language designers is that there are various alternatives for im-
plementing the mechanism of parameter passing. Suppose that f(x) is a function depending
on a formal parameter x, and f(e) represents a function call, where e is some expression.
The question is when the argument e should be evaluated, and what should happen when
the function f accesses its parameter. Different choices lead to different “ways” of executing
programs. These ways are known as evaluation strategies. Some evaluation strategies may be
more convenient than others in different contexts.

One very common evaluation strategy, call-by-value, establishes that e should be evaluated
before performing the function call. Whenever f needs to use its parameter, it suffices to
retrieve the parameter x, which is already bound to a fully evaluated value. Another possible
evaluation strategy, call-by-name, establishes that the function call should be performed first,
leaving the expression e unevaluated. If f ever needs to access its parameter, it must retrieve
the parameter z, which is bound to an unevaluated expression e, and then proceed to evaluate
e to a value.

For example, let f(x) = x + x and suppose that we want to evaluate the function call
f(2 = 3). A call-by-value strategy would result in the following execution:

f(2«3) — f(6) — 6+6 — 12
In contrast, a call-by-name strategy would result in the following execution:
f(2%3) — 2%342%x3 — 6+2%x3 — 6+6 — 12

Note that, in call-by-value, the argument e is evaluated exactly once, and that holds even if f(x)
is a constant function not depending on z. On the other hand, in call-by-name, the argument
e is evaluated as many times as needed, and that may mean zero, one, or more times. As a
consequence, call-by-value may perform unnecessary computational work (if the parameter
is never used), while call-by-name may duplicate computational work (if the parameter is used
more than once).

In his PhD thesis, Christopher Wadsworth proposed a mechanism for implementing pa-
rameter passing that combined the benefits of call-by-value and call-by-name [145]. This
results in the evaluation strategy known as call-by-need. Call-by-need establishes that, to
evaluate a function call f(e), the call itself should be performed first, leaving the expression e

18

unevaluated, similarly as in call-by-name. However, all occurrences of the formal parameter
x become bound to the same copy of the expression e, which is shared by means of pointers.
If f ever needs to access its parameter, the expression e is evaluated once and forever. Subse-
quent accesses to the parameter, after the first one, merely retrieve the value, similarly as in
call-by-value.

Using the call-by-need strategy to evaluate f(2 = 3), defining f(z) = x + x as before,
results in an execution that may be graphically depicted as follows, where ® — [e]|represents
a pointer to an expression e:

f(2*3) — ° + ° — °
\ / \
23 @

In call-by-need, expressions are not limited to being trees anymore. Instead, they must become
directed acyclic graphs, to account for the sharing of subterms. This means that, in a language

+ — 6+6 — 12

T
g

like the A-calculus, it is technically not possible to formulate call-by-need as a strategy, be-
cause it relies on a special representation for A\-terms. In 1997, Zena Ariola and Matthias
Felleisen [12]] and, independently, John Maraist, Martin Odersky, and Philip Wadler [113],
defined a variant of the A-calculus that extends the syntax of A\-terms with a let construct
that allows to encode the sharing of subterms explicitly. Thus they were able to formulate
call-by-need as a strategy internally in this language.

In this thesis we work with the Linear Substitution Calculus, a variant of the A-calculus
extended with explicit substitutions. An explicit substitution is a construct of the form ¢[x\s]
which means, informally, that all the occurrences of the variable z in the term ¢ are pointers to
the term s The call-by-need strategy is formulated on terms with explicit substitutions. For
example, the call-by-need evaluation of f(2 = 3) as above can be rendered using this notation
as follows:

f(2+3) - (z+2)[z\2%3] — (x+2x)[2\6] - (6+2)[z\6] > 6+6 — 12
Call-by-need, as we have mentioned, is a recurring theme of this thesis.

The relevance of formalisms based on rewriting, such as the A-calculus, for the purpose
of studying evaluation strategies, is that they allow to formulate strategies precisely. This
in turn makes it possible to reason about their behavior. The somewhat vague notion of
evaluation strategy has a rigorous counterpart, namely the notion of reduction strategy. A
reduction strategy is a function that, given a term ¢, selects the computation step ¢ — s that
should be performed next, provided that ¢ is not already an answef] Reduction strategies
have been studied from the theoretical point of view since long ago. Indeed, the notions of
call-by-name and call-by-value in the A-calculus were already known in the 1930s by Church
and his collaborators. An influential work from 1975 is by Gordon Plotkin [125], in which

*Explicit substitutions and let constructs are, in fact, synonyms; an explicit substitution ¢[x\s] is nothing
but a let construct (let = = s in t), written with different syntax.

“The notion of answer may vary depending on the context. For call-by-name and call-by-value, the set of
answers is typically the set of terms of the form Az.t.

19

he established a precise relationship between call-by-name and call-by-value, showing how
the call-by-name A-calculus may be simulated in the call-by-value A-calculus, and vice versa,
using continuation-passing style translations.

There are other well-known reduction strategies, besides call-by-name and call-by-value,
such as leftmost-outermost, innermost, and parallel-outermost, to name a few. Most of these
strategies have been also extended to formalisms other than the A-calculus, such as term
rewriting systems and higher-order rewriting systems. Standard reference material dealing
with reduction strategies and their properties may be found for example in [22, Ch. 13] or
[135, Ch. 9].

Abstract Machines and Reasonable Cost Models

In this thesis, and in particular in Chapter [3| we study the question of whether the Linear
Substitution Calculus can be regarded as a cost model. The A-calculus is a fine model of com-
putation from the point of view of mere computability, in the sense that a function N* — N is
computable in a Turing machine if and only if it is computable in the A-calculus. On the other
hand, it is not clear whether the A-calculus is a reasonable model of computation from the
quantitative point of view of computational complexity. For example, can complexity classes,
such as P, NP, EXP, etc. be characterized in terms of reduction in the \-calculus?

The A-calculus is an abstract model of computation, but from the point of view of com-
plexity it seems to be too abstract. One reason is that execution is based on performing
“surgery” on terms, using the metalanguage operation of substitution. Substitution is more
complex than it might seem at first sight. On one hand, substitution may cause duplication
or erasure of arbitrarily large terms. For example, the reduction step (Az.x z) ¢t — ¢t dupli-
cates the arbitrary term ¢. Moreover, substitution must avoid variable capture; for example
(A\y.z){x := y} should not equal \y.y, as that would result in capturing the free variable y.
Rather, in the expression (Ay.x){x := y} the bound variable y should be renamed to a fresh
variable, for example z. We then have that (\y.x){z := y} = (Az.z){z := y} and, as a re-
sult, (A\y.z){x := y} = Az.y, thus avoiding capture. It is not immediate to implement this
kind of operations in a traditional model of computation like a Turing machine or a random-
access machine: their execution models are based on a radically different mechanism, namely
mutating an array (or a “tape”) whose entries contain one of a finite number of symbols.

The fact that the A-calculus is “too abstract” is, on one hand, of practical concern. The mis-
match between the high level of abstraction of the A-calculus and the lower level of abstraction
of actual computers means that implementing the A-calculus efficiently is a non-trivial task.
Understanding and reasoning about these implementations is hindered by the fact that actual
computers are built on complex hardware. Instruction sets vary radically from one processor
architecture to another, they are usually ridden with corner cases, and their specifications are
seldom formal or complete.

In order to bridge the gap between higher-level languages like the A-calculus and lower-
level machines, many abstract machines have been proposed. An abstract machine is a for-
malism defined by a set of possible states that the machine might be in, and a binary relation

20

of transition between states. Formally speaking, this is not unlike the definition of a rewriting
system (or a directed graph, for that matter), but there is an important difference in intent.
Abstract machines are intended to model the relevant aspects of the behavior of an actual
computer, thus serving as a stepping stone between programming languages and actual hard-
ware. As a result, the state of an abstract machine is defined in terms of relatively primitive
data structures such as stacks and environments. The transitions of the machine manipulate
these structures in a similarly primitive fashion. Transitions are (usually) deterministic, and
they are expected to be easily implementable in hardware in such a way that they typically
take constant time.

Some of the better known abstract machines for the A-calculus are the SECD machine,
introduced by Peter]J. Landin in [99] to implement call-by-value evaluation, and the Krivine
machine, introduced by Jean-Louis Krivine [97] to implement call-by-name evaluation. Other
well-known machines of our interest are Xavier Leroy’s ZINC machine [106], designed as
the target for an ML compiler, Peter Sestoft’s machine for call-by-need evaluation [129], and
Pierre Crégut’s machine for evaluation to normal form [42]].

On the other hand, there is a more profound and theoretical reason why the A-calculus is,
in a way, “too abstract”. Consider, for example, the following families of terms (,),cn and

(sn)neN:

def def

o = vy 50 = Y
def

tnit (\r.xx)t, Snil = SpSn

Observe that the size of the term t,, is ©(n) and the size of the term s,, is ©(2"). By induction
on n, it is easy to see that ¢,, reduces to s,, in exactly n steps:

th1 = (Arzz)t, — ... — (AT.2T)S, — SpSn = Spi1
n steps, by ih.

In contrast, in a traditional model like a Turing machine, the space complexity of a program
is always bounded by its time complexity: in particular, the memory occupied by a program
cannot grow exponentially relative to its execution time. As a consequence, if an implemen-
tation of the A-calculus encodes \-terms naively as trees, then the execution time required to
simulate n reduction steps may require a number of elementary steps exponential in n.

Computational complexity theorists have attempted to capture what it means to be a rea-
sonable model of computation. Peter van Emde Boas Invariance Thesis [140] proposes that

reasonable sequential models simulate each other with polynomial overhead in time
and constant factor overhead in space.

Is the A-calculus a reasonable model of computation? By the preceding remark, we know that,
naively encoding terms as trees, Turing-machines cannot simulate the A-calculus with poly-
nomial overhead. However, this does not forbid that there may exist smarter representations
for terms. As a matter of fact, Beniamino Accattoli and Ugo dal Lago [11]] have shown that
leftmost-outermost reduction in the A-calculus can be reasonably simulated with only poly-
nomial overhead in time, by representing A\-terms in a way that avoids the size explosion

21

problem by suitably sharing subterms. The representation used in [[11] is based on the same
calculus that most of this thesis is about—the Linear Substitution Calculus.

Chapter 3 of this thesis is dedicated to studying abstract machines that implement various
evaluation strategies in the Linear Substitution Calculus. In particular, the abstract machines
that we propose implement their corresponding evaluation strategies preserving time com-
plexity. For example, n steps of call-by-name evaluation in the Linear Substitution Calculus
are simulated by O(c-n) transitions of the Krivine machine, where c is a factor proportional to
the size of the starting term. Given that the Krivine machine can be reasonably implemented
in a traditional model of computation, this in turn justifies that call-by-name evaluation in
the Linear Substitution Calculus is a reasonable cost model.

Weak vs. Strong Reduction Strategies

In this thesis, and in particular in Chapters and [5, we design and we study evaluation
strategies that are well-suited for the efficient implementation of reduction with open expres-
sions.

In typical programming languages, only closed expressions are ever evaluated. An expres-
sion is closed when it has no free variables. For example, (Az. x + x) 3 is a closed expression
that evaluates to 6. On the other hand, (x + z) is not a closed expression, because it has free
occurrences of the variable x. In a typical programming language like OCaml or Haskell, at-
tempting to evaluate an expression with free variables does not even make sense, and it leads
to a compile-time error.

In contrast, the S-reduction rule of the A-calculus may take place under an arbitrary con-
text. This means that, in the A-calculus, reduction steps may be performed anywhere inside
a term, so one may have to deal with open expressions, in which variables may occur free.
Formally, $-reduction is defined as a binary relation (—) over the set of A-terms 7, that is,
— C T° x T*, by means of a formal deductive system that includes four inductive rules:

3 t—t s — s t—t

N = H v
(Az.t)s — t{z := s} ts —t's ts —>ts Ar.t — \x.t

The first rule, (/3), specifies the actual mechanism by which computations proceed. The re-
maining rules, (1), (v) and (&), merely specify what are the subexpressions in which compu-
tations may take place. Rules like (3), embodying the actual mechanism of computation, are
called rewriting rules or computation rules. Rules like (u), () and (&) are called congruence
rules. Congruence rules state that a reduction relation like (—) enjoys certain closure prop-
erties under a number of term constructors. For instance the (1) rule allows one to embed a
reduction step t — t’ below the context []s, thus obtaining a reduction step ts — t’s. Like-
wise, the step A\z.z((Ay.y)z) — Az.z x might be justified by applying the computation rule
(B) to conclude that (A\y.y)z — z holds, and then applying the congruence rules (v) and (§)
to embed the computation under the context Az.z[]. It should be clarified that the distinction
between computation and congruence rules is not clear-cut, but still it is a standard and very
useful one.

We have mentioned before that the execution model of traditional programming languages
does not make sense for terms with free variables: only closed terms may be evaluated. As

22

a necessary consequence, traditional programming languages do not allow performing com-
putations under arbitrary contexts. The reason is that the subexpression ¢ in the expression
Azx.t may not be a closed term, since it possibly involves free occurrences of x. As a result,
traditional programming languages use weak reduction, meaning that the congruence rule
corresponding to (&) is missing, so that evaluation under lambdas is forbidden. For example,
a program like Az.(\y.y)x is already considered to be an answer in a language like OCaml
or Haskell, even though A\z.(Ay.y)r — Az.z is a valid S-reduction step in the A-calculus.
Evaluation strategies for traditional programming languages, and specifically call-by-name,
call-by-value, and call-by-need, all implement weak reduction. Whenever we wish to em-
phasize the opposition between the usual notion of reduction in the A-calculus, which allows
the (£) congruence rule, and weak reduction, which forbids the (&) rule, the former is called
strong reduction.

Evaluation strategies for strong reduction are a mostly neglected topic. A few notable
exceptions are Pierre Crégut’s strong version of the Krivine Abstract Machine [42]] and Ben-
jamin Grégoire and Xavier Leroy’s [[66] formulation of strong reduction based on the recursive
application of a weak evaluator.

However, strong reduction is a central component in the implementation of modern proof
assistants based on constructive type theory, such as Coq and Agda. A distinctive characteris-
tic of constructive type theory is the presence of dependent types: expressions that represent
types and may depend on terms. For example the proposition stating the fact that the natural
number 2 is even may be encoded as a type IsEven(2), whose inhabitants represent witnesses
of this fact. In this kind of systems, a type typically has many possible representations; for
example IsEven(2) and IsEven(1 + 1) are equal types by definition. As a consequence, the type
checking engine must perform computations to decide type equality. Moreover, types may
depend on assumptions in the form of symbolic (free) variables, and they may as well depend
on functions written using lambda abstractions. This means that reduction must be able to
deal with open terms, i.e. terms that might contain free variables, in full generality, making
strong reduction an indispensable feature.

In the last decade, proof assistants have received increasing attention, as a result of such
milestones as the formalization of the Four-Color theorem [62] and the Feit-Thompson the-
orem [64] by the team of Georges Gonthier, the formal verification of the C compiler Com-
pCert [107]] by the team of Xavier Leroy, the formalization of the Kepler conjecture [71]] by the
team of Thomas Hales, and the Univalent Foundations Program [138]. These developments
indicate that proof assistant technology has become mature enough to undertake significant
projects. On the other hand, the fact that formalization projects have grown larger and more
complex has aroused concern regarding the efficiency of proof assistant implementations.
Most proof assistants currently rely either on ad hoc evaluation mechanisms that are not
well-documented, or on relatively straightforward but inefficient mechanisms. Given this sit-
uation, it seems apparent that proof assistants could benefit from solid theoretical foundations
to support their efficient implementation.

We are concerned with the efficient implementation of strong reduction at various points
in this thesis. In Chapter[3| we propose an abstract machine for strong call-by-name reduction,

23

based on a reformulation of Crégut’s abstract machine. Chapter 4|is devoted to studying an
extension of the call-by-need strategy for strong reduction.

Normalization

In this thesis we are interested in developing reduction strategies for evaluating programs, and
in showing that these strategies are “good” in various precise senses. One important question
is whether a reduction strategy is normalizing. Informally, a reduction strategy is normalizing
if following the strategy always leads to a answer, whenever possible. For example, defining
I = A\z.x as the identity function, and Q2 = (Ax.zz)(Az.zx) as the non-terminating term par
excellence, then following the call-by-value strategy does not terminate for the term (A\x.7)(2,
for it repeatedly leads us to choose to evaluate the argument (2:

A1) — (A2 1)Q — (A)2 — ...

This example attests that the call-by-value strategy is not normalizing, because it fails to reach
an answer, even though reaching an answer is possible. Contrast this with what happens using
the call-by-name strategy, which reaches an answer in just one step:

M. QY —> T

Indeed, the call-by-name strategy is normalizing in general, which is a well-known facf}]

In Chapters [4and 5| we prove, using a different technique, that a strong variant of the call-
by-need strategy is normalizing. In Chapter |7| we give sufficient conditions to ensure that a
strategy is normalizing, and we apply it to a variant of the call-by-need strategy.

Residuals and Developments

In order to prove that reduction strategies are “good” in various senses, one must confront
more fundamental questions. For example, one may want to prove that a given computation
requires to perform less computational work than any equivalent computation. This leads to
a fundamental question: when can one say that two computations are equivalent?

In this thesis, especially in Chapter [7, we use an established notion of equivalence be-
tween sequences of rewriting steps, the notion of permutation equivalence, due to Jean-Jacques
Leévy [109]. Informally, two sequences of rewriting steps are permutation equivalent if they
perform essentially the same computation steps, although possibly in different order. For
example the following three reduction sequences are permutation equivalent:

Az.zr)((Ayy)z) — (M) (Avy)z) — 2((Ayy)z) — 22
Azzz)(Ayy)z) — (Ayy)2)(Ayy)z) — (Ayy)z)z — 22
(Ar.zx)((A\y.y)z) — (Ax.zx)z — zz

To define permutation equivalence precisely, the notion of residual has to be introduced.
First, a redex in the A-calculus is a subterm of the form (Az.t)s. For example, the term

>See for instance [130] Corollary 1.5.12 (i)]. In Coro. we prove a related result.

24

(Ax.zx)((Ay.y)z) has two redexes, respectively underlined and overlined. Each redex is as-

sociated with one—and only one—computation step. For example, contracting the underlined
redex corresponds to the step:

(Az.zz)((Ay-y)2) = ((Ay-9)2)((Ay-y)2)
while contracting the overlined redex corresponds to the step:
(Ax.zz)((Ay.y)z) —» (A\z.zx)z

Conversely, each computation step is associated with one—and only one—redex, so some-
times, both in the literature and in this thesis, redexes and steps are identified. If R : t — s
and S : t — wu are steps going out from the same starting term ¢, the set of residuals of S after
R, denoted by S/R, can be defined (semi-formally) as follows:

1. Mark the lambda of the redex S in the starting term ¢ (for example by underlining it).

2. Execute the step IR on the marked term, obtaining the target s of the step R, which now
has some marked lambdas.

3. A step S’ starting from s is a residual of S after R, that is S’ € S/R, if and only if the
lambda of S’ is marked.

For example, let:

R Qzar)((dyy)z) — (Ayy)2)(Ayy)z)
S (Azazx)((Ayy)z) — (Ar.ax)z

The following diagram justifies that R has exactly one residual after S, more precisely R/S =
{R'}:
Az.zz)(\y.y)z) —— (\z.22)2
RL R/\
((Ay-9)2)((Ay-y)2) 2z

In turn, the following diagram justifies that S has two residuals after R, more precisely S/R =

{51, Sa}:

(Afﬂ-m)(t(éy-y)Z) & }y)d((&yk
(Az.z2)2 2((Ay.y)2) (Ay.y)z)z

Note that a step may have zero, one, or more residuals. For example, S has more than one
residual after R, in which case we say that R duplicates S. On the other hand, if we let
R:(Ary)(lz) - yand S : (Az.y)(Iz) — (Az.y)z then S has no residuals after R, that is,
S/R = @, in which case we say that R erases S. If R’ is a residual of R after S, we say that R
is an ancestor of R’ before S.

25

Another important phenomenon is creation. In a sequence of two steps RS, we say that
R creates S if it has no ancestor before R. In the following three examples, the second step is
created by the first step:

Ae.x)My.zy)t — (Ayzy)t — =zt
(A\x.Ay.zzy)ts — (Ay.zty)s — zts
Ar.z(z2')(Ay.t) — z((A\yt)e) — zt{y:=2'}

To define residuals formally, one may proceed as above, introducing an auxiliary A-calculus
with marked lambdas (as we do in Def.|2.70), or directly by case analysis [46} pp. 115-116]. In
any case, one obtains the same notion of residual.

The set of residuals S/ R can be generalized to the case in which, rather than a single step
R, one has a sequence R; ... R,. Namely, one declares that S,, € Sy/R; ... R, if and only
if there exist steps Sy, ..., S,_1 such that S; € S;_1/R; for all 1 < i < n. This allows one
to give the following notion of development. Let M be a set of steps, all starting from the
same initial term ¢. A possibly infinite sequence R; ... R, ... is a development of M if for
every 1 < ¢ < n there exists a step S € M such that R; € S/R; ... R;_;. For example, in
the diagram below, the sequence RS;5), the sequence RS,, and the sequence SR’ are three
different developments of {R, S}:

‘R/()\x.xx)(ly)\SA
fl/] y(y)\SA (Az.zw)y
y(1y) Tyy R

Moreover, we say that a development of a set M is complete if it is maximal. For instance,
RS, S) is a complete development of {R, S}, while RS, is not a complete development of
{R, S} because it may be extended to form a longer development RS,S" of the set {R, S}.

Note that some sequences are not developments of any set M. For example, let RS be any
sequence such that R creates S, e.g. [Ix — Ix — x. Then RS cannot be the development of
any set.

One of the most important theorems about developments is the Finite Developments the-
orem, stated below. The first item was already known to Church and Rosser [75]], while the
second and third items are due to Lévy [109]:

Theorem 1.2 (Finite Developments). Let M be a set of steps with the same source t in the
A-calculus. Then:

1. Finite. There are no infinite developments of M.

2. Cofinal. If p and o are two complete developments of M, they have the same target, that
is there exists a term s such that p,o : t —* s.

26

3. Equivalent. If p and o are two complete developments of M and T : t — t' is any step
thenT'/p and T'/o are the same set.

Proof. See [109, p. 33]. O

Relying on the Finite Developments theorem as a cornerstone, an equivalence relation on
reduction sequences may be defined. Permutation equivalence (=) is the least equivalence
relation such that por = po’r for any derivations p, o, o', 7 such that o and ¢’ are complete
developments of the same set M.

There are many alternative ways to characterize permutation equivalence [118, 135} 142] [
One way is by proposing a standardization procedure, which converts an arbitrary sequence
of rewriting steps into standard form. A reduction in standard form is the canonical represen-
tative of its permutation equivalence class, hence two reduction sequences are permutation
equivalent if and only if they have the same standard form.

Sharing and Optimality

In Chapters|6|and[7]we will study reduction strategies from the point of view of optimality, i.e.
on whether they yield optimal reductions. There are two related but slightly different senses
of the word optimality. For clarity, we distinguish these two meanings by referring to them
as length-optimality and work-optimality respectively.

On one hand, a reduction ty — ¢t; — ... — t,, from a term ¢, to an answer t,, is said
to be length-optimal if it is the shortest reduction leading from ¢, to an answer. In the A-
calculus, defining a reduction strategy that yields length-optimal reductions in this sense is
trivial from a strictly mathematical point of view. Unfortunately, as one may suspect, there is
no computable length-optimal strategy [22] Prop. 13.5.2].

On the other hand, a reduction ty — t; — ... — t,, from a term t; to an answer t,, is
said to be work-optimal if it does not duplicate computational work and it does not perform
unnecessary computational work.

Questions related to optimality, in both of the senses, are far from straightforward to an-
swer. In fact, the notion of work-optimality is not even straightforward to define, as it requires
to formally specify what it means to say that computational work be duplicated or unneces-
sary. For the moment we content ourselves with this informal definition of work-optimality.
The question of optimal reduction was first studied in the 1970s by Jean Vuillemin [144], John
Staples [132], and Jean-Jacques Léevy [109, [110] together with Gérard Berry [27], and later
extended and generalized by others.

One may expect that the notions of length-optimality and work-optimality coincide. How-
ever, in the A-calculus there are terms that admit length-optimal reductions, but no work-
optimal reductions. Consider for example the following term, where / = Az.z stands for the
identity as usual:

Ax.z(x]))(Ay.(Az.22)(y]))

®Tn Def. we give the formal definition of permutation equivalence that we use. In Lem. we recall a
useful alternative characterization.

27

There are only finitely many reductions (Az.xz(xI))(Ay.(Az.22)(yI)) — ... — I so it is easy
to see that there exists a length-optimal reduction. Moreover, there are only two possibilities
for the first step, and it can be checked that none of them leads to a work-optimal reduction:

1. On one hand, we may reduce the expression that is underlined in the diagram below.
But doing so duplicates the computational work required to evaluate the overlined ex-
pression, necessarily leading to a reduction that is not work-optimal:

Ae.z(xD))(Ay.(Az.22)(yl)) = (Ay.(Az.22)(y]))(Ay.(Az.22)(y1))])

2. On the other hand, we may reduce the expression that is underlined in the diagram
below. But this duplicates the overlined subexpression y/, and this in turn leads to
duplicating the computational work to evaluate //:

(Az.x(x]))Ny.(A\z.22)(yI)) — : (
= (MDD ((y-(y D) (y))1)
- (yI)(y1))(

With regard to the relationship between optimality and other evaluation strategies, it can
be noted that call-by-name and call-by-value do not necessarily yield work-optimal reduc-
tions. The call-by-name strategy is not optimal because it may duplicate work, as in the fol-
lowing example, in which the underlined expression is duplicated and then evaluated twice:

(Az.zx)(L) — II(LI) — I(II) - IT — I

The call-by-value strategy is also not optimal, because it may perform unnecessary work, as
in the following example, in which the underlined expression is evaluated, even though it is

not needed:
Az)LL) - Nz)] — 1

More in general, Lévy showed in his PhD thesis that no reduction strategy consistently yields
work-optimal reductions for the A-calculus [109]. Nevertheless, this does not rule out the
possibility that an implementation of optimal reduction may exist. An optimal implemen-
tation, should it exist, would need to be based on another representation for A-terms, other
than trees. For example, one may conceive representing terms using graphs, as was done for
call-by-need.

Considering the impossibility results that we have mentioned so far, it is perhaps surpris-
ing that it is actually possible to define an effective optimal implementation for the A-calculus.
In his thesis, Lévy gave sufficient conditions that an evaluation mechanism should meet in or-
der to ensure work-optimality, whenever possible. John Lamping later proposed an effective
implementation [98], based on sharing graphs, that fulfills these conditions, yielding an opti-
mal implementation of the A-calculus.

We return to the topic of optimality in later chapters. Studying optimality for the Linear
Substitution Calculus is one of the primary motivations behind Chapters|6|and [7]

28

1.1.3 Explicit Substitutions

As we have mentioned before, the main object of study in this thesis is a variant of the \-
calculus called the Linear Substitution Calculus. The A-calculus has one rewriting rule, the
[-reduction rule:

(Ax.t)s — t{x := s}

Its definition relies on the auxiliary operation of substitution, written t{x := s}, which belongs
to the metalanguage.

The operation of substitution is too coarse-grained. The notation ¢{z := s} suggests that
all the free occurrences of x are simultaneously replaced by s. Implementations, however,
rarely perform the textual replacement of the formal parameter x by the actual argument s
simultaneously. Instead, they rely on an auxiliary data structure, called an environment, that
keeps track of variable bindings. An implementation of the J rule would typically create an
association [z — s] in the environment, mapping the variable x to the value s. This creates a
significant gap between theory and practice.

In order to bridge this gap, many works have considered extensions of the A-calculus
incorporating a construct to allow for local definitions, a feature known by various names (such
as “let constructs”, “closures”, or “explicit substitutions”, among other names, depending on
the point of view). For example, Nicolas Goveert de Bruijn [51]] extends the A-calculus with a
facility to define constants, and Pierre-Louis Curien [43] studies a calculus of closures in order
to model environments. A milestone paper in this line was by Martin Abadi, Luca Cardelli,
Pierre-Louis Curien and Jean-Jacques Lévy [1]], in which they propose a calculus with explicit
substitutions, the Ao-calculus.

During the 1990s, a plethora of calculi with explicit substitutions emerged, including Ax
by Kristoffer Rose [127,129], As by Fairouz Kamareddine and Alejandro Rios [84], Ax by Pierre
Lescanne and Jocelyne Rouyer-Degli [108], Av by Zine-El-Abidine Benaissa et al. [24], and
many other calculi. Their defining characteristic is that they include a rewriting rule corre-
sponding to the S-reduction rule in the A-calculus, sometimes called beta:

(beta) (Ax.t)s — t[z\s]

with the difference that ¢[z\s] is an explicit substitution operator, internal to the object lan-
guage. This formally means that the syntax of terms is extended to include not only variables,
applications, and abstractions, but also explicit substitutions of the form ¢[z\s]. In order to
implement the explicit substitution operator, these calculi include also other rewriting rules
that indicate the mechanism by which substitutions are performed. For example, a typical
calculus with explicit substitutions may include rewriting rules to specify how substitutions
should act when confronted with variables, and how they should propagate over abstractions
and distribute over applications:

t

Y ifx #vy

Ay.t[z\s] ifx #yandy ¢ fv(s)
tla\u] s[z\u]

varl) x|x\t]
var?) ylz\t]

) (Ay.t)[x\s]
app) (ts)[x\u]

Ll

29

In fact, the beta rule plus the four rewriting rules vari, var2, abs, and app form the system
known as A\x.

An interesting consequence of including substitutions explicitly in the object language is
that it allows one to model the sharing of subterms. For example, in the following reduction
sequence,

(Az.yzz)((Az.2)y) — (yza)[r\(Az.2)y] — (yox)[z\2[2\y]]

the first reduction step binds the variable x to a term (Az.z)y. Here it is appropriate to think
of the variable x as a pointer referencing a memory location, and of the explicit substitution
[\(Az.2)y] as the memory cell itself. The second reduction step affects the term (\z.2)y,
modelling a destructive update of shared memory.

There are many desirable operational properties that an ideal calculus with explicit sub-
stitutions should meet. A crucial property is simulation of 5-reduction: if a term t reduces to
s in the A-calculus, then ¢ should also reduce to s in the calculus with explicit substitutions in
question. For example, the 5-reduction step (Az.\y.z)z — Ay.z is simulated by the following
three reduction steps in Ax:

Az \y.x)z — (Ay.x)[z\z] = Ay.z[z\z] = \y.z

A closely related property is known as full composition: a term built using the explicit substi-
tution operator ¢[x\s] should reduce to the actual substitution t{z := s}. For example, in the
calculus \x, the term (zx)[z\y] reduces to yy in three steps:

(zz)[2\y] — z[z\y] z[z\y] — yz[z\y] — vy

The full composition property is subtler than it seems at first sight, since the term ¢ may itself
have other occurrences of the explicit substitution operator. For example, Ax does not enjoy
full composition—it is easy to check that z[z\z][z\y] does not reduce to z[z\y]. This suggests
that the following rewrite rule should be added to have the full composition property:

(sub) tle\slly\u] — tly\ul[z\s[y\ul] if z ¢ fv(u)

but unfortunately this rule leads to non-terminating behavior, since the right-hand side of the
rule is an instance of the left-hand side:

ta\sly\u] — tly\ul[2\s[y\u]]
= tz\s[y\u]][y\ulz\s[y\u]]]

—

In fact, there is another important operational property that calculi with explicit substitutions
should ideally enjoy, known as preservation of strong normalization (PSN). Recall that a term
t is said to be strongly normalizing if there are no infinite reduction sequences t — t; —
to — A calculus with explicit substitutions is said to enjoy PSN if whenever ¢ is strongly
normalizing in the A-calculus then ¢ is also strongly normalizing in the given calculus with
explicit substitutions. Around 1995, the question of whether the Ao calculus enjoyed PSN
was open, and the community was hoping for a positive answer, when Paul-André Mellies
famously exhibited a counterexample [117]).

30

Most of the research on the field of explicit substitutions during the late 1990s and 2000s
was concerned with finding a calculus with explicit substitutions verifying a number of de-
sired good properties. Superficially, this means that the calculus should enjoy good opera-
tional properties, such as confluence, PSN, and full composition. More profoundly, this means
that the operational behavior of the calculus should be backed up by an appropriate semantical
justification.

As an answer to this quest, Delia Kesner and Stéphane Lengrand proposed an explicit
substitution calculus \1xr with explicit operators for weakening and contraction, whose oper-
ational semantics is justified by a sound and complete correspondence with linear logic proof
nets [[88] 85]. This calculus enjoys good operational properties. These ideas led Delia Kesner
and her collaborators to develop further explicit substitution calculi in close correspondence
with linear logic proof nets, the prismoid of resources [89]—with Fabien Renaud—, which in
turn lead to the Linear Substitution Calculus [9]—with Beniamino Accattoli.

The Linear Substitution Calculus

The object of study of this thesis, the Linear Substitution Calculus (LSC), was introduced by
Beniamino Accattoli and Delia Kesner in 2010 [9], inspired by previous calculi by Kesner et
al. [88] 185, [89]. It also turns out to be similar to an earlier calculus by Robin Milner [[120]].

Why LSC?

« Its formulation is simpler than previous calculus of explicit substitutions, having
only three rules.

« Itis semantically orthogonal in the sense of residual theory [5]. Previous explicit
substitution calculi do not have well-behaved residual theories.

« Its operational semantics can be justified via a translation into linear logic proof
nets [2].

The starting point of the LSC is a representation of \-calculus terms as \-graphs. Roughly
speaking, A-graphs are \-terms written using graph syntax. The syntax of A\-graphs is given
by graphs that are built using nodes (o) connected by three kinds of links: variable links (v),
application links (Q), and abstraction links (\):

Variable link Application link Abstraction link

| |
o/@\o o//\\o

Variable occurrences in the A-calculus are represented using variable links. The target of a

oe<—<<—0

31

L0<—<}<—.
\—0<—<:<—.

Figure 1.1: The A-term A\z.\y.y(yx) represented as a A\-graph

variable link points to a node representing the current binding of the variable, i.e. its value. An
application link corresponds to an application in the A-calculus: the left target points to a node
representing the function, and the right target points to a node representing the argument. An
abstraction link corresponds to a lambda abstraction in the A-calculus: the incoming arrow
from the bottom left is connected to a node representing the name of the bound variable, while
the target at the bottom right points to the body of the abstraction. For example, the A-graph
representation of the A\-term Az.\y.y(yx) is shown in Figure

An advantage of \-graphs is that, much like explicit substitutions, they allow to easily
represent shared subterms. For instance, the term (Ax.z)(Az.x) may be represented by the
following A-graph:

¥
’/@\.
v
o
A

.-<—<.'<—0‘/

Compare this with a calculus with explicit substitutions, in which the term (Az.z)(Az.x) may
be rendered as (yy)[y\\z.x].
In this thesis we are not interested in representing A-terms directly using \-graphs. We

32

2 I
v ¥ ¥
v \ A

’
\.
0<—<:<—04/

O~e<:-e0/
0 << < 0/

Figure 1.2: The portrayed rewrite step corresponds to a local interaction in the graph,
but it is mapped to a non-local interaction when graphs are written back in term syntax:

wy)ly\e.a] — ((Av.x)y)[y\Ae.z].

should warn the reader, however, that not every A-graph is a valid A-term: rather, A\-graphs
must fulfill some correctness conditions to be considered valid. Moreover, depending on the
exact representation chosen, other kinds of links besides variable, application, and abstraction
may be needed—specifically, weakening links may be needed to represent an abstraction like
Az.y in which the bound variable does not occur in the body. For the details, the interested
reader should refer to Accattoli’s PhD thesis [2]].

The Linear Substitution Calculus results from the attempt at representing A-graphs back
in a more traditional term syntax, using an explicit substitution operator to allow the possi-
bility of shared subterms. Terms of the LSC are thus variables z, y, z, ..., abstractions A\x.t,
applications ts, and explicit substitutions ¢[x\s]. However, LSC is not a typical calculus with
explicit substitutions: there are two important traits that set LSC apart.

Distant Interaction. The first important difference between LSC and typical calculi with
explicit substitutions is that rewriting rules in LSC operate at a distance. As already mentioned,
terms in the LSC are intended to represent A-graphs. Consequently, rewriting steps in the LSC
are intended to model rewriting steps in a A-graph, which correspond to local interactions in
the graph. For example, Figure[1.2|depicts a rewrite step in a A-graph, in which a variable link
pointing to a subgraph A is replaced by a copy of A. When the same graph is rendered using
term notation, the rewrite step becomes:

y)ly\ e.a] — ((Az.x)y)[y\A\e.x]

Note that the affected occurrence of y and the explicit substitution [y\Az.z] could, in principle,
lie arbitrarily far away in the term. As a consequence, rewriting steps in the LSC may involve
non-local interactions between distant parts of the term. The technical tool used by LSC
to formally express rewriting rules at a distance is that of contexts. A context C is a term
with exactly one free occurrence of a distinguished variable called a hole, and written [].
If C is a context and ¢ is a term, then C(t) denotes the term that results from plugging the

33

term ¢ into the hole of C. For example, if C = ((Jy)[y\\z.z] then C{y) = (yy)[y\\z.x] and
CAz.x) = ((Axr.z)y)[y\\z.x]. Unlike the regular operation of substitution, plugging a term
t into a context C may capture the free variables of t. For example, (Az.[J){x) = Az.z. In
LSC, sometimes we are interested in plugging a term into a context but avoiding capture.
This operation is written C{t)), and formally defined as C{t) & C{[] := t}. For example,
(Ax.[J){x) = Az.z. A particular case of a context is one built exclusively from a list of zero
or more explicit substitutions, that is, a context of the form [[z1\t1]. .. [z,\t,]. These are
called substitution contexts and denoted by the letter L. Given a substitution context L and a
term ¢, we usually write ¢L to stand for L{t).

We are now in condition to present the three rewriting rules of the LSC. Formally, the
rewrite relation (—) is the least binary relation between terms that contains the three axioms
below and which is closed by arbitrary contexts (i.e. t — s implies C{t) — C{s)):

(db) (Ax.t)Ls — t[x\s]L
(1s) Clapla\t] — Cltpla\t]
(ge) tlx\s] — t if z ¢ fu(t)

The first rewriting rule, called distant beta (db), corresponds to the 3-reduction rule of the
A-calculus. It states that an interaction between a function Az.t and an argument s results in
the creation of an explicit substitution operator [z\s] affecting the body of the function (¢).
The interaction is distant because in between the function Az.t and the argument s there may
be an arbitrary number of explicit substitutions, represented by the substitution context L.
For instance, the following is a sequence of three db steps:

Az yAzx)tsu — (AyAz.x)[z\t] su
= (Az.z)[y\s][2\t] u
= x[2\u][y\s][z\t]

The second rewriting rule, called linear substitution (1s), states that any variable = bound by
an explicit substitution to ¢ may be replaced by a copy of t. The expression C{x) on the
left-hand side of the 1s rule represents a term with a (distinguished) free occurrence of the
variable z. For instance, the following is a sequence of three 1s steps:

(zz)[x\yylly\2] — (yyx)[z\yy][y\z]
- (yyx)[z\yz][y\7]
- (yy(y2))[x\yz][y\2]

The last rewriting rule, called garbage collection (gc), states that an explicit substitution [x\s]
may be erased once the variable x is not referenced anywhere else in the term. The formal
requirement is that the term be of the form t[2\s]| and x ¢ fv(¢). Recall that fv(¢) stands for
the set of free variables of a term ¢. Also note that, in a calculus with explicit substitutions,
fv(t[z\s]) is defined as fv(t) U (fv(s)\{z}). For instance, the following is a sequence of three
gc steps:
rly\z[w\Al[\s] — aly\z][=\s]
= a[2\s]

— T

34

When considered altogether, it is not difficult to show that the rules db, 1s, and gc of the LSC
simulate the S-reduction rule of the A-calculus. For instance, the S-reduction step (Az.xx)\y.y —
(Ay.y)\y.y may be simulated by a db step, followed by two 1s steps, plus a final gc step:

Ar.zx) \yy —a (zz)[x\\y.y]
—1s ((Ayy)z)[z\My.y]
=1 ((Ayy)Ayy)[z\Ay.y]
—e (AYY)AYY

As a matter of fact, the LSC enjoys all the desired properties for a calculus with explicit sub-
stitutions, including full composition and preservation of strong normalization [8] [10]].

Graphical Equivalence. The second characteristic that sets the LSC apart from typical
calculi with explicit substitutions is the presence of an equivalence relation of graphical equiv-
alence between terms, written ¢ ~ s. Graphical equivalence is intended to reflect equality of
A-graphs at the level of terms. The crucial point is that the rendering of a A-graph as an LSC
term is not a function—in some cases, a A-graph may correspond to various different terms,
depending on the order in which substitutions are written out. For instance, if we let I = \z.z,
the A\-graph below may be represented as any of the terms (z[z\I]y)[y\I], (xy)[z\I][y\I], or

(@y) [\][\]:

0N

o< < 0
<<t < 0

.<_<.'.<_.4/
.<—<:<—.</

Graphical equivalence is defined with the following three equations:

(ts)[x\u] ~ t[z\u]s if z ¢ fv(s)
Ax.t)[y\s] ~ Ax.tly\s] ifzé¢fv(s)andx #y
tle\slly\ul ~ tly\ul[z\s] if z ¢ fu(u) and y ¢ fu(s)

Using these rules we have, for example:

(@[2\TY)[Y\] ~ (zy) [\ YN] ~ (zy) [y\][\]]

Observe that graphical equivalence does not identify (¢s)[z\u] with ¢[z\u]s[x\u], i.e. substi-
tutions do not commute with applications in general. The intuitive reason is that one would
like rewriting in LSC to be well-defined modulo graphical equivalence. A necessary condi-
tion for this is that graphical equivalence (~) should be a strong bisimulation with respect to

35

the rewriting relation (—), that is, if ' ~ ¢ — s then there should exist a term s’ such that
t' — s’ ~ s. If the terms (¢s)[x\u] and t[x\u]s[x\u] were identified, it would not be clear how
to simulate a step (ts)[x\u] — (ts)[x\u'] using a single step t[z\u]s[x\u] AR t[x\u']s[x\u].

The deeper reason is that graphical equivalence intends to capture exactly those permuta-
tions of substitutions that are valid in A-graphs. In fact, the LSC modulo graphical equivalence
turns out to be isomorphic to the language of A\-graphs for the A-calculus with sharing. The set
of terms modulo graphical equivalence is in 1-1 correspondence with A-graphs, and rewriting
sequences in LSC can be transported functorially. Again, for the low-level details we refer the
reader to Accattoli’s PhD thesis [2].

1.2 This Work

This thesis is concerned with evaluation strategies in the Linear Substitution Calculus. In the
following subsections we summarize our contributions and lay out the structure of this docu-
ment. Generally speaking, the document is split into the main body and a technical appendix.
Some proofs have been omitted from the main body; their details can be found in the technical
appendix. In these cases the statement of the theorem includes the symbol & with a reference
to the appendix.

1.2.1 Background

In Chapter [2| (Background), we fix the notation and we recapitulate well-known definitions
and theorems from rewriting theory and the A-calculus that are relevant to our work. The
experienced reader may want to skip this chapter.

1.2.2 Distilling Abstract Machines

Chapter 3| (Distilling Abstract Machines) is the result of joint work with Beniamino Accat-
toli and Damiano Mazza. In this chapter, we propose the Linear Substitution Calculus as an
“abstract abstract machine”.

To this aim, we study reduction strategies in the LSC and we show that they distill the
essence of various abstract machines. To do this we formally define the notion of distillery.
Roughly speaking, a reduction strategy in the LSC distills an abstract machine if:

« Each state S of the abstract machine can be decoded to a term [[.S]| of the LSC.

« There is a binary relation (=) of structural equivalence between terms, which is a strong
bisimulation.

« Transitions of the abstract machine can be classified in two types: search transitions,
which change the focus of evaluation but are otherwise computationally irrelevant, and
principal transitions, which perform the actual computation, in such a way that:

- If S v S’ is a search transition, then [[S] = [5'].

36

- If S v S’ is a principal transition, then [S] —= [[5'].

We then show that various reduction strategies in the LSC distill various (variations of) well-

known abstract machines:
Reduction strategy Abstract machine

call-by-name Krivine abstract machine [97]]
left-to-right call-by-value | CEK machine [57]
right-to-left call-by-value | ZINC machine [106]],
call-by-need Sestoft’s machine [129]],

strong call-by-name Crégut’s machine [42],
Moreover, we propose new abstract machines, suggested by the process of distillery, which

are based on flat global environments rather than on nested local environments. In all of these
cases, the process of distillation ensures that the abstract machine correctly implements the
given reduction strategy.

Moreover, in each case, we show that simulating n reduction steps requires O(c - n) tran-
sitions of the machine, where c is a factor proportional to the size of the starting term. This
justifies that the LSC—with any of the studied reduction strategies—is a reasonable model of
computation, in the sense that execution can be simulated in a random-access machine with
at most polynomial overhead in time.

1.2.3 Foundations of Strong Call-by-Need

Chapter (4| (Foundations of Strong Call-by-Need) is the result of joint work with Thibaut
Balabonski, Eduardo Bonelli, and Delia Kesner. In this chapter, we turn our attention to an
extension of the call-by-need strategy adapted for strong reduction.

The very definition of a strong call-by-need strategy is challenging. The crux of the matter
is that call-by-need evaluation in the strong case is highly context-dependent. For example,
in a term like Az.y[y\zt] the strong call-by-need strategy should evaluate the term ¢:

Azvyly\et] — Az.y[y\at']

because reduction is strong and we seek to obtain the fullnormal form of the term. In contrast,
in a term like z[2\\x.y[y\xt]]s the strong call-by-need strategy should perform the following
linear substitution step:

z[A\Azy[y\at]]s — Az.yly\ot]) [\ z.y[y\=t]]s

in order to stay faithful to its “by-need” nature. In this chapter:

« Theory of Sharing. We define a theory of strong reduction, the Theory of Shar-
ing (Def. [4.4). The Theory of Sharing is a (non-deterministic) calculus whose rewrit-
ing rules induce an equational theory that characterizes the operational equivalence of
programs with explicit substitutions, enforcing sharing.

« Strong Call-by-Need Strategy. We define a strategy for strong call-by-need-reduction (Def.[4.13),
including various related notions such as normal forms and evaluation contexts. Strong
call-by-need reduction is a deterministic strategy contained in the Theory of Sharing.

37

Its definition relies on the notion of evaluation context. Evaluation contexts are param-
eterized by a set ¥ of variables that are “frozen”, i.e. symbolic, and by a binary flag
indicating whether the evaluation context may be composed with an applicative con-
text in such a way that the result is still an evaluation context.

« Basic Properties of the Strong Call-by-Need Strategy. We prove four basic princi-
ples that our strong call-by-need strategy enjoys, namely that the normal forms of the
strategy are strong (-normal forms, up to unfolding, (Prop. [4.16), that the strategy is
deterministic (Prop. [4.18), that it is a conservative extension of previously known no-
tions of weak call-by-need (Thm. [4.23), and that it is correct with respect to -reduction
(Prop. [4.25), i.e. that if the strategy finds a normal form then the term has a strong
[-normal form.

« Completeness of the Strong Call-by-Need Strategy. We study the completeness of
our strong call-by-need strategy with respect to S-reduction, i.e. if a A\-term has a strong
[S-normal form, then our strong call-by-need strategy also reaches a normal form. We
establish a precise relationship between the normal form in the A-calculus and the nor-
mal form in our calculus with explicit substitutions (unfolding all of the explicit sub-
stitutions). The proof of normalization combines a logical argument and a syntactical
argument, extending previous work by Kesner [87]]. More specifically:

- Typability vs. Normalization. We propose a non-idempotent intersection type
system for the Theory of Sharing (Def.[4.27). This is a simple adaptation of existing
systems, following the line of work proposed by Kesner [91]]. We also show that ty-
pability in this system implies normalization in the Theory of Sharing. (Thm.[4.43).

- Completeness of the Theory. We use the type system to argue that the The-
ory of Sharing is complete with respect to S-reduction (Prop. [4.45), i.e. that /-
normalizing terms are also normalizing in the Theory of Sharing.

- Completeness of the Strategy. Using an abstract factorization result by Accat-
toli [3], we argue that the strong call-by-need strategy is complete with respect to
the Theory of Sharing (Prop. [4.54). The proof of this fact relies on an exhaustive
case analysis of permutation diagrams.

1.2.4 Strong Call-by-Need for Pattern Matching and Fixed Points

Chapter [5(Strong Call-by-Need for Pattern Matching and Fixed Points) is the result of
joint work with Eduardo Bonelli and Kareem Mohamed. In this chapter, we extend the results
of the previous chapter to incorporate pattern matching and recursion (terms are extended
with constructors, a case construct, and a fixed point operator). Specifically:

« Extended Theory of Sharing. Our starting point is Grégoire and Leroy’s extended
A-calculus (which we recall in Def. [5.3). We generalize the Theory of Sharing for the
extended A-calculus (Def.[5.7), and we provide a syntactic characterization of its normal

forms (Def. [5.7).

38

« Extended Type System. We propose a non-idempotent intersection type system for
the Extended Theory of Sharing. (Def.[5.10). We show that weakly normalizing terms
are typable (Thm. and that typable terms are weakly normalizing (Thm.[5.14). This
requires defining a subtle property on typing judgments (Def. [5.12).

« Extended Strong Call-by-Need Strategy. We propose an extended strong call-by-
need strategy for the Extended Theory of Sharing (Def. [5.17), and we show that the
strategy enjoys good properties as in the previous chapter. Namely, the strategy is
deterministic (Prop. [5.21), it conservatively extends the strong call-by-need strategy of

the previous chapter (Prop.[5.21), and it is correct (Prop.[5.22) and complete (Thm. [5.23)
with respect to reduction in the extended A-calculus.

1.2.5 A Labeled Linear Substitution Calculus

Chapter [6] (A Labeled Linear Substitution Calculus) is the result of joint work with Ed-
uardo Bonelli. In this chapter, we develop a variant of the LSC in which terms are decorated
with labels, following the course set out by Lévy [110] when studying optimal reduction in
the A-calculus.

We go on by studying the metatheory of the labeled LSC, showing that it has most of the
good properties that one would expect in a calculus with Lévy labels. More precisely:

« A Labeled Linear Substitution Calculus. We motivate some design decisions behind
a calculus with Levy labels, and we define a variant of the LSC with Lévy labels, the
LLSC (Def.[6.6). Each reduction step in the labeled calculus has a name. We show some

basic syntactical properties of LLSC.

+ Residuals and Orthogonality. We show that the LLSC is an orthogonal axiomatic
rewriting system (Prop. [6.32).

+ Weak Normalization of Bounded Reduction. We prove that the LLSC is weakly
normalizing if reduction is restricted to contracting steps whose names are labels of

bounded height (Prop. [6.45).

 Strong Normalization of Bounded Reduction (FFD). We strengthen the aforemen-
tioned result, proving that the LLSC is strongly normalizing if reduction is restricted to
contracting steps whose names are labels of bounded height (Thm. [6.51). This means
the LSC enjoys a strong variant of the Finite Developments theorem, known as Finite
Family Developments (FFD).

« Confluence. We provide two different proofs that the LLSC is confluent (Thm. [6.53).

1.2.6 Applications of the Labeled Linear Substitution Calculus

Chapter [7| (Applications of the Labeled Linear Substitution Calculus) is a continuation
of Chapter [6] and also the result of joint work with Eduardo Bonelli.

39

In this chapter, we apply the labeled LSC developed in the previous chapter to derive
further results about the LSC (without labels). One key tool from the previous chapter is the
Finite Family Developments theorem:

« Stability. We show that the LSC without the gc rule enjoys Lévy’s redex stability prop-
erty (Prop.[7.1).

« Deterministic Family Structure. A Deterministic Family Structure (DFS) is an ab-

stract rewriting system that verifies a set of particular axioms. We show that the LSC
without gc forms a DFS (Thm. [7.13).

« Optimal reduction. We obtain an optimal reduction result for the LSC, as an imme-
diate consequence of the fact that the LSC without gc is a DFS, using work of Glauert
and Khasidashvili (which we review in Thm. [7.24).

« Standardization. Standardization, generally speaking, refers to a mechanism that con-
verts a reduction sequence into standard form, in such a way that two reduction se-
quences are permutation equivalent if and only if they have the same standard form.

We propose a standardization procedure for Deterministic Family Structures (Prop.|7.39),
inspired on a standardization result by Klop. As a corollary, we obtain a standardization
result for the LSC without gc (Coro.[7.43).

« Normalization. We prove a normalization result for Deterministic Family Structures (Prop.[7.54),
giving sufficient conditions under which a reduction strategy is normalizing. As a corol-
lary, we conclude that, in the LSC without gc the call-by-name strategy (Coro. and
a variant of the call-by-need strategy (Coro. are both normalizing.

1.2.7 Publications and Work Not Included in This Thesis

The following publications correspond to results described in this thesis:

+ B. Accattoli, P. Barenbaum, D. Mazza. Distilling Abstract Machines. Proceedings of
the International Conference on Functional Programming (ICFP), ACM SIGPLAN Notices
49(9):363-376, 2014.

« B. Accattoli, P. Barenbaum, D. Mazza. A Strong Distillery. Asian Symposium on Pro-
gramming Languages and Systems (APLAS), LNCS 9458:1-20, 2015.

+ P.Barenbaum, E. Bonelli. Optimality and the Linear Substitution Calculus. Formal
Structures for Computation and Deduction (FSCD), 9:1-9:16, 2017.

« T. Balabonski, P. Barenbaum, E. Bonelli, D. Kesner. Foundations of Strong Call by
Need. Proceedings of the International Conference on Functional Programming (ICFP),
ACM SIGPLAN Notices 20:1-20:29, 2017.

40

« P. Barenbaum, E. Bonelli, K. Mohamed. Pattern Matching and Fixed Points: Re-
source Types and Strong Call-By-Need. Principles and Practice of Declarative Pro-
gramming (PPDP), 6:1-6:12, 2018.

There is another work in which I was involved during my PhD that is not described in
detail in this manuscript. Jointly with Gonzalo Ciruelos, we used a confluent calculus based
on a non-idempotent intersection type system to study derivation spaces in the pure (untyped)
A-calculus. This was the topic of Gonzalo’s Master Thesis and also resulted in a publication:

« P. Barenbaum, G. Ciruelos. Factoring Derivation Spaces via Intersection Types.
Asian Symposium on Programming Languages and Systems (APLAS), 24-44, 2018.

Chapter 2

Background

In this chapter we give an overview of some of the most important notions and results which
our work builds upon. The presentation does not intend to be original nor exhaustive. The
intention is rather to provide basic reference material, sketching a few well-known but hope-
fully interesting proofs, and pointing to references when appropriate.

2.1 Abstract Rewriting

Mathematical objects can be written in many different ways. A term or expression is a finite
object, usually a string or a tree, intended to represent or denote a value. For example, in
a multiplicative group, the expressions “z - x71” and “1” are expected to denote the same
mathematical object: they have different syntax but the same semantics.

Rewriting arises from the need to decide the equivalence of expressions, that is, to bridge
the gap between syntax and semantics by providing a mechanical procedure that determines
whether two expressions represent the same value. In rewriting theory one frequently starts
by formulating an equational theory, that is, a set of equations that characterize the semantic
equivalence of syntactic expressions. For example, the equational theory £ defined below
is composed of seven equation schemas, which characterize the equivalence of expressions
representing elements of a free multiplicative group G:

(r-1 =z VreG
l-z = VeeG
r-(y-2) = (v-y) -z Vo,y,2€ G
E: < r-xt =1 Vee G
1t =1 Vr,ye G
(x-y)™t = yt-at Vo,yeG
L (@)™t = 2 Vze G

An equational theory provides us with a way to prove that two expressions are equivalent.

1

For example, one may justify that z7" -2 and 1 are equivalent expressions in F with the chain

41

42

of equalities:

1
= 1

However, this proof requires a bit of ingenuity. In general, there may not exist an algorithm
that decides whether two arbitrary expressions are equivalent, in a given equational theory.

The central idea behind rewriting theory is that equations of the form = = y may be ori-
ented, that is, turned into rewriting rules of the form x — y. A rewriting rule not only expresses
the fact that the expressions on the left-hand side and the right-hand side are equivalent, but
also endow the theory with computational meaning. Informally, a rewriting rule x — y means
that any expression of the form given by x should be replaced by an expression of the form
given by y. For example, the equational theory E may be oriented as follows, obtaining a
rewriting system R:

(r-1 — «x Ve e G
l-x - =z Ve ed
z-(y-z) — (v-y)-z Vo,y,zeC
R:< vt — 1 Vee G
1t -1 Vo,ye G
(x-y)™ — y ozl Veyed
) Vee @

Observe that in general there are exponentially many ways to orient an equational theory,
since each equation x = y may be oriented as * — y or as y — z. Now given any expression
x representing an element of a free group, we may rewrite it by selecting some rule x; — y;
in the rewriting system R and replacing a subexpression of the form z; by a subexpression of
the form y;. Usually, rewriting is performed repeatedly, until there are no more rules to apply,
and one arrives to a normal form.

For example, starting from the expression z - (- (y~! - 27!)) we may rewrite it as follows:

zo(y-(ytoeTh)) - a-((yeyh))
— x-(1-27h)
—> 1‘

A system of rewriting rules is said to be terminating if the procedure of repeatedly rewriting
an expression ryp — 1 — T3 — ... eventually terminates, arriving to a normal form. It can
be shown that the rewriting system R given above is indeed terminating. On the other hand,
a system of rewriting rules is said to have the unique normal form property if whenever
and x5 are equivalent expressions in the original equational theory such that x; and x5 are
normal forms, then x; = x2. The rewriting system R above does not have the unique normal
form property. For example, we have already proved that x 7! - # = 1 in the equational theory
E, but they are normal forms, i.e. there are no rules in the system R that may be applied to

1

rewrite the expressions " - x and 1.

43

The foundational theorem of rewriting theory is a simple observation. Suppose that a
system of rewrite rules R is terminating and it has the unique normal form property. Then
the corresponding equational theory £ may be decided as follows: to decide if x; = x5 holds
in F, repeatedly apply rewriting rules x; — ... — 2/ until obtaining a normal form 2. This
procedure always arrives to a normal form because R is terminating. Similarly, repeatedly
apply rewriting rules o — ... —), until obtaining a normal form ;. Now since R has the
unique normal form property, the equality 2| = 2/, holds in £ if and only if 2/ and), are
syntactically equal.

In the remainder of this section we give several definitions and some results, to make
these ideas more precise and fix notation. We start by observing that there are two different,
but compatible, views of a rewriting system that coexist in the literature, which we call the
“propositional” and the “relevant” view.

Definition 2.1 (Propositional abstract rewriting system). A propositional abstract rewriting
system is a pair (Obj, —) where Obj is a set whose elements are called objects, and — = A? is
a binary relation called the rewriting relation. Given two objects z, y € Obj one writes xt — y
if (z,y) e—.

Definition 2.2 (Relevant abstract rewriting system). A relevant abstract rewriting system is
a 4-uple A = (Obj, Stp, src, tgt) where Obj is a set whose elements are called objects, Stp
is a set whose elements are called steps, and src, tgt : Stp — Obj are functions indicating,
respectively, the source and the target of each step. Given two objects z,y € Obj and a step
R € Stp, we write 7 —> 4 y or R : & — 4 y if src(R) = x and tgt(R) = y. Sometimes we drop

the subscript and write x RN yor R : x — y when A is clear from the context.

Remark 2.3. A relevant abstract rewriting system can always be regarded as a propositional
abstract rewriting system by propositional truncation, by declaring the relation x — y to hold

if and only if there exists a step R € Stp such that RN Y.

Remark 2.4 (Steps vs. redexes). In relevant abstract rewriting systems that have terms, like
the A-calculus, a redex of a term ¢ is any reducible subterm of £. More precisely, a redex is
any subterm that is an instance of the left-hand side of some rewriting rule. For example the
underlined subterm of the term \z.x((\y.yy)z) is a redex, because (Ay.yy)z is an instance
of the left-hand side of the S-reduction rule. Usually, there is an obvious bijection between
the set of steps R starting from a term ¢ and the set of redexes of ¢. In this situation, we may
speak of steps and redexes interchangeably.

Throughout this thesis we speak of abstract rewriting systems, or rewriting systems for
short, to refer to relevant rewriting systems. However, we liberally alternate between the
propositional point of view, in which rewriting rules are defined as mere relations, and the
relevant point of view, in which we care about the witness that justifies a rewriting step.

Definition 2.5 (Composition of rewriting relations). From the relevant point of view, two
arbitrary rewriting systems A = (Obj, Stp, src,tgt) and B = (Obj, Stp’, src’, tgt’), can be

44

composed to obtain a rewriting system (A-88) = (Obj, Stp”, src”, tgt”) whose steps are defined
by the following bijection Stp x Stp’ — Stp”:

(R:x—ay,S:y—pz) — R-S:x—>wun=2

From the propositional point of view, this corresponds to the composition of rewriting relations
—1 and —, defined as usual for binary relations:

def
r(—>10—>9)2z <<= (Jy.z—>o1y A y—22)
Definition 2.6 (Union of rewriting relations). From the relevant point of view, two arbitrary
rewriting systems A = (Obj, Stp,src,tgt) and B = (Obj, Stp’, src’, tgt’), can be added to
obtain a rewriting system (A w B) = (Obj, Stp”,src”, tgt”) whose steps are defined by the
following bijection Stp w Stp’ — Stp”:

R:x—ay — R™:1 -4y
R:x—gy — R&:zx—>,.5y

From the propositional point of view, this corresponds to the union of rewriting relations —
and —,, defined as usual for binary relations:

def
(> U —9)y = T yYvVIT oy

Definition 2.7 (Inverse rewriting relation). From the relevant point of view, a rewriting sys-
tem A = (Obj, Stp, src, tgt) has an associated opposite rewriting system A°° = (Obj, Stp’, src’, tgt')
whose steps are defined by the following bijection Stp — Stp’:

R:z—ay — R':y—oswzx
From the propositional point of view, this corresponds to the inverse relation of a rewriting

relation —, which is written — ! or « and defined as follows:

z—"ly &L y—x forallz,ye A

Definition 2.8 (Closure of a rewriting relation — propositional point of view). Let A be a
rewriting system, and let P be a predicate about binary relations on the set of objects Obj, i.e.
given a binary relation R < Obj x Obj there is a proposition P(R). From the propositional
point of view, the P-closure of a relation R is the least relation R’ such that R < R’ and such

that P(R’) holds. Explicitly:
R =(){R'"IR< R" A P(R")}
In rewriting, there are various frequent cases of closures, for example:

1. The transitive closure of a rewriting relation — is written —*. It can be shown that
x — T yifand only if z — ... — y in one or more steps.

45

2. The reflexive—transitive closure of a rewriting relation — is written —* or —. It can be
shown that z —* y if and only if x — ... — ¥ in zero or more steps.

3. The symmetric closure of a rewriting relation — is written <. It can be shown that
x < yifandonlyifz — yory — x.

4. The symmetric—reflexive—transitive closure of a rewriting relation — is written «*. It
can be shown that «<+* y if and only if x <> ... <> y in zero or more steps.

5. In rewriting systems involving some notion of context, a rewriting relation — is con-
textual if ¥ — y implies that C{x) — C(y) for any context C. Recall that C{x) represents
the result of plugging the expression x inside the context C. The contextual closure of
— is sometimes written C(—). It can be shown that x C{(—) y if and only if there exists
a context C’ and two objects ', ¢’ such that:

T = C/<l’/> y = C/<y’> 2z — y/

6. In rewriting systems involving some notion of context, a congruence is a binary relation
which is simultaneously an equivalence relation (symmetric, reflexive, and transitive)
and contextual. Sometimes we speak of the congruence generated by a binary relation R
to mean the symmetric-reflexive-transitive—contextual closure of R.

Example 2.9 (Rewriting relations and closure). Let A be the rewriting system whose objects
are sets of natural numbers and there is a step X — 4 Y ifand only if X =Y U {n} for some
n € N\X. Then:

{1,2,3} — {1,3}
{1,2,3} —71 {1,2,3,4}
{1,234 -7 {1}

X - 1%} if and only if X is a singleton

X - o if and only if X is finite

X —-* Y ifand only if Y € X and X\Y is finite
X o* Y if and only if X\Y and Y\ X are finite

The various notions of closure of a rewriting relation can also be interpreted from a rele-
vant point of view. For example:

1. A witness of a step in the transitive closure S : * —* y is a non-empty list of steps
S = [Rl,...,Rn]wherexzxoﬁxl...ﬁxnzy.

2. A witness of a step in the reflexive—transitive closure S : © —* y is a possibly empty list

of steps S = [Ry, ..., R,] where © = zg =% zy ... 2% 2, = .

3. A witness of a step in the contextual closure S : x C(—) y is given by a pair S = (C', R)
where C' is a context, R : «' — /' is a step, and we have that = C'(2’) and y = C'(¢/’).

Except for Chapter [6] in which we work with residual theory, we usually take the issue of
relevance lightly.

46

Definition 2.10 (Coinitial and cofinal steps). Two steps R : 1 —4 y1 S @ o —4 Yo are
coinitial if v1 = x5 and cofinal if y; = ys.

An important property that we are usually interested in, when studying a rewriting sys-
tem, is that of (weak and strong) normalization. From the computational point of view, nor-
malization ensures that a procedure defines a total function, that is, that the program does not
“hang”. From the logical point of view, normalization entails some forms of consistency.

Definition 2.11 (Normal forms, weak and strong normalization). Let A be a rewriting system.
Then:

1. An object x is a normal form if there is no step R in A such that src(R) = z. We write
NF(A) for the set of normal forms of A.

2. Anobject = is weakly normalizing (WN) if there exists a normal form y such that x —* .

3. An object x is strongly normalizing (SN) or terminating if there is no infinite sequence
of stepsx =29 > 21 > 29 —

4. The rewriting system A is called WN (resp. SN) if every object = in A is WN (resp. SN).

A strongly normalizing rewriting system is always weakly normalizing, but the converse
does not hold.

Example 2.12 (Weak normalization without strong normalization). The rewriting system A
whose objects are N U {w} and there are stepsn — n + 1 andn — w for alln € N. Graphically:

| /2/ 3

w
is weakly normalizing since for every v € N U {w} we have x —* w which is a normal form.
However, A is not strongly normalizing sincel — 2 — 3 — ... is an infinite sequence of steps.

Definition 2.13 (Finite branching). Let A = (Obj, Stp, src, tgt) be a rewriting system. An
object z is finitely branching (from the relevant point of view), abbreviated FB, if the set {R €
Stp | src(R) = x} is finite. A rewriting system is FB if every object is FB.

Remark 2.14. An object x is defined to be finitely branching from the propositional point of
view, abbreviated FBy,,p, if the set {y € Obj | x — y} is finite. It is easy to show that the
implication FB = FByp, holds in general. Moreover, in all the rewriting systems in this
thesis, the set of steps {R | R : x* — y} is always finite for any two fixed objects x,y € Obj.
This means that throughout our work we may always assume that the converse implication
FBpop = FB also holds, so we usually speak of a system being finitely branching without
specifying in which sense.

In general, even if a rewriting system is strongly normalizing, there may not be a bound
for the length of sequences of steps 1 — 9 — ... — x,,. For instance:

47

Example 2.15 (Unbounded terminating rewriting system). Let A be the rewriting system
whose objects are {zo} U {x§") | n e N, 1 <i < n}, and there are steps:

o — 2™ forallneN

xg”) — %@1 forallneN,1<i1<n—1

Graphically:
zo
|
xé?) $é3)
$Z(33)

Then A is strongly normalizing but the length of a sequence of steps starting from x is not
bounded.

The following (non-constructive) result for finitely branching rewriting systems is known
as Konig’s lemma. It serves as a principle to justify that, in a system which is both strongly
normalizing and finitely branching, inductive constructions are well defined:

Lemma 2.16 (Konig’s Lemma). Let span(x) denote the set of objects reachable from x in a
rewriting system A:
def
span(z) = {y|z ="y}
If A is strongly normalizing and finitely branching, then span(x) is finite for all x.

Proof. We claim that if span(x) is infinite for some object x, then there exists an object ' such
that span(z’) is infinite and © — 2. Indeed, since A is finitely branching, there is a finite set
Y ={y1,...,yn} such that z — y if and only y € Y. Then span(z) = {x} Uspan(y;) U ... U
span(y,), so span(y;) must be infinite for some y;. It suffices to take 2’ := y; to finish the proof
of the claim.

Now suppose that there is an object x; such that span(x;) is infinite. By repeatedly apply-
ing the claim, we obtain an infinite sequence of steps x; — x5 — x3 — ... such that span(x;)
is infinite for all 7. This contradicts that A is strongly normalizing. [

A consequence of Konig’s lemma is that, in a finitely branching and strongly normalizing
system, there is a bound for the length of sequences of steps going out from an object. We
stress, however, that this does not provide a constructive bound.

Proposition 2.17 (Bound for strong normalization). Let A be a strongly normalizing and
finitely branching rewriting system. Let xq be an object of A. Then there exists a bound M € N
for the length of sequences of steps g — x1 — ... — x, starting from x,.

48

Proof. By Konig’s Lemma (Lem. [2.16)), the set span(zy) is finite, so M = #span(zy) is a nat-
ural number. Let xy — 1 — ... — x, be any sequence starting on xy. Note that the objects

Zo, X1, .. .,T, are all different, for otherwise there is a loop z; — ... — x; which contra-
dicts the fact that A is strongly normalizing. Moreover, {xg, z1,...,x,} < span(xg) since
X9, Z1, ..., T, are all reachable from zo. Hence n < n + 1 = #{xg,...,z,} < #span(zg) =
M, as required. O

Definition 2.18 (Confluence). A rewriting system .A is said to be:

1. Weakly Church—Rosser (WCR) or locally confluent if given objects x, x1, x5 such that
xo — x1 and r(y — x5 there exists an object z3 such that 1y —* x3 and o —* x3.

2. Church—Rosser (CR) or confluent if given objects zg, x1, x2 such that zy —* z; and
xo —™ x4 there exists an object x3 such that ;1 —* x5 and xy —* z3.

A situation in which there are three objects and two steps 1 «— xy — x5 is sometimes

called a peak. When we complete a peak by constructing a fourth object and two sequences

* *

of steps as in 1 —* x3 <* x9, we say that we close the peak. Peaks are drawn as squares
which we occasionally call tiles. Following the standard convention in rewriting theory, steps
that are universally quantified (given) are drawn with whole lines, whereas steps that are

existentially quantified (proven) are often drawn with dotted lines. Graphically:

To—>T1
l ¥
IQ > IB

It is immediate to see that if a rewriting system is Church-Rosser, it is also weakly Church-
Rosser. But the converse does not hold, as can be seen in this well-known example:

Example 2.19 (Non-confluent WCR system). Let A be the rewriting system:
N\

1<—2 3——4

~__~

Then A is WCR since the peak 1 < 2 — 3 can be closed with 1 <* 3, and similarly the peak
2 «— 3 — 4 can be closed with 2 —* 4. But A is not CR, since the peak 1 < 2 —* 4 cannot be
closed.

The following result is due to Max Newman and it is known in the literature as Newman’s
lemma or the diamond lemma. It is a useful tool to show that certain rewriting systems are
confluent. Its importance lies in the fact that it allows to reduce the proof of confluence, which
involves a universal quantifier over any peak of the form y «— x — 2z to the simpler property of
local confluence, which only involves a universal quantifier over peaks of the formy «— » — 2.
Local confluence can usually be checked by exhaustive case analysis on all possible peaks,
while doing the same for confluence is usually impracticable.

Lemma 2.20 (Newman’s lemma). If A is strongly normalizing and weakly Church—Rosser, then
A is confluent.

49

*

Proof. We say that an object x is ambiguous if it has two normal forms, i.e. + —* x; and

x —* 19 where x1 # x4 are different normal forms. We prove two claims.

« Claim I: If there are no ambiguous objects in A, then A is CR.

Proof of Claim I Let xy —* x1 and xy —* 5. Since A is SN, let us normalize z; —* 7}

*

until we obtain a normal form z/, and similarly let us normalize x5 —* 2/, until we

obtain a normal form z,. Since z is not ambiguous, we have that | = . This shows
that A is CR, proving Claim I.

« Claim II: If = is ambiguous, there is an ambiguous object y such that z — .

* *

Proof of Claim II. Since x is ambiguous, let + —* x; and * —* x5 where x; # x5 are

* x1 consists of at least

different normal forms. Note that ¢ # x; and © # x4, s0o z —
one step, i.e. z — y; —* x1, and similarly x — yo —* x4. Since A is WN, we may close
the peak y; < x — o to obtain y; —* y3 <* yo for some object y3. Moreover, since A

is SN, we may normalize y3 —* z3 until we obtain a normal form z3. Graphically:

1;/ Y1 ij
AN

Yo = 22

3 > 23

Now 2z, 29, and z3 are normal forms and we know that z; # 25 so either z3 # z; or
z3 # z1. If 23 # 2z; then y; turns out to be ambiguous and it suffices to take y := y;. If
23 # 2o then y, turns out to be ambiguous and it suffices to take y := y». This concludes
the proof of Claim II.

It is now easy to prove Newman’s lemma using the law of excluded middle. If .4 has no am-
biguous objects, then A is CR by Claim L If .4 has an ambiguous object z; then by repeatedly
applying Claim II we construct a sequence of steps x1 — o — x5 — ... such that each z; is
ambiguous. This contradicts the fact that A is SN. [

The following result, due to Klop and Nederpelt, is a tool to show that a system is strongly
normalizing. A different proof can be found in [135, Theorem 1.2.3 (iii)]:

Definition 2.21. A rewriting system A = (Obj, Stp, src, tgt) is increasing (Inc) if there is a
function f : Obj — N such that x — y implies f(z) < f(y) for all x,y € Obj.

Lemma 2.22 (Klop—Nederpelt). Let A be increasing, weakly Church—Rosser and weakly nor-
malizing. Then A is strongly normalizing. In short:

Inc A WCR A WN =— SN

Proof. Let A = (Obj, Stp, src, tgt) be increasing, WCR and WN. Let f : Obj — N be the
witness that A is increasing, i.e. if z — y then f(z) < f(y). We prove the following claim:

50

« Claim: Let z € Obj be an object in normal form. If # and y are objects such that z — z

and z — y then y — 2. Graphically:

—> 7

L=—1

Proof of the claim. In general, note that if 21 — x5 then f(x1) < f(x2) so f(xs) <
f(z1) € Ny is a natural number. Let z be a fixed normal form. Given a peak y «— = — z
we define its weight as:

Wiy <z —2) € f(2) - f()
The proof proceeds by complete induction on the weight of a peak.

1. Base case, weight 0. Then f(z) — f(z) = 0 so © — z consists of zero steps. This
means that x = z, so x is in normal form. Since + — y, we have that also x = v,
and it is trivial to conclude.

2. Induction, positive weight. Then © — 2z consists of at least one step, that is,
T — x1 — z. We consider two subcases:
- If x — y consists of zero steps. Then trivially y = = — 2.

- If v — y consists of at least one step. Then x — y; — y. By hypothesis,
A is WCR so we may close the peak y; < = — x; with an object w such that
Y1 — w «— x1. The situation is as follows:

rT—=T] =2

b

Yy —>=>w

f

Y

Note that we may apply the inductive hypothesis on the peak w « 1 — 2
since:

f(z) = fa1)
f(z) — f(x) since © — x71 so f(x) < f(z1)
- Wiyer2)

W(w « x; — 2)

A

So by i.h. we have that w — 2. Now observe that we may also apply the
inductive hypothesis on the peak y «— y; — w — z, since:

Wy —yp»w—>2z) = [f(z)=fly)
f(z) = f(x) sincex — y1so f(z) < f(y)
= Wy «x—2)

A

So by i.h. we have that y — 2, which concludes the proof of the claim.

51

The proof of Klop—Nederpelt’s lemma proceeds as follows: let = be any object. Since A is WN
let z — z be a sequence of steps such that 2 is in normal form. By contradiction, suppose
that A is not SN. That is, suppose that x = zy — x; — x9 — ... is an infinite sequence of
steps. Note that f(z¢) < f(x1) < f(x2) < ... 1is a strictly increasing sequence of natural
numbers. By the previous claim, we have that x,, — z for alln € N, so f(x,) < f(z) for all
n € N. Thus f(z) is an upper bound for the strictly increasing sequence (f(,))nen, Which is
a contradiction. O

Recall that a strict partial order > on a set X is said to be well-founded if there are no
infinite descending chains x; > x5 > x3 > The three following results are widely known
and useful tools to show that a rewriting system is strongly normalizing:

Lemma 2.23 (Termination by interpretation). Let A = (Obj, Stp, src, tgt) be a rewriting sys-
tem and let > be a well-founded order on a set X . Suppose that there is a function f : Obj — X
such that x — y implies f(x) > f(y). Then A is strongly normalizing.

Proof. Suppose by contradiction that there is an infinite sequence 1 — x5 — x3 — Then
f(z1) > f(xg) > f(x3) > ..., is an infinite descending chain. O

Lemma 2.24 (Lexicographic termination). Let >, and >9 be strict partial orders on the sets X
and Y respectively. Define the lexicographic order > on the set X x Y as follows:

(z,y) > (¢,y) if(@>127) v (z=2"ny>y)
If >, and >4 are well-founded then > is well-founded.

Proof. It is routine to check that > is a strict order. Suppose by contradiction that there is an
infinite descending chain (x1,y1) > (x2,y2) > (x3,y3) > Since >; is well-founded, the
first component must eventually stabilize, that is, there is an n > 1 such that z,, = x,,, for all
m = n. Hence y,, >2 Yp+1 >2 Yn+2 > ... is an infinite descending chain. [l

Remark 2.25. Lem.[2.24| may be generalized for n-uples writing X7 x X5 x ... x X,,_; x X,
as Xl X (XQ X ... (Xn—l X Xn))

Definition 2.26 (Finite multisets). A finite multiset over a set X is, formally, a function m :
X — N u {0} such that m(x) is non-zero for a finite number of elements € X. We write
[21,...,x,] for the multiset m such that m(z) counts the number of occurrences of z in the
sequence 1, . .., T,. Sometimes we may write {x1, ..., xz,} if it is clear from the context that
we are working with multisets. We say that m < n holds if m(z) < n(z) for all z € X.
The notation m w n denotes the (additive) union of multisets, i.e. the function such that
(m w n)(x) = m(x) + n(x). The notation m © n denotes the difference of multisets, i.e. the
function such that (m © n)(z) = m(z) ~ n(x) where x ~ y f max{0, x — y}.

Definition 2.27 (Multiset order). Let > be a strict partial order on a set X . Define the multiset
order > on the set of finite multisets of X as the transitive closure of >!, where:

m>n if m#naA VrelX,
(n(z) >m(z) = JyeX,y>zArmy) >n(y))

52

Lemma 2.28 (Characterization of the multiset order). The relation m > n holds if and only if
there exist multisets a, b such thatn = (m © a) w b, where a € m is a non-empty multiset, and
for every x € b there is an element y € a such thaty > x.

Proof. (=) Takea:=m ©nandb :=n & (m © a). It is straightforward to check that all
the conditions hold. (<) Let xy € a be a maximal element of a. We have that xy ¢ b, for
otherwise there would be an element y € a such that y > (. This means that m(xy) > n(zo),
so m # n. Moreover, suppose that n(z) > m(x) for some z € X. Then = € b, so there is an
element y € a such that y > x. Let yy € a be a maximal element such that yy > x. As before,
we have that y, ¢ b, and this means that m(yo) > n(yo), as required. O

Theorem 2.29 (Multiset termination). If > is well-founded then > is a well-founded strict order.

Proof. We sketch a proof due to Nachum Dershowitz and Zohar Manna; see [[17, Section 2.5]
for more details. Let > be well-founded and suppose that > is not well-founded. The proof
proceeds by constructing a tree whose nodes are elements of the extended set X U {L}. The
invariant is that in the n-th step we build a tree some of whose leaves may be decorated with
1 and the remaining leaves are in 1-1 correspondence with the elements of m,,, accounting
for multiplicities. Moreover, each branch of the tree is a decreasing sequence in X.

Let m; > my > ... be an infinite decreasing sequence of multisets. In the first step, the
tree starts with a root with one children per each element of m;. In the (n + 1)-th step, we
have that m,, > m,,;1, so by Lem.[2.28/m,,,; = (m,, © a) w b, where a = m,, is a non-empty
multiset, and for every x € b there is an element y € a such that y > x. For each element
z € a, the node for z is extended with a child decorated with L. For each element = € b, let
y € a be the corresponding element such that y > x; the node for y is extended with a child
decorated with z. The resulting tree is infinite, since each step adds at least one node, but it
is finitely branching since all multisets are finite. By Kénig’s Lemma (Lem. [2.16), it must have
an infinite branch, contradicting the well-foundedness of >. [

2.2 Residual Theory

Consider a confluent abstract rewriting system 4. From the propositional point of view, con-
fluence can be summarized in the inclusion of binary relations («- o —) € (— o «). It
merely means that all peaks can be closed:

7

From the relevant point of view, confluence means thatif p : + - yand o : © — 2z are
sequences of rewriting steps, there exists an object w and two sequences of rewrite steps
o' 1y — wandp' : z - w. Graphically:

/N

o'/..{\ lé"..p’

53

In fact, if a rewriting system is orthogonal, one can give a constructive account of the sequences
o’ and p/, and it can be shown that the confluence diagram is universal, i.e. a pushout. In par-
ticular, the diagram can be closed in such a way that the sequences po’ and oy’ are equivalent
in a precise sense. This relevant view of orthogonal rewriting systems can be attributed to
Jean-Jacques Lévy and Gérard Huet (78| [79]]. An axiomatic generalization of this theory was
developed by Paul-André Mellies [118]. This theory relies crucially on the notion of residual,
informally introduced in Sec.[1.1.2] In this section, we recapitulate some definitions and results
from axiomatic residual theory that we will use throughout this thesis. They are especially
important for Chapter 6|

Definition 2.30 (Axiomatic rewriting system). An axiomatic rewriting system is a rewriting
system A = (Obj, Stp, src, tgt) provided with a ternary residual relation — (—) — between
steps such that:

Ry (S) Ry implies src(Ry) = src(S) A src(Ry) = tgt(S) forall Ry, Ry, S € Stp

As customary, sometimes we subscript operations with A when the ambient rewriting system
is not clear from the context, e.g. we may write src4(R) or R (S) , T'.

Definition 2.31 (Residual theory concepts). The following notions can be defined for any
axiomatic rewriting system .4 = (Obj, Stp, src, tgt, — (—) —):

1. A derivation is a sequence of composable steps R; ... R,. By composable we mean that
tgt(R;) = src(R;41) foralli € {1,...,n — 1}. The length of a derivation is written |p|.
The notions of source and target are extended for derivations, so that src(R; ... R,) =
src(Ry) and tgt(R; ... R,) = tgt(R,). The empty derivation, when n = 0, is written e.
The set of all derivations is written Deriv.

Strictly speaking, an empty derivation is annotated with an object, so that there is one
empty derivation ¢, for each object 2 € Obj, such that src(e;) = tgt(e,) = z[] The
composition of the derivations p and o is written p - ¢ or just po, and it is defined
whenever tgt(p) = src(o).

2. The residual relation is generalized when the step in the middle is a derivation. More
precisely if src(R) = src(o) and src(R') = tgt(o) the ternary relation R (o) R’ is
declared to hold if and only if there exist steps Ry, ..., R,, 51, ..., S, such that

. O'=Sl...Sn,
+ R =Ry,
« R\ =R, and

. Rz <Si+1> Ri+1 holds for all i € {0, o, — 1}
Remark that R {eyc(r)) R.

3. We write (o) for the binary relation {(R, R') | R (o) R'}.

In other words, derivations are morphisms in the free category generated by A, seen as a directed graph.

54

4. If Ry (o) R holds, we say that R; is a residual of Ry after o, and R; is an ancestor of Ry
before o. If R and o are coinitial, we write R /o for the set {R' | R (¢) R'} of residuals
of R after o.

5. If R/o = & we say that o erases R.
6. If #(R/o) > 1 we say that o duplicates R.
7. If tgt(o) = src(R) and there is no R such that Ry (¢) R, we say that o creates R.

8. An axiomatic rewriting system has the autoerasure (AE) property if R/R = @ for all
R € Stp.

9. An axiomatic rewriting system has the finite residuals (FR) property if the set R/S is
finite for all coinitial R, S € Stp.

10. An axiomatic rewriting system has the unique ancestor (UA) property if a step has at
most one ancestor, ie. if Ry (S) Rand Ry (S) Rthen Ry = Ry forall Ry, Ry, R, S €
Stp.

11. An axiomatic rewriting system has the acyclicity property if whenever R # S and
R/S = @ then S/R # @.

12. A set of coinitial steps is a set M of steps such that if R, S € M then src(R) = src(.5).
The empty set of coinitial steps is written &. Strictly speaking, an empty set of coinitial
steps is annotated with an object, so that there is one empty set of coinitial steps &,
for each object x. The source of a set of coinitial steps is well-defined: if M is a non-
empty set of coinitial steps, then src(M) = src(R) for any R € M. If M is empty,
then src(@,) = x. Below, we argue that the target of a set of coinitial steps is also
well-defined, and in particular tgt(9,) = .

13. If M is a set of coinitial steps and src(M) = src(o), we write M /o for the set of coinitial
steps {R' | R e M and R (o) R'}. Remark that @g(s)/0 = Digi(o)

Definition 2.32 (Development). Let M be a set of coinitial steps in an axiomatic rewriting
system A. A development of M is a possibly infinite sequence R Rs ... R, ... such that R; €
M/Ry...R;_yforallie {1,...,n}. Adevelopment is complete if it is maximal.

Definition 2.33 (Finite developments property). An axiomatic rewriting system .4 has the
finite developments property (FD) if given a finite set of coinitial steps M, there are no infinite
developments of M.

Let A be an axiomatic rewriting system, and let M be a finite set of coinitial steps. Con-
sider the rewriting system D, whose objects are developments p of M and there is a step
R : p —p, pRifand only if pR results from extending the development p with a step
R € M /p. Observe that if A has the finite developments property then D, is strongly nor-
malizing. Moreover, if A has the finite residuals property, then D, is finitely branching. By
Prop.[2.17]this means that given a finite set of coinitial steps M, there is a bound for the length
of any development of M. This motivates the following definition:

55

Definition 2.34 (Depth of a set of coinitial steps). Let A be an axiomatic rewriting system
with finite developments and finite residuals. Then the length of the longest development of
a set of coinitial steps M is called the depth of M.

Remark 2.35 (Decreasing depth). Let A be an axiomatic rewriting system with finite devel-
opments and finite residuals. Suppose that M is a set of coinitial steps and R € M. If p is
a development of M /R then Rp is a development of M. This means that the depth of M
is strictly greater than the depth of M/R. This property allows one to give arguments and
constructions on sets of coinitial steps by induction on their depth.

Proposition 2.36 (Existence of complete developments). If an axiomatic rewriting system A
verifies FD then any finite set of coinitial steps M has a complete development.

Proof. Construct a development R; ... R; ... by taking some R; € M/R; ... R;_; until the
set M/R; ... R; 1 is empty. This process must terminate for otherwise we would have an
infinite development, contradicting FD.]

Definition 2.37 (Permutation tile). Let Ro and Sp be two (non-empty) derivations in an
axiomatic rewriting system .A. The pair (Ro, Sp) is called a permutation tile if all the following
conditions hold:

1. Ro and Sp are coinitial and cofinal,
2. pis a complete development of R/S, and o is a complete development of S/R,
3. (Ro)={Sp) are equal as binary relations.

Definition 2.38 (Semantic orthogonality property). An axiomatic rewriting system .4 has the
semantic orthogonality property (SO) if given two coinitial steps R, S, a complete development
pof R/S, and a complete development o of S/R, then the pair (Ro, Sp) is a permutation tile.

Definition 2.39 (Orthogonal axiomatic rewriting system). An axiomatic rewriting system
is orthogonal if it has autoerasure (AE), finite residuals (FR), finite developments (FD), and
semantic orthogonality (SO).

In the following subsection we study abstract properties of orthogonal axiomatic rewriting
systems.

2.2.1 Properties of Orthogonal Axiomatic Rewriting Systems

Throughout this subsection, we assume that we are working within an orthogonal axiomatic
rewriting system.

Definition 2.40 (Permutation equivalence). Two coinitial derivations p and o are said to
be permutation equivalent, if p = o holds, where = is a binary relation obtained from the

reflexive—symmetric—transitive closure of the following relation =':

rRorm =" 11Spry if (Ro, Sp) is a permutation tile

56

Lemma 2.41. If p = o then:
e For any 1y, T2, we have T\ pTy = T10Ts.
e The derivations p and o are coinitial and cofinal.

e The binary relations {p) and (o) are equal.
Proof. All the items are straightforward by induction on the derivation of p = o. [

Proposition 2.42 (Uniqueness of complete developments, modulo permutation equivalence).
Let p, o be complete developments of M in an orthogonal axiomatic rewriting system. Then
p=o.

Proof. By induction on the depth of M. If M has depth 0, then M = &,, so p and o are
the empty derivation €, and p = o. If M has strictly positive depth then p and o cannot
be empty, for they would not be complete. So let p = Rp’ and 0 = S¢’. By the fact that
complete developments exist (Prop. [2.36), let & be a complete development of S/R, and let 3
be a complete development of R/S. By semantic orthogonality, (Ra, S/3) is a permutation
tile, so in particular M/Ra = M/S[5. Consider a complete development 7 of M /Ra, which
again exists by Prop. The situation is:

YN
VA
g

Now observe that o is a complete development of M/R so by i.h. (using Rem. [2.35). we
have that o’ = a7. Symmetrically, 57 is a complete development of M /S so f7 = o’. Using
Lem. and the fact that (Ra, Sf) is a permutation tile, we conclude that Rp’ = RfT =
Sar = So’, as required. O

The proposition above (Prop. is the cornerstone of the axiomatic residual theory de-
veloped by Levy, Huet and Mellies. Given any set of coinitial steps M, we know that there
is a complete development of M. Moreover, if p, o are two complete developments of M we
know that they have the same source and the same target. In particular, the target of a set of
coinitial steps, written tgt(,M), may now be defined as tgt(p), and this does not depend on
the choice of the complete development p. This means that M may be regarded as a multi-
step M : x = y, where x = src(M) and y = tgt(M). Moreover, p and o induce the same
residual relation, i.e. R/p = R/o, so the notation R/M may stand for R/p, and this is also
well-defined.

Using the properties of existence and uniqueness of complete developments, the following
definition shows that for any orthogonal axiomatic rewriting system .4, one may construct
an orthogonal axiomatic rewriting system .A™ whose steps are multisteps of A.

Definition 2.43 (Multisteps and multiderivations). Let A = (Obj, Stp, src, tgt) be an orthog-
onal axiomatic rewriting system. Then:

57

A multistep M is a finite, non-empty, set of coinitial steps, that is, there is an object
x € Obj such that for every R € M we have src(R) = z.

« If M is a multistep, we write src(M) for the source object of the multistep, and tgt(M)
for the target y of any complete development p : © — y of the set M. Recall that there
is always at least one complete development of a set A/ (Prop. [2.36), and that complete
developments are unique modulo permutation equivalence (Prop.[2.42), so their targets
always coincide by Lem. [2.41]

 Let Multistep the set of all multisteps starting on all possible objects € Obj. Then
the 4-uple (Obj, Multistep, src, tgt) is an abstract rewriting system, which we call the
abstract rewriting system of multisteps of A, and we denote by A™.

« Sometimes we write M : x = y for a step M : © —_m y. To avoid confusion with
derivations of A, derivations of A™ are sometimes called multiderivations of A. When
working with both derivations and multiderivations, we write D, E ... to range over
multiderivations.

« We say that a derivation p is a complete development of a multiderivation M, ... M,, if

p is of the form p; ... p,, where for each 7, the derivation p; is a complete development
of the set M,.

Another consequence of the properties of existence and uniqueness of complete develop-
ments is the following abuse of notation, usually found in the literature, that we will frequently
use.

Convention 2.44. A multistep M (resp. multiderivation D) can be implicitly coerced to a
derivation p, by taking p to be some complete development of M (resp. D). We assume that for
each multistep M we deterministically choose a complete development 0 M, which we call the

canonical complete development of M. Similarly for multiderivations, by setting o(M; ... M.,,) o

oMy ...0M,,.

In the following lemma, we write M 1 N for the derivation M (N /M), where, as noted
in Convention “M?” stands for the canonical complete development of the set M, and
“N /M stands for the canonical complete development of the set N/ M = | J{R/M | R €

Lemma 2.45 (Cube identity for multisteps). Let M and N denote sets of coinitial steps with
the same source. Then M L N = N 1 M.

Proof. Let p be the canonical complete development of M and let o be the canonical complete
development of N'/M. We claim that po is a complete development of the set M U N, where
U is the set-theoretical union. Indeed:

« Development. Note that p is a development of M = M U N and ¢ is a development
of N'/p = (M uN)/p, so po is a development of M U N.

58

« Complete. Suppose that po is not maximal. Then there is a step R € (M U N)/po
that extends . But (M U N)/po = (M/pa) u (N /pa) = N /po since p is a complete
development of M, which means that M/poc = (M/p)/oc = @ /o = . So we have
that R € N'/po extends o, contradicting that o is a complete development of N/p.

Hence the derivation M 1 N is a complete development of M U N. Symmetrically, the
derivation A/ L1 M is also a complete development of M U N. By the uniqueness of complete
developments (Prop. we obtain that M 1N = N 1 M as required. O

Definition 2.46 (Residual of a derivation after a set). If p is a derivation and M is a set of
coinitial steps with the same source as p, then p/M is a derivation defined as follows, by
induction on the length of p:

def
Esrc(M)/ M = Egrm)

Ro/M = (R/M)(p/(M/R))

Note that M /R is a set of coinitial steps with the same source as p so the second equation
typechecks. Note also that, “R/M” stands for the canonical complete development of the
multiset R/ M.

Lemma 2.47. Let p be a complete development of M. Then p/N is a complete development of
M/N.

Proof. By induction on the depth of M. If the depth is 0, then M is empty and it is immediate
to conclude. If the depth of M is positive, then M is non-empty and p is of the form Rp’ where
R € M and p' is a complete development of M /R. Recall that the depth of M/R is strictly
smaller than the depth of M, as observed in Rem. so by inductive hypothesis p'/(N/R)
is a complete development of (M/R)/(N/R). Moreover, the cube identity (Lem.[2.45) ensures
that

(M/R)/(N/R) = M/(RuN) = M/(N uR) = (M/N)/(R/N)

To conclude, observe that p/N = Rp'/N = (R/N)(p'/(N/R)), where “R/N” stands for the
canonical complete development of the set R/N, which is a subset of M /N, and p'/(N/R)
is a complete development of the set (M/N)/(R/N'). Hence p/N is a complete development
of M /N, as required.]

Definition 2.48 (Residual of a derivation after a derivation). If p and o are coinitial deriva-
tions, p/o is a derivation defined as follows, by induction on the length of p:

trc0)/0 E o)
Rp/o € (R/o)(p/(c/{R}))

Note that o/{R} is the residual of a derivation after a set of coinitial steps according to the
previous definition (Def.[2.46). Note also that “R/c” stands for the canonical complete devel-
opment of the multiset R/o.

Remark 2.49. By autoerasure, we have that p/p = € for any derivation p. This can be formally
proved by induction on p.

59

Lemma 2.50 (Properties of residuals). The following hold in any orthogonal axiomatic rewriting

system:

L p/oT = (p/o)/T

2. po/T = (p/T)(0/(7/p))

Proof. Getting the proof right is a bit delicate. Before doing so, we state and prove some

slightly less general claims:

« Claim I For all p, 0, M we have po/ M = (p/M)(c/(M/p)).
Proof of Claim I By induction on p. If p is empty it is immediate. If p = Rp’ then:

Rp'o/ M

(R/M)(p'o/(M/R))

by definition

(R/M)(p'[(M/R))(a/(M/Rp')) by ih.

(Rp'/M)(a/(M/Rp"))

by definition

« Claim II. Let p be a complete development of a set M. Then for any o, we have that

o/p=oc/M.

Proof of Claim II. By induction on o. If ¢ is empty, it is immediate. If o = So’ observe

that Lem. ensures that p/S is a complete development of M/S:

Sa'lp =

(S/p)(a'/(p/9))
(S/p)(0'/(M]S))

by definition
by i.h. using Lem.

(S/M)(c’/(M]S)) since p is a complete development of M
So’ /M

by Claim I

« Claim IIL If p is a complete development of a set M, then po /7 = (p/7)(c/(T/p)).

Proof of Claim III. By induction on p. If p is empty, it is immediate. Otherwise p = Ry’

is a complete development of M so p' is a complete development of M /R. Then:

Rplo/T = (R/T)(p'o/(T/R))
Rim)(p'/(r/R))(o/((/R)/p))
Rp' /) (o/((/R)/"))
Rp'[)(0/((7/R)/(M/R)))
Rp'/7)(0/(r/M))

(
(
= (
(

= (Rp/7)(0/(7/Rp"))

by definition

by i.h.

by definition

by Claim II

by the cube identity (Lem.
since RuM=MuR=M
by Claim II

Having established these claims, we are able to prove items 1. and 2. in the statement:

1. Let us prove that p/oT = (p/c)/7. By induction on p. If p is empty, it is immediate. If

p = Ry then:
Rp'for = (R/oT)(p'/(07/R))
= ((R/o)/T)(¢'/(oT/R))
= ((R/o)/7)(
= ((R/o)/T)((¢'/(0/R))/(7/(R/0)))
= (R/o)(¢'/(c/R))/T

= (Rp'/o)/T

p
/(o) R)(r/(R/a)))

by definition

by definition

by Claim I

by i.h.

by Claim III

since R/o is a complete development
by definition

60

2. Let us prove that po/7 = (p/7)(0c/(7/p)). By induction on p. If p is empty, it is imme-
diate. If p = Ry’ then:

Rp'a/T (R/T)(p'o/(T/R)) by definition
(B/7)(p'/(m/R))(a/((7/R)/p)) by Lh.

= (B/7)(p'/(7/R))(o/(r/Rp)) by item 1.

= (Rp//7)(c/(T/Rp")) by definition

O

Proposition 2.51 (Orthogonality of multisteps). Let A be an orthogonal axiomatic rewriting
system. Then the abstract rewriting system of multisteps A™ is also an orthogonal axiomatic
rewriting system.

Proof. Given three multisteps:
M:iz=y N:z=2 M:2 =y

declare the residual relation M (N) ;.. M’ to hold in A™ whenever the equality M" = M/N
holds when M, N, and M’ are seen as sets of coinitial steps in A. Note that residuals are
affine, that is, given coinitial multisteps M, A the set of residuals {P | M (N) ,. P} is either
empty or consists of exactly one multistep M /N

Let us check that this definition verifies the axioms of an orthogonal axiomatic rewriting
system:

1. Autoerasure. Note that M /M = & in A. Since a multistep is defined to be a non-empty
set of coinitial steps, there is no multistep A such that M (M) ., N.

2. Finite residuals. Even more strongly, residuals are affine.

3. Finite Developments. By the fact that residuals are affine, the length of any development
ofaset X = {My,..., M,} is bounded by n.

4. Semantic Orthogonality. Let M, N be coinitial multisteps. Then the peak may be closed
—
1

—
D

as follows:

If the set M /N is empty, the multiderivation D is chosen to be the empty multideriva-
tion e. If the set M /N is non-empty, the multiderivation D is chosen to be the multi-
derivation M /N of length 1. Symmetrically for F.

One can then check that the pair (ME, N D) is a permutation tile, which is an imme-
diate consequence of the cube identity for multisteps (Lem. [2.45).

O

61

Lemma 2.52. In an orthogonal axiomatic rewriting system A, let M be a multistep and let
Ry ... R, beacomplete development of M. Then in the rewriting system of multisteps we have
that./\/l = pm {Rl} ce {Rn}

Proof. By induction on the depth of M. Recall that M is a multistep so it is non-empty. We
consider two cases:

1. Ifn = 1. Then € is a complete development of M/R;, so M/R; = &. Moreover,
Ry € M, so {R;}/M = @. This means that (M, {R,}) is a permutation tile in A™ and
we have M = n {R;}.

2. Ifn > 1. Then R; ... R, is a complete development of M/R;, so M/R; is non-empty.
Moreover, Ry € M, so {R;}/M = @. This means that (M, {R,}(M/R;)) is a permu-
tation tile in A™, so M = n {R1}(M/Ry) =am {R1}{R2}...{R,} by ih., relying on
Rem. [2.35]

O
Proposition 2.53. If A is an orthogonal axiomatic rewriting system, the mappings:

i: Derivy — Deriv gm 0 : Derivgm — Derivy
Ri...R, — {Ri}...{R,} Mi... M, — o(My)...0M,)

Induce a bijection (Derivy/ =4) ~ (Derivgm/ =m). Recall that 0M denotes the canonical
complete development of M,

Proof. First we prove that i and ¢ are well-defined over permutation-equivalence classes.

(—) We claim that if p =4 o then i(p) =4» i(0). Indeed, by induction on the derivation
of p = o, the interesting case is one-step permutation, i.e. when p = 7y AfS7 and
o = 11 Bary, where (A3, Ba) is a permutation tile in A, i.e. o is a complete development
of A/B and 3 is a complete development of B/A. Then by Lem.[2.52] we have i(p) =
i(m)f(A)i(B)i(1e) =am 1(71)i(B)i(a)i(7e) = i(0). This mapping defines a function
i : Derivy/ =4— Derivgm/ == also noted i.

(«) We claim that if D = = E then d(D) =4 Jd(F). Indeed, by induction on the deriva-
tion of D = E, the interesting case is one-step permutation, i.e. when D = Fy MV F,
and F = FINUF; where (MV,NU) is a permutation tile in A™, ie. U is a com-
plete development of M /A and V is a complete development of N'/M. Then by the
cube identity for multisteps (Lem. we have 0D = 0(F,)0(M)I(V)O(Fr) =4
A(F1)O(N)O(U)0(Fy) = OF. This mapping defines a function ¢ : Derivgm/ = n—
Deriv 4/ = 4 also noted 0.

To conclude, let us show that they are mutual inverses. One side is immediate, namely
O(i(Ry...Ry)) = 0({R1}...{R,}) = Ry...R,. For the other side, i(d(M;...M,)) =
i(p1 ... pn) where p; is a complete development of M; for all i. By Lem. we have that
i(p1...pn) =am My ... M, as required. O

62

Lemma 2.54. Let A be an orthogonal axiomatic rewriting system. Theni(p/o) == i(p)/i(0).

Proof. Let us write p as of the formp = R; ... R,,. Let us moreover define 0; :== /Ry ... R;_;
forall 1 < < n. Then:

i(p/o) = i(Ry...R,/0)
= 1(0(Ry/0y) ... 0(R,/0n))
= 1i(d(Rifor)) ... 1(0(Rn/on))
= (Ri/o1)...(R,/0n) by Prop.
= (R {Ra)/ilo)
= i(p)/i(o)

]

Theorem 2.55 (Cube identity for derivations). The following holds in any orthogonal axiomatic
rewriting system A:

plo/p) =a(p/o)

Proof. The proof of this fact requires working in the rewriting system of multisteps .A™, which
is orthogonal by Prop. The sketch of the proof is as follows: let p = R;...R, and
o : S1...S,. Consider them as sequences of multisteps D = {R;}...{R,} and F =
{S1}...{Sm}. Apeak («<==>) in the rewriting system of multisteps may be closed with at most
one step on each side (==<<), as a consequence of the cube identity for multisteps (Lem.[2.45).
So the peak formed by D and E may be closed with square tiles (each side of a tile may be a
single multistep or the empty derivation ¢):

{R1} {Ra2} {Rn}
= = =

The complete development of the multisteps on one side of the diagram is precisely p(o/p),
and the complete development of the multisteps on the other side of the diagram is precisely
o(p/o). Moreover, the cube identity for multisteps (Lem. ensures that the diagram com-
mutes, ie. that the sides of each tile are permutation equivalent in A™. By Prop. this
implies that p(c/p) = o(p/o) in A. In Paul-André Mellies’ PhD thesis [118, Chapter 2] the
reader may find a more detailed proof. O

As a consequence of this theorem we obtain a strong version of confluence, called algebraic
confluence by Mellies:

Corollary 2.56 (Algebraic confluence). Let p : x — y and o : © — z. Then there is an object
w such thato/p :y — w and p/7 : z — w.

Proof. Immediate since by Thm.[2.55/we have that p(c/p) = o(p/0). O

63

Another consequence of Thm. is that the set of derivations in any orthogonal ax-
iomatic rewriting system can be given the higher-order structure of a category with pushouts.
More precisely, one can define a transitive relation between derivations p = o, called the pre-
fix order, and the binary operation of join of derivations p L1 0 which is the least upper bound
of {p, o} with respect to the order =, up to permutation equivalence.

Definition 2.57 (Prefix order). Given two coinitial derivations p, o, we say that p is a prefix
of o, written p C o, if and only if p/o = €.

Lemma 2.58 (Characterization of the prefix order). The following are equivalent:
1. pE oo,
2. plo/p) = o,
3. pT = o for some derivation T.

Proof. (1 = 2) Suppose that p = o, i.e. p/o = e. Then by Thm.[2.55 we have p(c/p) =
o(p/o) = 0. (2 = 3) Immediate by taking 7 := o/p. (3 = 1) Suppose that po = p.

Then p/o = p/pT = (p/p)/T = € by Lem.|2.50] O
Lemma 2.59 (Projection equivalence). The equivalence p = o holds if and only if p E o and
oCp.

Proof. (=) Suppose that p = 0. Then p/o = p/p = €, so indeed p E o. Symmetrically, o E p.
(<) Suppose that p = ¢ and 0 = p, that is to say p/o = € and 0/p = €. Then by Thm.
we have that p = p(o/p) = o(p/o) = 0. O

Definition 2.60 (Join of derivations). If p and ¢ are coinitial derivations, their join, written
p U o is defined as p Lo := p(a/p).

Lemma 2.61 (Properties of L1). The join of derivations has the following properties:
1. puoc=ocup.
2 pSpuoando S puo,ie pu o isan upper bound of {p,o}.
3. (puo)/T=(p/7) v (0/T).

4 Ifp S Tando S 7T then p L o C T,1ie pu o is the least upper bound of {p,c}, up to
permutation equivalence.

Proof. Let us prove each item separately:
1. We have p u o = p(o/p) = o(p/o) = o L p by Thm.[2.55

2. Note that p/(p L o) = p/p(a/p) = (p/p)/(c/p) = € by Lem.[2.50]so indeed p = p L 0.
Moreover, using item 1. we have that o /(p L o) = o/(0c L p) = €.

64

3. Note that, using Lem. and Thm.

(pwa)/r = pla/p)/

(o/7)((a/p)/(/p))

(o/T)(0/p(7/p))

= (p/7)(o/7(p/T)) since p(7/p) =T(p/7)
(o/T)((a/7)/(p/7))

(p/T) 1 (a/7)

4. Let p/T = eand 0 /7 = €. Then using item 3. we have that (puo)/7 = (p/T)u (0/T) =

ELIE=E.
O]

Proposition 2.62 (Compatibility with projection for multisteps). Let A be an orthogonal ax-
iomatic rewriting system. If D =w E then D/F == E/F.

Proof. 1t suffices to show the property when F' is a single multistep; the main result then
follows by induction on F'. So let D = 4= F and let us show that D /P == E/P. We proceed
by induction on the derivation of D =4~ E. The interesting case is one-step permutation, i.e.
when D = F{MV F, and E = F,NUF, where (MV, NU) is a permutation tile in A™, i.e.
U is a complete development of M /N and V is a complete development of N/ M.

The multiderivations U and V' may be empty or they may consist of exactly one multistep.
In any case, for any multistep P we have that (MV /P)=(N'U/P), because given an arbitrary
step R, we have that:

R/(MV/P) = R/(M/P)(V/(P/M))
= R/(M/P)(N/M)/(P/M))
= R/(M/P)((N/P)/(M/P)) by the cube identity (Lem.
= R/(N/P)(M/P)/(N/P)) by the cube identity (Lem.
= R/(N/P)(M/N)/(P/N)) by the cube identity (Lem.
= R/WN/P)U/(P/N))
= R/(NU/P)

From this fact, we may conclude that MV /P = NU/P for any multistep P. Then:

D/P = FMVE,/P
= (BY/PYMV/(P/F1))(F2/(P/FAMV))
= (I/PYNU/(P/F))(F2/(P/FMV))
FNUF,/P
— E/P

]

Proposition 2.63 (Compatibility with projection). Let A is an orthogonal axiomatic rewriting
system. If p =4 o then p/T =4 0/T.

65

Proof. Let p =4 o and let us show that p/7 =4 o/7. By Prop. we know that i(p) ==
i(o), and it suffices to show that i(p/7) =4m i(0/7). Indeed:

i(p/T) =am i(p)/i(7) byLem.[2.54

=, m 1(0)/i(7) by compatibility in A™ (Prop.
= m 1i(o/T) by Lem.

]
Corollary 2.64 (Left cancellation). If po = p7 theno = 7.
Proof. An immediate consequence of Prop. projecting by p. [

2.3 The \-Calculus

Much has been written about the A-calculus. The syntax of the (pure, untyped) A-calculus and
the S-reduction rule have already been informally discussed in Section[1.1] We omit its formal
definition, referring the reader to standard reference material on the topic [22] 95| 130, [74].
In particular we omit the formal treatment of the equivalence of terms modulo renaming of
bound variables (a-equivalence). In the following, we do recall a few important concepts.

Convention 2.65 (Barendregt’s free variable convention). During theorems and proofs, we
may always assume that bound variables have been renamed apart from bound variables and
from each other.

2.3.1 Positions and Contexts

Two simple but important notions are those of positions and contexts. Generally speaking, a
position is a string of symbols intended to represent a location in a tree. The empty string €
represents the root of the tree. A position p representing a node in the tree may be extended
with an integer 7 to represent its i-th child. Given two positions p, ¢ we write p - ¢ so stand
for their concatenation. Each term ¢ of the A-calculus has a set of positions pos(t):

Definition 2.66 (Positions of a A-term). If ¢ is a A-term, the set of positions pos(t) is defined
as follows by induction on ¢:

pos(z) = {e}
pos(ts) = {e}u{l-p|pepos(t)} u{2-p|pe pos(s)}
pos(Az.t) = {e}u{l-p|pepos(t)}

For example, the positions of Az.zy are {¢, 1, 11, 12}. Positions are used to perform “surgery”
on terms: if p € pos(?) is a position then ¢, denotes the subterm of ¢ at position p, and ¢[s],
denotes the term obtained by replacing the subterm at position p of ¢t by s. For example,
(Ax.zy)l12 = y and (A\x.zy)[zy]in = Ar.zyy. We will freely use the notion of position in
other settings, besides the A-calculus, without always giving an explicit definition.

The notion of position is very closely related with the notion of context. A context is a
term with exactly one occurrence of a free variable [, called a hole.

66

Definition 2.67 (Contexts in the A-calculus). A context is defined by the following abstract
syntax:
Cu=[]|Az.C|Ct|tC

Each position p € pos(t) corresponds to a context ¢[[J],. For example, (Az.zy)[(]1; is
the context Ax.[Jy. Contexts may also be used to perform surgery: if C is a context and ¢
is a term, then C(t) denotes the capturing substitution of [] by ¢ in C, so that, for example,
(Az.20){zx) = Az.x(xzz). In this thesis we also write C{t)) for the capture-avoiding substi-
tution of []by ¢ in C, so that, for example, (Az.2[]){xx) = \z.z(xx). As for positions, we will
freely use the notion of context for other families of terms, besides A-terms, without always
giving an explicit definition.

Contexts are useful to decompose a term by writing it as C(¢), where C is a partially known
term with an unknown subterm [, in which one plugs the subterm ¢. For example, a term is
of the form C{x)) if and only if it has a free occurrence of z. Sometimes it is also useful to
decompose terms using contexts with more than one hole. A context withn holesis a term with
exactly one occurrence of the free variable []; for each ¢ € {1,...,n}. If C is a context with
n holes, we write C{t1, ..., t,) for the result of substituting each []; for ¢; in C. For example,

((A\x.xe)h)<t, s) = (Az.xzs)t.

2.3.2 Residual Theory for the \-Calculus

From the propositional point of view, the $-reduction rule of the A-calculus is a binary relation
between A-terms:

Cl(Az.t) s) —p5 C{t{z := s})
From the relevant point of view, however, the A-calculus is an abstract rewriting system whose
objects are A\-terms and whose steps are defined as follows:

Definition 2.68 (Step in the A-calculus). A step in the A-calculus is a 4-uple R = (C, z,, s).
The source of R is C{(Ax.t)s) and its target is C{t{z := s}).

For example, there is a step (A\z.zx)yz —p yyz, given by the 4-uple ((z, z, xz,y). An
important observation is that a step is not uniquely determined by its source and target. For
example, if I = \x.z, there are two different steps I (Iy) —3 Iy namely R = ((J, z, z, [y) and
S = (I, z, x, y). This kind of situation is called a syntactic accident by Lévy [109]. In spite of
the possibility of syntactic accidents, we usually do not work formally with 4-uples, since the
step is usually clear from the context, e.g. when we say “the step (A\z.z)t —3 t” we actually
mean “the step ({7, z, x,t)”.

The A-calculus can be endowed with the structure of an orthogonal axiomatic rewriting
system (as defined in Def. [2.39). There are many (equivalent) ways to define the notion of
residual in the \-calculus. One way is by tracking descendants, using positions. Here we

define residuals by means of an auxiliary calculus in which some redexes may be marked.

Definition 2.69 (Marked A-calculus). Assume given a denumerable set of marks a, b, ¢,
The set of marked terms is given by:

to=wx| et |tt]| (Aat)t

67

The marked \-calculus has a single rule, closed by arbitrary contexts, that allows to contract
any marked redex. The notation ¢{x := s} stands for the capture-avoiding substitution of x
by s in t.
(Ax.t)s —m t{z = s}

A step in the marked A-calculus is a 5-uple (C, z, a, ¢, s) whose source is C{(Az®.t) s) and its
target is C(t{x := s}). The name of a step R = (C, z, a,t, s) in the marked A-calculus is the
mark a. A term is initially marked if it has no subterms of the form (Ax.t)s and marks are
pairwise distinct. A marked term ¢ is a variant of an (unmarked) term t' if ¢’ is the result
of erasing all marks from ¢. Similarly, a marked step R = (C,z,a,t,s) is a variant of an
(unmarked) step R’ = (C',z,t’, ") if C, ¢, and s are variants of C',t’, and s respectively. If the
marked term ¢ is an initially marked variant of ¢ and R’ : ¢’ —4 s’ is an unmarked step, there
is a unique marked step R : ¢t —\ s such that R is a variant of ', we say that R is the marked
lift of R’ with respect to t.

For example, (Az®.x)((\y°.y)z) is an initially marked term, but the terms (Az®.z)((A\y®.y)z)
and (A\z®.x)((\y.y)z) are not initially marked. The marked step

(Az2)(Ay".y)2) —m ((Ay°.y)2)
is the marked lift of the unmarked step
(Az.2)(A\y-y)z) =5 ((Ay-y)2)

with respect to the marked term (Az®.z)((\y°.y)z). The notion of residual in the \-calculus
may be defined using the marked A-calculus as an auxiliary tool, as follows.

Definition 2.70 (Residuals in the A-calculus). Let R : t -3 sand S : t —3u be coinitial steps
in the A-calculus. The set of residuals R/S is defined as follows:

1. Let ¢’ be an initially marked variant of .

2. Let R : t/ >y & and S’ : ' —\ «’ be the marked lifts of R and S respectively.

3. Astep T : uw —p ris a residual of R after S if and only if it has a marked variant
T : u' —\ 1’ with the same name as I'.

Remark 2.71. The definition of residual does not depend on the choice of the initially marked
variant ¢'.

Example 2.72. Let A = A\x.xx and I = \x.x, and let moreover
R: A (I Z) -8 Az
S: A(lz) —p I1z2(Iz)
Ri: 1z(Iz) —5 z(Iz)
Ry: 1z(Iz) —p Izz
then R/S = {R1, Ry}, as witnessed by the following diagram in the marked \-calculus:
(ataz) (Ay*y) 2) T) 2 (') 2),
1 2
R/‘L / \

(A\z®.xx) 2 2 (\yby) 2) \yy) z 2

68

Theorem 2.73. The \-calculus is an orthogonal axiomatic rewriting system.

Proof. The properties of autoerasure (AE) and finite residuals (FR) are easy to check. The
property of finite developments (FD) of the A-calculus can be reduced to the property that
the marked A-calculus is strongly normalizing. To prove SN of the marked A-calculus, one
may assign a weight m(t) € Ny to any marked term ¢, representing the length of the longest
sequence of steps starting from ¢:

m(z) © oo
m(Az.t) L m(t)
Zz(ts) Zii m(t) + m(s)
m((Az®.t)s) = 1+ m(t) + max{l,m,(t)} m(s)

where in turn m,(t) represents the maximum potential multiplicity of x along any sequence
starting from ¢:

dot)1 Hz=y
ma(y) = {O otherwise
ma(Ay.t) L my(t) ifz+y
ma(ts) < ma(t) + my(s)
ma(Ayt)s) 1+ my(t) + max{1,my(t)} - my(s) ifz+#y

It can then be checked that t —\ s implies m(¢) > m(s), which in turn means that the
marked calculus is SN. The key fact is that m(t{x := s}) < m(t) + m,(t) - m(s) holds for all
t,x, s, which can be proved by induction on ¢f|

The property of semantic orthogonality (SO) can be reduced to the property that the
marked A-calculus is weakly Church-Rosser. The difficult case is when a step R nests an-
other step .S, that is, when the subterm contracted by the step S lies inside the argument of
the application contracted by 1. Then the peak may be closed with a diagram of the form:

(Az®.t) C{(AyP.s)u) —F=t{z 1= C{(\y®.s)u)}

)

(Ax®.t) C{s{y := u}) - >t{r = C{s{y := u})}

See [22, Lemma 11.2.23] for a detailed proof that the marked A-calculus is WCR. O

2.4 The Linear Substitution Calculus

The syntax of the Linear Substitution Calculus (LSC) and its reduction rules have been infor-
mally discussed in Section Below we briefly state these definitions.

?This direct definition of a bound for the length of the longest development of a term is due to de Vrijer [53].
See [22, Theorem 11.2.21] for a different proof.

69

Definition 2.74 (Terms and contexts). Terms (¢, s, . . .), arbitrary contexts (C, Co, . . .), and sub-
stitution contexts (L, Lo, . . .) are defined as follows:

t o= x|tt] et t[z\t]
C == [J]|cCt|tC|Az.C|C[z\t]|t[z\C]
L == []|L[z\¢]

A pure term is a term without explicit substitutions. Recall that if L is a substitution context,
we write (L rather than L{¢) for the result of plugging ¢ into the hole of L. The underlined
occurrences of x in the terms Az.t and t[x\s] are supposed to be binding occurrences. More
precisely, the set of free variables fv(t) of a term ¢ is defined as follows:

fuz) £ {a}
f(ts) % f(t) U fu(s)
fv(Azt) < f()\{z}
fo(tfa\s]) = (v(t)\(x}) L fu(s)
As in the A-calculus, terms are considered up to a-equivalence, i.e. renaming of bound vari-

ables.

Definition 2.75 (Reduction rules). From the propositional point of view, the rewriting relation
between terms (—sc) is defined as —| s¢ def —ap U —15 U — g, Where — is defined as

the contextual closure of —, for each = € {db, 1s, gc}:

(Ax.t)Ls g t[x\s]|L

Clapla\t] —1a CLEY[2\]
tlz\s] g t if z ¢ fv(t)

From the relevant point of view, steps in the LSC are given by the disjoint union of db steps,
1s steps, and gc steps where:

« Adbstepisab-uple R = (C,x,t,L,s) : C{(Ax.t)Ls) — sc C{t[z\s]L).
« Alsstepisad-uple R = (Cy,Co,z,t) : C1{Colap[x\t]) —Lsc C1{Calt D[z \t]).
« Agcstepisad-uple R = (C,t,x,s) : C{t[x\s]) —rsc C{t) such that x ¢ fv(t).

A useful notion is that of the anchor of a step. The anchor of a db step (Az.t)L s — t[z\s]L is
the underlined (binding) occurrence of z. The anchor of a 1s step C{z[z\t] — CLt)[x\t] is
the underlined occurrence of x. The anchor of a gc step t[z\s] — t is the underlined (binding)
occurrence of .

Definition 2.76 (Graphical equivalence). Terms of the LSC are provided with a binary rela-
tion ¢t ~ s called graphical equivalence. It is defined as the least congruence containing the
three axioms below:

(ts)[x\u] ~a t[x\u]s if z ¢ fv(s)
(Az.t)[y\s] ~n Axty\s] ifxé¢fv(s)andx #y
ta\sly\u] ~com tly\ul[z\s] if z ¢ fv(u) and y ¢ fu(s)

70

Recall that a congruence is an equivalence relation which is closed by arbitrary contexts, i.e.
t ~ s implies C(t) ~ C{s).

In the following, we state a few results that justify that the LSC is a quite well-behaved
explicit substitution calculus, and we sketch the ideas behind their proofs. For their formal
proofs the reader should refer to [} 2, 5].

Proposition 2.77 (Full Composition). Ift, s are terms in the LSC, then t[x\s] —sc t{x := s}.

Proof. Suppose that there are exactly n free occurrences of z in ¢, and write t = C{z,x,...,x)
where C is an n-hole context, for n > 0. Then with a sequence of n 1s steps and one gc step

tlx\s] = Clx,z, ..., x)|z\s]

—1sc C(s,8,...,8)[x\s] withn 1s steps

we have:

—1sc C(s,8,...,8) with a single gc step
= t{x := s}
O

Corollary 2.78 (Simulation of 3-reduction). The LSC simulates the A-calculus, that is ift —z s
thent —<c s.

Proof. A (-reduction step C{(A\x.t) s) — C{t{x := s}) can be simulated in the LSC as follows:

C{(Azx.t)s) —isc C{t[z\s]) with a db step
—1sc C(t{z := s}) by Full Composition (Prop.[2.77)

Lemma 2.79 (Unfolding is terminating). The relation —15 g def 1s U —g isSN.

Proof. A bound m(t) for the length of the longest sequence of —1 4. steps going out from a
term ¢ can be obtained as follows:

m(z) < 0
m(Az.t) m(t)

mts) € m(t)+m(s)

m(t[z\s]) m(t) + (1 +ma(t)) - (1 +mfs))

where in turn m,(t) represents the maximum potential multiplicity of x along any sequence
of — 15 ¢c steps starting from ¢:

mg\y =
(v) 0 otherwise

def {1 lfl’ =1y
ma(Ay.t) < mg(t
ma(ts) < mg(t

ma(tly\s]) € mu(t

It can then be shown that if t —; 4 s then m(t) > m(s) which entails termination. O

e (s)

(1 +my(t)) - ma(s)

)
)+
)+
(

71

Let us write SN, for the set of strongly normalizing terms for the rewriting relation —.

Theorem 2.80 (Preservation of strong normalization). Ift is a pure term and t € SNg then
te SNLSC-

Proof. We sketch a proof of PSN, without going into all the technical details, which would
require quite a few auxiliary lemmas. A proof of PSN for the structural A-calculus—a calculus
closely related with the LSC— may be found in [8], and the proof can be easily adapted.

Define the unfolding of an LSC term ¢ as the A\-term ¢° that results from performing all
substitutions, that is, the —1 zc.-normal form of ¢. In a term of the form C(t[z\s]), we say that
the substitution [z\s]| under the context C is sterile if = ¢ fv(¢°). A subterm is unreachable if
it lies inside a sterile substitution, and reachable otherwise. For example, in x[y\z][2\t] the
subterm ¢ is unreachable because the underlined substitution x[y\z][2\t] is sterile. A step
R : t — s is unreachable if the anchor of R lies inside an unreachable subterm of t, and
reachable otherwise. The rewriting relation of unreachable reductiont — s is defined as the
restriction of ¢ —sc s to unreachable steps. In turn, reachable unfolding t —rsqc) is the
restriction of £ —15 4 s to reachable steps.

Let X be the set of LSC terms such that t* € SN and every unreachable subterm of ¢ is
in SNisc. Observe in particular that if ¢ is pure and ¢ € SNg, then ¢* = ¢ € SN and ¢ has no
unreachable subterms, so in fact ¢ € X. The proof of the main statement can then be reduced
to the claim that X < SN s¢c, which is Claim II below. We also need Claim I as an auxiliary
result.

« Claim L. If t € X, then for any subterm s of ¢ we have that s € X.
Proof of Claim I Let s be a subterm of ¢. Note that any unreachable subterm w of s is
also an unreachable subterm in ¢, so we have that u € SN sc. We are left to show that
5% € SNg. We consider two cases:

- Reachable. Suppose that s is reachable. Then s° occurs as a subterm of ¢°, and
t® € SNg by hypothesis, so s° € SNg.

— Unreachable. Suppose that s is unreachable. The hypothesis that ¢ € X implies
that s € SNisc. As a consequence, we have that s° € SNg, since by Simula-
tion (Coro.|2.78) an infinite sequence

SO—>5U1 —g U2 3 ...
results in an infinite sequence
§ sge S lsc U1~ sc Uz ~sc -
contradicting s € SN sc.

e ClaimII.If ¢t € X thent € SN 5¢.
Proof of Claim II. The proof proceeds by induction on the size of the term ¢. Since the

72

A-calculus and the LSC are finitely branching, by Prop.[2.17|we may define the following
notions of depth:

depths(t) € max{|p||p:t —ps) if t € SNy
depthg (15 4c)(?) Lof max{|p| | p:t —»Rrasge) s} iftisany LSC term
depthy(¢) & max{|p| | p: t -y s} if t is an LSC term whose
unreachable subterms are in SN sc

Note that depthg 5 4)(t) is well-defined because — g is SN (Lem. b so in particular
—R(1s,gc) i SN. The measure of t is written # () and defined as the triple:

#(t) X (depth(°), depthggg oo (), depthy (1))

It can then be shown that if t —| sc s then #(t) > #(s) where (>) is the lexicographic
order. We consider three cases:

1. Reachable db step. Suppose that the step is of the form ¢t = C{(Az.u)L7r) —4
Clu[z\r|L) = s and that it is reachable.

First, we argue that s € X. Note that t* —3* s° in at least one step, as can be
checked by induction on ¢. Since t* € SN then s° € SNg. Moreover, consider an
unreachable subterm of s, and let us check s € SN sc. The unreachable subterms
of s are the same ones as for ¢, except perhaps for r and its subterms. But r is
smaller in size than ¢, and by Claim I r € X, so by i.h. we have that € SN sc.

Second, let us show that the measure decreases. We have already noted that t*—3*
s°, so depth(t°) > depth,(s°) and the first component decreases.

2. Reachable 1s or gc step. Suppose that the step is of the form ¢ —g(154c) s and
that it is reachable.

First, let us show that s € X. Observe that t* = s° so given that * € SNg,
also s° € SNg. Moreover, let us check that the unreachable subterms of s are
in SNisc. If the step is a gc, it is immediate. If the step is a 1s step then ¢ =
C1(Collzp[r\u]) —1s C1{Colxp[x\u]) = s. The unreachable subterms of s are
the same ones as in ¢, except perhaps for u and its subterms. But « is smaller in
size than ¢, and by Claim I © € X, so by i.h. we have that u € SN| sc.

Second, let us show that the measure decreases. Since ¢ —Rg(154c) S We have that
depthgi gc)(t) > depthg(ys 4o (s) so the second component decreases. Moreover
t° = 5% so depth(t°) = depthg(s°), i.e. the first component does not change.

3. Unreachable step. Suppose that the step is unreachable, i.e. of the form ¢ — s.

First, note that s € X since t° = s° and the reachable subterms of s are the same
ones as in ¢.
Second, let us show that the measure decreases. Given that ¢ — s, we have that
depthy(t) > depth(s) so the third component decreases. Note that t° = s° so
depth(t°) = depthy(s®), ie the first component does not change. Moreover,
depthgy ¢c) (t) = depthg(g 4.\ (5), i.e. the second component does not change.

73

Proposition 2.81 (Confluence). The LSC is confluent.
Proof. We do not give a full proof here, but a few pointers:

+ A proof of confluence for the structural A-calculus—closely related with the LSC—may
be found in [8].

« Confluence for the LSC is straightforward using interpretation methods [72]]. A proof of
a stronger property, meta-confluence, for the LSC can be found in [52].

« A proof that the LSC is an orthogonal axiomatic rewriting system may be found in [5]].
Recall that orthogonal axiomatic rewriting systems enjoy the stronger property of al-
gebraic confluence (Coro. [2.56).

« In Chapter|6|we will reconstruct a proof that the LSC is an orthogonal axiomatic rewrit-
ing system, using a labeled calculus.

O

Chapter 3

Distilling Abstract Machines

3.1 Introduction

The A-calculus is a fine model of computation from the point of view of computability—it is
Turing-complete. It is however not so clear whether the A-calculus is a fine model of com-
putation from the point of view of computational complexity. By this we mean the amount of
resources that the program must consume to be able to run. There are many kinds of computa-
tional resources. In this chapter we are interested exclusively in the time complexity required
to evaluate A\-terms. Time is a most fundamental computational resource, in that other kinds
of resources, such as the amount of space (memory) that a program uses, or the amount of
energy (e.g. battery) that it consumes, can usually be bounded proportionally by the running
time of the program.

As mentioned in the introduction, van Emde Boas’ Invariance Thesis stipulates that reason-
able models of sequential computation should simulate each other with polynomial overhead
in time [140]. For example, “traditional” (or “established”) models of computation such as
Turing machines and random-access machines are known to simulate each other with poly-
nomial overhead. Is the A-calculus a reasonable time cost model of sequential computation,
with respect to the established models? That is, can a sequence of n consecutive 3-reduction
steps tg —3t1 ... —pt, be simulated in a Turing machine with at most a polynomial number
of steps in n?

As an illustration of why this question is subtle, note that there are families of A-terms
whose sizes grow exponentially as a function of the number of 3-reduction steps. For instance,
recall the following families of terms (¢,,)nen and (s,)nen from Section[1.1.2}

th €y so €y
tnit def (Ax.zx)t, Snil = SpSn
These terms are such that the size of ¢,, is ©(n) and the size of s,, is ©(2"), but t,, reduces
to s, in ©(n) steps. Suppose that one represents terms straightforwardly as trees—be it in
a Turing machine or in any other established model of sequential computation. With that
representation, the amount of memory required to simulate n consecutive S-reduction steps,

74

75

starting from ¢,, grows exponentially as a function of n. As a necessary consequence, the
amount of time required to simulate n consecutive 5-reduction steps also grows (at least)
exponentially as a function of n.

The above example shows that it is not possible to simulate 3-reduction in polynomial
time as long as terms are represented straightforwardly as trees. The subtle point is that this
does not forbid that the A-calculus may turn out to be a reasonable time cost model if one
were to rely on a smarter representation for A-terms. In summary, regarding the question of
whether the \-calculus is a reasonable time cost model, answering it positively would require
to conceive a sufficiently smart representation for A\-terms that avoids the exponential blowup
in space. Conversely, answering it negatively would require to prove that simulating it with
polynomial overhead in time is impossible for any conceivable encoding of A-terms.

A noteworthy contribution to the study of this problem has been the work by Accattoli
and dal Lago [11]], who have shown that leftmost-outermost reduction in the A-calculus is
reasonable, by choosing an appropriate representation for A-terms that avoids the exponential
blowup. In fact, in order to share subterms, the Linear Substitution Calculus (LSC) is used as
the primary technical tool. The general question of whether arbitrary 5-reduction in the \-
calculus is a reasonable time cost model is currently open, as of the writing of this thesis.

In this chapter, we tackle the question of whether certain reduction strategies in explicit
substitution calculi are reasonable cost models. For example, in the case of the call-by-name
reduction strategy for the Linear Substitution Calculus (LSC), the question is whether it is pos-
sible to implement the LSC in such a way that n consecutive call-by-name reduction steps can
be simulated—in an established model of sequential computation—with at most a polynomial
number of steps in n. We answer this question positively for four particular reduction strate-
gies: call-by-name, call-by-value, call-by-need, and strong call-by-name (i.e. call-by-name
generalized to allow reduction under abstractions).

To be able to study these questions for a given reduction strategy, one needs to provide
the following elements:

1. A formal definition of the reduction strategy itself.
2. An implementation of the reduction strategy:.

3. A “distillation”, i.e. a construction showing that the implementation actually imple-
ments reduction according to the given strategy.

All of these elements are grouped in an abstract structure that we call a distillery (see Def.[3.17).
Throughout this chapter we develop a methodology to study distilleries. Besides the particu-
lar results on the time complexity of various evaluation strategies, the methodology itself is
an important take-home point, for the following reasons:

« Distilleries are uniform: abstract machines are consistently seen as implementations of
reduction strategies in a single framework—the A-calculus extended with explicit sub-
stitutions. This allows us to understand the working of many existing abstract machines
(e.g. the Krivine Abstract Machine or Landin’s SECD machine) as less ad hoc.

76

« Distilleries are modular with respect to various features (e.g. local vs. global environ-
ments, or split vs. merged stacks)—so formulating variants of abstract machines with
different features becomes a relatively mechanical task.

« This very uniform and modular approach can guide the design of future abstract ma-
chines to implement other reduction strategies. For instance in the conclusion (Sec-
tion [8.1) we discuss an abstract machine for the strong call-by-need reduction strategy
of Chapter

In the remainder of this section, before diving into the specific details of each strategy, we
give a description of the general methodology

First, in this chapter, a reduction strategy S is always an abstract rewriting system over
the set Term of terms with explicit substitutions:

to=x| et |tt]t[z\t]

and a binary reduction relation —g € Term x Term. In order to rigorously define the re-
lation —g, we use evaluation contexts, a technique introduced by Felleisen [55]. The set of
S-evaluation contexts is a subset of the set of all possible contexts. The position of the hole
in an S-evaluation context indicates where in a term evaluation should focus next, according
to the strategy S. For instance, the set of call-by-name evaluation contexts is given by the
grammar:

Ho=[J]|Ht|H[z\{]

Hence the following db step (underlined):

((Az.2)(y2) [y\(Ae.z)z][2\w] = z[z\y=][y\(Az.2)2][2\w]
is a step in the call-by-name strategy, as the redex is below the evaluation context H :=
C[y\(Az.z)z][z\w], whereas the following db step:

((Az.2)(y2))[y\Ae.z)z][2\w] = ((Ar.z)(y2))[y\e[z\2]][2\w]

is not a step in the call-by-name strategy, because the context C := ((Ax.z)(yz2))[y\[J]|[z\w]
is not a call-by-name evaluation context.

The reduction relation —g for each strategy S that we study is always defined using a
multiplicative (db-like) reduction rule, and an exponential (1s-like) reduction rule. The names
obey to the fact that db-like rules correspond to multiplicative cut-elimination steps in the
encoding of explicit substitution calculi using Linear Logic proof-nets and, likewise, 1s-like
rules correspond to exponential cut-elimination steps. The definition of a reduction strategy
S will follow roughly the following template:

Multiplicative reduction rule (db-like)
E{(Ax.t)Ls) —gs E{[z\s]L) if E is an S-evaluation context

Exponential reduction rule (1s-like)
Ei(Eolap[z\t]) —s Ei(Ealtp[x\t]) if E;(Ex)[x\t] is an S-evaluation context

77

One obvious difference with respect to the LSC is that reduction rules are closed by evaluation
contexts, rather than by arbitrary contexts. Moreover, each strategy may incorporate slight (or
not so slight) variations; for example the call-by-value strategy will require that the argument
of a multiplicative step is already an answer, i.e. a term of the form (Az.t)L.

All the reduction strategies studied in this chapter turn out to be deterministic, i.e. if
t —s s; and t —g s, are steps in a given reduction strategy then s; = s;. Moreover, as
mentioned, these strategies always select either a db-like or a 1s-like step, and they do not
perform garbage collection (there are no gc-like rules). As a consequence, the answer ob-
tained as the result of evaluating a term may contain unreachable explicit substitutions. The
decision to ignore the gc-rule in the analysis is justified by the following observations:

1. On one hand, gc steps in the explicit substitution calculi that we study do not interfere
with other kinds of computation steps. More precisely, gc steps can be postponed: for
every reduction sequence ¢ — s there is a term u such that £ =g, 15 U g 5.

Formally, the garbage collection rule will be incorporated into an equivalence relation
of structural equivalence between terms, and we will show that structurally equivalent
terms have the same computational behavior.

2. On the other hand, explicit substitution calculi do not allow for cyclic bindings. That
is, if a term with explicit substitutions is interpreted as a directed graph in which some
subterms are shared, the graph turns out to be acyclic.

This means that garbage collection of unreachable explicit substitutions may be imple-
mented using the elementary technique known as reference counting [82]]. Concretely,
each explicit substitution ¢[z\s] may be annotated with an integer n > 0 that counts
the free occurrences of x in ¢. This count must be updated after each reduction step,
and the explicit substitution may be reclaimed when the count reaches zero. Moreover,
all the implementations that we propose enjoy the subterm property (see below), which
means that these updates can be done in “constant” tim

As a consequence, incorporating the gc rule is not interesting from the point of view of
time complexity, and it is left out of the analysis.

Second, implementations in this chapter are always defined using abstract machines. An
abstract machine M is also an abstract rewriting system, over a set State of states, and rules
that define a binary transition relation vy © State x State between states. The concrete
definition of the set State varies from machine to machine, but typically a state is a tuple
consisting of such elements as:

« A code, that is, a term representing the expression that is currently being evaluated.
While in reduction strategies we work implicitly modulo a-equivalence, for machines
we will not do so, as renaming of variables is part of what an abstract machine may have
to explicitly do, and different renaming schemes correspond to different approaches to

! Actually in time proportional to the size of the starting term.

78

abstract machines. We use the metavariables ¢, s, u, 7 for code, that is, terms without
explicit substitutions and not up to a-equivalence.

o Astackm = cy :: ... ¢y, into which the arguments are pushed.
« An environmente = [x1\c1] :: ... it [x,\c,], which binds variables to their correspond-
ing values.

« A dump D, representing a continuation, and abstracting the lower-level notion of call
stack.

Furthermore, the values ¢y, ..., ¢, found inside stacks and environments are sometimes not
bare terms, but rather closures. A closure is a pair (£, €) of a code ¢ and an enclosing environ-
ment e which should bind all the free variables of 7.

All of the abstract machines that we study in this chapter are deterministic. They are
reasonable abstractions of the lower-level constructs that one may implement in standard
hardware architectures, such as pointers and stack frames. Moreover, most of the machines
that we will define in this chapter (except for the MAD in Section and the Merged MAD
in Section are to be regarded as established models of sequential computation, in the
sense that n transitions of an abstract machine can be simulated by Turing-machines in a
number of steps polynomial in n

Third, a distillation is given by a decoding function [[-]| : State — Term from the set
of states of the machine to the set of terms of the calculus. The decoding functions usually
take the code t in the state of the abstract machine and they leave it verbatim. The remaining
components of the state of the abstract machine (stack, environment, etc.) are combined and
decoded into an evaluation context E. The whole state of the abstract machine is then decoded
as the term E(%).

One then aims for a correctness result, stating, roughly, that the reduction strategy simu-
lates the abstract machine:

if S MM Sl then [[S]] s [[S,]] (3.1)

Note that this is not a novel idea. In fact, it is well-known that abstract machines can be seen
as implementations of evaluation strategies in calculi of explicit substitutions (see at least
(43, 73| 28, 103, [42]).

However, there is a difficulty that must be overcome in calculi with explicit substitutions at
a distance. At first sight, reduction strategies and abstract machines compute in quite different
ways. Some machine transitions, the principal transitions, correspond to computations and
can easily be mapped to either multiplicative or exponential steps. For example, in Krivine’s
abstract machine [97] (KAM), the following principal transition:

term stack environment term stack environment
M.z (y,€) e [y\(z,€)] i€ vwopam @ e [2\(y,€)] = [y\(z,€)] €

2This is justified by the invariants that the machines enjoy. Using these invariants, it can be seen that the ab-
stract machines can be simulated polynomially by random-access machines, and hence also by Turing machines.
We shall not give detailed proofs of these facts.

79

May be easily decoded as a single multiplicative step in the call-by-name reduction strategy:

((Az.z) y)[2\2] = name z[z\y][2\2]

But abstract machines also incorporate search transitions, which have no direct counterpart
as rewriting steps in the calculus. Let us illustrate the difficulty. To evaluate an application,
some machines duplicate the environment, associating a copy of the environment to each of
the two subterms. For example, in the KAM:
term stack environment term stack environment (32)
ts i e ot (s,e) nw e ’
That is, to evaluate an application ¢ s, one should go on to evaluate the function ¢, in the stack
extended with the closure (s, €).
In the traditional approach to explicit substitutions (not “at a distance”), this corresponds
to a rewriting step in the calculus, such as the following —q rule:

(t s)[x\u] —a t[x\u] s[x\u] (3.3)

However, calculi with explicit substitutions at a distance reject these kinds of rules, and as a
consequence the behavior of the machine in cannot be simulated by the calculus.

The work in this chapter stems from the key observation that rules like —q in (3.3)—despite
not being at a distance—preserve the behavior of the strategy —¢. The intuitive reason is that
the following diagrams commute. As customary, solid arrows in the diagram are universally
quantified and dotted arrows are existentially quantified:

(t 5)[2\u] = t[z\u] slz\ul (¢ 5)|2\u] — t[a\u] s[a\u]
7”@ ,,,,,,,,,,,,, - 7”/ T@ ,,,,,,,,,,,,, > T'/

These diagrams express the fact that —q is a strong bisimulation. Recall that:

Definition 3.1 (Strong bisimulation). Let A = (A, —1) and B = (B, —3) be abstract rewrit-
ing systems. A binary relation ~ € A x B is a strong simulation with respect to (—1, —3) if
for any objects a,a’ € A and b € B such that a —; @’ and a ~ b there is an object ¥’ € B such
that b —9 0’ and o/ ~ b'. Graphically:

a ~ b
1j 2

v
a ~ U

-1 (b,a) |a ~ b} < Bx Aisalso a strong simulation

If, moreover, the inverse relation (~)
with respect to (—2, —1), then ~ is a strong bisimulation with respect to (—1, —2).

In this chapter, we usually have that A = B = (A, —) so —1=—3=—. In this setting, we
simply say that ~ is a strong bisimulation with respect to —, or just a strong bisimulation if —

is clear from the context.

80

In general, for each corresponding pair (S, M) of a reduction strategy S and an abstract
machine M under study, we define an associated binary equivalence relation = of structural
equivalence between terms. Structural equivalence includes equations to propagate explicit
substitutions, such as (¢ s)[z\u]| = t[x\u] s[z\u], and it turns out to be a strong bisimulation
with respect to the reduction strategy —s.

Note that = being a bisimulation means that the following inclusion between relations
holds:

(=—s) S (—s=)

which in turn implies that any sequence of steps:
lo »s= 11 —s=ta... 2s= 1,

can always be rearranged as follows (by transitivity of =):

to*’gt/l Hgt;...ﬂgt; tn
The desired correctness result that we stated in is then slightly weakened to allow for

propagations of explicit substitutions in the calculus:
if S vy S then [[S] —s= 5]

This means that the reduction strategy simulates the abstract machine, up to propagations of
explicit substitutions. Since the reduction strategy and the abstract machine are both deter-
ministic, from such a property we will be able to deduce that the abstract machine simulates
the strategy.

Note also that = being a strong bisimulation captures the idea that two structurally equiv-
alent terms are behaviorally equivalent with respect to the strategy. In particular if t = s
then the number of steps required to normalize ¢, according to the strategy S, is the same as
the number of steps required to normalize s according to S. Consequently, calculi at a dis-
tance faithfully represent abstract machines up to propagations of explicit substitutions. The
search transitions of the abstract machine (such as are decoded as structurally equivalent
terms (such as the left and right-hand sides of[3.3). Search transitions are thus are somehow
forgotten, while principal transitions are retained and simulated as —g steps.

Bounding the Time Complexity of Reduction

It is natural to wonder what is lost in forgetting some of the transitions of the abstract machine.
We show that nothing is lost, at least from a complexity point of view: any time complexity
bound for strategies lifts to the corresponding machines, and vice-versa. More precisely, we
give a polynomial bound for the number of v~y;-steps required to simulate a sequence of n
consecutive —g-steps starting from an initial pure term ¢,. The specific details of the argument
depend on the particular abstract machine, but the idea is as follows:

« Multiplicative steps. Each multiplicative step E{(A\z.t)s) —g E(t[z\s]), is simulated

in the abstract machine with:

81

— A number of search transitions, in order to find the underlined redex. The cost
of each search transition is constant, and we will argue that there are at most |t
such transitions.

- A principal transition that usually rearranges the stack and creates a binding [z\s]
in the environment. The cost of such a transition is constant.

« Exponential steps. Each exponential step Ei(Ex{z)[2\t]) —s E1(Ea{t)[x\1]), is sim-
ulated in the abstract machine with:

— A number of search transitions, in order to find the underlined variable. As before,
we will argue that there are at most |ty| such transitions, each of constant cost.

- A principal transition that makes a copy of the term ¢. The cost of such a transition
is the cost of copying ¢, which is O(|t|). A priori the size of t could be arbitrarily
large, so to give a bound for this cost, it is crucial to prove that the abstract ma-
chines verify a number of invariants. One particular invariant, the subterm prop-
erty, states that ¢ is a subterm of the initial term ¢, and it allows us to ensure that
the cost of this transition is O([ty]).

As a consequence of this analysis, we will obtain bilinear bounds. That is, the number of

v p-steps required to simulate a sequence of n consecutive —g-steps starting from an initial
term ¢ will be bounded by O(|to] - n).

Local vs. Global Environments — Explicit Treatment of a-Equivalence

In this chapter we study two kinds of machines: those with many local environments and those
with just one global environment.
The notion of local environment is defined mutually inductively with the notion of clo-

sure:
Local environments e := €| [x\c]::e

Closures c == (te)

That is, a local environment maps variables to closures, and closures consist of a code ¢ in an
enclosing local environment e.
In contrast, the global environment is flat, i.e. it maps variables to codes and there is no
nesting;:
Global environments E = €| [z\t] = E
machines with global environments will have a single global closure (¢, F).
To explicitly treat a-equivalence, we work with particular representatives of a-equivalence

classes, defined via the notion of support. The support supp(—) of codes, environments, and
closures is defined as follows:

« supp(t) is the multiset of its bound names (e.g. supp(Az. \y.\z.(22)) = [z, z, y]).

« supp(e) is the multiset of names captured by e (e.g. supp([z\c1][y\c2][z\c3]) = [z, z, y]),
and similarly for supp(E).

82

- def - n def -
« supp((t,¢)) = supp(t) + supp(e) and supp((t, E)) = supp(t) + supp(E).
A code/environment/closure X is well-named if its support supp(.X) is a set, i.e. a multiset
with no repetitions. Moreover, a closure (, ¢) (resp. (¢, E)) is closed if £v(t) < supp(e) (resp.
fv(t) < supp(E)).

3.1.1 Our Work

This chapter is the result of collaboration with Beniamino Accattoli and Damiano Mazza, and
it is structured as follows. We highlight in boldface what we consider to be the main contri-
butions:

« In Section [3.2| we present five reduction strategies (Def. using explicit substitu-
tions at a distance. Specifically, the five reduction strategies are: (1) weak call-by-name,
(2) weak call-by-value, with left-to-right evaluation, (3) weak call-by-value, with right-
to-left evaluation, (4) weak call-by-need, (5) strong call-by-name.

The first four strategies are easy to define by relying on an appropriate notion of evalu-
ation context. These strategies are well-known from the literature and we do not claim
originality, although it should be noted that this is the first presentation that uses explicit
substitutions at a distance. In particular, the weak call-by-need strategy is quite simple
in contrast with previous formulations [12} 113} 13} 35]—it has two reduction rules, and
the grammar of evaluation contexts consists of a single sort with four straightforward
productions.

Strong call-by-name on the other hand requires more care. Our presentation follows a
previous work by Accattoli and Dal Lago [11]. In Section [3.2.4 we show that strong call-
by-name, defined using evaluation contexts, corresponds to linear leftmost-outermost
reduction in the LSC [6,[11]] —that is at the same time a refinement of leftmost-outermost
[-reduction and an extension of linear head reduction to normal form.

Moreover, we show that all of these strategies are deterministic (Prop.|3.11).

« In Section[3.3|we define a notion of structural equivalence =g for each reduction strategy
S defined in Section The main technical result is that, for each strategy S, it turns
out that structural equivalence =g is a strong bisimulation with respect to the

strategy S (Prop.[3.14).

« In Section [3.4] we introduce the notion of distillery, an abstract structure used to
relate reduction strategies and abstract machines.

« In Section 3.5 we define abstract machines implementing each of the strategies, and we
prove that all of these abstract machines form distilleries for the corresponding
reduction strategies:

83

Strategy Abstract Machine

call-by-name KAM Section |3.5.1
MAM Section|3.5.2

call-by-value CEK Section [3.5.3
Split CEK Section [3.5.4
LAM Section(3.5.5

call-by-need MAD Section[3.5.6
Merged MAD Section|3.5.7
Pointing MAD Section|3.5.8

strong call-by-name | Strong MAM Section|3.5.9

« Finally, in Section we show that, for each of the abstract machines defined in Sec-
tion[3.5] the length of an execution in the machine is bilinearly related with the length
of the reduction sequence starting from the same initial term, in the corresponding re-
duction strategy.

A note on machines for strong reduction. In this chapter, the only abstract machine
for strong reduction that we study—the Strong MAM (Section [3.5.9)—implements strong call-
by-name. Machines for other strong strategies, such as strong call-by-value and strong call-by-
need, are more complex—in fact defining the strong reduction strategies is itself a nontrivial
task. Abstract machines for open call-by-value (i.e. allowing the presence of free variables
but disallowing evaluation below abstractions) following the spirit of this chapter have been
studied by Accattoli and Guerrieri [7]]; Grégoire and Leroy [66] also study strong call-by-
value, defined by iterating a weak call-by-value strategy. In the following chapter (Chapter 4)
we study a strong call-by-need strategy. In Section [8.1] in the Conclusion (Chapter [8), we
propose an abstract machine for strong call-by-need evaluation, although we do not study its
properties.

3.2 Reduction Strategies

In this section we define five deterministic reduction strategies: call-by-name (name), two
variants of call-by-value (value™®, value®™), call-by-need (need), and strong call-by-name
(name®). Moreover, in Section we prove that all of these strategies are deterministic.

Definition 3.2 (Root rewriting rules). As mentioned, the set of terms is given as usual for the
LSC (cf. Def.[2.74) by the grammar ¢ ::= x | Azt | ts | t[z\s], values are given by v ::= Az.,
and substitution contexts are given by L ::= [] | L[z\t]. A term of the form vL is called an
answer.

Given a fixed family of evaluation contexts ranged over by E, E', . . . we define the following
four root rewriting rules—two db-like rules and two 1s-like rules:

(Az.t)Ls +—q t[z\s]L
(Ax.t)LvL gy t[xz\vL']L
EQepla\s] —1s E(s)[z\s]

EQeplr\vL] —1s E(u)[z\v]L

84

In the rules suffixed with a “v”, the argument of the application/substitution is expected to be
an answer. Moreover, we use the notations rils and +£>1$V to specify the family of contexts
used by the rules, with E being the meta-variable ranging over such contexts.

A reduction strategy is specified by a choice of root rules, i.e. one multiplicative rule
(db or dbv) and one exponential rule (1s or 1sv), and a family of evaluation contexts. The
chosen multiplicative (resp. exponential) rule is generically denoted by +—, (resp. —.). If E
ranges over a fixed notion of evaluation context, the contextual closures of the root rules are
denoted by —, -y E(+—y) and —, & E(+—,). The rewriting relation defining the reduction

strategy is then — def —n U —e.

Definition 3.3 (The reduction strategies name, value'®, value®™, need, name®). The reduction
strategies call-by-name (name), lefi-to-right call-by-value (value®), right-to-left call-by-value
(value®™), call-by-need (need), and strong call-by-name (name®), are specified by the following
choices of root reduction rules and evaluation contexts:

Strategy | Evaluation contexts = e —n —e

name H:u=[J|Ht | H[z\t] S | s H(—qp) H<’£>15>
value® | Vam O VE[VLV [VIA] | e | oree | Voram) | Vi)
value®™ | R::=[J|RvL | ¢R|R[z\(] by | sy | RO—ape) | BCD10)
need | Wm0 [NV [WG] | o | Ponme | W) | W0
name® S ::= (S contexts, see Def. |§I) Say | Fo1e S—ap) S<'ils>

3.2.1 Call-by-Name

The call-by-name strategy uses the 4, and 15 root reduction rules, i.e. it never evaluates
arguments. Evaluation contexts H are sometimes called head contexts. Evaluation always
focuses on the left-hand side of applications, until the head becomes an answer vL. If there
are any arguments remaining, a db-step may be fired. The following is an example of a call-
by-name reduction; on each step, the contracted redex is underlined:

(Az.zx)(Ay-y)(Az.f 2)) zx)[z\(Ay.y) (Az.f 2)]
(Ay-y) Az.f 2) 0)[2\(My-y)(Az.f 2)]
g[y\)\z zlo)[x\(Ay.y)(Az.f 2)]
(Az.f 2)[y\\z.f 2] x)[x\(ky y)(Az.f2)]
2)\e]ly\Az-f 2]\ Ay-y) (Az.f 2)]

Observe that call-by-name is a weak reduction strategy, so the result is not a normal form in

name

name

name

Ll

(
(
neme
(
aame (f

the LSC. This is not only because there are some gc-redexes—there are also 1s-redexes (e.g.
in the LSC rules are closed by arbitrary contexts so z may be substituted by z).

3.2.2 Call-by-Value

We work with two variants of call-by-value. Both of them use the 4, and 1, root reduc-
tion rules, i.e. the arguments must always be evaluated before going on. The two variants,

85

left-to-right call-by-value and right-to-left call-by-value differ on the evaluation contexts. Left-
to-right call-by-value evaluates the function before evaluating the argument—the production
V ::= vL V requires that the function is an answer. Right-to-left call-by-value evaluates the ar-
gument before evaluating the function—the production R ::= R vL requires that the argument
is an answer. For example, the following is a left-to-right call-by-value reduction:

Az 2)(Ayy)(A2.f 2)) —vamer (Av.22) Y[y\A2.f 2]
—vatet (Az.x) (Az.f 2)[y\\z.f 2]
—varwerr (2 2)[2\(Az.f 2)[y\N\z.f 2]]
—vamett (Az.f 2) z)[1\Az.f 2][y\Az. [7]
—varer ((Az.f 2) (Az.f 2))[z\A2. f 2][y\\z.] 2]
—vawett ([2)[2\A2.f 2][2\Nz f 2][y\Az f 2]

while the following is a right-to-left call-by-value reduction—it differs from left-to-right call-
by-value only in the steps marked with (x):

Az 2)(Ayy)(A2.f 2)) —varwen (A2 @) yly\N2. f 2]
—vamett (Az.x) (A2 f 2)[y\Az. f 2]
—vamen (72)[T\(Az.f 2)[y\N2.f 2]] (*)
—vaer (2 (Az.f 2))[2\A2.f 2][y\N2.f 7] (*)
—vatett ((Az.f 2) (Az.f 2)[x\\z. f z][y\\z.f 2]
—vanen (f2)[2\A2.f 2][2\Az] 2][y\N2. f 2]

Both variants of call-by-value are also weak reduction strategies.

3.2.3 Call-by-Need

Call-by-need uses the — g, root reduction rule. This means that the argument to a function
is not evaluated: the formal parameter becomes directly bound to the unevaluated argument.
This has the effect of delaying evaluation of the argument until it is needed, just as in call-by-
name. However, call-by-need uses the —1, root reduction rule, which means that a variable
may only be substituted for a value. As a consequence, only values may ever be copied,
ensuring that the evaluation of the argument is shared.

The most significant change is in the definition of evaluation contexts. These are similar
to head contexts in call-by-name, but they include a production N ::= N'(z)[«\N]. This pro-
duction means that, when evaluation focuses on a variable and the variable is not an answer
yet, evaluation should proceed in the shared argument, inside the explicit substitution. The
following is an example of a call-by-need reduction:

(Az.22)(A\y-y)(A2.f2) —neea (Z]2)[2\(My.y)(A2.f 2)]
[z]z)[z\y[y\\z.f 2]]

T [x\(kz f2)W\\z.f 2]]
(Az.f 2) o) [2\N2.] 2][y\N2.] 2]
f2)[A\z][2\ 2. f 2][y\\z. f 2]

(
~need (
“need (
“need (

(

>need

86

Note that we underline the redex being contracted. Moreover, a variable inside a box repre-
sents the fact that that the variable is the current focus of evaluation and triggers the eval-
uation of the expression to which it is bound (using the production N ::= N'(z)[x\N]). Like
call-by-name and call-by-value, call-by-need is also a weak reduction strategy (strong call-by-
need reduction is the topic of Chapters [4] and [5).

3.2.4 Strong Call-by-Name

Strong call-by-name is the only strong reduction strategy that we study in this chapter. To
complete the definition of strong call-by-name, we still must give a definition for the family
of evaluation contexts (S, S’,...). First we need the notion of left free variables of a context,
i.e. the set of variables occurring free at the left of the hole:

Definition 3.4 (Left Free Variables). The set 1£v(C) of left free variables of C is defined by:

1tv(O) ¥ o LEv(tC) < fv(t) U 1£v(C)
1fv(\z.C) & 1£v(C)\{z} 1ev(c[z\t]) & 1£v(C)\ {2}
1fv(ct) < 1£v(C) 1v(t2\C]) ¥ (£v()\{z}) U 1fv(C)

Definition 3.5 (Strong call-by-name evaluation contexts). A term is neutral if it is —gp 15~
normal in the LSC and it is not of the form (Az.t)L. A context C is a strong call-by-name
evaluation context if the judgment “C € S” can be derived using the following inductive rules:

(AX-S) cCeS C #* ()\CEC/)L
Oes CteS

(@L-5)

(-5) tisneutral Ce S (s)
- — @R-
Ax.CeS tceS

CeS z¢lfv(C)
Clz\t]e S

(ES-S)

Note that neutral terms are such that plugging them into a context cannot create a db redex.
Below, Def. [3.9|gives an alternative definition for strong call-by-name evaluation contexts and
Lem. shows that these definitions are indeed equivalent.

The strong call-by-name strategy uses the db and 1s root reduction rules, just as call-by-
name. But the set of strong call-by-name evaluation contexts (S,5',...) generalize the set of
head contexts used in (weak) call-by-name (H,H',...). Indeed, it may be easily checked by
induction on H that any head context is also a strong call-by-name evaluation context.

In contrast with weak call-by-name, strong call-by-name performs evaluation below ab-
stractions (Ax.[]), as attested by rule A\-S, as long as the abstraction is not applied. Moreover,
strong call-by-name performs evaluation on the arguments of applications ¢[] as long as ¢
is a neutral term. Neutral terms should be thought as terms of the form x ¢, .. .%,, sprinkled

87

with unreachable explicit substitutions (i.e. terms whose — 4. -normal form is of the form
xty.. . ty).

The following is an example of a reduction in strong call-by-name. Observe that the (weak)
call-by-name reduction is a prefix of the strong call-by-name reduction. The first properly

strong step is marked with (x):
(A2 z)((Ay-y)(Az-Af.f 2)) (zz)[2\(A\y-y) (A2 Af.f 2)]

(Ay-y) Az Aff 2))[2\(Ay.y) (A=A S f 2)]
Wy \ 2 A f 2] @) [2\(Ay.y) (Az.Af.f 2)]

panes (A2 AL f 2) [\ 2 A S f 2]) [2\(Ay.y) Az A f. [2)]

names (Af-f 2)[2\2][Y\ 2 A f.f 2] [2\(Ny.y) (A2 A f. f 2)]
(
(
(
(

name®

name$

name$

Af-fo)2\al[y\ Nz Af-f 2][2\yy)(Az AL f2)] (%)

M- (Quy) Az AL f)\ lly\Az AL 2][2\(Ay-y) (Az A S f 2)]

M Fyly\ Az A f 2D[2\e][y\A2 A f 2][2\(Ay.y) (A2 A f.f 2)]

ALF Q2 AL f 29\ AL S 2])[2\a][y\ Az AL 2][2\(Ay-y) (A2 A S f 2)]

name$
name$

name®

O A A A A

name$

Alternative Characterization of Strong Call-by-Name

Reduction according to the strong call-by-name strategy, can be characterized exactly as linear
leftmost-outermost reduction —,. To define —,, we need a few previous definitions:

Definition 3.6 (LO order). We write C <, ¢ if there is a term s such that C(s) = ¢. This is
called the prefix relation.

The outside-in order C <o C' between arbitrary contexts C, C' is defined by the following
rules:

1. Root: [] <o C for every context C # [].
2. Contextual closure: if C <o C' then C"(C) <o C"(C’) for any context C”.

Note that < can be seen as the prefix relation <, on contexts. The left-to-right order C <, C'
is defined by:

1. Application: if C <, t and ¢’ <, sthenCs <, tC".

2. Substitution: if C <, t and C’ <, s then C[z\s] <, t[z\C'].

3. Contextual closure: if C <, C' then C"{(C) < C"(C’) for any context C".
Finally, the left-to-right outside-in order is defined by C < o C"if C <o C' or C <, C.

Two examples of the outside-in order are (Az.[])t <o (Az.((J[y\s]))t and t[z\(J] <o
t[x\sC], and an example of the left-to-right order is ¢[z\C|s <[t[z\u]|], where the terms
t, s, u and the context C are arbitrary. The following lemma guarantees that it is a total order.

Lemma 3.7 (Totality of <, 0). IfC <, t andC' <,, t then either C < o C' orC' < o CorC = C'.

Proof. Straightforward by induction on t. O]

88

We identify redexes with the context that focuses on the anchor. Recall from Def.
that the anchor of a db-step is the contracted application, and the anchor of a 1s-step is the
contracted variable. We can now define linear LO reduction, first considered in [6]], where it is
proved that it is standard and normalizing, and then in [11], extending linear head reduction
[115} 147, 3] to normal form.

Definition 3.8 (Linear LO Reduction —,,). Let ¢ be a term. A redex C is the leftmost-outermost
(LO for short) redex of t if C < o C’ for every other redex C’ of t. We write ¢t —,, s for a step
contracting the leftmost-outermost redex.

We now define LO contexts and prove that the position of a linear LO step is always a LO
context:

Definition 3.9 (LO Contexts). A context C is LO if:

1. Right Application: whenever C = C'(t C") then t is neutral.
2. Left Application: whenever C = C'(C"t) then C” # L{\z.C").

3. Substitution: whenever C = C'(C"[x\s]) then x ¢ 1fv(C”).
Lemma 3.10 (Characterization of LO contexts).

1. Let C be a context. Then C € S if and only if C is LO.

2. Lett — s by reducing a redex under a context C. Then C is a —, step if and only if C is
LO.

Proof. The first item is an immediate induction on C. For the second item, we prove each
direction of the equivalence. (=) There are three cases:

1. Left application: if C = C'(C"t) then clearly C" # L{\x.C"), otherwise C is not the
position of the LO redex.

2. Right Application: let C = C'(uC”), and note u is neutral otherwise C is not the position
of the LO redex.

3. Substitution: if C = C'{C"[z\s]) then x ¢ 1fv(C") otherwise there is an exponential
redex of position < o C, which would be absurd.

(«<) Let C’ the position of the step in ¢ and suppose that C’ # C. By definition C' < o C. We
have two cases:

1. C' <o C. Then necessarily C’' identifies a db-redex and we have C = C'(L{\z.C")u). It
follows that C is not a LO context, because this contradicts the left application clause.

2. C' <, C. Then there is a decomposition C = C"{uC”) with the hole of C’ falling in u.
By hypothesis u is neutral. Then u = Co(x) and the —, step is a 1s-step substituting
on z from a substitution in C”, i.e. C” = C*(C°[x\t]) for some contexts C* and C°. Then
C = C*(C°uC")[x\t]) and x € 1£v(C°(uC”)), which contradicts the substitution clause
in the hypothesis that C is a LO context.

]

89

3.2.5 Determinism

All the reduction strategies studied in this chapter are deterministic. Recall that the anchor
of a multiplicative step is the contracted application, and the anchor of an exponential step is
the contracted variable. Then:

Proposition 3.11 (Determinism — & Prop.[A.1). The five reduction strategies of Def. (3.3 are
deterministic. In each case, if Eq,Ey are evaluation contexts, r1,r5 are anchors, and E;(r1) =
Ex(ry) then E; = Ey and r1 = 1. So there is at most one way to reduce a term.

Proof. See Prop. in the appendix for the detailed proofs. The proofs for the call-by-name,
call-by-value, and call-by-need cases are by induction on the structure of the terms, verifying
that there may be at most one redex under an evaluation context. The proof for the strong call-
by-name case is easily derived from the fact that strong call-by-name reduction is precisely
leftmost-outermost reduction (Lem. [3.10). O

3.3 Structural Equivalences

Each of the five reduction strategies S € {name, value'® value™ need,name®} presented so
far comes equipped with a corresponding notion of structural equivalence, denoted by =s.
Structural equivalence allows manipulating explicit substitutions, moving them around in a
computationally irrelevant way. Technically, this is expressed by the property that structural
equivalence is a strong bisimulation (cf. Def.[3.1).

Certain ways of moving substitutions around are allowed in some strategies and not in
other ones. For instance, the equivalence:

(ts)|z\u] =a t[z\u] s|2\u]

is sound in call-by-name, i.e. the term on the left and the term on the right are in fact strongly
bisimilar with respect to —p.,e, Whereas it is not sound in call-by-need. The reason is that call-
by-need evaluates inside some substitutions (those that hereditarily bind a head variable), so
the term on the left may evaluate u at most once, and the term on the right may evaluate it
twice. For our purposes in this chapter, it suffices to show that each structural equivalence is a
strong bisimulation. A deeper explanation of why some propagations of explicit substitutions
are unsound may be found in the translation of these strategies into linear logic proof nets:
substitutions may move freely as long as they do not cross the boundaries of boxes.

Each structural equivalence is given by choosing some of the following axioms:

90

Definition 3.12 (Axioms for structural equivalences).

Az.t)[y\s] =n Az.t[y\s] if ¢ fv(s)
(tu)[z\s] =a t[z\s]u[z\s]
(tu)[z\s] =a1 t[z\s]u ifz ¢ fv(u)
[

=1 tx\s[y\ul] ify ¢ £v(t)
=g if 2 ¢ fv(t)

=awp ly]. [37\5] [y\S]

In the =g, rule, t,;, denotes a term obtained from ¢ by renaming some (possibly none) oc-

|

|

| (

7\s] =ar tul[r\s] ifz ¢ fv(t)

% =con tly\u][x\s] ify ¢ fv(s) and = ¢ fv(u)
(

| (

]

currences of x as Y.

Definition 3.13 (Structural equivalences). For each strategy S, we select a subset of the struc-
tural equivalence axioms, and a family of contexts, as follows:

Strategy | Structural equivalence axioms Family of contexts
name =@, =com) =[-]» =gcs =dup H

value™ | =a, =con, =[], =gc: dup v

value® =@; =com) =[-]» =gcs =dup R

need =@1, =com; =[] N

name® =\, =@1, =@r; =com, =[]s =gc» =auwp | C (arbitrary contexts)

The corresponding structural equivalence =g is defined as the reflexive, symmetric, transitive,
and contextual closure of the axioms, under the specified family of contexts.

Note that the structural equivalences for call-by-name and call-by-value use the same ax-
ioms but closed under their respective notions of evaluation context. The structural equiva-
lence for strong call-by-name is closed under arbitrary contexts. For example:

(Az.2) [\ [P\Y] Zvarwer (Az.2)y)[y\y'][2\2'] (by =con)
=vauet ((Az.2)[y\y'Ty[y\y'])[z\2'] (by =a)
=valuel® (()\I‘l‘) y[y\y/]) [ZE‘\ZL‘/] (by EgC)

and:
Az.(yy)[y\z] (by =»)
Az (Y1 y2)[y1\2][y2\2] (bY =aup)
=nanes AT (Y1[y1\2] ¥2)[92\2] (by =a1)
ryilyi\z]yely2\2] (by =ax)

(A7.yy)[¥\2] =nanes

=name®

=nameS Azx.

Let —, (resp. —.) denote the multiplicative (resp. exponential) reduction relation of any
of the strategies S defined in Def. and let =g be the structural equivalence relation of S.
The key result is the following:

Proposition 3.14 (Structural equivalence is a strong bisimulation — & Prop. [A.5). Let x €
{m,e}. Ift =g t' —4 s then there exists s’ such thatt —, s’ =g s.

91

Proof. See the appendix. The proofs are long, by exhaustive case analysis on all the possible
diagrams that can be formed by overlapping an instance of a reduction step and an instance
of an axiom of the structural equivalence (i.e. “critical pairs”).

For instance, in call-by-need, one possible diagram involves an overlap between an expo-
nential (1sv) step at the top, and an instance of the structural equivalence axiom =q;. Note
that, on the right-hand side, the =q; axiom must be used many times in order to be able to
close the diagram:

N(z)[z\vL] t ———— N(vH[z\v]Lt
(W))[P\L] -2 (W))\
0

An essential property of strong bisimulations is that they can be postponed. In fact, it is
immediate to prove the following for any of the five strategies S defined in Def.

Lemma 3.15 (Postponement of structural equivalence). Let t (—, U —, U =)* s. Then
t (—n U —e)* = s and the number of multiplicative and exponential steps in the two reduc-
tion sequences is exactly the same.

In the simulation theorems for machines with a global environment we will also use the
following commutation property between substitutions and evaluation contexts via the struc-
tural equivalence of every evaluation scheme, proved by an easy induction on the actual def-
inition of evaluation contexts.

Lemma 3.16 (Explicit substitutions commute with evaluation contexts, up to =). LetE denote
an evaluation context for a strategy S. If © ¢ £v(E) and E does not bind any of the free variables

of s, then E(t)|x\s| =s E(t[z\s]).

3.4 Distilleries

This section presents an abstract, high-level view of the relationship between abstract ma-
chines and explicit substitution calculi, via the following notion:

Definition 3.17 (Distillery). A distilleryD = (M, S,=,[-]}) is given by:
1. An abstract machine M, given by:

1.1 A deterministic reduction relation v~ on a set of states State = {57, S5, .. .}.

1.2 A distinguished class of states deemed initial, in bijection with closed A-terms and
from which one obtains the reachable states by applying vy ™.

1.3 A partition of the transitions defining the relation v y:

1.3.1 Search transitions, noted v»g.

1.3.2 Principal transitions, in turn partitioned into:

92

1.3.2.1 Multiplicative transitions, denoted by v .

1.3.2.2 Exponential transitions, denoted by .

2. A deterministic reduction strategy S given by a pair (—, —.) of rewriting relations on
terms with explicit substitutions.

3. A structural equivalence = on terms with explicit substitutions, such that = is a strong
bisimulation with respect to —, and —,.

4. A distillation || -], i.e. a decoding function from states to terms, such that, on reachable
states:

4.1 Search: S v~s S" implies [[S] = [[9].
4.2 Multiplicative: S v, S" implies [S] —u= [5'].
4.3 Exponential: S v~ S" implies [S] —.= [5'].

Given a distillery, the following simulation result holds abstractly. We write |p| for the
number of steps in an execution p : S vwwo* S’ of the machine, and || for the number of

steps in a derivation 7 : ¢t —& ¢’ of the strategy. Similarly, we write |p|,, (resp. |7|m), |ple

(resp. |7l|e), and |pl, (resp. |7|,) for the number of multiplicative, exponential, and principal
steps (i.e. multiplicative or exponential) in an execution of the machine (resp. in a derivation
7 t =& t' of the strategy). Then:

Proposition 3.18 (Simulation). Let D be a distillery. Then for every execution p : S vop* S’
there is a derivation 7 : [|S]| —*= [[S"] such that |p|,, = |T|m, |ple = |7

e and |ply = |7,

m>

Proof. By induction on |p| and by the properties of the decoding, it follows that there is a
derivation ¢ : [[S]/(—=)*[|S’]] such that the number |p|, = |{|. The witness 7 for the state-
ment is obtained by applying the postponement of strong bisimulations (Lem. to&. O

3.4.1 Reflective Distilleries

Given a distillery, one would also expect that reduction in the strategy is reflected in the
machine. This result in fact requires two additional abstract properties.

Definition 3.19 (Reflective distillery). A distillery is reflective when:

1. Termination: search transitions v terminate on reachable states. Hence, by determin-
ism, every state S has a unique search normal form nf(.5).

2. Progress: if S is reachable, nf (S) = S and [[S]| —x ¢ with x € {m, e}, then there exists
S’ such that S v, 5.

Then, we may prove the following reflection of steps in full generality:

Lemma 3.20 (Reflection). Let D be a reflective distillery, let S be a reachable state, and let
x € {m,e}. Then, [S]| —x t implies that there exists a state S” such that nf;(S) v, S’ and

[S] =t

93

In other words, every rewriting step on the calculus can be also performed on the machine,
up to search transitions.

Proof. The proof is by induction on the number n of transitions leading from S to nf¢(S).

« Base case n = 0: by the progress property, we have S —,, S’ for some state S’ and
x' € {m, e}. By Prop.[3.18] we have [S] —y s = [[9']] and we may conclude because
x' = x and s = t by determinism of the calculus (Prop.[3.11).

« Inductive casen > 0: by hypothesis, we have S v S”. By Thm.3.18] [[S] = [[S”]. The
hypothesis and the strong bisimulation property (Prop. then give us [[S"] —x s =
t. But the induction hypothesis holds for S”, giving us a state S’ such that nf;(S”) v,
S" and [[S']] = s = t. We may now conclude because nf (S) = nf(S”").

O
The preceding lemma can then be easily extended to a reverse simulation result:

Proposition 3.21 (Reverse simulation). Let D be a reflective distillery and let S be an initial
state. Given a derivation 7w : [[S|| —* t there is an execution p : S v~ * S’ such thatt = [[S]

p’e = |7T

and |p|ym, = |7 es and |p|, = [m|.

m>

Proof. By induction on the length of 7, using Prop. O

3.5 Abstract Machines

In this section we introduce abstract machines and distillations, and we prove that they form
reflective distilleries with respect to the strategies of Section For each machine we prove:
(1) that the decoding is in fact a distillation, and (2) the progress property. For the moment
we assume the termination property, whose proof is delayed to the quantitative study of Sec-
tion [3.6] where we prove stronger results, giving explicit bounds.

3.5.1 Call-by-Name: the KAM

The Krivine Abstract Machine (KAM), originally introduced by Jean-Louis Krivine [97], is the
first machine studied in this chapter. Note however that Krivine’s presentation of the KAM
uses de Bruijn indices, whereas we use variable names.

Definition 3.22 (Krivine Abstract Machine). AKAM state (S, S’,S”,...)isapair (c,), where
c is a closure and 7 is a stack of closures:

T ou= €|lcum S == (¢m)

For readability, we use the notation ¢ | e | 7 for a state (¢, 7) where ¢ = (1, ¢). The transitions
of the KAM then are:

94

ts | e | gt e | (5,e)um
et | e | com owen] [2\e]ie | s
x | e | « o t | e/ | T

where v~ takes place only if e = e :: [z\(Z, €)] :: ea.

A key point of our study is that environments and stacks can be readily understood as con-
texts, through the following decoding, which satisfies the properties stated in the following
lemma:

Definition 3.23 (KAM decoding).

[l < O [[z\c] = e] = [e]Olz\[c]])
[Ee)] < [el® [e:x] < [#1lel)
[Elelx] < [x<el@)

Lemma 3.24 (Contextual decoding). Let e be an environment and 7 be a stack of the KAM.
Thenle]] is a substitution context, and both [[7]| and [7[|{[[e]]) are call-by-name evaluation con-
texts.

Proof. Straightforward by induction on e and 7.]

Next, we state the dynamic invariants of the machine. Recall that a code/environment/-
closure X is well-named if its support supp(.X) has no repetitions, i.e. bindings do not shadow
existing names.

Lemma 3.25 (KAM invariants). Let S =5 | e | m be a KAM reachable state whose initial code
t is well-named. Then:

1. Closure: every closure in S is closed.

2. Subterm: any code in S is a literal subterm of t.

3. Name: any closurec in S is well-named and its names are names of t (i.e. supp(c) < £v(t)).
4. Environment Size: the length of any environment in S is bound by |t|.

Proof. Itis routine to check that the invariant is preserved, by direct inspection of the machine
transitions. [l

Abstract Considerations on Concrete Implementations. The name invariant is the abstract
property that allows to avoid both a-equivalence and name generation in KAM executions.
Note that, by definition of well-named closure, there cannot be repetitions in the support
of an environment. Then the length of any environment in any reachable state is bound by
the number of distinct names in the initial code ¢, i.e. with |{|. This fact is important, as
the static bound on the size of environments guarantees that \~», and > —the transitions
looking-up and copying environments—can be implemented (independently of the chosen

95

t
implemented in O(|p| - [t|). The same will hold for every machine with local environments. In

, so that an execution p can be

concrete representation of terms) in at worst linear time in

fact, we may turn this into a definition: an abstract machine is reasonable if its implementation
enjoys the above bilinear bound. In this way, the length of an execution of a reasonable
machine provides an accurate estimate of its implementation cost.

The previous considerations are based on the name and environment size invariants. The
closure invariant is used in the progress part of the next theorem, and the subterm invariant
is used in the complexity analysis of Section subsuming the termination condition of
reflective distilleries.

Theorem 3.26 (KAM distillation). (KAM, name, =, [- ||) is a reflective distillery.
Proof.
1. Properties of the decoding:
1.1 Search. Letis|e|m wog t]e] (5,¢e) :: m. Then:
[Eslelx] = [=I<0el<Es))
=o [7IKlel®Dlels)) = lilel (s,€) =l
1.2 Multiplicative. Let \x.t | e | ¢ ::m vy T | [2\c] i e | 7. Then:
Mzt|elcan]] = [rllel{ xtc])

—n 7Kl D)
= [l [2\c] e]

The rewriting step can be applied because by contextual decoding (Lem. [3.24) it
takes place in an evaluation context.

1.3 Exponential. Let x | €' :: [2\(t,e)] : €” | ® v t] e | 7. Then:
[| e fa\Ee)] e [] = [l I<le Tz l\[el<]))
—e (7Kl I<Te ICe<En A el <))
=z [7IClel<t
= [tleln]
Note that e"(e'{e(t))[x\e{t)]) =§. e(t) holds because e(f) is closed by itemof
Lem. and so all the substitutions around it can be garbage collected.

2. Termination: Given by (forthcoming) Thm.
Note: future proofs of distillation theorems will omit termination.

3. Progress:Let S =t | e | m be a commutative normal form such that [S] — s. If ¢ is

3.1 an application su. Then a v~ transition applies and S is not a commutative nor-
mal form, impossible.

3.2 an abstraction \x.5: if 7 = e then [[S] = [[e]|{A\x.5), which is —-normal, impossi-
ble. Hence, a v~ transition applies.

96

3.3 a variable x: by point 1 of Lem. [3.25//1} we must have e = €’ :: [z\c] :: €, s0 a v
transition applies.

]

3.5.2 Call-by-Name with Global Environment: the MAM

The LSC suggests the design of a simpler version of the KAM, that we call the Milner Abstract
Machine (MAM), that avoids the concept of closure. At the language level, the idea is that,
by repeatedly applying the axioms =g, and =q of the structural equivalence, explicit substi-
tutions can be brought outside. At the machine level, the local environments in the closures
are replaced by just one global environment that closes the code and the stack, as well as the
global environment itself.

Naively turning to a global environment breaks the well-named invariant of the machine.
This point is addressed using an a-renaming and name generation in the variable (or expo-
nential) transition, i.e. when substitution takes place.

Definition 3.27 (Milner Abstract Machine). The MAM employs global environments F. Stacks
are lists of codes, i.e. 7 ::= € | t :: 7. A state of is a triple S = (¢, 7, E). The transitions of the
MAM are:

5| 7 |E wos t|5um7] E
Aet|sum|E woy t| 7w |[2\s]: E
v | m |E wo, £ 7| FE

where ~~, takes place only if £ = E"{E'[z\f]) and " is a well-named code a-equivalent to
t and such that any bound name in " is fresh with respect to those in 7 and E.

Definition 3.28 (MAM decoding). The decoding of a MAM state ¢ | 7 | F is similar to the
decoding of a KAM state, but the stack and the environment context are applied in reverse
order:

[1 = O [\ B] = [EKAlAD
[F=m] = 0705 [irlE] = BRI
To every MAM state ¢ | 7 | E we associate the pair ([7]|{t), E), and call it the global closure
of the state. Note that [[7]|{¢) now is a code, i.e. it does not contain explicit substitutions.

Lemma 3.29 (Contextual decoding). Let £ be a global environment and 7 be a stack of the
MAM. Then || E']| is a substitution context, and both 7] and [7]|{[[E]}) are evaluation contexts.

Proof. Straightforward by induction on £ and 7.]

For the dynamic invariants we need a different notion of closed closure.

Definition 3.30. Given a global environment F and a code ¢, we define by mutual induction
two predicates F is closed and (t, E) is closed as follows:

€ is closed
(t, E)isclosed == [z\t]:: E is closed
fv(t) < supp(E) A Eisclosed = (i, F) is closed

97

The dynamic invariants are:

Lemma 3.31 (MAM invariants). Let S =5 | m | E be a MAM state reached by an execution p
of initial well-named code t. Then:

1. Global Closure: the global closure ([7[|{t), E) of S is closed;
2. Subterm: any code in S is a literal subterm of t;
3. Names: the global closure of S is well-named;
4. Environment Size: the length of the global environment in S is bound by |p|,,.
Proof. Straightforward by inspection of the machine transitions. []

Abstract Considerations on Concrete Implementations. Note the new environment size in-
variant. The bound now depends on the length of the execution p, not on the size of the initial
term ¢. If one implements v~ looking for x in F sequentially, then each v~ transition
has cost O(|p|,n), and the cost of implementing p is easily seen to become quadratic in |p|.
Therefore—at first sight—the MAM is not a reasonable abstract machine. However, the MAM
is meant to be implemented using a representation of codes pointers for variables, so that
looking for z in E takes constant time. Then the global environment, even if formalized as a
list, should rather be considered as a store.

The name invariant is what guarantees that variables can indeed be taken as pointers, as
there is no name clash. Note that the cost of a \~, transition is not constant, as the renaming
operation actually makes v, linear in |¢| (by the subterm invariant). So, assuming a pointer-

based representation, p can be implemented in time O(|p| - |t]), as for local machines. In other

words, the MAM is a reasonable abstract machine.

Theorem 3.32 (MAM distillation). (MAM, name, =, [| - [|) is a reflective distillery. In particular,
on a reachable state S we have:

1. Search: if S g S’ then [S] = [S'];

2. Multiplicative: if S vy S’ then [[S] —u= [9']);

3. Exponential: if S vwg S’ then S]] —e=a [57]-
Proof. Properties of the decoding (progress is as for the KAM):

1. Search. In contrast to the KAM, v~ gives a true identity:

[~ E] = [EKI=IEs) = [¢]5: 7| E]

2. Multiplicative. Since substitutions and evaluation contexts commute via = (Lem. [3.16),
v maps to:

98

Daf|5:m | E] = [EIrKOD) —a
BN =sonis
[ENI D] =
[£| 7 | [2\3] = E]

3. Exponential. The erasure of part of the environment of the KAM is replaced by an explicit
use of a-equivalence:

e[B f2\s] = B = [EIKIEKIrI)[2\s]) =
LETKNEN NG [2\s]) =a
LETAEIIx NG) [2\s]) =
[5¢| 7 | E :: [2\5] == E']|

3.5.3 Left-to-Right Call-by-Value: the CEK

In this section we present an adaptation to call-by-value of the KAM, namely Felleisen and
Friedman’s CEK machine [56] (without control operators), implementing left-to-right call-by-
value.

States of the CEK have the same shape of those of the KAM, i.e. they are given by a closure
plus a stack. The difference is that they use call-by-value stacks, whose elements are labeled
either as arguments or functions, so that the machine knows whether the code currently being
evaluated is a function that must be applied to a yet unevaluated argument on top of the stack
or the argument to the already evaluated function on top of the stack.

Definition 3.33 (CEK Machine). Stacks are defined as follows:
7 u= el|f(c)m|ale) =m
A state is a triple S = (, ¢, 7). The transitions of the CEK are:

| 0 N

le o L] e la(s,e) =
Vl]e| a(s,€)m wog, § e | f(v,e) =m
Vle|f(Axt,e) m oy t][2\(V,€)] € T
xle| 7r g 1 e] 7r

[< O
[f(c) =a] < [l
[a(e) = 7] < [«

States of the machine are decoded exactly as for the KAM, i.e. [t | e | 7] o [~ I<Melt)).

99

While one can still statically prove that environments decode to substitution contexts, to
prove that [7]] and [x]|{[e]]) are evaluation contexts we need the dynamic invariants of the
machine.

Lemma 3.35 (CEK invariants). Let S =5 | e | m be a CEK reachable state whose initial code t
is well-named. Then:

1. Closure: every closure in S is closed;
2. Subterm: any code in S is a literal subterm of t;
3. Value: any code in e is a value and, for every element of 7 of the form (3, €'), 5 is a value;

4. Contextual Decoding: [[7] and [7[|{[e]]) are left-to-right call-by-value evaluation con-
texts;

5. Name: any closurec in S is well-named and its names are names of t (i.e. supp(c) < £v(t));
6. Environment Size: the length of any environment in S is bound by |t|.
Proof. Straightforward by inspection of the machine transitions. [

Theorem 3.36 (CEK distillation). (CEK, value™, = [[-])) is a reflective distillery. In particular,
on a reachable state S ‘we have:

1. Search 1: if S v, S then [[S] = [5'];
2. Search 2: if S vwog, S then [[S] = [9].
3. Multiplicative: if S v~y S’ then [S] —u [97];
4. Exponential: if S v S’ then | S]| —e= [S];

Proof. Properties of the decoding: in the following cases, evaluation will always takes place
under a context that by Lem. will be a left-to-right call-by-value evaluation context,
and similarly structural equivalence will alway be used in a weak context, as it should be.

1. Search 1. We have 5 | e | m wg, t]e|a(s,e)

[#slelrl = [rl<lelEs)) =
[7I<MelDlels) = [Elelase)]

2. Search 2. We have vV | e | a(5,¢') = vy, 5|€ |f(V,e) :: 7, and:

[viela(se):n] = [xKlelIelG)) =
[5]¢€|f(v,e):n]

3. Multiplicative. We have v | e | f(A\z.t,€') i 1 wop 5| [2\(¥,€)] i1 € | 7, and:

100

[v]eltOate)zn] = [aleTOeDll®) —
[K[\ Tl)y =
(2 [z\(v,e)] == ¢ []

4. Exponential. Lete = ¢” :: [x\(f,€/)] :: ¢”. We havex | e | T v T € | 7, and:

[z feln]l = nleCz)))
7 I<Te” T T [[T —e
= 1<e” I<e I TDIN)) =5
(=< T<E [#] e [l

We can apply — since by Lem. [3.353] is a value. We also use that by Lem. [3.35/1]
[€']<t) is a closed term to ensure that [[¢”] and [[¢”] can be garbage collected.

I o'

Progress. Let S =t | e | m be a commutative normal form such that [[S] — s. If ¢ is

« an application su. Then a v, transition applies and .S is not a commutative normal
form, absurd;

« an abstraction V: by hypothesis, 7 cannot be of the form a(c) :: 7’. Suppose it is equal
to e. We would then have [[S]| = [e[][{¥), which is a call-by-value normal form, because
[[e] is a substitution context. This would contradict our hypothesis, so ™ must be of the
form f (5, ¢’) :: 7. By point [3| of Lem. S is an abstraction, hence a v, transition
applies;

« a variable x: by point [1| of Lem. [3.35| ¢ must be of the form €’ :: [z\c] :: €”, s0 a v,
transition applies.

3.5.4 Left-to-Right Call-by-Value: the Split CEK

For the CEK machine we proved that the stack, that collects both arguments and functions,
decodes to an evaluation context (Lem. [3.35[4). In this section we study another left-to-right
call-by-value machine, deemed Split CEK (SCEK), which has two stacks: one for arguments
and one for functions. Both decode to evaluation contexts.

Note that the evaluation contexts V for the calculus valuel®:

V=[]Vt | vLV | V[z\t]

have two cases for the application. Essentially, when dealing with V¢ the machine puts ¢ in a
stack for arguments (identical to the stack of the KAM), while in the case vLV the machine
puts the closure (corresponding to) vL in a stack for functions, called dump. Actually, together
with the closure it stores the current argument stack.

Thus, an entry of the function stack is a pair (¢,), where ¢ is a closure (v, ¢), and the
three components ¥, e, and 7 together correspond to the evaluation context [« [[{[[e][<¥)).

101

Whenever the code is an abstraction ¥ and the argument stack 7 is non-empty (i.e. ™ = ¢ :: 7’),
the machine saves the active closure, given by current code ¥ and environment e, and the
remainder of the stack 7’ by pushing a new entry ((v,e),n’) on the dump, and then starts
evaluating the first closure c of the stack. In terms of the concrete implementation, each
element of the dump corresponds roughly to a stack frame or activation record.

Definition 3.37 (SCEK Machine). Stacks are defined as in the KAM. The syntax for dumps is
given by:
D:=¢l|(c,m):: D

States are 4-uples (¢, ¢, 7, D). The transitions of the SCEK are:

ts| e | 7 D g 1 e |(5,€) | D
v | e | (t,€) =7 D g, 1 e | € |((Fe),m) D
v e \ € [(Azt,€),m) 2D woy t][2\(¥,e)] €| 7 | D
z e[\, €)]=e"] w | D oo T e | = D

Definition 3.38 (SCEK decoding). The decoding of terms, environments, closures, and stacks
is as for the KAM. Every dump decodes to a context according to:

[l € 0 [(Fe,n)=D] < [DIxI<[elFTH))

The decoding of states is defined as [T | e | 7 | D] < [DI[=IK[e]D)).

The SCEK machine is closely related with Landin’s SECD machine [99]], which also incor-
porates a notion of dump. In [48]], Danvy studies the SECD machine, and shows that the SECD
implements right-to-left call-by-value (and not left-to-right call-by-value as the SCEK). Our
main point here is illustrating that “splitting the stack” into an argument stack plus a dump
is a general transformation.

Lemma 3.39 (SCEK invariants). Let S =5 | e | w | D be a SCEK reachable state whose initial
code t is well-named. Then:

1. Closure: every closure in S is closed;
2. Subterm: any code in S is a literal subterm of t;
3. Value: the code of any closure in the dump or in any environment in S is a value;

4. Contextual Decoding: [D], [D[], and [DI<[[=[[{[e])) are left-to-right call-by-

value evaluation contexts.
5. Name: any closurec in S is well-named and its names are names of t (i.e. supp(c) < £v(t)).
6. Environment Size: the length of any environment in S is bound by |t|.
Proof. Straightforward by inspection of the machine transitions.]

Theorem 3.40 (SCEK distillation). (SCEK, value™, = [-])) is a reflective distillery. In partic-
ular, on a reachable state S we have:

102

1. Search 1: if S vg, S then [[S] = [5']);
2. Search 2: if S vwog, S then [[S] = [9'];
3. Multiplicative: if S v~y S then [S] —u [S7];
4. Exponential: if S v S’ then [S] —.= 5]
Proof. Properties of the decoding:
1. Search 1. We have t5|e | 7| D wog t]e| (5,e) = 7| D, and:

[5felm D] = [DIKI=IKelEs))) =5
IO~ ICTel<Ey Tell<s)y) =
[t]el(se)xm| D]

2. Search2. Wehave 7 | e | (t,¢/) i | D wog, t| € | €| ((¥,€),7) :: D, and:

[Fle| @e)=n| D] = [DIIIl@ [1®) =k
DI I<el o) [eldIe Ty =%
DIl [1Ey =
[F1¢ €] (@ e),m): D]

3. Multiplicative. We have v | ¢ | € | (Az.t,¢'),7) == D wop t | [2\(V,€)] = ¢ | 7 | D,
and:

[¥lele| (Axt,e),m) D] =
[DII < A1) [e]l<v)))) u
IO KT ATl)y =
[2 1 [z\(v, e)] :: €' | 7w | D]

4. Exponential. We have = | e :: [2\(V,e)] i ex | 7| D v V| e | 7| D, and:

[z |er::[2\(¥,e)] zeq | 7| D] =
[DIKx [<[e2l<Tex [<ap [z \[el<T]))) e
[DIKx[<[e2D<Tel<le1 [[=\T])))) =g
[DIK= [<[ell<w))
[vle|x|D]

We use the fact that [[¢](¥) is closed by Lem.[3.39][1]to ensure that [[e;]], [[e2]), and [2\V]
can be garbage collected.

Progress. Let S =t | e | m be a commutative normal form such that [S] — s. If ¢ is

« an application su. Then a v, transition applies and .S is not a commutative normal
form, absurd.

103

« an abstraction v. The decoding [S] = [D]{[[x[{[e]][{¥))) must have a multiplicative
redex, because it must have a redex and ¥ is not a variable. So ¥ is applied to something,
i.e. there must be at least one application node in [D[|{[[7]]). Moreover, the stack 7 must
be empty, otherwise there would be an administrative v, transition, contradicting
the hypothesis. So D is not empty. Let D = ((5, ¢’), ') :: D'. By point[3]of Lem. s
must be a value, and a v, transition applies.

- avariable z. By point|[l] of Lem.[3.39] must be bound by e, so e = e; :: [z\(5,€')] :: ez
and a v, transition applies.

3.5.5 Right-to-Left Call-by-Value: the LAM

In this section we present another adaptation to call-by-value of the KAM, a machine deemed
Leroy Abstract Machine (LAM), implementing right-to-left call-by-value. The LAM owes its
name to Leroy’s ZINC machine [106]], that implements right-to-left call-by-value evaluation.
We introduce a new name because the ZINC is a quite more sophisticated machine than the
LAM: it has a separate set of instructions to which terms are compiled, it handles arithmetic
expressions, and it avoids needless closure creations in a way that it is not captured by the
LAM. The LAM can be seen as a minor variation of the CEK; we present it mostly to stress
the modularity of our contextual approach. We omit all the proofs because they are minimal
variations on those for the CEK.

Definition 3.41 (Leroy Abstract Machine). Stacks and states are like those for the CEK. The
transitions of the LAM are:
ts |e| 7r -
v o le|f(t,e) m wo

—
8

—
o

[
eV

Ar.tle| a(c) im wop

SRS NS N VA
o)
ja¥)
—
<l
D
S~—
3

r el T e
where v~ takes place only if ¢ = ¢” :: [x\(¢,¢')] :: €”.

Lemma 3.42 (LAM invariants). Let S = 5 | e | m be a LAM reachable state whose initial code
t is well-named. Then:

1. Closure: every closure in S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Value: any code in e is a value and, for every element of m of the form a(s, €'), s is a value;
4. Contexts Decoding: [7]| and [7]|{[[e]]) are right-to-left call-by-value evaluation contexts;
5. Name: any closurec in S is well-named and its names are names of t (i.e. supp(c) < £v(t));

6. Environment Size: the length of any environment in S is bound by |t|.

104

Proof. Straightforward by inspection of the machine transitions.]

Theorem 3.43 (LAM distillation). (LAM, value®™ = [-]|) is a reflective distillery. In particular,
on a reachable state S we have:

1. Search 1: if S vy, S then [[S] = [[97];
2. Search 2: if S v, S" then [[S] = [[9].
3. Multiplicative: if S v~y S’ then [S] —u [S];
4. Exponential: if S v, S’ then [S]| —e= [S];

Proof. Similar to the CEK distillation (Thm. [3.36). O

3.5.6 Call-by-Need: the MAD

In this section we introduce a new abstract machine for call-by-need, deemed Milner Abstract
machine by-neeD (MAD). The MAD arises very naturally as a reformulation of the need strat-
egy (Def. in the framework of distilleries. The motivations behind the introduction of a
new machine are:

1. Simplicity: the MAD is arguably simpler than previous call-by-need machines known
in the literature, in particular its distillation is very natural.

2. Factorizing the Distillation of the Lazy KAM and of the SAM: the study of the MAD will be
followed by two sections showing how to tweak the MAD in order to obtain (simplifica-
tions of) two call-by-need machines in the literature, Cregut’s Lazy KAM and Sestoft’s
machine (here called SAM). Expressing the Lazy KAM and the SAM as modifications
of the MAD helps understanding their design, their distillation (that would otherwise
look very technical), and their relationship.

The MAD uses the global environment approach of the MAM to implement memoization
and the dump-like approach of the SCEK to evaluate inside explicit substitutions.

Definition 3.44 (Milner Abstract Machine by Need). Terms, environments and stacks are
defined as for the KAM. Dumps (D) are defined by:

s | 7 | D | E wog bS] D] E
Ax.t|s | D | E ot T D | [z\5] = E

x | 7w | D | By [a\t] s By woe, t] € |(By,x,m) D] E,

v | e |(Biz,m) D] Es oo VY| T | D | By o [2\V] = Eb

105

Definition 3.45 (MAD decoding). The decoding of terms, environments, and stacks is defined
as for the MAM. The decoding of dumps is given by:

[l “ O [(Ban)=D] < [ENIDIx]a)))a\]
The decoding of states is defined by [| 7 | D | E] := [EI[DI{[[[<E)))-

Note that when the code is a variable, a search transition should take place. The idea is
that whenever the code is a variable z and the environment has the form E; :: [2\{] :: Es, the
machine should jump to evaluate {, saving the prefix of the environment F, the variable x
on which it will substitute the result of evaluating ¢, and the stack 7. This in fact corresponds
to hereditarily weak head evaluation.

Lemma 3.46 (Contextual Decoding). Let D, 7, and E' be a dump, a stack, and a global envi-
ronment of the MAD, respectively. Then [D], [DI<{[[7]), [ET[DL]), and [EN[DI =])) are
call-by-need evaluation contexts.

Proof. Straightforward by induction on D, and respectively on E and 7, using the fact that if
N is a call-by-need evaluation context then N[z\¢] and N{(]¢) are also call-by-need evaluation
contexts. O]

The notion of closed closure is defined exactly as for the MAM. Given a state S = ¢ | 7 |
D | Eywith D = (Ey,xy,m) :: ... (E,, Ty, T,), its closures are ([7]|{t), Ey) and, for each
ie{l,...,n}

([, Ei = [z \[mica[{zim1)] 2o [ed\[7|<D)] =2 Eo)
The dynamic invariants are:

Lemma 3.47 (MAD invariants). Let S = ¢ | 7 | D | Ey be a MAD reachable state whose initial
code t is well-named, and such that D = (Ey,x1,7) = ... :: (Ey, @y, 7). Then:

1. Global Closure: the closures of S are closed;
2. Subterm: any code in S is a literal subterm of t;
3. Names: the closures of S are well-named.

For the properties of the decoding function recall that the structural congruence for call-
by-need (=yeeq) is defined as the least equivalence including the axioms =a1, =con, and =)

Theorem 3.48 (MAD distillation). (MAD, need, =yeeq, [- ||) is a reflective distillery. In partic-
ular, on a reachable state S we have:

1. Search 1: if S vy, S then [[S] = [97];
2. Search 2: if S vy, S then [[S] = [[97];

3. Multiplicative: if S v, S’ then [S] —u=neea [S'];

106

4. Exponential: if S v, S’ then S]] —e=0 [9']-
Proof.

1. Search 1.
[ts x| D[E] = [EKI[DIK[~I<Es))) =t |57 |D|E]

2. Search 2:

[z |7 D[Eyz[2\t] 2 Eo] = [EJEIKIDIxI)[2\t])
= [[t]e| (Ey,z,m): D| Es

3. Multiplicative.

Pet|s:m|DIE] = [EKIDKIxIKA28)5))) —u
[ETIDKI=IEH=\S])) =neea rentm
LEKIPI) \s]) =
[# [[D[[z\s] : E]

Note that to apply Lem. we use the global closure invariant, as s, being on the stack,
is closed by E and so [[D]] does not capture its free variables.

4. Exponential.

[v]el(Eyz,m) DI E] = [EK[EIPIKIxIE))[\v])
o [EIKIEKIDPIK7 I)2\
=o [EKEIKIPKIx) [\7])
= [v*| x| D] E;:[2\¥]:: E

|

Progress. Let S =t | 7 | D | E be a commutative normal form such that [S] — s. If ¢ is

1. an application su. Then a v, transition applies and S is not a commutative normal
form, impossible;

2. an abstraction v. The decoding [S]] is of the form [E[|{[D[{[7]|{v))). The stack 7 and
the dump D cannot both be empty, since then [[S]| = [E]{v) would be normal. So
either the stack is empty and a v, transition applies, or the stack is not empty and a
v transition applies;

3. a variable x. By Lem. 3.47|[1| it must be bound by FE, so a v, transition applies, and S
is not a commutative normal form, impossible.

O

107

Abstract Considerations on Concrete Implementations. Consider transition v ,. Note that
the saving of the prefix E; in the dump forces to have £ implemented as a list, and so to go
through F sequentially. This fact goes against the intuition that F is a store (rather than a
list), and makes the MAD an unreasonable abstract machine (see the analogous considerations
for the KAM and for the MAM). To solve this point, in the following sections we present the
Pointing MAD, a variant of the MAD (akin to Sestoft’s machine for call-by-need [?]) that
avoids saving F; in a dump entry, and restoring the store view of the global environment.
The detour is justified as follows:

1. the Pointing MAD is more involved;
2. for the complexity analysis of distillation it is easier to reason on the MAD;

Note that the issue about concrete implementations is orthogonal to the complexity analysis
of the distillation process.

3.5.7 Call-by-Need: the Merged MAD

Splitting the stack of the CEK machine in two we obtained a simpler form of the SECD ma-
chine. In this section we apply to the MAD the reverse transformation. The result is a ma-
chine, deemed Merged MAD, having only one stack and that can be seen as a simpler version
of Crégut’s lazy KAM [42] (but we are rather inspired by Danvy and Zerny’s presentation in
[490).

To distinguish the two kinds of objects on the stack we use a marker, as for the CEK and
the LAM. Formally:

Definition 3.49 (Merged MAD). Terms and environments are defined as for the MAM. The
syntax for stacks is:
mu=c¢l|alt) 7| h(Ez) 7

where a(t) denotes a term to be used as an argument (as for the CEK) and h(E, x, 7) is morally
an entry of the dump of the MAD, where however there is no need to save the current stack.
The transitions are:

s | T | E oo | a@) T | E
Ae.t] a(s):m | E ot T | [2\s] = E

T | T | By [2\t] ©: By wog, ¢ |h(Ey,)| E,

Vv |h(E,z) 7] E, o T s | By = [2\V] @ By

[] = O
[[2\f] = E] = [EC\D)
[h(E,z) 7] = [EK[=]ap[=\0]
[a®) =] = [«
[Elx|E] < [EKI=IE)

108

Lemma 3.51 (Contextual Decoding). Let m and I be a stack and a global environment of the
Merged MAD. Then x| and [E]{[[x]]) are call-by-need evaluation contexts.

The dynamic invariants of the Merged MAD are exactly the same of the MAD, with respect
to an analogous set of closures associated to a state (whose exact definition is omitted). The
proof of the following theorem—almost identical to that of the MAD—is omitted.

Theorem 3.52 (Merged MAD Distillation). (Merged MAD, need, =yeeq, [- [|) is a reflective
distillery. In particular, on a reachable state S we have:

1. Search 1: if S vy, S then [[S] = [[97];
2. Search 2: if S vy, S then [|S] = [[9];
3. Multiplicative: if S v, S’ then [S] —u=neea [S'];

4. Exponential: if S v S’ then [S] —e=a [5]-

3.5.8 Call-by-Need: the Pointing MAD

In the MAD, the global environment is divided between the environment of the machine and
the entries of the dump. On the one hand, this choice makes the decoding very natural. On the
other hand, one would like to keep the global environment in just one place, to validate the
intuition that it is a store rather than a list, and let the dump only collect variables and stacks.
This is what we do here, exploiting the fact that variable names can be taken as pointers (see
the abstract considerations in Sec. and Sec.[3.5.6).

The new machine can be seen as a simpler version of Sestoft’s Abstract Machine [?], here
called SAM. It uses a new dummy constant [] for the substitutions whose variable is in the
dump.

Definition 3.53 (The Pointing MAD). Dumps and environments are defined as follows:

D = €|(z,7) =D
E == el[z\t]: F|[2\OJ] = F
Transitions are given by:
ts | m | D | E wog b ST D | E
Art|s | € | E o] € | [z2\s] : E
Med|sam|(y,m) = D|Ey = [y\O B2 wou, t| 7 |[(y,7) = D|Ey:[y\d : [2\5] 2 Eo
x | 7w | D | By [2\t] : Bs wos, t| € |(x,m)=D| Ep:[z\O:: Eo
V| e |(xg,m)aD|Ey 2\ Ey vwoo V| 7 | D | E; i [2\V] 2 B

Note that there are two multiplicative transitions, that are both distilled as multiplicative steps,
depending on the content of the dump. A substitution of the form [z\[J] is called dumped,
and in such a situation we also say that = is dumped.

Note also that the variables of the entries in D appear in reverse order with respect to the
corresponding substitutions in . We will show that fact is an invariant, called compatibility.

109

Definition 3.54 (Compatibility Foc D). Compatibility Foc D between environments and dumps
is defined by

1. exe;

2. E:: [2\t]ecD if FocD;

3. E: [2\O]xc(x,m) :: Dif EocD.

Note that in a compatible pair the environment is always at least as long as the dump.

Definition 3.55 (Pointing MAD decoding). A compatible pair FocD decodes to a context as
follows:

[(E.o] < [E]
L(E = [2\O), (z.7) = D)) € [(&, D)[[x]x)[2\T]
[(E = [2\], (y.m) = D) < [(E, (y,7) == D)][2\7]

The decoding of a state is defined as [t | 7 | D | E] := [(E, D)|{[[x]|{t)) provided that £
and D are compatible.

The analysis of the Pointing MAD is based on a complex invariant that includes compati-
bility plus a generalization of the global closure invariant. We need an auxiliary definition:

Definition 3.56 (Slice of an environment). Given an environment F, we define its slice F 1
as the sequence of substitutions after the rightmost dumped substitution. Formally:

€] = €
(B [2\th)1 = Bl [\l
(B0 = e

Moreover, if an environment F is of the form F; :: [2\[]] :: Es, we define E' 1,:= E; :

[z\(]] :: Es.

The notion of closed closure with global environment (Sec. [3.5.2) is extended to dummy
constants [] as expected.

Lemma 3.57 (Pointing MAD invariants — & Lem.|A.13). Let S =% | E | 7 | D be a Pointing
MAD reachable state whose initial code t is well-named. Then:

1. Subterm: any code in S is a literal subterm of t;
2. Names: the global closure of S is well-named;

3. Dump-Environment Compatibility:

3.1 ([x[[<t), E1) is closed;
3.2 for every pair (z,7') in D, ([7'[|{z), E1.) is closed;

110

3.3 ExD holds.
4. Contextual Decoding: [(E, D)] is a call-by-need evaluation context.
Proof. See Lem. in the appendix. O

Theorem 3.58 (Pointing MAD distillation). (Pointing MAD, need, =yeeq, [- ||) is a reflective
distillery. In particular, on a reachable state S we have:

1. Search: if S vy, S" or S g, S’ then [S] = [S']);
2. Multiplicative: if S vy, S” or S vy, S’ then [S] —n=neea [5'];
3. Exponential: if S v, S’ then [S] —e=0 [S']);

Proof. Properties of the decoding:

1. Search 1. We have:
[t~ D|E] = [(E,DKIrIEs) = [tls=n|D]E]

2. Search 2. Note that F; has no dumped substitutions, since Fy :: [z\[]] :: Eyoc(x,) 2 D.
Then:
[z | 7| D|E;:[2\t] :: E2
[EIKICE, DK <) [=\e])
[t]el| (z,7):: D] Ey = [2\O] :: Es

3. Multiplicative 1, empty dump.

[MNet|sam|el E] = [E[rK(A\x.t)5)) —u
[EIKI~NCE2\S) =&y renim
[EW IO =
[2][el[z\s] :: E]]

4. Multiplicative 2, non-empty dump.

Mot |5:m|(y,7)::D| Ey [y\D]_:: B =
[E-IKLCE, D)7 Iy [\ 7 [<(Az-t) $)]) —a
[E2I<KI(Ey D) Iy A7 IE2\SD]) =veed remim
[[Ez]]<[[(E1,)]]<[[7T']]<y>>[y\[[ﬂ]<f>] [2\s]) =

[|7 | (y,7) D] Eye [y\O] =2 [2\5] =2 En]

5. Exponential.

[Vle|(z,m) = D|E; = [2\(:: Bz =
[E KT, D) K I<ep)[z\v]) —e
[E KT, D) K I<vp)[z\v]) =a
LEIKI(E, D) I<v) [\v]) =

|

1)
D | Ey 2 [2\V] 2 Es]

v [~

111

Progress. Let S =t | 7 | D | E be a commutative normal form such that [S] — s. If ¢ is

« an application 5u. Then a v, transition applies and S is not a commutative normal
form, absurd.

« a variable x. By the machine invariant, z must be bound by F'1. So E = Ej :: [2\5]
Es, a v, transition applies, and S is not a commutative normal form, absurd.

« an abstraction v. Two cases:

— The stack 7 is empty. The dump D cannot be empty, since if D = ¢ we have that
[S] = [[e]|<¥) is normal. So D = (x,n’) :: D'. By compatibility, £ = F; :
[2\[J] :: F and a v, transition applies;

— The stack is non-empty. If the dump D is empty, the first case of v~ applies. If
D = (z,7') :: D', by compatibility £ = E; :: [x\(]] :: E, and the second case of
v applies. O

3.5.9 Strong Call-by-Name: the Strong MAM

The machine introduced in this section implements strong call-by-name, and may therefore
be seen as a strong version of the MAM.

We know that the MAM performs weak head reduction, whose reduction contexts are
(informally) of the form []¢; .. .t,. This justifies the presence of the stack m = t; 1 ... 1 ¢,
which collects the list of arguments. It is immediate to extend the MAM so that it performs
full head reduction, i.e., so that the head redex is reduced even if it is under an abstraction.
Since head contexts are now of the form Ax;.... Az, [t ...t,, we simply add a stack of

abstractions A = x,, :: ... :: 1 and augment the machine with the following transition:
Abs Code Stack Env Abs Code Stack Env (3 4)
Alfdzt| e |E ~g x:A|t | € |E '

The other transitions do not affect the abstraction stack A.

Strong call-by-name reduction is nothing but iterated head reduction. Strong call-by-name
evaluation contexts, which we formally introduced in Def. when restricted to the pure
A-calculus (without explicit substitutions) are either of the form Azy.... Ax,,,.[0¢;1 ... 1, as
before, or of the form Ax;. ... Ax,,.sCt; ...t,, where s is a neutral term and C is, inductively,
a strong call-by-name evaluation context. As a consequence strong call-by-name evaluation
contexts may be represented by stacks of triples of the form (A, s,), where s is a neutral
term. These stacks of triples will be called dumps.

The states of the machine for strong call-by-name reduction are as above but augmented
with a dump and a phase , indicating whether we are executing head reduction (|}) or whether
we are backtracking to find the starting point of the next iteration ({). Besides the transitions

112

of the MAM, which do not touch the dump and are always in the || phase, and the transi-
tion (3.4) above, we add the following transitions:

Abs Code Stack Env Dump Ph Abs Code Stack | Env Dump Ph
A T T E D |~ A T T E D 1
ifE(x)=1

r A t € E T~ A | ot € E D i)
€ 5 € E | (Atym) =D | 0 o~ A ts T E D 1

A t |sum | E T o~ € 3 € E | (Atym)=D | |

where E(x) = | means that the variable x is undefined in the environment F.

In the actual machine that we define next, we merge the dump D and the abstraction stack
A into a structure F' that we call a frame, as to reduce the number of machine components. The
analysis will however somewhat reintroduce the distinction between dump and abstraction
stack. In the sequel, the reader should bear in mind that a state of the Strong MAM intro-
duced below corresponds to a state of the machine just discussed according to the following

Correspondenceﬂ
. . Abs | Code | Stack | Env Dump Ph
Discussed Machine: _ _ _
Ao | ¢ m | E | (A, tr,m) e (Apytn,mn) | @
!
Frame Code | Stack | Env | Ph
Strong MAM: _ - _

Ao o (br,mr) i Ay e (b)) A | 8 T | B |

We turn to the formal definition of the machine:

Definition 3.59 (The Strong MAM). The sets of stacks, environments, frames, and phases are
defined as follows:

Frames F = e|(t,m)Flx:F Stacks 7 = el|tum
Environments E := e|[2\{] = FE |z E|la<: E Phases ¢ == | |1

States of the machine are 5-uples (F, ¢, 7, F,). Transitions are given by:

Fool s | m Bl s Foolt|ser] E |
F o dxt|sam|El| v F |t] 7 |[2\s]:E||
F o |xt| € |E|l} ~ys, xoF | &t | € |mxaE |
Foolz| 7 [E[l v Fojel | E |
if BE(z) =t

Folaln BV o F lalal B |
if B(z) = >

zoF |t | € |E|ll ~pa F | dxt] e | a<=FE ||
@msFl s | e B0~ F 6% | E D
F ool t |saum|Elf ~yps EmaF| 5| ¢ | E ||

3Modulo the presence of markers of the form x< and =z in the environment, which are needed for book-
keeping purposes and were omitted here.

113

A few comments on the machine follow.

Scope Markers. The two transitions to evaluate and backtrack on abstractions, ~+ 5, and
~4s,, add markers to delimit subenvironments associated to scopes. The marker =z is intro-
duced when the machine starts evaluating under an abstraction Az, while <t marks the end of
such a subenvironment. Note that the markers are not inspected by the machine. They are in
fact needed only for the analysis, as they structure the frame and the environment of a reach-
able state into weak and trunk parts, allowing a simple decoding towards terms with explicit
substitutions. The following notions of ordinary frames (F'), weak frames (F},), and trunk
frames (F}), and the following notions of well-formed environments (F), weak environments
(Fy), and trunk environments (£}) are used in the analysis of the machine:

Definition 3.60 (Auxiliary notions of frames and environments).

Ordinary, Weak, and Trunk Frames Well-Formed, Weak, and Trunk Environments
F == F,|FR|F,:F E == E.|FE|E,: E

Fy == €| (t,m) = F Ey == ¢el|[2\t]:: By |a<: By iz B
F, == €|z F E, = e|ox:FE

Weak and Trunk Frames. A frame F' may be uniquely decomposed as F' = F, :: F}, where
Fy = (t1,m1) i -+« 2 (tn,) (With n > 0) is a weak frame, i.e. where there are no abstracted
variables, and F} is a trunk frame, i.e. not of the form (¢, 7) :: I —it must either start with a
variable entry or be empty. Note that here “::” denotes the concatenation of frames. We denote
by A(F) the set of variables abstracted in F, i.e. the set of z such that F' = F’ :: z :: F”.

Weak and Trunk Environments. Similarly to the frame, the environment of a reachable
state has a weak/trunk structure. In contrast to frames, however, not every environment can
be seen this way, but only the well-formed ones. In fact, reachable environments will be
shown to be well-formed as part of the invariant of the machine. A weak environment FE,
does not contain any open scope, i.e. whenever in F, there is a scope opener marker (>x)
then one can also find the scope closer marker (r<1), and (globally) the closed scopes of Fy,
are well-parenthesized. A trunk environment F; may instead also contain open scopes that
have no closing marker in £ (but not unmatched closing markers z<).

Accessing Environments and Meta-level Garbage Collection. Fragments of the form z< ::
E,, :: >z within an environment will essentially be ignored—this is how a simple form of
garbage collection is encapsulated at the meta-level in the decoding. In particular, for a well-
formed environment F we define F(z) as:

e(x) = f_ (y< = By iy E)(z) = E(x)
([z\t] :: E)(z) = (>z:: E)(x) = >
([= B)w) = B (9 B)x) = E()

We write A(F) to denote the set of variables bound to = by an environment F, i.e. those
variables whose scope is not closed with <.

114

Lemma 3.61 (Weak environments contain only closed scopes). If £, is a weak environment

then A(Ey,) = @.

Abstract Considerations on Concrete Implementations. Variables are meant to be imple-
mented as memory locations, so that the environment is simply a store, and accessing it takes
constant time on a random-access machine. In particular, both the list structure of environ-
ments and the scope markers are used to define the decoding (i.e. for the analysis), but are
not meant to be part of the actual implementation.

Compatibility. In the Strong MAM, both the frame and the environment record information
about the abstractions in which evaluation is currently taking place. Clearly, such information
has to be coherent, otherwise the decoding of a state becomes impossible. The following
compatibility predicate captures the correlation between the structure of the frame and that
of the environment.

Definition 3.62 (Compatibility F'ocE). Compatibility F'oc 2 between frames and environ-
ments is defined by

1. Base: exe.
2. Weak extension: (Fy, :: Fy)oc(Ey, 2 Ey) if FyocE;.
3. Abstraction: (v :: F)oc(zx 0 E) if FocE.
Lemma 3.63 (Properties of compatibility).
1. Well-Formed Environments: if ' and E are compatible then L' is well-formed.

2. Factorization: every compatible pair FocE can be written as (Fy, :: Fy)oc(Ey :: Ey) in
such a way that F, is of the form F, = x :: F" ifand only if E is of the form Ey = =z :: E'.

3. Open Scopes Match: A(F) = A(E).

4. Compatibility and Weak Structures Commute: for all F, and Ey,, FocE if and only if
(Fy = F)c(By = B).

Proof. The first three items are by induction on the definition of compatible pair. Item 1. is
straightforward. The base case is immediate for items 2. and 3. Let us check the two inductive
cases:

1. Weak extension:

1.1 Factorization: the decomposition is immediate, and the correspondence about the
first variable name follows from the i.h..

1.2 Open Scopes Match: by i.h., A(F;) = A(E;). By Lem. A(Ey) = @, and by
definition A(Fy) = @. Then A(F) = A(Fy) v A(Fy) = A(F) = A(Ey) =
A(Ey) U A(Ey) = A(E).

115

2. Abstraction

2.1 Factorization: by definition z :: F' and >z :: E are a trunk frame F} and a trunk
environment E, respectively. given that :: is overloaded with composition, and
weak trunk and environments can be empty we have Fi =:: Fi, and similarly
for E, proving the decomposition property. The correspondence about the first
variable name is evident.

2.2 Open Scopes: A(z :: F) = {z} U A(F) = {x} UA(E) = Az :: E).

Finally, item 4. is a corollary of item 2.
Compatibility and Weak Structures Commute.

1. =) By Factorization, F' = F} :: I} and F = E!, :: E}. By definition of compatibility, if
FocE is derivable then FiocEy is also derivable. Now Fy, :: F), and E, :: E. are weak
structures and so by the weak extension rule Fy, :: F' = F, =0 F = FiocEy, @ E!
E.=F, :: E.

2. <) By definition of compatibility, if Fy, :: F' = Fy, 0 F, ©: FyocEy, @ B 0 By = Ey
E is derivable then FiocE} is also derivable, and F' = F) :: Fioc = E! 1 By = E by
applying the weak extension rule.

]

As for the previous abstract machines, we state and prove a set of dynamic invariants that
hold in all reachable states:

Lemma 3.64 (Strong MAM invariants — & Lem.|A.14). Let S = ¢ | F | 5 | 7 | E be a state
reachable from an initial term t,. Then:

1. Compatibility: I’ and E are compatible, i.e. F'ocE.
2. Normal Form:

2.1 Backtracking Code: if ¢ = 1, then's is normal, and if 7 is non-empty, then s is
neutral.

2.2 Frame: if F = F' :: (u,n’) :: F”, then is neutral.
3. Backtracking Free Variables:

3.1 Backtracking Code: if p = | then fv(5) € A(F).

3.2 Pairs in the Frame: if F = F' :: (u,n’) :: F" then fv(u) < A(F").
4. Name:

4.1 Substitutions: if E = E’ :: [x\{t] :: E” then x is fresh with respect tot and E".

4.2 Markers: if E = F' :: >z : E" and F = F' :: x :: F" then x is fresh with respect
to " and F", and F'(y) = L for any free variable y in F".

116

4.3 Abstractions: if axt is a subterm of F', 5, m, or E then x may occur only int and in

the closed subenvironment x<1 :: Ey, :: >x of E, if it exists.

5. Closure:
5.1 Environment: if £ = E' :: [2\t] :: E” then E"(y) # L forally € £v(¢).

5.2 Code, Stack, and Frame: E(x) # L for any free variable x in’s and in any code of 7
and F.
Proof. See Section in the appendix.
The definition of the decoding relies on the notion of compatible pair.

Definition 3.65 (Strong MAM decoding). Let S = (F,t,m, F,) be a state such that F'ocF
is a compatible pair. Then S decodes to a state context Cs and a term [S] as follows:

]

« Weak environments:
[] < O
[[2\s] = B.] ¥ [EJO\s)

[z< :: By =z EL o N1EL]

« Compatible pairs:

[(e.)] € O
[(Fy = B, (B = E)N] < [(F. B)IEIED)
[((x: F),(=x: E)] = [(FE)]Xx)

Weak frames:
[[E]] def u
(G =FR] < [AIIrGED)

Stacks:
[1 = o
[3ua] € [«)KO8)

States: ot
Cs = [(FE)KI~D

[ST < cs®
The following lemmas sum up the properties of the decoding.

Lemma 3.66 (Closed scopes disappear). Let F'oc E be a compatible pair. Then [[(F, (z< :: Ey ::
=z B))] = [(F, E)].

117

Proof. Essentially it follows from [z< :: E,, : =z = E]| = [E]. Precisely, by Lem.[3.63] F
and FE have, respectively, the forms F}, :: F; and £, :: E;. Now:

[(F,(xz<:: By iz = B)]| = [(Fy: F),(z<: Ey wox i EL B
F., E)[{[z< :: Ey, :: =z 2 EL{[FW]))

(

[(

= [[(FmEt)]K[[Eév]K[[Fw]]»

[((Fw = F), (B = Ey))]]
[(F, E)]

O

Lemma 3.67 (LO decoding invariant — & Lem.[A.16). Let S = (¢ | F' | 5| n | E) bea
reachable state. Then [[(F, E)]| and Cs are LO contexts.

Proof. See Section in the appendix. O

Lemma 3.68 (Decoding and structural equivalence =).

1. Stacks and substitutions commute: if x does not occur free in w then [[w[{t[z\s]) =

(7 1< \s];

2. Compatible pairs absorb substitutions: if = does not occur free in F then

[(F, E)ICt[2\s]) = [[(F, ([2\s] = E))]I<E).
Proof. Straightforward by induction on 7 and the derivation of F'ocE. [

Theorem 3.69 (Strong MAM distillation). (Strong MAM, —,,, =, [[-]|) is a reflective distillery.
In particular:

1. Search 1, 2,3, 5, 6: if S ~g,, . 5 then [S] = [[5"].

2. Search 4: if S ~~g, S’ then [S] =g [5];

3. Multiplicative: if S v~y S’ then [S] —ab =nanes [5]);

4. Exponential: if S v, S’ then [[S] —1s [S']), duplicating the same subterm.
Proof.

Properties of the decoding: Determinism of the machine follows by the name invariant
(Lem.[3.64), and that of the strategy follows from the totality of the LO order (Lem. [3.7).
We analyze only the interesting cases (ignoring transitions that are decoded to simple
equalities).

- Multiplicative: ie. S = (F,\x.t,5 :: w, E,|) wou (F,t, 7, [2\5] :: E,]) = 5.
Note that Cgr = [[(F, E)[{[[7]]) is LO by the LO decoding invariant (Lem. [A.16).

118

Moreover by the closure invariant (Lem. [3.64) x does not occur in F' nor 7, justi-

fying the use of Lem. in:

[(F, \z.t,5m E,)] = 1CE, EHYS = 7r]]<):xf>>
= [, E)<Im <A -2)5))
—ab [(F, E) KD~ 1<e[2\s]))
=rem.@m [(F) E)[K[7[<O[\s])
=cem.mm@ [(F) ([2\5] == E)I=]<E)
= [[(F>t7 [x\g] n B, U)]]

— Exponential: S = (F,z,7,E,|) wo. (F,t",7,E,|) = S with E(x) = t. As
before, Cs is LO by Lem. Moreover, E(x) = ¢ guarantees that F, and thus
Cs, have a substitution binding z to ¢. Finally, Cs = Cg.. Then

[ST = Cs(z) = CsE) = [97]

- Search 4: S = (x :: F,t,e, E,) ~s, (F, Azt e,2< 2 E,) =S By Lem.
z FoF, andbyLem.E = F, :: >z :: £ Then

[((x:F),E)] = [((x:F),(Ey:ox:E)] = [(x:F),(zz:E))K[E])

Moreover, being in a backtracking phase () and so the backtracking closure in-
variant (Lem. and the open scopes matching property (Lem. give £v(t) Srem. o1
AF) =rempaa M Ey :: =2 = E') =pem.gen Mz 2 E'), i.e. [Ey] does not bind

any variable in fv(t). Then [Ey]<t) = t, and

[(z: Ft e EN)] = M((z F),E)]]<t>)

= [((x:: F),(Ey = E’))]]<t2
[((z = F), (= E/))]]<[[Ew]]<t>>

=5 [((z = F), (z : E))I<E)
_ [(F, B")ashy
=rem.gg@ [[(F,(z<: Ey > EN{Ax.t)
= [(F, (z< :: E))][{x.t)
= [(F, Azt e,x<:: E,)]

Progress:

1. the machine cannot get stuck during the evaluation phase: for applications and ab-
stractions it is evident and for variables one among >, and ~ 5, always applies,
because of the closure invariant (Lem. [3.64).

2. final states have the form (¢,t, ¢, E, 1), because

2.1 by the previous consideration they are in a backtracking phase,
2.2 if the stack is non-empty then ~ 5, applies,

2.3 otherwise if the frame is not empty then either ~~45, or ~~4, applies.

119

3. final states decode to normal terms: a final state S = (¢, ¢, ¢, E, |) decodes to [[S] =
[E][{t) which is normal and closed by the normal form invariant and backtracking
free variables invariant (Lem. [3.64).

O

3.6 Complexity Analysis

In this section we show that the length of an execution p : S v * S’ in each of the abstract
machines can be bounded linearly by the length of the distilled derivation [S] —s= [[5"]],
up to a factor |¢| proportional to the size of the initial code .

Recall that principal (i.e. multiplicative and exponential) transitions are decoded as exactly
one step in the reduction strategy, while non-principal (i.e. search) transitions are decoded
as zero steps in the strategy. Hence, in order to obtain a bound for the length of the distilled
derivation it suffices to bound the number of search steps |p|s in an execution p in terms of:

1. the number of principal steps |p|—s,
2. the size |¢| of the initial code ¢.

The analysis only concerns the machines, but via the distillation theorems it expresses the
length of the machine executions as a linear function of the length of the distilled deriva-
tions in the strategy. For every distillery, we will prove that the relationship is linear in both
parameters, namely |p|s € O((|¢| + 1) - |p|-s) holds.

Definition 3.70. Let M be a distilled abstract machine and p : S v * S’ be an execution
of initial code ¢. The machine M is:

1. Locally linear if whenever S’ «~% S” then k € O(]{]).

2. Globally bilinear if [p|; € O((|t| + 1) - |p|-s)-

The following result ensures that local linearity is a sufficient condition for global bilin-
earity.
Proposition 3.71 (Locally Linear = Globally Bilinear). Let M be a locally linear distilled
abstract machine, and p an execution of initial code t. Then M is globally bilinear.

hi

—s

Proof. The execution p can be written uniquely as w51 v~s .o km s hm By hypothesis
ki = O(|t|) for every i € {1,...,m}. From m < |p|-s follows that |p|s = O(|¢| - |p|-s). We
conclude with [p| = |pl-s + |pls = |p|-s + O([T] - [p|-s) = O(([F] + 1) - |p|-s)- O

3.6.1 Call-by-name and call-by-value

Call-by-name and call-by-value machines are easily seen to be locally linear, and thus globally
bilinear.

120

Theorem 3.72 (Bilinearity for call-by-name and call-by-value). The distilleries for the KAM,
MAM, CEK, SCEK, and LAM are locally linear, and so also globally bilinear.

Proof.

1. KAM/MAM. Immediate: v~ reduces the size of the code, that is bounded by [{| by the
subterm invariant (Lem. Lem. [3.31).

2. CEK. Consider the following measure for states:

#(3 | e ’ 7T> — {‘3’ + ‘ﬂ’ ifr = a(ﬂ’ 6/) !

|5] otherwise

By direct inspection of the rules, it can be seen that both v, and v, transitions
decrease the value of # for CEK states, and so the relation vw~», U v, terminates (on
reachable states). Moreover, both [5| and [@| are bounded by |{| by the subterm invariant

(Lem.[3.35), and so k < 2 - [| = O([f]).

3. SCEK. As for the CEK, using the corresponding subterm invariant (Lem. and the
following measure:

Is| + [u] ifm=(u,e):n

#Elelm|D):=4 _ .
5] otherwise
4. LAM. As for the CEK, using the corresponding subterm invariant (Lem. 3.42) and the
following measure:

#(5|e|)= {|§| + @ ifw=f(we):n

5| otherwise

3.6.2 Call-by-need

Call-by-need machines are not locally linear, because a sequence of v, steps can be as long
as the global environment E, that is not bound by |¢| but only by the number |p|—¢ of preceding
principal transitions (as for the MAM). Adapting the previous reasoning to this other bound
would only show that globally |p|s is quadratic in |p|-s, not linear. However, being locally
linear is not a necessary condition for global bilinearity. In fact, call-by-need machines are
globally bilinear. The key observation is that |p|,, is not only locally but also globally bound

by [p

p» as the next lemma formalizes.

We treat the MAD. The reasoning for the Merged/Pointing MAD is analogous. Define
le| :=0and |(E,z,m):: D| :=1+|D|.

Lemma 3.73. Let S = ¢ | 7 | D | E be a MAD state, reached by the execution p. Then:

121

1. |pls, = |ple +|D|
2. |E| + |D| < |plm

3. pls, < 1ple + 1plm = |plp

Proof.

1. Immediate, as v, is the only transition that pushes elements on D and v, is the
only transition that pops them.

2. The only rule that produces substitutions is \~~»,. Note that 1) v, and v, preserve
the global number of substitutions in a state; 2) £ and D are made out of substitutions,
if one considers every entry (E,z,7) of the dump as a substitution on z (and so the
statement follows); 3) the inequality is given by the fact that an entry of the dump
includes an environment (counting for many substitutions).

3. Substitute item 2 in item 1.

O
Theorem 3.74 (Bilinearity for call-by-need). The distillery for the MAD is globally bilinear.

Proof. Let p be an execution of initial code ¢. Define —_,,:=vw>, U v U v, and write
|p|-s, to stand for the number of its steps in p. We estimate v 1= U v o by studying
its components separately. For v, , Lem. 3.73[3| proves |p|s, < |p|, = O(|plp). For v, as
for the KAM, the length of a maximal \~~», subsequence of p is bounded by |¢|. The number of
>, maximal subsequences of p is bounded by |p|-.s,, that by Lem.[3.73[3]is linear in O(|p),,).
Then |p|s, = O([t| - |p|-s). Summing up,

1oy + lplss = O(lplp) + O([2] - |pl-s) = O(([E] + 1) - |pl-s)

3.6.3 Strong call-by-name

The complexity analysis of the strong MAM requires a further invariant, bounding the size
of the duplicated subterms. In this subsection, we say that 5 is a subterm of { if it does so up
to variable names, both free and bound. More precisely: define ¢~ as ¢ in which all variables
(including those appearing in binders) are replaced by a fixed symbol . Then, we will consider
s to be a subterm of ¢ whenever s~ is a subterm of ¢~ in the usual sense. The key property
ensured by this definition is that the size |5| of 5 is bounded by [{].

Lemma 3.75 (Subterm invariant). Let p be an execution from an initial code t. Every code
duplicated along p using \~ is a subterm of t.

Proof. Straightforward by inspection of the machine transitions. O

122

The following invariant provides a new proof of the subterm property of linear LO reduc-
tion (first proved in [11]):

Lemma 3.76 (Subterm Property for —). Let m be a —,-derivation from an initial term t.
Every term duplicated along 7 using a —15 is a subterm of t.

Proof. Easy by the subterm invariant (Lem. [3.64) via the case of an exponential transition of
the distillation theorem (Thm.|3.69).]

Finally, the following theorem ensures that the strong MAM is globally bilinear. Let us
stress that, despite the simplicity of the reasoning, the analysis is subtle as the length of back-
tracking phases can be bound only globally by the previous work done on evaluation phases.

Theorem 3.77 (Bilinearity for strong call-by-name). The distillery for the strong MAM is glob-
ally bilinear. More precisely, given an execution p : S vy ™ S’ from an initial state of code t
then:

1. Search evaluation steps are bilinear: |p|ys < (1 + |ple) - |¢]-
2. Search evaluation bounds backtracking: [p|ys < 2 - |p|ys.

3. Search steps are bilinear: |p|s < 3 (1 + |ple) - [t]-

Proof.
1. We prove a slightly stronger statement, namely |p|ys + |p|m < (1 + [p|e) - [t], by means
of the following notion of size for stacks/frames/states:
) le| = 0_ _|x::F| = |F|
. [t x| = |t + |7) |Et,7r) 2 F| = |mw|+ |F|
(Ft,m B, D] = [Fl+ e+ [l [(Fm E)] = [Fl+ 7]

By direct inspection of the rules of the machine it can be checked that:

« Exponentials increase the size: if S v~ S’ is an exponential transition, then |S’| <
|S| + |t| where |t| is the size of the initial term; this is a consequence of the fact
that exponential steps retrieve a piece of code from the environment, which is a
subterm of the initial term by Lem.

« Non-Exponential evaluation transitions decrease the size: if S ~», S" with a €
{m, |s1, |s2, |s3} then |S"| < |S

« Backtracking transitions do not change the size: if S ~», S’ with a € {{ s4,] s5, 1
s¢} then |S| = |S|.

Then a straightforward induction on |p| shows that
ST < 18]+ lple - [t = Iplys = lplm

e that [plys + |plm < |S] + [ple - [t] = |5

123

Now note that | - | is always non-negative and that since S is initial we have |S| = [t|.
We can then conclude with

1plus + |Plm
1S+ |ple - [t] = t|+[ple-[t] = (L+|ple)-[t]

2. We have to estimate |p|ys = |p|pss + [P]4ss + |P]gss- Note that:

2.1 |plpsy < |plyss> @s ~>¢s, pops variables from F', pushed only by ~+4s,;

2.2 |plpss < |plpse» @S ~qss pops pairs (¢, m) from F, pushed only by ~~js,;

|
2.3 |plpss < |plyss> as ~>¢s, ends backtracking phases, started only by ~» ..

Then |plys < |plys, + 2[plyss < 2[p[ys.

3. We have |p[, = |p|ys + [plts <p2= [plys + 2|plys =p1 3 - (1 + |ple) - [¢].

Finally, every transition but v, takes a constant time on a RAM. The renaming in a v,
step is instead linear in |¢|, by the subterm invariant (Lem. [3.75). O

Chapter 4

Foundations of Strong Call-by-Need

4.1 Introduction

4.1.1 Call-by-Need for Weak Reduction

Mainstream programming languages evaluate programs using weak reduction, i.e. the body of
a function is not evaluated until the function is applied. Suppose for example that we write a
function definition:

f x = 2 x 3 + x

and we evaluate the expression f in a typical programming language like OCaml or Haskell.
Then the multiplication 2 * 3 will not be performed. Rather, the function f itself will be the
final answer.

It also makes sense in principle to evaluate the body of a function before applying it. For
instance the program above can be transformed into the presumably equivalent one:

f x = 6 + x

by performing the multiplication 2 * 3. However, in a typical setting, the body of a function
in runtime is not represented by a tree-like expression, but by a sequence of machine instruc-
tions, which means that this kind of program transformation corresponds to preprocessing or
compile time optimization, rather than evaluation.

In the A-calculus, weak reduction is characterized formally by forbidding the congruence
rule &:
t—t

—¢

Ar.t — Azt
This means that a term like Az.(\y.y)z cannot be evaluated further, even though it contains
a redex. When one evaluates a term in the A-calculus using weak reduction, one does not
obtain, in general, a normal form as a result. The set of answers is instead the set of weak head
normal forms.

Definition 4.1 (Weak head normal form). A A-term is in weak head normal form if it is of
the form Az.t, or of the form z ¢y ... t,.

124

125

The goal of this chapter is to extend the lazy evaluation mechanism, an evaluation strategy
that implements weak reduction, originally proposed by Wadsworth [145], to the setting of
strong reduction. The (weak) call-by-need strategy is based on the two following principles:

1. Laziness. One should only perform steps that are needed to obtain a WHNF. For exam-
ple, a step like (Az.y) t — (Ax.y) ¢, internal to the argument, is not needed, as one may
simply contract the redex at the root (A\x.y) ¢t — y to obtain a WHNF.

In this respect, call-by-need is similar to call-by-name in that an argument is only eval-
uated if needed, and it improves the situation over call-by-value (in which an argument
is always evaluated, even if it is not needed).

2. Sharing. The computational work of evaluating an argument should be shared among
the copies of the argument. For example, let ¢ := [I where] = Axz.x is the identity
function, and note that ¢t — I. Then a step like (A\x.xz z) t — tt, if implemented naively
by syntactically copying the term ¢ twice, results in the duplication of the computational
work required to perform the step t — I:

Avza)t —>tt>It—t>1

In contrast, in call-by-need, when the function A\z.z x is applied to the argument ¢, the
two occurrences of x become bound to a single copy of the term ¢. In this way, as soon
as t is evaluated, both copies of = hold a reference to the same result, and computational
work is not duplicated. The sharing may be represented, as we do in this thesis, using
the notation of explicit substitutions:

Az.zz)t — (za)|z\t] - (xz)[2\I] - ({ 2)[z\]] = z[z\I] = I[2\]] —>]

In this respect, call-by-need is similar to call-by-value in that arguments are evaluated
at most once, and it improves the situation over call-by-name (in which an argument
may be evaluated many times, once per each of its copies).

We remark that some authors may make a distinction between lazy evaluation and call-
by-need, the former referring only to the deferral of the evaluation of expressions, and the
latter incorporating also the notion of sharing. In our work, in accordance with existing lit-
erature (e.g. [12,[113,[13]]), we speak of lazy evaluation and (weak) call-by-need as synonyms.

The weak call-by-need strategy provides various benefits over call-by-name and call-by-
value. We briefly discuss four aspects: efficiency, expressiveness, ease of reasoning and declar-
ativity.

Efficiency. Call-by-need may represent an exponential improvement in efficiency, with
respect to call-by-name. For example, consider the family of terms {t,, | n € N}, defined
recursively on n by:

toy = Mr.x

thy X (A\x.zx)t,

126

Then one can see that, in call-by-name, evaluating t,, requires a number of steps exponential
in n. More precisely, we have that ¢, reduces to the identity A\z.z in exactly 2" — 2 steps.
To see this, proceed inductively. Note that Axz.x reduces to Ax.x in 0 steps, and:

thr1 = (Az.za)t, — tytn
2n+1_9 steps, by i.h.
Az.x) ty,
- i,
27 +1_9 steps, by i.h.
A\x.x

So t,,11 reduces to Ar.x in exactly 2""2 — 2 steps.
On the other hand, in call-by-need, evaluating t,, requires a number of steps linear in n.
More precisely, ¢, reduces to the identity Az.z in exactly 5n stepdl}

the1 = (Az.xx)t, - (xzx)[2\t,]
5n steps, by i.h. (l‘l’) [x\/\yy]
- ((\yy)o)[z\N\y.y]
- yly\z][z\\y.y]
= yly\rz.z][2\Ay.y]
— Az.z

So t,,+1 reduces to Az.z in exactly 5(n + 1) steps.

Expressiveness. Call-by-need allows one to write programs in a style that would not be
possible, or convenient, in a more traditional setting with call-by-value. For example, John
Hughes [80] describes an architecture for a game-playing engine implementing the minimax
decision procedure. The rough idea is that the problem can be modularly decomposed into
two subproblems as follows:

1. Afunction gametree : Position — Tree Position, representing the potentially
infinite game tree starting from the given position. The nodes of the tree are positions
in the game and the edges represent moves.

2. A function minimax : Tree Position — Position, which determines the best
move.

Modularity is achieved thanks to lazy evaluation, which allows the programmer to handle infi-
nite data structures effortlessly, without having to explicitly resort to representing suspended
computations as thunks (using constructs such as Scheme’s delay and force).

There are many other well-known examples of the possibilities that lazy evaluation may
enable. For example Chris Okasaki [123] shows how to exploit memoization, i.e. sharing, to
implement efficient immutable data structures.

Ease of reasoning. One benefit of lazy evaluation is that it allows to reason about pro-
grams equationally. For example, consider the following set of definitions:

!In the last step we perform garbage collection implicitly for the sake of clarity. But note that, in the explicit
substitution calculi in this thesis, garbage collection is explicit.

127

loop = loop
fx=1

In a programming language using call-by-need evaluation the equality £ loop = 1 holds,
while in a programming language using call-by-value evaluation f loop is non-terminating.
Being able to reason equationally is convenient to prove properties about programs and to
derive programs by applying mechanical transformations to existing programs, which may
be part, for example, of the optimization phase of a compiler.

The property that one may actually “reason equationally” can be expressed formally as
the completeness property of call-by-need, which states that if a term ¢ is interconvertible
with an answer s, then evaluating ¢ using the call-by-need strategy also leads to an answer.
Completeness for strong call-by-need is the main result of this chapter.

Declarativity. Declarativity is not a binary property of programs, but more of a continu-
ous spectrum, a program being less declarative when it resembles a low-level description of a
procedure that solves a problem, and more declarative when it resembles an abstract specifi-
cation of the problem.

Lazy evaluation allows to write arguably more declarative programs, in the sense that the
order in which expressions are evaluated is not prescribed by the way in which they were
written by the programmer. Rather, expressions are evaluated only when they are actually
required for the computation to proceed. For example, consider a function definition like the

following:
fxy=1if y ==
then x
else z

where z = x / y

In a programming language using call-by-value evaluation the expression x / 7y is evaluated
unconditionally, which leads to an error if y equals 0. Contrast this with call-by-need, in
which the evaluation of x / y is only triggered when the value of the variable z is required.

Formal Definition of Weak Call-by-Need

Wadsworth first proposed call-by-need as an implementation technique for the pure A-calculus [145]]
in the 1970s. Later, Ariola and Felleisen [12], and independently at around the same time in
the 1990s, Maraist, Odersky and Wadler [113]], proposed a different way of defining call-by-
need evaluation} Their approach is based on a calculus whose operational semantics follows
a call-by-need discipline. This results in the behavior of the source language matching more
closely the behavior of its actual implementation.
Following this approach, we study calculi based on a call-by-need evaluation discipline.
In the following, we recall the definition of the weak call-by-need strategy that we use in

?In fact these two independent works are combined in a joint paper [13].

128

this chapter (and also in Chapter [3). The weak call-by-need strategy was originally proposed
in [4]], and it is based on the technology of explicit substitutions at a distance, closely related
with the Linear Substitution Calculus.

Definition 4.2 (The weak call-by-need strategy). The sets of terms (T, values, answers, (full)
contexts, substitution contexts, and weak evaluation contexts are given by the grammars:

Terms t = x| Axt|tt|t[z\t]

Values v ou= Azt

Answers a = VL

(Full) contexts C == | .C|Ct|tC|C[z\t]]|t[z\C]
Substitution contexts L == []|L[z\{]

Weak evaluation contexts E = []]|Et|E[z\t] | E x)[x\E]

The weak call-by-need strategy s s given by the following rewriting rules, closed by weak

evaluation contexts:
(Ax.t)Ls o g t[x\s]L

w
EQeplr\vL] woiey EQu)[z\v]L
In this chapter, we use squiggly arrows like “~~»” to denote reduction strategies, which are

usually deterministic, in contrast with typical arrows “—”, which represent a (non-deterministic)
orientation of an equational theory.

Example 4.3. The following is a reduction in weak call-by-need:

zx)[2\(Ay.y)(Az.2)]
zx)[\yly\Az.2]]
zx)[z\(Az.2)[y\\z.2]]
[2\x][z\\z.z][y\\z.2]
z[2\Nz.z][z\Az.2][y\\z.2]
(Az.2)[2\Az.z][2\\z.2][y\Az.2]

(waz) () Az2)) o (
(
(
(

w
NS>
W
NS>
w
NS>
W
NS>
w
NS> ya
W

NS>

W

NS>

Observe that the final result is an answer, and that the strategy does not incorporate any kind

of garbage collection rule.

4.1.2 Call-by-Need for Strong Reduction

As we have stated, our goal in this chapter is to extend the weak call-by-need strategy to strong
reduction. In contrast with mainstream programming languages, which use weak reduction,
functional programming languages with dependent types —including proof assistants based
on dependent type theory— use strong reduction.

Let us exemplify why a type checker for dependent type theory may need to use strong
reduction. In dependent type theory, types are allowed to depend on terms. For example,
suppose that the type constructor: Vec : N — Type represents the type family of vectors

129

of integers, so that, for a given natural number n : N the expression Vec n denotes the type
of vectors of length n. Then one may define a function to append two vectors as follows:

append : (n: N) - (m: N) - Vecn - Vecm — Vec (n + m)
append zero m nil Ww=uw

append (suc n) m (cons x v) w = cons x (append n m v w)

In order to accept this definition, the type checker has to verify that the left and the right-hand
sides of all the equations have the same type. In the case of the first equation, its left-hand side
is of type Vec (0 + n), whereas its right-hand side is of type Vec n. Note that these types
are not syntactically equal, rather they are interconvertible, up to computational reduction
rules. Determining that these types are interconvertible may be achieved by evaluating 0 +
n on one hand and n on the other, and checking whether the same normal form is reached.
This example is captured by means of a general typing rule called conversion:

I'-A A=B
I'-B
The judgement A = B establishes that types A and B are equivalent. Typically, this means

Conv

that A and B are interconvertible, up to computation rules like the 5-reduction rule. A simple
decision procedure to determine whether A = B holds consists in evaluating A and B to
normal form and then comparing their results syntactically. Given that A and B may contain
abstractions and free variables, this procedure must use strong reduction.

In this chapter, our goal is to develop the foundations for a correct and efficient strong
reduction strategy. The mechanism to decide A = B implemented by practical proof assis-
tants, such as the Coq proof assistant, is more complex than the naive algorithm proposed
above, and it uses a large set of finely tuned heuristics. In the particular case of Coq—at least
at the moment of writing this thesis—this mechanism has not been defined other than in the
actual OCaml source code of Coq, and it has not been proven correct. Even though there is
a significant gap between the complexity of current implementations of proof assistants and
the comparatively minimalistic formalisms studied in this thesis, we are certain that imple-
menters and users could benefit from a foundational study of strong reduction.

As a general remark, evaluation strategies for strong reduction are not as well studied in
the literature as strategies for weak reduction. One notable exception is the work of Grégoire
and Leroy [66], who have proposed a strong normalization function that consists in iterating
the weak call-by-value strategy on terms possibly containing free variables.

Our starting point is the observation that rather than iterating call-by-value, one should
consider an appropriate notion of call-by-need that computes strong normal forms of open
terms. As a matter of fact, we propose a strategy that computes strong normal forms by
following a call-by-need discipline.

Defining a strong call-by-need strategy, even before attempting to state or prove any the-

orems, is a non-obvious task. Let us write 2 for such a strategy. Recall also that, if ¢ is a

130

term with explicit substitutions, we write ¢° for the A-term that results from the unfolding of
all the explicit substitutions in ¢, so for example:

(xx)[x\yz][y\\x.z]® = (\r.x)2((\x.2)2)

The following are the main design principles that we have followed in order to arrive at a

satisfactory definition of e

1. Strong reduction. The strong call-by-need strategy should implement strong reduc-
tion, i.e. if a term ¢ is in «2»-normal form then, when read back into the A-calculus by
unfolding all the explicit substitutions, the resulting A-term ¢° should be a $-normal
form.

Note that this criterion is lax enough that it allows us, for example, to take the terms
(Az.z)[y\Q] or A\x.y[y\x] as two valid encodings of the f-normal form A\z.z.

2. Determinism. The strong call-by-need strategy should be deterministic, that is, if ¢ W

S
s1 and t v~ s5 then s; = $o.

3. Conservativity. The strong call-by-need strategy should be conservative with respect

to weak call-by-need. That is, if ¢ Y, sthent 2 S.

4. Correctness. The strong call-by-need strategy should be correct with respect to -

equivalence. This means that if ¢ 2> s then t° = 5 8.

5. Completeness. The strong call-by-need strategy should be complete with respect to
B-equivalence. This means that if ¢ =3 s in the A-calculus and s is a 3-normal form,

then t(v\?\»)*u and u® = s, i.e. u is an encoding of s modulo unfolding all the explicit
substitutions.

After we have given a definition of the strong call-by-need strategy, all these principles will
be stated and proved as theorems. In the following subsections we mention two non-trivial
issues that one must confront in order to define a strong call-by-need strategy, the issue of
frozen variables, and the issue of context-dependency.

Frozen Variables

Strong reduction performs evaluation below abstractions, so evaluation has to deal with open
terms, i.e. the term may contain free variables. These variables are typically bound some-
where above in the evaluation context. In our presentation, a variable x may be bound by an
abstraction Az.[] or by an explicit substitution [J[z\t]. The behavior of the evaluator depends
crucially on the nature of these variables.

For example, the evaluator may have to evaluate an application whose head is a variable,
such as x t. If the variable z is bound to an answer, say by an explicit substitution [z\\y.z],
then evaluation should proceed by substituting x by the answer. In our example, evaluation
proceeds as follows:

(xt)[z\\y.z] = ((A\y.2) t)[2\\z.2] — z[y\t][z\\z.2]

131

Note that the term ¢ is not evaluated in this case.

On the other hand, the variable may be bound by an abstraction that cannot possibly
become applied to an argument. Then, given that evaluation must implement strong reduction
to normal form, the evaluator should go on and evaluate ¢:

\e.xt - vt - vt — ...

If a variable x is bound by an abstraction which cannot possibly become applied to an
argument, we say that x is frozen. If a variable z is frozen, a term of the form z ¢, ...¢, is
called a structure. Strictly speaking a structure may also contain explicit substitutions—such
as in y[y\z]t—. The precise definition of structure is postponed until later in the chapter.
Variables bound to structures are also considered to be, transitively, frozen.

In the following examples the underlined variables are frozen:

AT Ay.yt — The abstractions cannot become applied.
Ar.2(Ay.y) — The abstractions cannot become applied.
M. (zt)[2\ys][y\zu] — The variables y and z are bound to structures.

In contrast, in the following examples the underlined variables are not frozen:

(A\x.xt)s — The abstraction can become applied.
(Ay.y (A\z.2))(Az.z$) — The abstraction can, in principle, become applied.
z[z\\y.y] — The variable x is not bound to a structure.

In order to properly deal with all these situations, in our strong call-by-need strategy the
notion of evaluation context is parameterized with respect to a set ¢ of frozen variables. For
example, the context x[] will be considered a 1-evaluation context if and only if z is frozen,
ie x e

Context-Dependency

As mentioned in the previous subsection, strong reduction must perform evaluation below
an abstraction, but only so if it can be certain that the abstraction cannot possibly become
applied to an argument, along any possible reduction. More technically, one could say that
the body of an abstraction should be evaluated only if it has already reached a position in
which it will form part of the Bohm tree of the term.

For example, in the terms Az.t and Ay.y(Az.t) we know that the abstraction Az.t is not
going to become applied, so to calculate the normal form of the term we should go on by
“opening” the abstraction and evaluating the body ¢. On the other hand, in a term like (Az.t)s
the weak call-by-need strategy would perform the db-step (\z.t)s W t[x\s] so to abide by
the Conservativity principle, the strong call-by-need strategy should do the same thing. In
particular, it should not evaluate the body ¢ yet. Similarly, in the term (zs)[z\\x.t] the weak

132

call-by-need strategy performs the substitution step (zs)[z\Az.] s ((Ax.t)s)[x\\z.t], so
again the strong call-by-need strategy must not evaluate ¢ yet.

To properly deal with the context-dependent nature of strong call-by-need evaluation, we
distinguish a particular subset of the evaluation contexts, the set of inert evaluation contexts.
Intuitively, an evaluation context is inert if it can be plugged inside another evaluation context
in such a way that the composition is still an evaluation context.

For example, the context Ax.[]is an evaluation context but it is not inert, because plugging
it into the evaluation context []¢ results in the context (Az.[])¢, which is not an evaluation
context. Note that composing the contexts has enabled an interaction, namely it has created
a db-redex, and evaluation should prioritize contracting the newly created db-redex:

(AxDD)t)(s) = (Az.s)t o s[z\t]

Similarly, the context (Az.y)[y\[]] is an evaluation context, but it is not inert, because plug-
ging it into the evaluation context z[z\[]] results in the z[2\(Az.y)[y\[J]] which is again not
an evaluation context. As before, composing the contexts has enabled an interaction, creating
an lsv-redex, and evaluation should contract it before going on:

(a\Oay) [\ OISy = e\ (Az.g)[y\s]] > (Az.y) [\ Aay)][v)\s]

To define the strong call-by-need strategy, we shall restrict the composition of evaluation
contexts so that only inert evaluation contexts can be plugged on the left of an application
((Jt) and inside explicit substitutions (t[z\[]]), so that nor db redexes neither 1sv redexes are
created due to the undesired enabling of an interaction.

4.1.3 Our Work

This chapter is the result of collaboration with Thibaut Balabonski, Eduardo Bonelli, and Delia
Kesner, and it is structured as follows. We highlight in boldface what we consider to be the
main contributions:

« In Section [4.2] we define the strong call-by-need strategy. Specifically:

— InSection[4.2.1] we define a theory of strong reduction, the Theory of Sharing (Def. [4.4).

- In Section[4.2.2] we motivate the definition of strong call-by-need, and we define a
strategy for strong call-by-need-reduction (Def.[4.4), including various related
notions such as normal forms and evaluation contexts.

— In Section[4.2.3|we prove four basic principles that our strong call-by-need strategy
enjoys, namely that it reaches normal forms (Prop. [4.16), it is deterministic
(Prop. , it is a conservative extension of Ariola et al.’s notion of weak call-
by-need (Thm. [4.23), and it is correct with respect to 3-reduction (Prop.[4.25).

« In Section [4.3| we prove that the strong call-by-need strategy is complete with respect
to B-reduction (Thm. [4.55). This means that if a A-term has a S-normal form, then the

133

strong call-by-need strategy always finds it—modulo unfolding of explicit substitutions.
The proof of completeness combines a logical argument and a syntactical argument.
The logical argument relies on an auxiliary type system based on non-idempotent in-
tersection types, and it shows that the Theory of Sharing is complete with respect to
[-reduction. The syntactical argument shows that the strong call-by-need strategy is
complete with respect to the Theory of Sharing. Specifically:

— In Section[4.3.1] we propose a non-idempotent intersection type system called
HW, for the Theory of Sharing (Def. [4.27). This is a simple adaptation of existing
systems, following the line of work proposed by Kesner [91]. We also show that
typability implies normalization (Thm.[4.43), i.e. that terms typable in %)V are
weakly normalizing in the Theory of Sharing.

— In Sectionf4.3.2] we use system HWV to argue that the Theory of Sharing is com-
plete (Prop. 4.45) with respect to S-reduction, i.e. that -normalizing terms are
also normalizing in the Theory of Sharing.

- In Section we recall an abstract factorization result due to Accattoli [3]]. Us-
ing this abstract result, we then argue that the strong call-by-need strategy is
complete (Prop. with respect to the Theory of Sharing. To do so we show
that any reduction sequence in the Theory of Sharing may be factorized as a pre-
fix whose steps are in the strong call-by-need strategy, followed by a suffix whose
steps are garbage, i.e. steps inside unreachable explicit substitutions. The core of
the proof is an exhaustive (and delicate) case analysis of permutation diagrams.

In the following chapter (Chapter [5), we extend the results of this section to incorporate
pattern matching and recursion (with fixed points). In Section [8.1|in the Conclusion (Chap-
ter[8), we propose an abstract machine for strong call-by-need evaluation. The proof that this
machine implements the strong call-by-need strategy is left as future work.

4.2 Strong Call-by-Need

In this section we define the strong call-by-need strategy. Actually we begin by defining,
in Section a calculus which we call the Theory of Sharing. By a “calculus” what we
mean is, formally speaking, a rewriting system. The objects of the Theory of Sharing are the
usual set of terms of the Linear Substitution Calculus (variables, abstractions, applications,
and explicit substitutions), as in Def. The steps of the Theory of Sharing are given by a
non-deterministic rewriting relation —, whose reflexive, symmetric, and transitive closure
gives us an equational theory (the equivalence relation =g,).

In Section we define the strong call-by-need strategy itself. As already mentioned,
the strategy is parameterized by a set of variables ¥}, which are supposed to be frozen. This
means that, for each set), we define a deterministic rewriting relation 2> which is a subset of
—¢n. The strong call-by-need strategy corresponds to the case in which the set ¢ is empty, i.e.
w2 2, In Section we study some of its basic properties, namely the four principles
of Strong reduction, Determinism, Conservativity, and Correctness.

134

4.2.1 'The Theory of Sharing

The strong call-by-need strategy 2> can be seen as part of a bigger picture, the Theory of
Sharing, given by the rewriting relation —, that we define in this subsection.

A remark on nomenclature: in previous versions of this work, we spoke of “the Strong
Call-by-Need Calculus” rather than of “the Theory of Sharing”. We believe that the latter
name is more appropriate, because the relation —, does not enforce “by-need” evaluation;
in fact, it allows to evaluate expressions that are not needed to obtain a result. On the other
hand, the relation —;, does enforce sharing; in fact, an expression may not be copied unless
it is already a value. For example, let A := (A\z.z)y and let A’ := z[x\y] be its contractum.
Then a step like z[y\A] —¢, z[y\A'] is allowed in the Theory of Sharing, even though it is
not needed, while a step like z[2\A] —s A[y\A] is not allowed in the Theory of Sharing,
because it copies A, which is not a value.

Definition 4.4. The Theory of Sharing \gy is given by the set of terms Ty, as in Def. [4.2] and
the reduction relation —, def —dp U —1sv U —4c, Where for each R € {db, 1sv, gc}, > is

the closure by full contexts of the corresponding rewrite rules below, i.e. =% & C{—R).

(Ax.t)Ls +—q tlz\s]|L

Clap[z\L] —1e C(v)[z\v]L
tlz\s] g T ifx ¢ fv(t)

Note that the rules —4, and — . are exactly the — 4, and — . rules of the LSC (cf. Def.[2.75).
On the other hand, the —, rule of the Theory of Sharing and the — rule of the LSC are
not instances of each other, since for example:

z[x\(A\y.2)[2\t]] —=r (Ay.z)[z\\y.z][2\t] holds for R = 1sv but not for R = 1s
z[z\y] —r ylz\y] holds for R = 1s but not for R = 1sv

Example 4.5. The following is a reduction in the Theory of Sharing:

(Az.zzx)((Ay.y) Awaw)) —g (Az.zzz)(yly\ \w.w])

(

(zzz)[z\y[y\Aw.w]]

(zzx)[2\(Aw.w)[y\\w.w]]
—a (zz(QAw.w))[z\ \w.w][y\\w.w]

(

(

—sh

Zrr
—sh X

—sh

zr(Aw.w))[z\A\w.w]

—sh

(Aw.w)(Aw.w))[z\ w.w]

- 2(Aw.w)(Aw.w)

The following lemma characterizes the normal forms of the Theory of Sharing. We write
NF(—gp) for the set of —g,-normal forms, and SNF(—gy) for the set of —g,-normal forms that
are not answers, i.e. t € SNF(—g,) if t € NF(—gy,) and ¢ is not of the form vL.

Definition 4.6 (Normal forms of the Theory of Sharing). The set of sh-structures (S) and the
set of sh-normal forms (N) are defined mutually inductively as follows:

teS ueN tes teN teX weS zefv(t)

res tues teN JAwtelN tlz\u] e X

135

In the last rule, the symbol X represents either S or N.

Lemma 4.7 (Characterization of strong normal forms). The following hold:
* NF(—e) =N
e SNF(—q) =S

Proof. Given an arbitrary term ¢ € 7, one can check that ¢ € NF(—g,) <= ¢ € N and that
t € SNF(—g,) <= t € S. The left-to-right implication is straightforward by induction on ¢.
The right-to-left implication is straightforward by simultaneous induction on the derivation
thatt € Nand ¢ € S. O

4.2.2 'The Strong Call-by-Need Strategy

In this subsection we define a deterministic rewriting relation W representing the strong call-
by-need strategy. Unfortunately, by the nature of the problem that we are confronting, this
rewriting relation does not enjoy straightforward closure properties under different kinds of
contexts. This is due to the fact that some variables may be frozen, or not frozen, by the
enclosing context. For example, if we let A := (A\y.y)z and A’ := y[y\z], then we can note
that:

« A +>> A’ should hold,

e \z.xA 2 Az.xz/A\’ should hold, because z is frozen under the context Az.[], so A\z.z[]
is an evaluation context,

o (xA)[2\I] s (xA")[x\I] should not hold, because z is not frozen under the context
C[2\I], so («[)[«\I] is not an evaluation context.

This means that a naive contextual closure rule like “¢ «~>» s holds if and only if A\z.t o \7.5
holds” is not valid. In order to be able to reason inductively, we need to consider an appropriate
generalization of the strategy. In fact, we define a family of deterministic rewriting relations
WS parameterized by a set ¥ of variables that are considered frozen. The strong call-by-need

strategy is then given by w2 X2, For example, with A and A’ as above, we have that:

e 2A % A holds if 2 € ¢,
e 2A 5 A does not hold if = ¢ .

These generalized relations will enjoy appropriate closure properties. For instance, A\x.t W

Ax.s holds if and only if ¢ 19%} s holds, freezing the variable .

Given that our aim is to define a strategy for strong reduction, i.e. reduction to normal
form, the behavior of the relation s will depend on whether certain subterms have already
reached a normal form or not. For example, if we have an application ts, evaluation should
focus on the argument s only if the function ¢ is a strong normal form and not an answer.

136

Bearing this in mind, before defining the relation s we will start by defining, syntacti-
cally, the set of normal forms that it should reach. This set will also depend on ¢: for instance
the term xy will be a strong normal form under ¥ if and only if {x, y} < 9.

Moreover, the set of normal forms of the strategy %> does not coincide with the set of
normal forms of the theory — ;. By design, our strong call-by-need strategy does not perform
garbage collection, i.e. seen as relations, the intersection WS — ¢ is empty, so the inclusion
W —ap U =15y S —¢p holds. This means that for example Az.xz[y\t] will be a normal
form of our strategy:.

In the following subsections we define the relations %> and the corresponding notion of
normal form under the set of frozen variables ¢). But, before going on, we need a few auxiliary
definitions, and in particular the notion of non-garbage variable.

Definition 4.8 (Garbage collection operation). The operation of garbage collection |4 () is
defined as follows:

lgc (z) -
lge(Azt) = Axlge(t)
lee(ts) = Lge(B)lge ()
Lo (t[2\s]) % { bge ()[x\lge (5)] if € £v(ge (1))

lge (1) otherwise

Note that this definition also erases explicit substitutions that are not garbage substitutions
stricto sensu. For instance, consider the term x[y\z][z\¢]. Both substitutions are collected by
lgc (-), even if an occurrence of the variable z temporarily appears in the subterm z[y\z].
Definition 4.9 (Non-garbage variables). The set of non-garbage variables of a term t is defined
as ngv(t) 4 £v(|gc (t)). Informally, ngv(t) is the set of free variables of ¢ that are not erased

by garbage collection. A free variable is a garbage variable if it is not non-garbage.
Lemma 4.10 (Inductive characterization of non-garbage variables). The set ngv(t) of non-

garbage variables can be characterized by the following inductive equations:

ngv(z) -z}
ngv(Ax.t) = ngv(t)\{z}
ngv(ts) = ngv(t) U ngv(s)

ngv(t[z\s]) = (ngv(t)\{xbu{ngv(s) if v € ngv(t)

o otherwise

Proof. Straightforward by induction on ¢. [

Normal Forms and Structures

The definition of the set of normal forms of the strategy W depends on the key notion of
structure. We summarize the three principles that motivate their definition.

137

1. Frozen variables define the shape of the structures. If = is frozen, reduction in a
term like = ¢ must take place in ¢ and hence the variable x persists in the reduct. This
motivates our calling a term such as x ¢, with ¢ in normal form, a structure. Iterating
this idea, if x is frozen and ¢4, ..., %, are in normal form then x ¢; ... t, is a structure
and reduction in a term like x ¢; ... ¢, t,,. 1 must take place in ¢,,.1. The set of normal
forms includes the set of structures as a proper subset.

This principle leaves the following question open: is y[y\zt] a structure? The answer
depends crucially on whether xt should be substituted for y.

2. Structures should not be duplicated. Weak call-by-need only duplicates values, ab-
stractions being the only possible values. In weak reduction the set of values coincides
with the set of weak-head normal forms, since all terms are closed. This raises the ques-
tion of whether structures, which are weak-head normal forms in the setting of strong
reduction, should be substituted too.

The crucial observation is that, in contrast to abstractions, structures cannot contribute
in any way to creating new redexes. Contrast for example the step:

(@t)[2\ yy] = (Ay-y)) 2\ y.y]

in which performing the substitution creates the underlined db redex, with the step:

(zt)[x\ys] — (yst)[z\ys]

in which performing the substitution does not create any new interaction. This is a
general phenomenon.

Given that structures represent an incomplete computation whose evaluation is blocked
by a head variable, and given that we do not want to duplicate incomplete computations,
we do not substitute structures: structures are not considered values so they cannot be
duplicated. This means that, if x is frozen and ¢ is a normal form, the term y[y\z t] is a
structure.

3. Variables bound to structures are transitively frozen. If a variable z is bound to a
structure, then x is also considered frozen. Indeed, zy is a structure under the context
[1[z\zz] where x itself is bound to a structure and thus frozen, but it is not a structure
under the context [][z\/] where x is bound to a value and thus not frozen.

Following these principles, we define the sets of 1J-normal forms and ¥J-structures:

Definition 4.11. The set of normal forms under the set of frozen variables 1}, also called -
normal forms (Ny), and the set of structures under the set of frozen variables ¥, also called
U-structures (Sy) are defined mutually inductively by the following rules:

ey tESg SENﬂ tESﬁ tEN,@U{X}
N-VAR N-APP NFSTRUCT —— NFLAM
r €Sy ts €Sy t € Ny Azt € Ny

138

te X 5eSy xengy(t) teX? ¢ ngy(t)
5 NFSUB 5 NFSUBG
tx\s] € X t[x\s] € X

In the last two rules, the symbol X represents either S or N.

Note that:

1. Inthe N-aAPP rule, the head of the application must be a structure, so for example xx is an
{x}-structure while (Az.z)z is not. Intuitively, every ¥J-structure is headed by a frozen
variable in the set). For example, both xyy and z[z\z y] are {z}-structures headed by
x. Later we will prove this fact more rigorously.

2. In the NFLAM rule, the bound variable is frozen in the body, so for example Az.xx is an
@-normal form because zx is an {x}-normal form.

3. The rules NFSUB and NFSUBG allow normal terms to contain explicit substitutions [x\¢],
which play two very different roles:

3.1 The NrSuB rule allows substitutions to contain a structure, shared among the oc-
currences of z, as in the term \y.(zz)[z\yt]. In this rule, the bound variable is
frozen in the body, and the argument of the substitution must be a structure, so
for example (zx)[z\y] is an {y}-structure while (zz)[z\Ay.y] is not. Moreover, x
should be non-garbage, otherwise we should apply the NFSUBG rule.

3.2 The NrSUBG rule allows substitutions to be “garbage substitutions” as in Ay.y[z\t].
In this rule, the bound variable should not be non-garbage, and then the argument
of the substitution is allows to be an arbitrary term, so for example z[y\z]|[2\ \w.w]
is an @-normal form.

Evaluation Contexts

The strong call-by-need strategy s is given by two reduction rules, which are, respectively,
instances of the rules —4, and —i;, of the Theory of Sharing. These rules are applied by
focusing on specific locations in a term, as specified by evaluation contexts. The two principles
of reduction are:

1. Perform function application as soon as db-redexes are found.
2. Evaluate and substitute the values to which variables are bound on demand.

Let us see how these principles apply when reducing an application ¢ s. Evaluation should
not focus on the argument s by default, since we do not know yet whether this argument is
actually needed. Hence the first step is to reduce ¢ until either it becomes an answer or, on
the contrary, it becomes visible that it will never become an answer:

« If ¢ becomes an answer, i.e. a A-abstraction possibly affected by a substitution context
(Az.t")L, then we should perform the db-step.

139

« If { becomes a term headed by a frozen variable, then it will never become an answer:
it can only diverge or become a structure. For example, if 2 stands for the usual non-
terminating term:

x(I1) becomes a structure, namely x I[y\/]
x[x\y(II)](II) becomes a structure, namely x[x\y [[2\I]]I[z\]]
x €2 diverges

In this case both ¢ and s have to be independently evaluated to full normal form. Ac-
cording to our strategy, the evaluation focus should stay in ¢ until it becomes a proper
structure, and then continue evaluating s.

Note that the choice of reducing in ¢ or s depends on whether ¢ is a structure, which in
turn depends on the variables that are frozen at this point. Thus, as was the case with normal
terms and structures, the notion of evaluation context depends on a set 1) of frozen variables.
A context ¢ C is an evaluation context under the set of frozen variables ¥} whenever C is an
evaluation context and ¢ is a structure under the same set of frozen variables ¥J.

Now consider a term of the form ¢[z\s]. Following the second principle of reduction, the
evaluation of the term s should be placed on hold until its value is required. Hence reduction
should first proceed in ¢, until z becomes the focused variable in t, i.e. until an evaluation
context reaches an occurrence of x in ¢. In this case, reduction should focus on s until an
answer is obtained. An important subtlety here is how the notion of focused variable is to be
understood in a strong setting. For example, x is the focused variable in A\y.zy and, but also in
Ay.yx. The focused variable is also z in the term (zy)[z\z I]. In contrast, x is not the focused
variable in (yx)[y\I], since y is not frozen under [][y\] so, in this particular case, evaluation
should proceed to perform the substitution of I for y. Observe that the focused variable, in
case there is one, is always free.

Finally, in the case of a A\-abstraction, evaluation should proceed to evaluate its body (per-
forming proper strong reduction) only if this abstraction can never become applied to an
argument. As mentioned, before, to implement this condition we distinguish a particular
subset of the evaluation contexts, containing all the evaluation contexts that are not led by
a A-abstraction, which we call inert evaluation contexts. There are two places at which only
inert evaluation contexts can be plugged: on the left of an application to avoid reduction in
the left part of a db-redex, and in a substitution to avoid reduction in a value that should be
substituted. This way we ensure that, whenever an evaluation context focuses inside a A-
abstraction Ax.t, it is guaranteed that this A-abstraction will never be applied, and thus the
variable = can be remembered as frozen during the evaluation of .

Following these principles, we define the sets of ¥-evaluation contexts and inert -evaluation
contexts:

Definition 4.12. The sets of evaluation contexts under the set of frozen variables 1, also called
J-evaluation contexts (Ey) and of inert evaluation contexts under the set of frozen variables v,
also called inert V-evaluation contexts (Ey) are defined mutually inductively by the following
rules:

140

Ceky teSy Ceky
EBox EArPL EAPPRSTR
e Ey CtekEy tCeEy

CeEj Ce Epopn CeX? t¢Sy x¢d

E-INcL ——— ELAM ESUuBLNONSTR

CeEy Az.Ce Ey Clx\t] e XV

Ce XM tes, C,eX’ C,eE
5 ESuBLSTR 5 ESuBsR
clz\t] e X CidaY[z\Ca] € X

In the last three rules, the symbol X represents either E or E°.

Note that:

1.

According to the EAPPL rule, evaluation may proceed on the head of the application as

long as the focus of evaluation is below an inert context, so for example [J((Az.x)y) is

an P-evaluation context while (Az.[])((Az.x)y) is not.

. According to the EAPPRSTR rule, evaluation may proceed on the argument of the ap-

plication as long as the head is a structure, so for example zz{] is an {z}-evaluation

context while (Az.x)[] is not.

According to the ELaM rule, evaluation may proceed on the body of the abstraction, the

bound variable is frozen in the body, so for example Ax.x[]is an @-evaluation context,

because x[] is an {x}-evaluation context. Note that in this case the resulting context is

not an inert context.

The rules ESUBLNONSTR and ESUBLSTR allow evaluation to proceed on the body of a

substitution, in two different ways:

4.1

4.2

The ESUBLNONSTR allows evaluation to proceed on the body of a substitution
whose argument is not a structure. This may be because the argument has not
been fully evaluated yet, e.g. x[z\(A\y.y)z], or because it has been fully evalu-
ated but it is an answer, e.g. z[x\(\y.w)[w\z]]. In these cases, the bound variable
is not frozen in the body, so for example [J[x\\y.y] is an @-evaluation context
but (z[)[z\A\y.y] is not an F-evaluation context, because in turn 2] is not an
J-evaluation context.

The ESUBLSTR rule allows evaluation to proceed on the body of a substitution
whose argument is a structure, freezing the bound variable, so for example (x(y[]))[x\yy]
is an {y}-evaluation context because yy is an {y}-structure and z(y[]) is a {z, y}-
evaluation context.

According to the ESuBsR rule, evaluation may proceed on the argument of a substi-

tution, as long as the bound variable is the current focus of evaluation in the body.
For example, let A = (Az.x)(Az.x). Then in a term like (zy)[y\A][z\A] the context
(xy)[y\A][z\[]] is an F-evaluation context, because z is the focus of evaluation in zy,

141

while (zy)[y\[(J][x\A] is not an @-evaluation context, because y is not the focus of
evaluation in xy.

Moreover, in this case, evaluation should proceed on the argument of the substitution
as long as the focus of evaluation is below an inert context, so for example z[z\y[]] is
an {y}-evaluation context while x[x\\y.[]] is not an {y}-evaluation context.

Reduction
We are finally able to define the strong call-by-need strategy as a binary relation W

Definition 4.13 (Strong call-by-need reduction). The strong call-by-need strategy o s

. . . 9 9
given by the union of the two reduction rules w4, and >, below:

C{(Az.t)Ls) wha Ct[z\s]L) if C € Ey

CiClaP[t\WL]) e CUCWM[\WIL) i CCXDD[#\VL]) € Ey

Note that the strong call-by-need strategy s requires that the anchor of the step is below
a V-evaluation context. In the db rule, this means that the contracted application (\z.t)L s
must lie below a context C € Ey. In the 1sv rule, this means that the contracted variable z,
affected by the explicit substitution, must lie below a context C € Ey. Moreover, since x must
be bound to an answer, the context C has to be of the form C = C;{Co{[J)[x\VvL]).

Example 4.14. The following is a reduction in strong call-by-need. In each step we underline
the focus of evaluation, i.e. the pattern of the db redex or the variable contracted by the 1s redex:

(Araz)Myz(Iz)y) S5 (ax)[a\Ny.=(12)y]
L (0w 22)y)n) [\ My.2(12)y]
L Gy \alln\ M2 (12)y)
Lo Glwlw\D)y)y \al[2\Ny.=(12)y]
L G\ [y \ N2 (12)y] [0\ Ny 2 (12)y]
Lo G\ L2y)y \Ny-2(L2)y] [0\ Ay 2 (12)y]
L Gwlw\e) Oy 2(w[w\)y") [y \My-2(12)y] [2\My.2(12)y]

4.2.3 Basic Properties of Strong Call-by-Need

In Section [4.1.2] we listed five design principles that we followed to define the strong call-by-
need strategy. In each of the subsections of this section, we state and prove the first four princi-
ples: Strong reduction (Prop.[4.16), Determinism (Prop.[4.18), Conservativity (Thm. [4.23),
and Correctness (Prop. [4.25). The statement and proof of the fifth principle, Completeness,
is much more complex and we defer it until the next section.

142

Strong Reduction

In this subsection, we show that the strong call-by-need strategy reaches normal forms, up to
the unfolding of explicit substitutions. The following auxiliary lemma characterizes the set of

normal forms of the strategy s

Lemma 4.15 (Characterization of ¥-normal forms — & Lem. [A.30). The following sets are
equal:

e The set of V-normal forms Ny (cf. Def.[4.11).

e The set of normal forms of the strong call-by-need strategy s,
Proof. See the appendix. O

Proposition 4.16 (Strong reduction). Ift isa s -normal term, then its unfolding t° is a \-term
in 3-normal form.

Proof. By Lem. it suffices to show that if € Ny then t° is a S-normal \-term. We prove a
stronger property, namely that if ¢ € Ny or ¢ € Sy then ¢ is a f-normal \-term and, moreover,
ift € Sy then t is a neutral term, i.e. of the form x ¢ ...t,. We proceed by mutual induction
on the derivations that t € Ny and ¢t € Sy. The interesting cases are the rules NFSUB and
NFSUBG. For the rule NFSUB, note that the variable is bound to a neutral term, so performing
the substitution does not create a 3-step. For the rule NFSUBG, note that the variable bound
by the substitution is not a non-garbage variable, so it does not occur free in the unfolding of
the body, and the property holds immediately by i.h.. O

Determinism

In this subsection we show that the strong call-by-need strategy is deterministic. The follow-
ing auxiliary lemma states, roughly, that there can be only one redex below an evaluation
context.

Lemma 4.17 (Unique decomposition — & Lem. [A.34). IfC(r) is a term, we say that r is an
anchor if it is a db-redex or a variable bound to an answer. Let t be a term that can be written as
both Ci{ry) and Cy(rs), where C1,Co € Ey are evaluation contexts and ry,rs are anchors. Then
Cy =Cqyandry = ro.

Proposition 4.18 (Determinism). Ift s s andt Yo u then s = .

Proof. An immediate consequence of the unique decomposition lemma (Lem. [4.17).]

Conservativity

In this subsection we show that the strong call-by-need strategy is conservative over weak
call-by-need. To do so, we relate the strong call-by-need strategy with the weak call-by-need
strategy W (cf. Def. , as well as to the original notion of weak call-by-need reduction
in [[13,[12]. Moreover, we take the opportunity to put in evidence the general scheme followed

143

by any reduction sequence of [13] (Lem.4.21), and we also state a clear relation between these
two mentioned notions of weak call-by-need (Lem. 4.22)

Definition 4.19 (Ariola et al.’s notion of weak call-by-need). The syntax of the system in [13]
12]] is given by the following sets of terms (), values (v), answers (a), and evaluation contexts
Ef}

n= x| Awt | tt | t[z\t]

n=Axt

= v |alz\t]

w= O[Et|Et | EC)[o\E]

M < «~

There are four rewriting rules:

(Az.t)s w1 t[x\s]

E(op[z\v] v Ew)[z\v]

a[z\t] s ¢ (as)[z\t] if z ¢ fv(s)
E zp[\aly\t]] =a ECap[2\al[y\t] ify ¢ fv(E)
Reduction is defined by +—ceq def] U >y U —c U —a, Where —y is the closure by

evaluation contexts of Yoy, ie. oy = E(+>y) for each X € {I, V, C, A}.
It turns out that —,..q is deterministic:

Proposition 4.20 (Determinism of —y,ceq). If t —neea S then there exists a unique context E

such thatt = E(t'), s = E(s') and t' — s, where — LA UBy Ubo U,

Proof. See [13, Lemma 4.2]. O

Using this property, one can observe that any reduction sequence in +..q is organized
into clusters of the form —¢+—1 or 7} —v. More precisely:

Lemma 4.21 (Organization of +—,..q reduction sequences).
—reed = (21D U (V) (—E v ed)

Proof. Straightforward by induction on the number of +—..q steps. The key observation is
that, after firing a — ¢ step, only a step in —¢ U —1 may be fired. Similarly, after firing a +— 5
step, only only a step in —, U +—y may be fired. [

On the other hand, the weak call-by-need strategy MR given in Def. has the same
syntax as Ariola et al.’s system but a different set of rewriting rules. Indeed, recall that it is
defined as the union of the two rewrite rules below, closed by evaluation contexts:

(Ax.t)Ls W g t{x\s]L
E(o)[e\VL] ~ore E(u)l\vIL

SRemark that Ariola et al. use let syntax (let x = s in t) rather than explicit substitution syntax (¢[x\s]), but

this is only a change of notation.

144

The set of terms defined by the grammar NY ::= vL | E{x)) for = € 9 characterizes the set of
normal forms with respect to the weak call-by-need strategy.

It is quite straightforward to deduce that % is included in —needs 10 particular, a db step
(resp. 1sv) step translates to a —&— cluster (resp. —73+—v cluster). These clusters in fact

characterize V\\/,vv)
Lemma 4.22 (Decomposition of v\ivw).

W

Proof.

(S) The inclusion o < (—&—1) U (—i—v) is proved by cases on the kind of redex
contracted.

1. db redex
E((Az.t)Ls) —& E(((Ax.t) s)L) —1 ECt[2\s]L)

2. lsv redex
EECap[z\vL]) =} EEz)[2\V]L) —v EE(v)[2\v]L)

(2) The inclusion (—&—1) U (—i—v) S % follows from the remarks stated below and
determinism of —,eq (Prop. [4.20).

t—1s implies t+qp S

t—vy s implies t—q5 S

t—cs implies 5. (s —&—18) A (g &)
t—a s implies 35’ (s —% —vs) A (t1e0)

]

The Conservativity principle states that our strong call-by-need strategy is conservative
: . Y . H\W
with respect to Wi thatt > s implies? “2» 5. More precisely, let 2 stand for s \v\\fv\,)
Then we have:

Theorem 4.23 (Conservativity — & Thm. . Ifty WIS o1 W t, there exists
an 1 < ¢ < n such that the three following conditions hold:

1 to~bt st ot
NW H\W NW
AR RN IIAN SR A S

3. Ifi <n, thent; € Ny foralli < j <n.

Proof. See the appendix. [

145

As a corollary of Thm. 4.23|and Lem. 4.22| we deduce that our strategy %> has Ariola et

al.’s notion of weak call-by-need reduction as a prefix.
Corollary 4.24. Ift (VJZ,,)* s then there is a term u such that

t (=) U (=) u (B5)* s

Moreover, if s € Ny, then u is a normal form for —ceq up to a finite number of —c U — A steps.

Correctness

To conclude this section, we remark that the strong call-by-need strategy s is correct with
respect to S-reduction:

Proposition 4.25 (Correctness). Ift s s then t° =g 5°.

Proof. Observe that Wﬁdb and wﬁlsv (cf- Def.|4.13) are instances of — 4, and —1 ¢, respectively
(cf- Def. , s0ift 2 s then we have that ¢ —sn S. Moreover, it is a straightforward exercise
to show that the Theory of Sharing —, is correct, i.e. that ¢ —, s implies t* =4 s°. O

4.3 Completeness of Strong Call-by-Need

This section is devoted to the proof of the Completeness principle for our strong call-by-need
strategy. Recall that by completeness we mean completeness with respect to S-reduction, in
the sense that whenever a term ¢ admits a -normal form s in the A-calculus, then the strategy
W computes a normal form u, and the normal forms are in a precise correspondence, more
specifically u® = s.

A first completeness result for weak call-by-need is found in Ariola et al. [13]. Their proof
makes use of various syntactical tools such as sharing, residual theory and standardization.
A more abstract proof has been developed more recently by Kesner [86]. Kesner shows that
every A-term that can be reduced to a weak head normal-form is typable in an appropriate
typing system with intersection types, and that every typable term is normalizing in the weak
call-by-need calculus. Here we adopt similar ideas in order to develop a completeness proof
for strong call-by-need.

Suppose that ¢ =g s are interconvertible terms in the A-calculus, and suppose that s is a 3-
normal form. Then by confluence of the \-calculus we have a reduction ¢ — 3 s. Completeness
of the strong call-by-need strategy would mean that there exists a term u such that ¢ W
and u® = s. To prove this, we decompose the proof of completeness of the strategy in two
parts:

1. Completeness of the Theory of Sharing. First, we prove that the Theory of Sharing
—¢n is complete with respect to S-reduction. This entails that there is a term 7 such that
t —»prand r® = s.

146

2. Factorization of the Theory of Sharing. Second, we prove that any reduction in the
Theory of Sharing —, may be factorized as a prefix of external steps (i.e. a sequence of
steps in the strategy \/3’\») followed by a suffix of internal steps which preserve unfolding.

This entails that there is a term u such that ¢ A u and such that u® = r° = s.

The decomposition is depicted graphically in Figure

(a) t—2 o nf 3 Completeness of strong call-by-need
ﬂé A Ift 43 s € NF(—p) then there exists a term u
nf, . 0 such that t «o* y e Ny and ©® = s, where
¥ = fv(t). (See Thm. [4.55).
(b) t Pont 3 Completeness of the Theory of Sharing
i Ift -3 s € NF(—p) then there exists a term u
sh :
f such that t —¢, u € NF(—4,) and u® = s. (See
NIsn

Prop. [4.45).

Factorization of the Theory of Sharing

t
ﬂé X If t »¢p s € NF(—gy) then there exists a term
f

)
u such that t ™ u € Ny and ©° = s°, where

¥ = fv(t). (See Prop.[4.54).

Figure 4.1: Decomposition of the proof of Completeness: (a) is implied by (b) and (c)

The first step, i.e. the proof of completeness of the Theory of Sharing, relies on a type sys-
tem called H)WV, introduced by Kesner and Ventura in [91]. System H)V is based on the tech-
nology of non-idempotent intersection types. It extends Gardner—De Carvalho’s system [58}[34]]
to include terms with explicit substitutions ¢[z\s], besides pure A-terms. Our proof of com-
pleteness follows closely Kesner’s proof of completeness for weak call-by-need [86], extending
it to the Theory of Sharing.

The fundamental property of intersection type systems is that they characterize normal-
ization. In particular, non-idempotent intersection type systems may be formulated in such
a way that they characterize weak normalization, i.e. a term has a normal form if and only if
it is typable in a non-idempotent intersection type system. The key observation by Kesner is
that the proof of completeness, relating weak normalization in two different calculi (in our
case, reduction in the A-calculus (—), and in the Theory of Sharing (—,)), may be simplified
by relating, on one hand, weak normalization in each of the calculi with, on the other hand,
typability in system H)}V. More precisely, this allows us to decompose completeness of the
Theory of Sharing into two implications:

1. If a term ¢ has a normal form in the A-calculus, i.e. t € WN(—p), then ¢ is typable in HW.
Moreover, the typing judgment I' - ¢ : 7 verifies a structural condition, namely it has
no positive occurrences of the empty type.

2. If a term ¢ is typable in H)V and the judgment verifies the same structural condition as
above, then ¢ has a normal form in the Theory of Sharing, i.e. t € WN(—gy).

147

By composing the implications we conclude that if ¢ has a —g-normal form in the A-calculus
then ¢ has a —,-normal form in the Theory of Sharing, recovering (most of) the completeness
result.

The following subsections are organized as follows:

« In Section[4.3.1] we recall the non-idempotent intersection type system H)WV from [91]].
Furthermore, we prove a result relating weak normalization in the Theory of Sharing
with typability in HWW.

« In Section we prove completeness of the Theory of Sharing, as displayed in Fig-
ure [4.1(b). As described above, the proof uses typability in)V as a stepping stone.

« InSection[4.3.2] we prove a factorization result for the Theory of Sharing, as displayed in
Figure c). If we write ish for —gp \ L, the proofis based on repeatedly swapping

pairs steps of steps ¢ ishv& s such that they become of the form ¢ s —<nS.

4.3.1 The Non-Idempotent Intersection Type System H)W

In contrast to simple types, intersection types are powerful enough to characterize termina-
tion properties: a A-term has a head normal form if and only if it is typable in a suitable
intersection type system. That means, in particular, that a head normalizing term like A\z.xx,
which is not typable in the simply typed A-calculus, is typable in certain type systems with
intersection types.

This is done by introducing a new type constructor (A), representing type intersection,
together with a corresponding set of typing rules. For instance, in these systems the term
Az.xx can be given the type ((7 — 7) A 7) — 7 in such a way that the first (resp. second)
occurrence of the variable x is typed with 7 — 7 (resp. 7). Typically, intersection is declared
to be commutative (i.e. 7 A 0 = o A T), associative (ie. (T A 0) A p =7 A (0 A p)) and
idempotent (i.e. T A T =T).

In non-idempotent intersection type systems [58], intersection is not declared to be idem-
potent, i.e. 7 A 7 # 7. These non-idempotent types allow giving types to terms according
to a resource aware semantics. The informal idea behind the resource aware semantics is that
a term of type 71 A ... A T, can be understood as a resource that must be used exactly n
times, once with type 7; for each 1 < ¢ < n. Dually, a term of type (17 A ... A T,) — p
is a function that uses its argument exactly n times, once with type 7; for each 1 < ¢ < n.
Non-idempotent intersection type systems also provide a simple formal framework to reason
about termination properties: in particular, in these systems correctness results are usually
proved by simple inductive arguments rather than with more intricate arguments typical of
their idempotent counterparts.

From a formal point of view, the result of applying a commutative, associative and non-
idempotent binary operation to a collection of elements can be represented by a multiset of
elements, which provides a very convenient notation to manipulate them. We denote finite

148

multisets with brackets, so that | | denotes the empty multiset and [0, o, 7| denotes a multi-
set having two occurrences of the element ¢ and one occurrence of 7, corresponding to the
intersection type o A 0 A 7. In this system, we write + for the (additive) union of multisets
and = for multiset inclusion. Below we recall the intersection type system H)V from [91]].

Definition 4.26 (Syntax of HV). Given a countable infinite set BB of base types o, 3,7, . . . the
set of types and multisets of types are defined mutually inductively by the following grammar:

Types T,0,p = a|M-—>T
Multisets of types M = [7ilier where I is a finite set

The empty multiset | | plays the role of the universal w type in [40]. The types are strict [39,
139, that is, the right-hand sides of function types are never multisets.

A type assignment or typing context, ranged over by ', A, etc., is a function mapping vari-
ables to multiset types. The domain of I is defined by dom(T") := {x | I'(z) # [|}. We assume
that typing contexts have finite domain.

The union of typing contexts, written I' + A, is the typing context defined by (I' + A)(z) :=
['(x) + A(x), where the symbol + denotes the additive union of multisets. Note that dom(I" +
A) = dom(I") U dom(A). We write I' ® A to stand for I + A whenever dom(I") and dom(A)
are disjoint. We write I' +,c; A; to abbreviate I' + > ,._; A;. The inclusion between typing
contexts, written I' = A, is defined to hold if for every variable = we have that I'(z) © A(z).

For example (z : [o],y : [7]) + (z : [o],2 : [0]) = © : |o,0],y : [7],2 : [o], and
x:lolcx:|o0],y:p.

Definition 4.27 (The HW type system, [91]]). Typing judgments are of the form I ¢ : 7,
where I is a typing context, ¢ is a term and 7 is a type. The H)WW-type system is given by the
following rules:

Cet:loiier =7 (AjFs:0:)ier

T-VAR ;
l‘I[T]I—ziT F—h’g[Ail—tSIT A
Frex: M)-t:T F®(x:[oier) Ft:7 (AiF S:0:)ier
T-LAM T-SUB
F-Xet: M—>r U +ier A - t[x\s] = 7

Note that the axiom typing rule (T-VAR) is relevant, in the sense that no extra hypotheses
besides the fact that = has type 7 are allowed in the typing context. In proof-theory jargon,
there is no weakening. Moreover, in the rules for application (T-aPp) and substitution (T-sUB),
the typing context of the conclusion is obtained by joining all of the typing contexts in the
premises. In proof-theory jargon, these rules are multiplicative, i.e. there is no contractior’]
These characteristics of the type system are consistent with the resource aware interpretation
of the calculus.

In line with the resource aware interpretation, the typing context I'ina judgmentI' - ¢ : 7
can be understood as follows: given a variable z, each element in the multiset I'() concerns

“Weakening is the logical rule that allows including unused hypotheses in the context. Contraction is the
logical rule that allows conflating repeated occurrences of a hypothesis in the context.

149

one potential use of this variable in the computation of ¢. This informal description helps in
understanding the rules (T-aApp) and (T-sUB), in which several typing judgments are required
in the premises for the term s. Each of typing judgment concerns one of the potential uses of
s in the computation of the whole term. A particular case of the rules (T-APP) and (T-SUB) is
when I = @, i.e. there is no potential use of s: the subterm s occurring in the typed term ¢ s
(resp. t[x\s]) does not need to be typed.

By restricting the H)WW-system to A-terms, so that it only contains the rules (T-vAR),
(T-LAM), and (T-APP), we obtain the system presented in [58| 34]], which we call here A-type
system. Following we recall the usual definition of type derivation:

Definition 4.28 (Derivations). A (type) derivation is a finite tree obtained by applying the
inductive rules of the type system. We write ® > I' - ¢ : 7 if ® is a derivation typing ¢, i.e.
ending in the type judgment I' - ¢ : 7. We write ® >, I' - ¢ : 7 if, moreover, ® is a valid
derivation in the \-type system. A derivation ®’ is an immediate subderivation of ® if, seen
as trees, ¢’ is one of the children of ®. A term t is typable if there is a derivation typing ¢. The
size of a type derivation ® is a natural number size(®) denoting the number of nodes of the
tree O.

The following is an example of a type derivation in the system HW .

Example 4.29 (A type derivation in HW). Let (2 denote the non-terminating term (A\z.zz)(Az.22).
Moreover, let T = [0] — o, where o is an arbitrary type. Let w be the following derivation:

T-VAR ————T-VAR
z:|r|Fax:[o] >0 z:lol-xz:o
T-APP
z:|r,olax:o
T-LAM
x|t ol yxx:[] >0
T-APP
x:[rol - (Ayxzx)Q:o
Then we have that:
- —————T-VAR ————T-VAR
s zi[rl-z:7 z:lolFz:0
T-SUB

z:[m o] = (A\y.zz)Q)[z\z] : o

Suppose that a typing judgment of the form I' - ¢ : o is derivable in H)V. In contrast
with what happens in more traditional type systems, the free variables of ¢ do not necessarily
appear in the domain of I". For example, = : [o] - (Ay.z)z : o is derivable in HWV but
z ¢ dom(I'). However, HWW does enjoy the following property. From the logical point of
view, it states that all the assumptions in the typing context are used at least once:

Lemma 4.30 (Relevance). If there is a derivation ® > I - t : o then dom(I") < fv(¢).

Proof. Straightforward by induction on the derivation of the judgment I' - ¢ : 0. O]

150

It is also worth noticing that not every typable term reduces to a S-normal form. An
example is the term z(AA), where A = A\y.yy, for which there is a type derivation ending
withz : [[| = a] - 2(AA) : a. In order to characterize weak J-normalization by means of
typability we need to restrict the types and the type contexts to those that do not have positive
occurrences of the constant [|. To do so, we introduce the following notion of positive and

negative occurrences of a type.

Definition 4.31 (Positive and negative occurrences of types). The set of types that occur
with sign b € {+,—} in a type o (resp. in a multiset of types M, in a context I', and in a
pair of context and type (I, 7)) is written O%(c) (resp. O(M), O¥(T'), and O°(T' + o)).
The set OT(X) is the set of types that occur positively in X and O~ (X) is the set of types
that occur negatively in X. We write OF (X)) for either O*(X) or O~ (X) and OF(...) for the
opposite set in a given rule. All of these sets are defined mutually inductively by the following
conditions, where T denotes either a type or a multiset of types:

ce O (o) MeO*M)

TeOo) [#2 TeOF(M) Te O (r)
T e OF([0]ier) TeO*(M —>71) TeO (M —r7)
yedom(l') Te OF((y)) Te OF(I) Te OF(7)
Te OFT) TeOf(Tk7) TeOF T+ 1)

Example 4.32 (Positive and negative occurrences). The following hold:

+ [1€07([D

*[1e O ([1=0)

*[1e O (@ :[[]—a])
[1e O (z:[[] >0k o)

It is an already known fact that the type system H)V, restricted to contexts and types in
which there are no positive occurrences of the empty multiset ||, can be used to characterize
weakly normalizing terms of the A-calculus:

Theorem 4.33 (Characterization of weakly normalizing terms in the A-calculus). Let t be a
A-term. Then the following are equivalent:

1. The term is weakly normalizing, i.e. t € WN(—p3).
2. The judgment T ¢ : 7 is derivable in HW and [| ¢ O (T + 1)

Proof. A straightforward adaptation of [96] to the non-idempotent case. See [31]] for details.
O

151

Extending Typing to Contexts

As mentioned before, we use system)V as a tool to characterize the set of terms that are
weakly normalizing in the Theory of Sharing, in order to relate them with the set of terms
that are weakly normalizing in the pure A-calculus. In order to be able to prove this result for
the Theory of Sharing, whose rules operate at a distance, a key technical tool is the extension
of the typing system given in Def. [4.27| with typing rules for substitution contexts.

If L is a substitution context, we write dom(L) for the variables bound by L, and fv(L) for
the free variables of L, taking fv([]) = &. Moreover, we use the following notion of height:

Definition 4.34. The height of a substitution context is defined by:
height((]) % 1 height(L[z\t]) & height(L)+ 1

Definition 4.35 (Extension of H)V for substitution contexts). The type system H)WV is ex-
tended with typing judgments of the form I'' |- L> A, where [and A are typing contexts and
L is a substitution context. The left-hand side I' of a judgment I" |- L > A is a typing context
for the (typed) free variables of L, while the right-hand side A is a typing context for the term
which will be plugged into the hole of L. There are two typing rules:

F'®z:|oilierFL>A x¢domA (Xt Uk)ke[w]
gIFO> o [+reros Be |- L[2\t] > A @z : [0)]jes

In the second rule, the sets of indices / and .J are supposed to be disjoint.

Note that in the second type rule the context (3;);c; is used to type the copies of ¢ associ-
ated with the free occurrences of x in the list L, while the context (3;);c; is used to type the
copies of ¢ associated with the free occurrences of x in the term which will fill the hole of L.

Example 4.36. Let 7 be the following typing derivation for [x\yz]:

grdee y:llnel —alz:inrl-yza
y:[[v,72) = al,z: [y, 72] I [2\yz] > @ : [o]

Then the following is a typing derivation for [x\yz][y\z]:

T z:[[y,e] —alkzin,e] oo 2z [flFz:06
z: [[v,72] = @, 87,72 I [2\wz]ly\z] > 2 [a], y < [5]

The following lemma states a few properties that may be easily proved by induction on L.

Lemma 4.37 (Properties of type derivations of substitution contexts).

1L IfT | L> A thendom(I") < £v(L) and dom(A) < dom(L).

152

2. There is a derivation @, > A - tL : o if and only if there are contexts I', A, Il such that
A =T +11, and there are derivations &, > T - L> A and ®, > A; 11 - t : 0. Moreover,
size(Pry)) = size(Pr) + size(Py) — 1.

3. If(<1>{ > T - L>Aj)jes, then ®p > +,e50; IF L > +,e;A;. Moreover, size(®y) =
+jessize(®)) — (height(L) - (1J] - 1))

The second item of the lemma allows one to decompose the type derivation of a term ¢L
into two type derivations, one for the context L and another one for the term ¢. Reciprocally,
context and term derivations can be combined if their types coincide.

On the other hand, the third item of the lemma states that combining different derivable
typing judgments of the same substitution context by means of multiset union yields a deriv-
able typing judgment. Moreover, their sizes can be related using the notion of height. Observe
that the statement includes the case J = @.

Typability Implies Normalization

Our goal is now to show that terms typable in system H)WV are weakly normalizing in the
Theory of Sharing. The key technical result is the property known as weighted subject reduc-
tion. Recall that, in traditional type systems such as the simply typed A-calculus, the subject
reduction property states that evaluation preserves types. More precisely, if there is a typing
derivation ¢ > I' - ¢ : 7 and a reduction step ¢ — ¢’ then there is also a typing deriva-
tion & > I' - ' : 7. The weighted subject reduction property states that, assuming further
appropriate conditions on the step ¢ — t/, one may also ensure that size(®) > size(d’).

In our case, we will be able to ensure that the size of the derivation decreases as long as
we select a step ¢ — ¢’ contracting a typed redex. Intuitively, from the point of view of the
resource aware interpretation, a redex is typed if it lies inside a subterm that will be used at
some point in the evaluation of #°} For example, the underlined redex R : f((Az.z)y) — fy
is typed if the type of the function f is, say, [a] — «, whereas the redex R is untyped if the
type of the function f is, say, [| — «.

To define this more precisely, we introduce the notion of typed occurrences of a term (ab-
breviated as T-occurrences). Intuitively, a typed occurrence of ¢ is a position identifying a
subterm that will be used at some point in the evaluation of . We start by recalling the notion
of position:

Definition 4.38 (Positions of a term). The set of positions of a term ¢, written pos(t), is the
set of finite words over the alphabet {0, 1}, inductively defined as follows:

pepos(t) pepos(t) pepos(t) p € pos(t) p € pos(t)

eepos(t) Opepos(Az.t) Opepos(ts) 1pepos(st) Opepos(t[z\s]) 1pe pos(s[z\t])

The set of positions of a context C is defined similarly. The subterm of ¢ (resp. C) at position p
is written |, (resp. C|,) and defined as expected.

°In fact, these intuitions can be formalized; see for example [90].

153

For example, givent = z[2\2'](\y.y) and C = (Az.[])yz, we have that the sets of positions
are pos(t) = {¢,0,00,01, 1,10} and pos(C) = {¢, 0,00, 000,01, 1}. Moreover, t|; = Ay.y and
Clooo = -

Definition 4.39 (T-occurrence). Suppose given a derivation & > I' - ¢ : 7. A position
p € pos(t) is a T-occurrence of t in ® if either p = ¢, or p = ip’ (i = 0,1) and p’ € pos(t|;) is
a T-occurrence of t|; in some of the immediate subderivations of ®. A redex occurrence of ¢
which is a T-occurrence of ¢ in @ is said to be a redex T-occurrence of ¢ in .

For example, given the following derivation ®’, we have that ¢, 0, 1 and 10 are T-occurrences
of z(yz) in ®’, while 11 is not a T-occurrence of z(yz) in ¢'.

ylll=rlFy:ll->7 ylll-7rl-y:[]l>7
[, 7] > 71|21, T] > T vil[] =7l Fyz:7 yvl[] =7l Fyz:7
wllntl =7l yll] =7l =7l a(yz) 7

o >

Note that if an occurrence of a variable x is a T-occurrence of ¢ in ®, then z occurs free in
t. Given ® > I' i~ t : 7, the no-redex-occurrences predicate A(t,) holds if and only if ¢ has no
sh-redex T-occurrences in P.

The following lemma studies the relation between typing derivations and the substitution
of a single occurrence of a variable by a term, namely a typing derivation for C{t)) may be
constructed by combining a typing derivation for C{z)) and typing derivations for ¢.

Lemma 4.40 (Partial Substitution). If ®cryy > z:[0y]ier; T = CLa) : 7 and (P, > A; - u
0;)ier then Deyyy > {05]ien k3 T ke Ak = CLu) : 7, for some K < I wheresize(®eyyy) =
size(Peyyy) +rer size(P) — |K|. Moreover, if p € pos(C) is the occurrence of the hole in C
and p is a T-occurrence of Cx)) in Pcyyy, then K # @.

Proof. By induction on the typing derivation ®¢¢,y. [

Using this tool we are able to prove the following key result:

Lemma 4.41 (Weighted Subject Reduction for sh). Let ® > I' -t : 7. Ift —g, t’ reduces a
sh-redex T-occurrence of t in @, then there exists ®' such that ' >T' ¢’ : 7 and size(®P) >
size(d’).

Proof. By induction on the context under which the step t —, t’ takes place. The inductive
cases are straightforward by i.h.. The interesting case is the base case, when the step takes
place at the root. Then we consider three subcases, depending on the kind of redex contracted.

1. db step, ie. t = (Ar.u)Ls —g, ulx/s|L = t'. Then the reduction concerns a db-redex
T-occurrence of ¢ in ®. Then one may show &' > 1I" - ¢ : 7 and size(P) > size(P’)
by induction on L.

154

2. 1sv step, i.e. t = CLx)[x/ul] —15y Cup|[x/u]L = ¢'. Then the derivation ® has the
following form, where I' = I'g +,c; A;.
Doy > @2 [oi]ier; To - Clay ro (P > Aj-ul s 0y),
To +ier A - Claplx/ul] : o

By Lem. |4.37, for all i € I, there exist IT¢, IT}, IT§ such that &} > IT} |- L > [T}, ¢ >
Y IS+ w : oy and A; = TT% + TI5.
From the derivations ®¢,y and (® ')ier we get, by Lem. , a derivation @,y > 7 :

[0i]ieruc; Do +rer (I15;115) + Clw) : o for some K < I. So we can construct the
following derivation ®cyy [z /u]-

Pequy ((I)Z)z‘e]\K
Lo +rere (155 115) +ienre (IL5; 1I5) + Clup[z/u] : o

The last sequent can be written I'g + (+;c/115; +ic/115) - Clup[z/u] : o

We thus apply Lem. to (®!),c; and we get Py 1> +/I1¢ |- L1> +4115. We can thus
apply Lem.to ®;, and P[], Obtaining O > Lo +ep I 44e 115 - Clup[x/ulL
o.

We can then conclude with the first statement since ['g +c; I} +icr 115 = To+ier A; = T
as required. Moreover, for the second one, we assume that the reduction step concerns
a sh-redex T-occurrence of ¢ in ®. Then,

size(®) = size(Peyay) +ier size(@ip) +1 ‘

=r.E3m size(Pcyey) tier (size(Pp) + size(®;) —1) +1

= 81ze(<1>c<<m>>) +icr size(PL) +4er size(PL) — (|I| — 1)
- (-1

and

size(®') =rp.mmn size(®PL) + size(Pequylw/u)) — 1
= size(®L) + size(Pcoyyy) +ienk size(®!)+1—1
= size(®L) + size(Pcoyuy) +ienk size(®!)
=r.man size(®PL) + size(Peyny) thek size(®F) — | K| +ienK size(®!)
=r.m3a +iersize(®}) — [height(L) - (1| —1)] + size(Peyay) +ier size(®!) — |K]|
= size(Peyay) tier size(®!) +icr size(®?) — [height(L) - (|I| — 1)] — |K]|
Z — [height(L) - ([I| - 1)] — | K|

We know by Lem. [4.40|that K # . Therefore, |I| — 1 < height(L) - (|| — 1) so that
— (I = 1) = Z — [height(L) - (|I| = 1)] > Z — [height(L) - (|| — 1)] — | K|. We
thus conclude size(®) > size(?P’) as required.

3. gc step. Immediate.
O

We now relate the notions of T-occurrence and sh-normal form, before concluding with
the main result of this subsection.

155

Lemma4.42. Let ®>T ¢t : 7 such that| | ¢ OF (I - 7). Then A(t, ®) impliest € NF(—p).
Proof. Let ® > T" I ¢ : 7 such that A(t,). First show the following more general property
by induction on ®.

1. If[] ¢ OF(T), and ¢ is not an answer, then t € S.

2. If[]¢ OF(I' + 7), and t is an answer, then ¢ € N.

Moreover, x € fv(t) implies = has some T-occurrence in P.

Now, suppose [| ¢ OF(I" - 7). Thus in particular | | ¢ O*(I"). If ¢ is not an answer, then
one easily shows that ¢ € S, which gives ¢t € N since S N; If ¢ is an answer, then one easily
shows t € N. We conclude that ¢ € NF(—,) by Lem. O

Theorem 4.43 (Typability implies sh-normalization). Let ® > ' - ¢ : 7 such that | | ¢
OT (I = 7). Thent is weakly normalizing in the Theory of Sharing.

Proof. Let &> T ¢t : 7 suchthat [| ¢ OY(I' -+ 7). By Lem. and Lem. [4.42] we

can construct a finite sh-reduction sequence which only reduces sh-redex T-occurrences, i.e.
there exist tg,t1,...,t, suchthat (1)t = tgand ® = &y, 2) d; > 1T+ t; : 7, (3) t; —en tiz1
reduces a sh-redex T-occurrences of t; in ®;, and (5) A(t,, ®,) holds. This together with
[1¢ OF(T + 7) gives t,, € NF(—y,) by Lem. [4.42] We thus conclude ¢ € WN(—). O

4.3.2 Completeness of the Theory of Sharing

In this section we prove Fig. [4.1(b), that is completeness of the Theory of Sharing with respect
to S-reduction in the A-calculus. Before doing so, we need to state a few basic properties of
unfolding.

Lemma 4.44. Lett,s € T be terms, possibly with explicit substitutions. Then:
1. Ift —gn s, thent® —4 s°.
2. Ift € NF(—gp), thent® € NF(—p).

Recall that NF(—) stands for the set of —-normal forms.

]

Proof. By induction on ¢.

Indeed, to illustrate the first point we have t = y[y\(Az.22)(I])] —a y[y\(22)[2\II]] =
wand t® = (Az.zz)(II) —3 (II) (II) = u°, and to illustrate the second one we have ¢ =
z[y\ [w\I]][#\]] € NF(—gn) and t* = x € NF(—3).

We now conclude with the completeness result for the sh-calculus, cf. Fig. [4.1(b):

Proposition 4.45 (Completeness of the Theory of Sharing). Ift —»5 s € NF(—p) then there
exists a term u such thatt —g, u € NF(sh) and u® = s.

Proof. Lett —4 nfp, where nfgisin f-nf. Then ®>T' ¢t : 7and [| ¢ O (' - 7) by
Thm. But then ¢ is weakly sh-normalizing by Thm.[4.43] so that ¢ —»¢, nfgy,, where nfy, is

in sh-nf. By Lem.[4.44(1) t° — 3 nf, and by Lem. |[4.44(2) nfg, € NF(—p). Since t® = ¢t — 3 nfy
and t* — 3 nfZ,, then we conclude nfg, = nfg because — 4 is CR. []

156

4.3.3 Factorization of the Theory of Sharing

In this section we prove Fig.[4.1[c), that is, factorization of the Theory of Sharing. For this, we
show that —, reduction steps which are not s steps can always be postponed after WS
reduction steps, that this postponement process terminates, and that, ultimately, all remaining

non-+>> steps are erasable by gc (and thus erased by the unfolding _°). More precisely we
proceed in three stages:

sh\gc

- gc
nfy S nfgy,

Figure 4.2: Decomposition of Fig. [4.1]c)

1. As a preliminary step, we get gc-steps out of the way: any —, reduction sequence
can be factorized into a —;, reduction sequence without gc-steps, which we call strict,
followed by a sequence of gc-steps (cf.). The relation of strict reduction is written

~sh\gc-

2. Then we prove a more involved commutation result: —,-reductions without gc-steps

can be factored in two parts (cf. Prop. [4.51):

. 9
2.1 a sequence of external —gy,-steps, which correspond to the strategy >

2.2 asequence of internal —g,-steps, which are not in the strategy s, written ish.

The proof relies on an abstract factorization result by Accattoli [3]. We write ish in-
stead of —;, for such internal steps. Two examples of internal steps are (zx)[z\] =
(x I)[z\I] and (I x)[z\] I] Sl (I z)[z\z[2\I]], where we substitute a value for a
variable occurrence that is not focused, or evaluate a substitution whose bound variable
is not focused.

3. Finally, we show that internal steps that remain after the s -normal form is reached

only take place inside garbage substitutions, that are removed by the unfolding opera-
tion _° (cf. Lem. [4.53).

157

Postponement of gc

In this subsection we show the reasonable observation that garbage collection steps can al-
ways be postponed to the end of a reduction sequence. Reduction steps (resp. sequences) that
do not use the gc-rule are called strict and are written —gp\gc (resp. —gp\gc)-

Lemma 4.46 (Postponement of gc). Ift —»g, s, then there isu such thatt —gnge U —gc S.

Proof. The proof is by exhaustive case analysis of the relative positions of a gc step followed
by a non-gc step, similar to other proofs of postponement of gc in the LSC (see for instance

Lem. |6.50).]

Observe that the fact that s € NF(—g,) does not imply that u € NF(—gp\gc) in general.
Indeed, if we take t = z[y\()] and s = x, then u = x[y\(2], which is not even normalizing for
—sn\gc- 1he actual relation of postponement of gc with normal forms is stated in Lem. m

Factorization of Strict Reduction

In this subsection, we show that a sequence of strict reduction steps —gp\g. can always be
factorized as a sequence of steps in the strategy (\,3,’;) followed by steps which are not in
the strategy (ish). More precisely, we say that ¢; reduces in a ¥-internal step to to, written
ty ish t9, if and only if there is a step in the strict Theory of Sharing that is not a step in
the strong call-by-need strategy, i.e. t1 (—gn\gc\ vﬁ») to. We sometimes call ¥-internal steps
just internal steps if ¢} is clear from the context. Steps in the strategy L are called ¥-external

steps (or just external steps).

The proof of factorization is long and technical. We begin by recalling the definition of
square factorization system and an abstract factorization result due to Accattoli [3]:

Definition 4.47 (Square factorization system). A square factorization system is given by a set
X and four reduction relations (v, v, >,) such that:

1. Termination: v, and —, are strongly normalizing,.

2. Row-swap 1: (v, v

~—

S (v d o))

+

3. Row-swap 2: (—, —,) € (—F —¥).

4. Diagonal-swap 1: (—, v) © (v —%).
5. Diagonal-swap 2: (v,) © (oo ®).
with the following notation:

o & oy U)o, Uy
def
—). = (W\». U i—).) —)O = (Wo U |—>O)

158

Theorem 4.48 (Abstract factorization, Accattoli 2012). Let (v, v o, —,, —) be a square

factorization system. Then —*< (—F —¥).
Proof. See [3, Theorem 5.2]. O]

Below we state the two main lemmas, Backward stability by internal steps and Postponement
of internal steps, whose full proofs may be found in the appendix (Section[A.2.5). The following
lemma states that important notions of the strong call-by-need strategy, such as answers,
normal forms, and evaluation contexts, are preserved by expansion via internal steps:

Lemma 4.49 (Backward stability by internal steps — &). Let ¢ =% o t be a V-internal step.
Then:

1. Ift is an answer (resp. a db-redex) then i is also an answer (resp. a db-redex).

2. If t is a V-normal form (resp. U-structure) then ty is also a ¥-normal form (resp. -

structure).

3. Ift = C{x)) where C is a V-evaluation context (resp. inert J-evaluation context), then
to is also of the form Collx)), where Cy is a V-evaluation context (resp. inert V-evaluation
context).

Proof. See Section in the appendix. O

The following key lemma states that an external step can be commuted before an internal
step. In particular, an internal step cannot create an external step (neither by creating a redex
in an external position, nor by turning an internal position into an external one).

Lemma 4.50 (Postponement of internal steps — & Lem. |A.73). Let fv(ty) < ¥. Ifto =,

9 . 9 - .
ty v~ ta, then there is a term ty such that tg ~~* ty —»5h’9 t3, where the reduction from t, to t,

includes at least one step and the one from t, to ts has at most two steps.

Proof. The proof is by induction on the evaluation context defining the external step and then
by case analysis on the position of the internal step relative to this evaluation context. See

Section in the appendix. O
Proposition 4.51 (External-internal factorization). Let fv(t) . Ift —gn\gc 7 then there is

9 -
u such thatt wo* u — 37 7,

Proof. This is a consequence of Thm. and Lem. Indeed, by the construction given

.) 0] 9
in the proof of Lem. 4.50| one has that (—>gpap, “*>ab, —>sh1sv, “>1sv) forms a square fac-

torization system, taking vﬁ»db (resp. V\zgv)lsv) to be the external db (resp. 1sv) reduction, and

LA, (resp. Y, m1ey) to be the internal db (resp. 1sv) reduction. O

159

Erasure of Final Internal Steps

The previous two subsections ensure that any —, reduction sequence can be factored into a
9 . : .

v reduction prefix followed by internal or gc steps. Here we further show that if the —,

reduction sequence reaches a —g,-normal form, then all the internal steps factored out by

Prop. can be erased by gc steps.

Lemma 4.52 (Inclusion of normal forms). Let v, t be such that fv(t) < 0. Ift € NF(—g,), then
9
t € NF(»).

L . . W
Proof. This is immediate since > S — . L]

Lemma 4.53 (Normal forms modulo internal and gc steps). Let ¥, t be such that fv(t) < 9.
1. Ift —g nfy withnfy € NF(+) thent € NF(+%).

2. Ift =, o nfy withnfy € NF(mﬁ») thent e NF(vl’i») and there is u such thatt — 4. u and

nfﬁ —gc U.
Diagrammatically, see Fig.

Proof. We show that the following conditions are equivalent for any term ¢ such that fv(¢)
Y. They imply items (1) and (2) of this lemma: (i) ¢ is a > -normal form, (ii) |gc () is @ —gn-
normal form, (iii) t =_y s for some s € NF(—gy,), (iv) t =_y s for some s € NF(v\E’Q). Here

. . . -9
=_ stands for the least equivalence relation containing —z.U — . O

As an example of this lemma, consider the sequence z[y\z[2\7]] =, Y\ [\]] —gc .

All three terms are in NF(v\?\»): this is straightforward for x, and due to the fact that the
substitution is garbage for the two others. Moreover, although we do not have z[y\z[2\I]|]| =4
x[y\I[2\I]], both terms reduce in one gc-step to the same term z.

The results in this section can now be assembled to complete the argument outlined in
Fig.[4.2] to prove Fig.[4.1]c):
Proposition 4.54 (Factorization of the Theory of Sharing). Let ¥ = fv(t). Ift —g s €

NF(—gn), then there exists a term u € NF(V&) such thatt “2»* u and u® = s°. (More precisely,
U —»ge S).

Proof. Combining postponement of gc (Lem. [4.46), the external-internal factorization result

(Prop. [4.51)), and Lem. O
Finally, we obtain the full completeness theorem of Fig. [4.1(a):

Theorem 4.55 (Completeness of o with respect to S-reduction). Let) = fv(t). Ift »p s €

NF(—p) then there exists a term u € NF(\,J?\,,) such thatt “o* u and u® = s.

Proof. Immediate, combining Prop. and Prop. as described in Fig. O

Chapter 5

Strong Call-by-Need for Pattern
Matching and Fixed Points

5.1 Introduction

This chapter is devoted to generalizing the strong call-by-need strategy of the preceding chap-
ter (Chapter 4) to the Extended A-Calculus of Grégoire and Leroy [67], and which they call
the “type-erased A-calculus”. The extended A-calculus, denoted \°, extends the lambda calcu-
lus with constants, pattern matching and fixed-points.

Here is an example of a term in \°® that computes the length of a list encoded with constants
nil and cons:

fix (I. Axs. case zs of (nil = zero) - (cons hd tl = succ (I t)))

The Extended Lambda Calculus is a subset of Gallina, the specification language of the Coq
proof assistant. Grégoire and Leroy [67]] study mechanisms for implementing strong reduc-
tion in A°® in order to apply it to check type conversion. They propose a notion of strong
reduction for \® on open terms, i.e. terms possibly containing free variables, called symbolic
call-by-value. Symbolic call-by-value iterates call-by-value, accumulating terms for which
computation cannot progress. No notion of sharing is addressed. Indeed, unnecessary com-
putation may be performed. For example, consider the following \°® term, where I abbreviates
the identity term Az.z:

casec(/I)of cx =d (5.1)

This term is a case expression that has condition ¢ (I I) and branch cx = d, the pattern of
the branch being c z and the target d. Notice that the branch does not make use of z in the
target. However, symbolic call-by-value contracts the redex / I since the argument of c must
be a value before selecting the matching branch.

In this chapter, we propose a strong call-by-need strategy that generalizes the strong call-
by-need strategy of the previous chapter to the setting of the extended A-calculus. Informally:

strong call-by-need (Chapter[4) extended strong call-by-need (this chapter)
A-calculus h extended \-calculus ([67])

160

161

The development of the extended strong call-by-need strategy is split into three steps:

The Extended Theory of Sharing —¢,. The first step in this chapter is introducing the
Extended Theory of Sharing A, . This theory generalizes Def. [4.4]to deal with case constructs
and fixed points.

The Extended Non-Idempotent Intersection Type System H)WV°. The second step
in this chapter is to adapt the non-idempotent intersection type system)V to an extended
non-idempotent intersection type system H)V® that characterizes weakly normalizing terms
in the extended theory of sharing —¢, .

It turns out that it is relatively easy to extend HW to deal with fixed points. The challenge
lies in dealing with case constructs. For example, consider the term:

casecof (c=d) - (d= Q)

It will evaluate to d and hence should be typable in the extended non-idempotent intersection
type system H)V®. Since €2 does not participate at all in computing d, there is no need for
HW? to account for it. Thus our proposed typing rules will only type branches that are
actually used to compute the normal form. This, however, raises the question of what happens
with case expressions that are “blocked”. For example, in an expression such as:

casecof (d=d) (e =e)

all the subexpressions are part of the normal form and hence should be typed. Our proposed
typing rule shall ensure this, thus avoiding typing terms such as:

casecof (d=d) (e= Q)

where, although matching is blocked, have no strong normal form in A\® or AS,. Since blocked
case expressions could be applied to arguments, further considerations are required. Consider
the term:

(casecofd =d)(

It does not have a normal form in A° or A, and hence should not be typable. To ensure that,
we need the type assigned to this term to provide access to the types of the arguments to
which it is applied, namely (2, so that constraints on these types may be placed. In other
words, we need to devise HW? such that it gives case c of (d = d) 2 a type that includes
that of €2. This would enable us to state conditions that do not allow this term to be typed but
do allow a term such as (case c of d = d) e to be typed. This motivates our notions of error
type and error log.

The above examples were all closed terms. Open terms pose additional problems. Consider
the term:

caser of (c=d) (e= Q)

162

e

Although it does not have a normal form in \¢, , it is typable with type d in the typing context
in which = : [c]. Note, moreover, that the empty multiset of types does not occur in the
type of x (in fact, it meets all the requirements of [87]). The reason it is typable is that €2 is
never accounted: since z is known to have type [c]|, only the ¢ = d branch is typed. Hence
some restrictions on the types of free variables must be put forward—variables cannot be
assigned any type. In particular, it seems we should not allow constant types such as c to
occur positively in the types of free variables. Indeed, we will require that constant types do
not occur positively in the typing context and negatively in error logs and in the predicate.
Note that constants can occur negatively in the types of variables. This allows terms such as
x c to be typable.

One final consideration is that collecting all the requirements, both on empty multiset
types and type constants, should still allow weakly normalizing terms in A\° to be typable in
HWE. We will see that this will indeed be the case.

As a closely related work, we should mention that in his PhD thesis [25]], Bernadet pro-
poses a non-idempotent intersection type system for a calculus similar to the extended -
calculus, which includes fixed-points and case expressions. However, his goal is to charac-
terize a subset of the strongly normalizing terms, while, in order to prove completeness of the
strong call-by-need strategy, we need to characterize all of the weakly normalizing terms.

The Extended Strong Call-by-Need Strategy ~»°. As mentioned, reduction in the
theory of sharing may involve reducing redexes that are not needed. By restricting reduction
in —¢, to a subset of the contexts where reduction can take place, we can ensure that only
needed redexes are reduced. We next illustrate, through an example, our call-by-need strategy.
The strategy will be denoted ~~°. Consider the term:

(case (A\y.zy)(II)of c=d) (I c)

It consists of a case expression applied to an argument. This case expression has a condition
(Ay.xy)(I I), a branch ¢ = d with pattern c and target d, and is applied to an argument I c.
The first reduction step for this term is the same as for weak call-by-need, namely reducing
the S-redex (Ay.x y)(I I) in the condition of the case. It must be reduced in order to determine
which branch, if any, is to be selected. This §-redex is turned into (x y)[y\] I]. The resulting
term is:

(case (xy)[y\l I] of c = d)(I c)

A weak call-by-need strategy would stop there, since the case expression is stuck. In the
strong case, however, reduction should continue to complete the evaluation of the term until
a strong normal form is reached. Both the body of the explicit substitution / I and also the
argument of the stuck case expression / ¢ are needed to produce the strong normal form.
Thus evaluation must continue with these redexes. That these redexes are indeed selected and,
moreover, which one is selected first, depends on an appropriate notion of evaluation context.
Our strategy will include an evaluation context C of the form (case (x y)[y\[J] of ¢ = d)({ c)
and hence the body of the explicit substitution will be reduced next. Notice that in order for
the focus of computation to be placed in the body of an explicit substitution, its target y
should be needed. In this particular case, it is because x is free but y is needed for computing

163

the strong normal form. However, in a term such Az.c[y\I I], the $-redex I I is not needed
for the strong normal form and hence will not be selected by the strategy.
The remaining computation steps leading to the strong normal form are depicted below.

(case (A\y.zy)(II)of c=d)(Ic)

(case (
o (case (zy)[y\z[2\I]] of ¢ = d)(I ¢)
v (case (zy)[y\I[2\[]] of c = d)({ c)
v (case (x)[y\I][z\I] of c = d)({ c) (%)
v (case (x I)[y\I][2\I] of ¢ = d)(z[2\c])
o (case (x I)[y\I][2\I] of ¢ = d)(c[z\c])

Note that in the fourth step (indicated with an asterisk), y has been replaced by /. As in
weak call-by-need, only answers shall be substituted for variables. Answers are abstractions
under a possibly empty list of explicit substitutions or data structures possibly interspersed
with explicit substitutions. Finally, crucial to defining the strong call-by-need strategy will be
identifying variables and case expressions that will persist. The former are referred to as frozen
variables and are free variables (or those that are bound under abstractions and branches of
case expressions) that we know will never be substituted by an answer. The latter are referred
to as error terms and are case expressions that we know will be stuck forever. An example of
the former is z y in (x y)[y\I I]; an example of the latter is case (x I)[y\I][2\]] of ¢ = d in
(case (z I)[y\I][2\I] of ¢ = d)(I c).

5.1.1 Our Work

This chapter is the result of collaboration with Eduardo Bonelli and Kareem Mohamed. Gen-
erally speaking, systems in this chapter are an extension of the ones in Chapter [4|to account
for pattern matching and fixed points. As a result, there are more syntactic constructs, more
inference rules, and more complex definitions, but essentially the proof techniques of the pre-
vious chapter are applied without radical changes. Most proofs have been omitted from this
chapter.

This chapter is structured as follows. We highlight in boldface what we consider to be the
main contributions:

« In Section we recall the definition of Grégoire and Leroy’s extended \-calculus
(Def. [5.3), we generalize the Theory of Sharing for the extended A-calculus (Def. [5.7),
and we provide a syntactic characterization of the normal forms (Def. [5.7).

« In Section[5.3] we propose a non-idempotent intersection type system 7{)V° for \°
(Def.[5.10), and we show that weakly normalizing terms in \° are typable (Thm.
and that typable terms are weakly normalizing in A, (Thm. [5.14). More precisely,
both theorems require not only that the term is typable, but also that the typing judg-
ment is “good” in a precise sense (cf: Def.[5.12). This notion of goodness generalizes the
usual condition that there are no positive occurrences of the empty multiset [].

164

« In Section we propose a strong call-by-need strategy v° for A\° (Def. [5.17),
and we show that the strategy enjoys good properties. Namely, it is deterministic
(Prop. 5.21), it conservatively extends the strong call-by-need strategy of the previous
chapter (Prop.[5.21), it is correct (Prop. and it is complete with respect to reduc-
tion in the extended \-calculus (Thm.[5.23).

5.2 Extending the Theory of Sharing

In this section we extend the Theory of Sharing (cf. Def. to the extended A-calculus. In
Section [5.2.1] we begin by recalling the definition of the extended A-calculus of Grégoire and
Leroy [67]. In Section we give the actual definition of the Extended Theory of Sharing
ASh-

5.2.1 The Extended)\-Calculus

Definition 5.1 (Syntax of the extended A-calculus, cf. [67]). Assume given a denumerable
set of variables x,, 2z, ... and constants c,c’,c”,.... The set of terms T° of the extended
A-calculus are defined as follows, mutually inductively with the set of branches (branches of
case-constructs):

Terms t,s,u,... i= x| \v.t|ts|c|fix(z.t)|caset of b
Branches bu=cr=1

Contexts are defined as expected.

In addition to the usual terms of the A-calculus, the calculus has constants, case expressions
and fixed-point expressions. In case t of b we say t is the condition of the case and b are
its branches; b represents a possibly empty sequence of branches. If I = {1,2,...,n}, we
sometimes write (¢;T; = s;);cs for a list of branches (¢;7; = s1) ... (c,Z, = s,). Branches

are assumed to be syntactically restricted so that if ¢ # j then (c;,|Z;|) # (cj,|Z;]), where
|Z;| denotes the length of the sequence 7 ;. Moreover, the list ; of formal parameters in each
branch is assumed to have no repeats.

The expression fix(x.t) is a fixed-point expression. We often write AZ.t for Azy. ... Az,.t
if 7 is the sequence of variables x; -. . .- x,, and similarly ¢5 stands for ts; ... s, if 5 = s1-.. .- 5.
Free and bound variables are defined as expected. In particular, x is bound by a fixed point

operator fix(x.t), and all the variables x, ..., z, are bound in a branch cz; ...z, = t.

Remark 5.2. In [67] a family of fixed-point operators fiz,,, for n a positive integer, is used. The
index n indicates the expected number of arguments and also the index of the argument that
is used to guard recursion to avoid infinite unfoldings. The type system of the Calculus of
Constructions guarantees that the recursive function is applied to strict subterms of the n-th
argument. Although we use the more general fixed-point operator fiz in our calculus similar
ideas to “case” can be applied to fiz,, which “blocks” if given less than n arguments.

165

Definition 5.3 (The extended A-calculus, cf. [67]). The \®-calculus is given by the following
reduction rules over 7°, closed by arbitrary contexts. We write —* for the resulting reduction

relation.
(Ar.t)s —q t{r:=s} (8)
fix(z.t) i tH{a:=fix(x.t)} (fix)
case ¢t of (C;T; = S;)iel case Sj{T; =1} (case)

if j € I and |t| = |7y]

The simultaneous capture-avoiding substitution of a list of variables Z by a list of terms 3
of the same length in a term ¢ is written ¢{Z := 5}. A term ¢ matches with a branch ¢z = s
if t = cs with |5] = |Z|. A term ¢t matches with a list of branches if it matches with at least
one branch. Given our syntactic formation condition on case-expressions, terms match with
at most one branch. Note that term reduction may become blocked if the condition of a case
does not match any branch (and never will). The normal forms of A\®* may be characterized as
follows:

Lemma 5.4 (Normal forms). The normal forms of \® are characterized by the grammar:
N = AZ.zN|Az.cN |\Z.(case Ny of (¢;z; = N;)ies) N
where Ny does not match with (¢;T; = Nj;);c;. Note that the lists T and N may be empty.

Proof. By structural induction on the set of terms.]

5.2.2 The Extended Theory of Sharing

Definition 5.5 (Syntax of the Extended Theory of Sharing). The terms of the Extended Theory
of Sharing T, are defined as follows, extending the syntax of A* with explicit substitutions:

t,s,u,... n= x| vt|ts|fix(x.t)|c|casetof b|t[x\s]

Recall that terms without explicit substitutions are called pure terms. A pure term ¢° is ob-
tained from any ¢ € 7, by unfolding explicit substitutions, e.g. ((case z of ¢ = z)[2\d d])° =
casedd of c = dd.

In order to describe reduction in the Extended Theory of Sharing A¢, , we need to introduce
additional syntactic categories that generalize the notions of answer and value in presence of

constructors:
Answers a = VL
Values v o= Axt|Alc)
Applicative contexts A = []J|ALt
Substitution contexts L := []|L[z\¢]

An answer of the form (A\x.t)L is an abstraction answer and one of the form A{c)L is an ap-
plicative answer. An example of the latter is ((c z)[z\y] d)[y\s].

166

Definition 5.6 (Extended Theory of Sharing). The Extended Theory of Sharing A, consists of
the reduction rules over 73 given below, closed by arbitrary contexts. We write —¢, for the
reduction relation.

(Az.t)Ls —q t[z\s]L

Clap\VL] =gy C(v)[2\V]L

tlz\s] —g ¢ if z ¢ fv(t)
fix(z.t) —ix tlr\fix(z.t)]
case A<CJ>L of (ciji = Si)iel > case Sj[i’j\A]L if |A<|:|>| = |i'3| andj el

The rules db, 1sv, and gc are similar as in the (non-extended) Theory of Sharing (cf. Def. [4.4).
The rules fix and case are similar to the corresponding rules in A\°, but using explicit sub-
stitutions. Note that the condition A{c;)L may have explicit substitutions interspersed. The
length of an applicative context is defined as follows: [(1| % 0 and |AL¢| %' 1 + |A|. Given
a list of variables Z and an applicative context A such that their lengths coincide, we define
the substitution context [Z\A] as follows: [e\[J] “ Dand [z, y\AL] e [Z\A]L[y\t]. The
reduct of — .5 uses this notion to build an appropriate list of explicit substitutions for each
parameter of the branch.

An inductive characterization of the —¢, -normal forms is given in the following definition.

Definition 5.7 (Normal forms of AS,). A term ¢ enables a list of branches (c;z; = s;)ier,
written ¢t > (¢;T; = S;)ier, if the term is of the form ¢ = A(c;)L, for some A,L, and j €
I such that |A| = |7;|. The judgment defining the set of normal forms (t € N) is defined
simultaneously with four other judgments, namely constant normal forms (t € K), structure
normal forms (t € S), error normal forms (t € £), and abstraction normal forms (t € L).

teK seN
cNFCoNSs —— cNFrApPpP
cek tse
teS seN
SNFVAR —— sNFAPrpP
rzedS tseS

teKULUS tF (¢ = si)ier (5i € Nier

ENFSTRT
caset of (¢;T; = S;)ic1 € E
tel seN te (si€Ner
—— eNFAPP ENFCASE
tseé& caset of (C;T; = S;)ier € E
te N teX seSuf& xefu(t)
—— 1INFLaMm NFSUB
Axte Ll t[x\s] € X
telC teS teé& tel
NFCONS NFSTRUCT NFERROR NFLAM
teN teN teN teN

Note that rule ENFSTRT captures a blocked case where its condition is not a blocked case

167

itself. If the condition of the case is t € £ U S, then we know that it cannot possibly match
any branch. If t € K, we must make sure of this, requiring that ¢ does not enable the branches.

Lemma 5.8 (Characterization of normal forms in \S,). The following are equivalent:
1LteN

e
2. t is in —¢%, -normal form.

Proof. We omit the detailed proof. To show the implication 1 = 2, one checks that if
te NUuK uSu€&u L then tis in —& -normal form, by induction on the derivation of the
corresponding judgment. To show the implication 2 = 1, proceed by induction on¢. [

5.3 Extending the Type System

In this section we introduces H)WV®, a non-idempotent intersection type system for the Ex-
tended Theory of Sharing A\, , and we argue that it characterizes normalization.

5.3.1 The Extended Non-Idempotent Intersection Type System

We assume a, (3,7, . .. to range over a set of type variables. The set of types is ranged over by
T,0,p, ..., and finite multisets of types are ranged over by M, N, P, The empty multiset
is written [], and |7y, . .., 7,,] stands for the multiset containing each of the types 7; with their
corresponding multiplicities. Moreover, M + N stands for the (additive) union of multisets.
For instance [a, b]| + [b,c] = [a, b, b, c].

Definition 5.9 (Syntax of types). The set of types of HW*® is defined by the following gram-
mar, mutually recursively with the sets of datatypes, pre-error types, error types, and branch

types:

Types T = a|M->71|D|E
Datatypes D = c|DM

Pre-Error types G = E7B|GT

Error types E = (G)|ET

Branch types B = M=r

A type T matches with a branch ¢z = s if it is of the form 7 = cM with | M| = |z|. A type
matches with a list of branches if it matches with at least one branch.

The type « is a type variable, M — 7 is a function type, D is a datatype, and E is an
error type. A datatype is either a constant type c or an applied datatype D M. Informally,
cM; ... M, isthe type of a constant applied to n arguments, each of which has been assigned
a multiset of types. PreError types are solely introduced for building error types; error types
are used for typing case expressions which will eventually become stuck. A case is stuck
if, intuitively, it can be decided that the condition cannot match any branch. An error type
(ET(M;= 0))ictp1---pjyPit1--- Pris the type of a case expression such that:

168

1. its condition has type 7 and its branches have type M; = o;;
2. it is stuck;
3. it has been applied to arguments of type p; ... p;;
4. it is expecting arguments of type pji1 ... pi.
We call E an error type constructor. Typing judgments involve two kinds of contexts:

1. On one hand, typing contexts, ranged over by I'; A, ©, ... are functions mapping vari-
ables to multisets of types, as in the system 7{)V of [91]], recalled in Chapter[4(cf. Def.[4.26).

2. On the other hand, error logs, ranged over by >, T, ... are sets of error types.

As in Chapter [4] we write I' + A for the sum of typing contexts, and I' @ A for their disjoint
sum. Also, we write Z : M for the context ((z;)ier : (M,)icr) def Dicr(@i t M,).
Definition 5.10 (The type system HW°®). The typing system H)WV°® is defined by means of

the inductive typing rules below. These rules define the derivability for four forms of typing
Jjudgments, with the following informal interpretations:

1. Typing (I'; X ¢ : 7) — The term ¢ has type 7 under the context I' and the error log ¥..

2. Multi-typing (I'; ¥ - ¢ : M) — The term ¢ has the types in M under the context I'
and the error log X..

3. Application (T @ M = o) — A term of type 7 may be applied to an argument that
has all the types in M, resulting in a term of type o.

4. Matching (7 (b) T'; X, 0) — The type 7 might be the condition of a case with branches

b, which will result in a term of type o, assuming certain hypotheses I' and error logs
Y, or else fail.

The rules of HW*® are:

TVAR —— 1CoONSs
|t Fx:T ;¥ kc:c
Tz M;X+t:7 Y-t:r tTQM=0 A;XFs: M
TABS TAPP
Y- Xxt - M—-71 F'+A;X+ts:o
Dz MY +t:7 A;YE fix(zt): M DY t:m 7AYo
TFIX — TCASE
L+ A2 - fix(zt) . 7 '+ A;¥+casetofb:o
X Ht:7) < n=0
Lz: M;YXHt:7 A¥Es: M (L sisn)TMULTI
TES " i
I+ A Y - tla\s]: 7 Zri;zl—tZZ[Ti]
i=1 i=1
TAPPFUN TAPPDATA

M—->T1QM=r1 DaM= DM

169

(n=1)

GHyr...th Q] ={(GTi)12... T

TAPPERR

ch matches (¢;T; = si)ier I',Z;: MY 5510

;M {(c;Zi = 8i)iery ;2,05

TCMATCH
7 does not match (¢;T; = s;)ier (Fi, i MY s Ui)iel

T <(szz = 3i>ie[> (2 Fi); YU {<E’7’ (./\;ll = Ui)iel> ﬁ}, <E7‘ (./\;lz = Ui)ie]>,5

iel

TCMISMATCH

We write 7, &, . .. for typing derivations and 7(I'; ¥ |- ¢ : 7) if 7 is a typing derivation of
the judgment I'; X - ¢ : 7. The rules are linear with respect to the typing context in the sense
that each assumption is used exactly once. The rules are, however, cartesian with respect to
the error log, in the sense that each assumption may be used zero, one, or more timesﬂ The
rule TAPp allows typing applications of functions of to arguments by means of the application
judgment T @ M = o. The application judgment allows that the function be an abstraction,
a data structure, or an error term. The restriction to a singleton type in the TAPPERR rule is
to enforce that the arguments of a stuck case be typable.

The TF1x rule splits the resources so that they are distributed to be used for the outermost
unfolding (I') and for the rest of the unfoldings (A). The TCASE rule relies on the matching
judgment 7 {(by A;Y, o, which checks whether the type of the condition 7 matches the list
of branches. If 7 matches with a branch, then that branch is typed (¢f. TCMaTcH). On the
other hand, if 7 does not match any branch (cf. TCMismaTcH), then all branches have to be
accounted for by the type system. Moreover, in that case, the type of the case expression
is an error type of the form (E7 (M; = 0;)icr) p, which is recorded in the error log. Note
that p = p1, ..., pr are the types of the arguments to which the stuck case expression will be
allowed to be applied to. Finally, TMULTI allows a term to be typed with a multiset type. In
this rule, if n = 0, then)} | [7;] denotes the empty multiset [].

5.3.2 Characterization of Weakly Normalizing Terms

In Chapter [4] we related typability in the type system H)}V with weak normalization in the
A-calculus (Thm. and weak normalization in the Theory of Sharing (Thm. [4.43). In this
subsection, we state a similar result for the extended system HW°, relating it with weak
normalization in the extended A-calculus, and weak normalization in the Extended Theory
of Sharing. Recall that, in Chapter 4] the results related the property that a term is weakly
normalizing with the property that it is typable in H)V in such a way that the judgment is
“good” in the sense that it has no positive occurrences of the empty multiset [].

Below we start by defining an appropriate notion of “good” judgment for HWW* (Def.[5.12).
Roughly speaking, a judgment is good if it has no positive occurrences of [] and no negative
occurrences of constructors. The reason to reject negative occurrences of constructors is il-
lustrated by a term like case z of (¢ = d) - (e = 2). This term is typable with type d if one

'Note that rules are multiplicative for typing contexts and additive for error logs.

170

assumes that x : [c]. However, it is not weakly normalizing in A2, . Note that a free variable
of type c corresponds to a negative occurrence of the constructor c (in the typing context).

However forbidding positive occurrences of [| and negative occurrences of constructors
alone does not suffice. The reason is the presence of blocked case expressions. Consider
for example the term (case c of (d = d)) Q2. This term is typable; for example, it may be
assigned the type (E c ([d] = d)[]). Note that the type of the blocked case includes the types
of arguments to which it is applied—in this case the empty multiset type. Moreover this type
is registered in the error log. This allows us to extend the constraints that [] does not occur
positively and constructors do not occur negatively to type blocked case expressions.

As a further remark, note that a term such as case z of (c = d) - (e = d) is in normal
form, so it should be typable. Indeed, it shall be typed it by assigning = an appropriate error

type.

Definition 5.11 (Positive and negative occurrences of types). The set of positive (resp. neg-
ative) types occurring in 7, denoted P(7) (resp. N (7)), is defined as follows:

def

Pla) < {a} N(a) o
PM—71) ¥ NM)UPFE) UM — 1} NM=7) ¥ pM)uN(r)
Ple) < {c} Ne) € o
P(DM) ¥ PD)LPM)U{DM)} NDM) ¥ N(D)LNM)
PET) ¥ PE)LPH) U{ET) NE®D ¥ NE)ON(T)
PUG) = P(G)u{G} NKG) = N(G)
PGr) € PG)uPr)u{GT) N(@T) = N(G)UN(7)
PETB) ¥ P(r)uPB)uU{ET B} NETB) ¥ N(r) UN(B)
PMi, My=7) E U fWNM) P UM = 1) N(My, o My =7) 2 Ui, PIM) UN(7)
PM) = UenP(r) u M} (M) = UemN()
PO;E7) ¥ NT)UPE)UP(H) NO;EE7) ¥ PO uNE) UN(T)
PI) = Uesomn) P(L() NI = Ugegomn N (I())

Moreover, let X be a type (resp. datatype, pre-error type, error type, branch type, typing con-
text). Then we say that X is covered by an error log ¥, written covereds,(X), if for every error
type E such that E is a subformula of X, i.e. it occurs anywhere in the syntactic tree of X, one
has that ' € 3.

Definition 5.12 (Good types and typing judgements). A type 7 is good if ¢ ¢ P(7) and || ¢
N (T). We say M is good if each 7 € M is good. A typing context I is good if it can be written
asI' = I',I'c in such a way that I' () is good for every x € domI'y, and I'. () is an error type
for every x € dom['.. A typing judgement I'; ¥ - t : T is good if all of the following hold:

1. I'"is good;
[l ¢ P(X) and [] ¢ P(7);
3. c¢ N(X) and c ¢ N (1) for every constructor c;

&

4. coveredy(I") and covereds (7).

Below we state the two main results of this section, which relate typability and normal-
ization. Note that:

171

« Thm.[5.13|relates normal forms in A° with typability in HW?®, extending Thm. [4.33|from
the previous chapter (which relates normal forms in the \-calculus with typability in

HW).

« Thm. relates normal forms in \¢, with typability in HW®, extending Thm.
from the previous chapter (which relates normal forms in the Theory of Sharing with

typability in HW).

Theorem 5.13 (Weakly normalizing terms in \® are typable). Let ¢ be weakly normalizing in
A°. Then there exist a context I, an error log 3., a type T such that I'; > -t : 7 is derivable and
good.

Proof. We omit the detailed proof. The proof relies on the two following claims:

Normal forms are typable. Let ¢t be a —°-normal form. Then there exist a context I,
an error log X and a type 7 such that I'; ¥ |- ¢ : 7 is derivable and good.

Subject expansion. If t -° sand ;X - s:7,then ;X —¢: 7.
]

Theorem 5.14 (Typable terms are weakly normalizing in \S,). IfI'; X - ¢ : 7 is derivable and
good, then t is weakly normalizing in \S,.

Proof. We omit the detailed proof. The proof requires adapting the notion of T-occurrence (cf.
Def. to HWW* and it relies on the following claim:

Weighted subject reduction. Let 7(I'; X ¢ : 7). If t -, ¢/, then there exists 7’ such
that 7/(I"; X + ¢’ : 7). Moreover, if this step reduces a T-occurrence in 7, then either:

1. size(mw) > size(n’); or

2. size(w) = size(n’) and fix(7) > fix(n’)

where size(m) denotes the size of the derivation 7, seen as a tree, and fix(7) denotes
the number of nodes in the derivation 7 that are instances of the TFix rule.

]

5.4 Extending the Strong Call-by-Need Strategy

In this section, we extend the strong call-by-need strategy w2 for the Theory of Sharing
from Chapter 4] to a strong call-by-need strategy ~~»>° for the Extended Theory of Sharing.
Moreover, we show that the strategy is complete with respect to the extended \-calculus A°.

172

5.4.1 The Extended Strong Call-by-Need Strategy

Similarly as in the previous chapter, the extended strong call-by-need strategy e is a bi-
nary relation over the set of extended terms 73, and it is parameterized over a set) of frozen
variables. Its reduction rules are an instance of the rewriting rules of the Extended Theory
of Sharing (Def. 5.6), with two differences: (1) the garbage collection rule is absent, and (2)
reduction is not closed under arbitrary contexts but under evaluation contexts. Exactly as we
did in Section[4.2.2] in order to define the set of evaluation contexts, we start by defining (syn-

tactically) the set of normal forms of the strategy, and next we describe evaluation contexts.

Definition 5.15 (Normal forms of the extended strong call-by-need strategy). The set of non-
garbage variables of a term ¢, denoted ngv(t) is defined as fv(|gc (t)) where |, (t) is the gc-
normal form of ¢.

For each set of variables 1}, the sets of constant normal forms (ICy), structure normal forms
(Sy), error normal forms (Ey), abstraction normal forms (L), and (plain) normal forms (Ny) are
defined, mutually inductively by the following judgments. In the rules for explicit substitu-
tions, Xy stands for any of the sets Ky, Sy, £y, or Ly:

te Ky seNy xed teSy seNy

cNrConNs cNFAPP SNFVAR —— sNFAPP
ce Ky tseCy T e Sy tse Sy

telyuLlyuSy t3 (ciTi = si)ier (si € Noog,)ier

ENFSTRT
case t of (¢;T; = 8;)ics € Ey
te& selNy te&s (si€Ngos)ier t € Nyo(ay
— ENFAPP ENFCASE ——— 1INrFLAM
tse &y case t of (¢;T; = S;)ie1 € &y Ax.te Ly
teXyoqmy S€SyuUEy T €ngy(t) teXy x¢ngv(t)
NFSUBNG NFSUBG
t[x\s] € Xy t[x\s] € Xy
te Ky te Sy te Ly teé&y
NFCONS NFSTRUCT NFLAM NFERROR
te Ny te Ny teNy te Ny

The syntactic definition of normal forms given above is similar to the syntactic character-
ization of —¢, -normal forms given in Def. except that: (1) the set of frozen variables is
explicitly tracked, (2) rule NFSUB is refined into rules NFSUBNG, and (3) a new rule NFSUBG is
added due to the absence of gc in e,

Definition 5.16 (Extended evaluation contexts). Judgments defining the sets of evaluation
contexts are of the form C € E§ where C is an arbitrary context, 9 is a set of variables, and
h is a symbol called discriminator of the context. This symbol may be one of ‘o’, ‘A’ or any
constructor ¢, d, ... and its role is to discriminate the head constructor in the context. Note
that evaluation context formation rules place requirements on discriminators. An evaluation
context is a context C such that the evaluation context judgement C € E” is derivable for some
set of variables ¥} and some discriminator h, using the following rules:

EBox

e Ey

173

CeEf; h # A teSyuly CeE§ te Ky CeEf;
— EApPL EAPPRSTRUCT T ohe() EAPPRCONS
CteE) tCeEy tcekEy
CeE} t¢Syuly x¢d CeEEf i tE€SyUE
ESUBSLNONSTRUCT ESUBSLSTRUCT
clz\t] € Ef clz\t] € E}
CreEl CoeEj Ce Egu{x}
ESUBSR —— gELAM
C1lxp[x\Ce] € Ef; Ax.Ce Ei,‘

Ce Eg h¢ {Ci}z’el orh = Cj € {Cz’}ie] and |C<y>\ # |.f]|

ECASE1
case C of (¢;T; = s;)ier € Ey

te /\/’19 t (Cifi = Sz‘)iej ty € ngufk forallk <j Ce Egux—j
- ECASE2

casetof (c1#1 = t1)...(cjz; = C)...(cpzy = t,) € Ey
The function hc(—) used in rule EAPPRCONS is defined as follows, by induction on the deriva-
tion that t € ICy:

he(e) € e he(ts) € he(t) he(t[z\s]) & he(t)

Note in particular that hc(A{c)L) = c. The notation |C(y)| used in rule ECASE1 counts the
number of arguments in the spine of the term C(y), more precisely:

ol =0 .
| af |fix(z.t)] ;f 0
] oo tlars]l =1t
s def o lcasetof b] = 0

Rule EBox states that any redex at the root is needed. Rule EAprp-L allows reduction to
take place to the left of an application; in that case C must not be an abstraction. This is
achieved by requiring that o # A (¢f. ELAM and how all rules persist /). In this way, the
discriminator generalizes the distinction between arbitrary and inert evaluation contexts of
Def. In particular, in the fragment without pattern matching and fixed points, the set of
arbitrary evaluation contexts E, of Chapter 4| corresponds to Ej U E}. Note that the set of
inert contexts is written Ej in both presentations.

Rule EAPPRSTRUCT allows reduction to take place to the right of an application when it
is an argument of a term ¢ that is a structure normal form or an error normal form. The ‘o’
in tC € Ej reflects that ¢ is not headed by a constant and that ¢ C is not an abstraction. Rule
EAPPRCONS is similar only that the discriminator is set to the head variable of ¢ via hc(t)
and it will be checked when deciding if reduction can take place in the condition of a case
(cf: ECAsEL). Frozen variables play the same role as in the (unextended) strong call-by-need
strategy of the previous chapter.

There is no rule for fix(z.t) since reduction must necessarily take place at the root in
such a term. Regarding case expressions, in order for reduction to take place in the condition

174

we must ensure that reduction at the root is not possible (cf. ECasel). This is achieved by
requiring that the discriminator either is not a constant listed in the branches (h ¢ {c;};c) or
that, if it is, then the number of expected arguments by the branch are not met (|C{y)| # |;]).

For reduction to proceed in a branch j (cf. ECAsE2), the condition must be in normal form,
each branch i with 7 € 1..7 must be in normal form and the condition must not enable any
branch (¢ + (c;Z; = s;)ics)- Note that the bound variables in branch j, are added to the set of
frozen variables. We now define the strategy itself.

Definition 5.17 (Extended strong call-by-need strategy). The e strategy is defined by the
following rules.

(db) C((Azt)Ls) oo Ct[z\s]L) if C ¢ En

(1sv) Cr(Cala[a\wL]y oo Co(Ca(w[z\vIL) if C1(CalTH[x\VL]) € B}
(£ix) Clfix(at)) oo o(t[z\fix(z.t)]) ifCeEh

(case) C{case A{c;)L of (¢;T; = 5i)icI) e C{sj|z;\AIL)

if C € E? with j € I and |[A()| = |7/

Note that the discriminator h in the conditions of all rules is existentially quantified.

Properties of the Extended Strong Call-by-Need Strategy

The extended strong call-by-need strategy has the following properties. Contrast them with
the properties studied in the previous chapter (Section [4.2.3] Section [4.3).

Lemma 5.18 (Characterization of normal forms). Let t be any term. Then the following are
equivalent:

1. tisin V\?\»e—normalform,
2. te Njy.

Proof. We omit the full proof. To show 1 = 2, proceed by induction on ¢. To show
2 == 1, prove the more general statement that if t € Ny U Ky U Sy U Ey U Ly then

te NF(v\ﬁ»e), by simultaneous induction on the derivation that ¢ € Ny (resp. t € Ky, t € Sy,
te &y, teLy). O

Proposition 5.19 (Strong reduction). Ift is in s-normal form, then its unfolding t° is in
—¢-normal form.

Proof. We omit the full proof, which goes by induction on ¢, using the characterization of

normal forms of Lem. O
Proposition 5.20 (Determinism). Ift ot s andt e u then s = .
Proof. We omit the detailed proof. It relies on the following claim:

Unique decomposition. If C{r) is a term, we say that r is an anchor if it is a db-redex,
a fix-redex, a case-redex or a variable bound to an answer. If C;[r1] = Cq[rs], where
Ci,Cr € Eg and rq, ry are anchors, then C; = Cy and r; = rs.

175

]

Proposition 5.21 (Conservativity). The extended strong call-by-need strategy is conservative

with respect to the strong call-by-need strategy ofChapter@ ie. ift s s then t Yoo s.

Proof. The key point is that the notion of evaluation context (Def. may be related with
the notion of extended evaluation context (Def. . Indeed, it can be checked by induction
on the derivation that if C € E, then C € E for some discriminator i € {}, .o} and that if
C € E; then C € E with h = o. [

Proposition 5.22 (Correctness). Ift s s thento —»° s°.
Proof. We omit the detailed proof, which goes by induction on .]

Theorem 5.23 (Completeness). Let ¢ = fv(t). Ift —° s € NF(—*®), then there exists a term

ue NF(\AQ;’\»e) such that t (vﬁ»e)* u and u® = s.

Proof. We omit the detailed proof. The argument follows the same lines as the complete-
ness theorem of the previous chapter (Thm. [4.55), in particular relying on the fact that —°-
normalization implies typability in HWV* (Thm.5.13), the fact that typability in %#)V*® implies
—¢,-normalization (Thm. [5.14). O

Chapter 6

A Labeled Linear Substitution Calculus

6.1 Introduction

6.1.1 Optimality and Redex Families

Consider the function f(z) = x + x. In general there may be many possible ways to rewrite
an arithmetic expression in order to calculate its final result. If, for instance, one starts from
the expression f(2 * 3), there are three possible ways to calculate its value: the rewriting
sequences ABC, DEFC, and DG HC' in the diagram below.

\
=
D
~
Sy

(243) + (2+3)
k

The rewriting sequences that start with D, namely DEF'C and DG HC, follow a call-by-name
convention for parameter-passing, and they both require four computation steps. In contrast,

f(2*3) /64—(2*3)&
(2+3)+6

the rewriting sequence at the top, ABC), follows a call-by-value convention for parameter-
passing, and requires only three computation steps. The sequences that start with D are
more computationally onerous than ABC'": the reason is that the step D duplicates the subex-
pression 2 * 3, which in turn calls for the duplication of the computational work required to
calculate it.

One may wonder if consistently following a call-by-value convention always turns out to
have the lowest computational cost, compared to other evaluation mechanisms. It is not too
difficult to convince oneself that this is not the case. Consider, as a dual example, the constant

176

177

function g(x) = 5. There are two possible ways to rewrite g(2 = 3) to calculate its final result:

(2% 3) 2~ g(6)

NG

5

The rewriting sequence AB follows a call-by-value convention, and yet it is clear that it is
not “optimal”, since it performs some unnecessary work: indeed, the first step A calculates
the result of the subexpression 2 = 3, which is immediately discarded. In this example, it is
following a call-by-name convention, rather than a call-by-value convention, which realizes
the minimal cost.

The previous examples motivate some natural questions. Given a programming language,
how can the final result of a computation be obtained with minimal computational cost, that
is, in an “optimal” way? In what precise sense one can define an evaluation mechanism to
be optimal? Does an optimal evaluation mechanism always exist? Can it be computed and
efficiently implemented?

Questions regarding optimal evaluation were first studied in the 1970s. Vuillemin studied
the problem of optimal evaluation in the framework of recursive program schemes [143]144],
proving that, under certain sequentiality conditions, expressions can be optimally evaluated
by using a sharing mechanism. Staples studied optimal evaluation for combinatory logic [132].

A major step forward was taken by Lévy [109,[110] together with Berry [27], who studied
this problem in the context of the A-calculus. In particular, in his 1978 PhD thesis, Levy gave
sufficient conditions for an evaluation mechanism to be optimal, in an appropriate sense. For
an evaluation mechanism to be optimal, it suffices that all the computation steps that belong
to the same redex family (to be defined later) are shared by the implementation, i.e. that no
computational work is performed twice. Moreover, only needed steps should be performed,
i.e. the implementation should not engage in superfluous computation. It is worth noting that
these conditions, especially the condition that computation steps in the same redex family are
shared, are quite demanding, and an implementation meeting these requirements was elusive
for some time. A data structure effectively implementing the necessary amount of sharing was
first proposed by Lamping [98] more than a decade after Lévy’s seminal work. Following, we
summarize some of the important results regarding optimal reduction in the context of the
A-calculus.

According to the standard nomenclature, let us define a strategy in a rewriting system to
be a function S : Term — Term such that ¢ — S(t) for every term ¢ not in normal form.
Given a starting term ¢, a strategy S induces a rewriting sequence

t— S(t) — S(S(t)) — ...

stopping whenever it reaches a normal form, and possibly infinite. A strategy S can then
be defined to be optimal if, given a normalizable term ¢, the rewriting sequence induced by
S reaches the normal form in a minimal number of steps. It is immediate to observe that,

178

in a non-constructive sense, an optimal strategy exists, given that the length of a rewriting
sequence is a natural number, and natural numbers are well-ordered. On the other hand, there
is no hope of exhibiting an optimal strategy explicitly: Barendregt et al. [21] showed that, in
the A-calculus, no computable strategy is optimal.

This impossibility result would seem to defeat any attempt to devise a sensible notion of
optimal reduction. However, one may conceive implementations that do not necessarily rep-
resent terms using a straightforward tree-like representation, but rather in some other form.
For instance, terms may be represented as graphs, with pointers that allow sharing subterms,
as in Wadsworth’s lazy evaluation [145], or even sharing subterm “slices” (i.e. contexts) as in
Lamping’s sharing graphs [98]]. An execution step in a sharing implementation can plausibly
be simulated by the simultaneous contraction of many [-redexes, i.e. as a multistep t = s.
Until now, we have been considering strategies in the A-calculus. This reasoning leads us to
consider strategies in the rewriting system of multisteps A” — a single step in A™ is given
by a multistep in the A-calculus. Lévy’s optimality result asserts that there are computable
strategies in A™ that reach the normal form, if it exists, with minimal cost. The contraction
of a multistep M : ¢t = s is considered to have unitary cost as long as all the steps in M be-
long to the same redex family. As already anticipated, a strategy can be shown to be optimal,
according to Leévy’s result, if it is a family reduction, i.e. each multistep is a maximal set of
redexes that belong to the same family, and, moreover, each multistep contains at least one
needed step. We now turn our attention to the notion of redex family, which plays a central
role in the theory of optimal reductions.

Three Characterizations of Redex Families

A redex familyis, intuitively, a set of computation steps that have a common origin, and whose
calculation should be shared by an optimal implementation. In the A-calculus, redex families
were first defined by Lévy by giving three equivalent characterizations: zig-zag, labels, and
extraction. Let us describe each of these characterizations.

Zig-zag. The first characterization of redex families is based on residual theory, and is
abstract enough that it can be adapted to any other rewriting system admitting a sensible
notion of residual, such as orthogonal term rewriting systems. Let ¢, be a fixed starting term.
A redex with history from ¢, (hredex for short) is a derivation p starting from ¢, followed by
a single step . Equivalently, an hredex can be thought of as a non-empty derivation pR,
where p : tg — t; is the history that has led us to ¢;, and we are interested in the last step
R : t; — ty. We say that an hredex oS is a copy of an hredex pR, written pR < 0.5, if there
exists a derivation 7 such that p7 = 0, i.e. p7 and o are permutation equivalent (cf. Def. [2.40),
and moreover S € R/7. Graphically:

to
7 =\
7 T Ye R/t

179

The zig-zag relation over redexes with history, written pR «~» ¢85, is the least equivalence
relation containing <. A redex family is an equivalence class of the relation <.

For example, consider the term A(FI) where A = \x.zz, F' = \r.xz,and [= \x.z. Its
reduction graph is depicted in Figure We claim that the hredexes S} RyT3 and R;.S575 are

Figure 6.1: Reduction graph of A(F'[), with A = \x.zx, F = Ar.xz,and [= \z.x

in the same family, i.e. that S; RyT3 <~~~ R155T5. To see this, consider the hredex R;555573
and note that the following hold:

S1RoT5 < R153S55T5 by taking the empty derivation and noting that S; Ry = R15355
R153T2 < R15335T3 by' I’lOtil’lg that Tg € T2/55

Labels. The second characterization of redex families is based on an auxiliary labeled
variant of the A-calculus, furnished with so-called Lévy labels. Consider a denumerable set of
initial labels ranged over by a, b, c, The set of labels is defined by the following grammar:

a,B,9,...:=a | [a] | o] | af

Labels are considered up to associativity of label juxtaposition, i.e. for all labels «, 3 and
7 the equality (af)y = a(f7v) is declared to hold; n-way juxtaposition is usually written
a1 ..., for n = 1. The terms of the labeled \-calculus are the labeled terms, defined by
the grammar:

t,ys,u, ... o=x% | Xt | Q%(t,s)

Note that labels decorate each and every subterm of a term. An initially labeled term is a
labeled term ¢ such that the labels decorating its subterms are all initial and pairwise distinct;
for instance @*(\Pz.2¢, y9) is initially labeled. The idea behind labels is that they serve to
trace the full history of a term. Each reduction step R in the labeled A-calculus propagates

180

the labels in such a way as to leave a record that R has been contracted, making apparent
the contribution of R to the ongoing computation. The operation of adding a label to a term,
written « : t is defined by cases:

a:xP = g
a: Nzt APt
o @P(t,s) = @*(t, s)

Capture-avoiding substitution of a term for a variable ¢{z := s} is defined as usual, except for
the base case:
¥z = s} s

For example, @*(2? 2¢){z := 29} = @?*(z% 2¢d). Reduction in the labeled \-calculus is

defined as the closure by arbitrary contexts of the following labeled 3-rule:
Q*(Nz.t,s) — afp] : t{z = |5] : s} (6.1)

It is easy to prove that in general a : (t{z := s}) = (a : t){x := s}, so the parenthesization
of the right-hand side of the labeled S-rule is irrelevant. Each step in the labeled A-calculus
has a name. The name of a step like in is the label 3 that decorates the abstraction. Some
of the key properties of redex names are the following:

1. In an initially labeled term, different redexes have different names.
2. If R is an ancestor of R/, then R and R’ have the same name.
3. Whenever a redex R creates a redex S, the name of R is a sublabel of the name of S.

A term t' in the labeled \-calculus is said to be a variant of a term ¢ in the (unlabeled) \-
calculus if ¢ results from t¢ by erasing all the labels. Given a step R : t — s in the \-calculus
and a labeled variant t* of ¢, the step R it can be lifted to a step R : t* — s in the labeled
A-calculus, such that s is a variant of s. Similarly, given a derivation p : t — s and a variant
t of t, the derivation p can be lifted to a derivation p* : t* — s*. Finally, it can be shown that
labels characterize redex families as follows. Let ¢y be a starting term, and let pR and ¢S be
two hredexes in the A-calculus, whose source is ¢y. Then pR and 0.5 are in the same family if
and only if for an initially labeled variant t§ of ¢, the corresponding lifts p* R’ and o*S* verify
that R® and S’ have the same name.

Going back to our example of Figure[6.1] let us show that the hredexes Sy R,T5 and Ry S5T5
are in the same family, this time using the labeled A-calculus. That is, let us show that 75 and
T, are assigned the same name, when starting from the same initially labeled term. Consider
an initially labeled variant of A(F']):

@*(\Pz.@(24, 2°), @ (N8y.@QM (3,), \w.wt))

— <
A F 1

~ LN

181

and consider the lifted derivations SYR5T and RY.S5Ty of the hredexes in question. Note that
the name of T% is i|g|k:

@*(\bx.@c(29, z°), @f()\gy @h(yt, 29), New.w!))
(

7

5, @2(\by.@c (29, 2°), @flelb(\ilslky o1, zJ))

)

T, qalble(@dlbfleln (yileliy, 4,1 ZJ) @elbIflelh yilelicy o1, 1))

~~
The redex T:f‘

and the name of 7% is indeed also i|g]k:

@2 (\Pg.@(2d, 2°), @F(\By.@1 (¢!, 2), Nkw.w!))

¥4
T, @elble(@IPIf (Ney. @b (4,), New.at), @PIF Ay, @ (31,), Now.a'))
3 @alble (@b (\Ey. @B (g1, 25), Neqp.), @eIbITEIR \ileliyy, o)
- ~- -~
The redex TQZ.

Extraction. The third and last characterization of redex families is based on an algorithmic
procedure that, given an hredex pR, calculates a canonical representative py Ry of its family.
The difficulty of defining this relation, as noted by Lévy, is that given two hredexes that are in
the same family according to the zig-zag relation, pR <~ 0.5, they do not necessarily have
a common ancestor, i.e. it is not necessarily the case that there exists an hredex 77" such that

T < pR and 7T < ¢S. In our running example of Figure it would seem at first sight
that the common ancestor of the hredexes S; R115 and R;5575 should be the hredex S;7%.
Actually, even though 5177 < S1R;T5 holds, it is not the case that 5177 < R1S537%, as this
would imply that S; E R;S3, but Ss is only one of the two copies of Sy, i.e. it is not a complete
development of S/ R;.

The solution proposed by Lévy is to introduce a binary relation (=) between hredexes for
which a common ancestor property does hold. Let us first mention a few auxiliary definitions.

1. If Ris aredex and o is a coinitial derivation, then o is disjoint from R if the source is of
the form C(t, s), where C is a two-hole context, the step R takes place inside ¢, and the
derivation o takes place inside s.

2. If R is a redex and o is a coinitial derivation, then o is internal to the body of R if the
source is of the form C{(Az.t)s), the step R contracts (\z.t)s, and the derivation o takes
place inside ¢.

3. If R is a redex and o is a composable derivation (i.e. Ro is well-defined), then o is
internal to the i-th copy of the argument of R if the source is of the form C{(Az.t)s),
the step R contracts (\z.t)s, and the derivation o takes place inside the i-th copy of s
(corresponding to the i-th occurrence of x in ¢).

182

The extraction relation is a binary relation > between hredexes, defined as the union of the
following four rules:

pRS = pSy ifSeSy/R
p(Ruo) =y po ifoisnotempty and it is disjoint from R
p(Ruo) =3 po if oisnot empty and it is internal to the body of R
pRo =i poy if o is not empty, it is internal to the i-th copy of R, and 0o/R = o ||; R

The notation o ||; R stands for the parallelization of o with respect to R, defined as follows by
induction on o:

def

ell: R €
def

Trllik = (To/R)((7/(To/RT))|; (R/To)) if T € To/R
(For more details on the motivation and properties of this definition see [110, Def. 4.7] or
[14] Sec. 5.2]). This algorithmic extraction procedure can be shown to be terminating and
confluent. Moreover, it characterizes redex families as follows: two hredexes are in the same
family if and only if there exists an hredex 771" such that pR =* 7T and ¢S =* 7T
To complete the example of Figure let us show that the hredexes S; RoT3 and R1.5575
belong to the same family, this time using the extraction procedure. Indeed, note that:

S1RTy =1 Si17 sinceT € Ty/S

Ry S3T, =2 ST, since S3T5 is internal to the second copy of R;
and SgTQ ||2 R1 = SgS5T3T5 = 51T7/R1

Finite Family Developments

A remarkable result that can only be stated and proved after the notion of redex family has
been introduced is the Finite Family Developments theorem. Recall that the A-calculus is an
orthogonal axiomatic rewriting system (Thm. [2.73), and in particular it enjoys the finite de-
velopments property (Def.[2.33). It states that, in the A-calculus, given a starting term ¢, and
a set M of redexes of ¢y, there are no infinite developments of M. That is, there are no infinite
sequences that only contract residuals of redexes in the set M. The Finite Family Develop-
ments theorem is a strong generalization of this result. Rather than considering a set M of
redexes of t, it allows us to consider a set F of redex families of ty. In turn, developments of
M are generalized to family developments of F. A family development of F is any reduction
sequence R; ... R, such that, for alli € {1,...,n} the family of the hredex R; ... R; is in F.
The Finite Family Developments theorem states that if F is a finite set of redex families, there
are no infinite family developments of F.

Below we compare the notions involved in the Finite Developments theorem with the
notions involved in the Finite Family Developments theorem:

Finite Developments | Finite Family Developments

redex of ¢, | redex family of ¢,
set M of redexes of t; | set of F of redex families of %,

development of M | family development of F

all developments of M are finite | all family developments of F are finite if F is finite

183

In the last entry, note that the Finite Developments theorem does not need to explicitly re-
quire that M is a finite set, since the A-calculus is finitely branching, so this requirement is
automatically met.

For example, consider once again the term A(F'[) whose reduction graph is depicted in
Figure There are three redex families in total:

1. the redex family of the hredex A(F1I) EEN FI(FI),
2. the redex family of the hredex A(FT) LN (I1z),
3. the redex family of the hredex A(FT) LN (Iz) Az

Every hredex starting from A(F']) is in one of these three families. In Figure [6.1| the names
of the steps have been chosen deliberately so that all hredexes ending in a step Ry belong to
the first family, all hredexes ending in a step S, belong to the second family, and all hredexes
ending in a step 7}, belong to the third family. For instance, the hredex:

A(FI) & FI(FI) 2 FI(I2)

is in the same redex family as S;. Let us write Fam....,(pR) for the redex family of the hredex
pR, that is, for its «~-equivalence class. Then the following are all the possible family devel-
opments, not necessarily maximal, of the set of redex families = {Fam.....(R;), Fam....(S1)}:

AFI) 5 FI(FI)

A(FI) & FIFD 2 IFI)

AFD) B FIFD 2 12(FI) 25 1:(12)
AR B FIFD 2 FIUz) 2 I:(12)
AFI) 2% A(Iz)

AFI) 2% A(Iz) B 1z(12)

In fact, all the redex families in F have a representative that consists of a single step, which
means that family developments of F are actually ordinary developments.

For a different example, let 7 = {Fam.....(51), Fam....(S:7%7)}. Now there are only two
possible family developments of F:

AFI) 25 A(lz) 55 Az

In this case, S177 is not a development of any set of redexes, since the step 77 has been created
by 51, i.e. it has no ancestor.

For a slightly more interesting application of the Finite Family Developments theorem,
consider the well-known non-terminating term 2 where 0 = (Ax.zx)Az.zx. It has a single
redex R:

L0

184

this results in an infinite number of hredexes. Let us write R"™ for the hredex of the form

R...Rforeachn e N:

N

n times

R': 0 & @
R 0 & o £ g
B0 & o & g & g

It can be checked that R" and R™ belong to the same family if and only if n = m. The intuitive
reason is that in a reduction sequence like R R the second step is created by the first one, and
has no ancestor. The infinite reduction 2 2> Q 25 Q.. .isa family development of the infinite
set of redex families 7 = {Fam....,(R") | n € N}. The Finite Family Developments theorem
ensures that, given any finite subset G < F, any family development of G must terminate.

Pointers on Optimality Theory

There has been much work surrounding the theory of optimal reductions. We have already
mentioned the foundational works of Vuillemin [[143] [144] on recursive program schemes,
Staples [132] on combinatory logic, and Léevy [109] [110] together with Berry [27] on the \-
calculus.

John Lamping was the first to propose a data structure (sharing graphs) capable of imple-
menting Lévy’s optimal reduction [98].

Georges Gonthier, Martin Abadi, and Jean-Jacques Lévy [63] explained Lamping’s sharing
graphs in terms of Girard’s Geometry of Interaction.

Cosimo Laneve [101] studied optimality in the very general context of interaction systems.

Andrea Asperti and Cosimo Laneve [15] characterized redex families by characterizing
proper paths: paths in the graph-representation of a A-term that connect an application and
an abstraction forming a virtual redex, i.e. a potential interaction.

John Glauert and Zurab Khasidashvili [61] generalized Lévy’s optimality result in an ax-
iomatic framework (Deterministic Family Structures).

Julia Lawall and Harry Mairson [[104}, [105] studied the question of what constitutes a cost
model for the A-calculus, proposed a cost model based on Lévy labels, and proved that Lamp-
ing’s sharing graphs satisty the proposed cost model.

Stefano Guerrini [69] studied the general theory of sharing graphs, independently of the
calculus to be implemented, using Girard’s Geometry of Interaction.

Andrea Asperti and Harry Mairson showed [16] that, after a sequence of n steps of (-
reduction, the number of redexes belonging to a given redex family is not necessarily bounded
by O(2"), O(2%") or, in general, O(K,(n)) where K,(n) is a tower of £ 2s with an n on top.

Vincent van Oostrom et al. [141], 30] studied the notion of redex family in the context of
higher-order rewriting.

More recently, Thibaut Balabonski studied optimal reduction for a calculus with dynamic
patterns [19]], and proved that, in the case of weak reduction, i.e. disallowing the contraction
of redexes below lambdas, call-by-need is an optimal evaluation strategy [20]].

185

In [70], Stefano Guerrini and Marco Solieri show that, in the case of light linear logics,
sharing graphs do not require bookkeeping, and they obtain a bound for the overhead intro-
duced by sharing.

A thorough reference book on optimal reductions is Asperti and Guerrini’s [14]].

6.1.2 Our Work

This chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows.
We highlight in boldface what we consider to be the main contributions:

« In Section we motivate some design decisions behind a calculus with Levy labels,
and we define a variant of the LSC with Lévy labels, the LLSC (Def. [6.6).

« In Section [6.3] we study the properties of the LLSC. In particular:

1. In Section we study its basic syntactical properties.
2. In Section we show that the LLSC is an orthogonal axiomatic rewriting

system (Prop.[6.32).

3. In Section we prove that the LLSC is weakly normalizing for bounded reduc-
tion (Prop.|6.45), i.e. when reduction is restricted to labels of bounded height.

4. In Section we strengthen this result, proving that the LLSC is strongly nor-
malizing for bounded reduction (Thm. [6.51).

5. In Section we give two proofs that the LLSC is confluent, building on previous
results.

In the following chapter (Chapter [7), we apply the LLSC to derive results about the LSC
without labels; in particular, optimality, standardization, and normalization results.

6.2 'The LSC with Lévy Labels

6.2.1 What is a Calculus with Lévy Labels?

Our aim is to define a variant of the Linear Substitution Calculus (LSC) with Lévy labels. We
are interested in Lévy labels both for a conceptual reason—gaining understanding of the ways
in which computations can interact, contribute to each other, and be shared—and a practical
one—labels can be a helpful syntactical tool for attacking further problems. Regarding the
latter goal, any conceivable notion of labeling would be welcome as long as it aids us in proving
theorems. The former goal, instead, is much less clearly defined, and one may wonder what
abstract properties make a “Lévy labeled” calculus worthy of its name.

There does not seem to be a completely satisfactory answer to this question. Let us take
a look at a list of properties that Lévy labels enjoy in the context of the A-calculus. We will
take these properties as guiding principles for designing a Lévy labeled variant of the LSC.

186

Bestiary of Principles of Lévy Labels

1. Lift. Unlabeled reduction sequences may be lifted to labeled reduction sequences, giving
an arbitrary labeling to the starting term.

For instance, the step
(Az.z)y -y
may be lifted to a labeled step

@O‘(Aﬁx.x”’, y5) N ya[BhlBM
regardless of the choice of the labels «, 3, v, d.
2. Initial. In an initially labeled term, different redexes have different names.

Indeed, the name of a redex is the label decorating its abstraction and, in an initially
labeled term, labels decorating different nodes are required to be pairwise distinct.

3. Copy. If a hredex p'R’ is a copy of the hredex pR, then pR and p' R’ have the same
name.

For instance, in the permutation diagram of Figure 6.2 the names of R and SR’ are both
b, and the names of S and RS’ are both d.

@* (AP, @ (Ay.ye, 2f), 28) — > @2Ible(Ady e fIble)

js lS,

/

@3 (\Py geldleldlf gy K alblc[dleld]f|blg
Figure 6.2: Permutation diagram of (Az.Ix)z in the labeled A-calculus
More strongly, redex names characterize exactly redex families, as defined using the

zig-zag relation.

4. Creation. Whenever a redex R creates a redex S, the name of R is a sublabel of the
name of RS.

As an example, observe that this is the case in the following three representative cases
of redex creation. We write v € [for the binary relation stating that « is a sublabel of

G:
4.1 Creation caseI: 11z 2 [z 5 2 Thenc < b[c|d|c]e:
@a((@b()\cx‘xd7)\ey.yf)’ Zg) i @a()\b[c]d[cjey‘yﬂ Zg) i Za[b[c]d[cje]f[b[c]d[cjejg
4.2 Creation case II: (\z.])yz £ 7122 2. Thene < b[c|d:

@a(@b()\cx')\dw'we’yf)’ Zg) i @a()\b[c]dw'ye[cjf’ Zg) i Za[b[c]d]e[cjf[b[c]djg

187

4.3 Creation case III: (\z.xy)I 5 Iy 5, y. Then b < d|b]f:

@a<)\b1‘.@c(l‘d, ye)7 AfZ.Zg) i @a[b]c(}\d[bjfz'zg7 ye) i ya[b]c[d[bjf]g[d[bjfje

5. Contribution. The name of a hredex pR is a “subname” of the name of ¢S if and only

if the family of pR contributes to the family of ¢S in a semantical sense. This will be
made more precise later.

. Confluence. The Lévy labeled A-calculus is confluent.

For instance, the permutation diagram of Figure [6.2|is a (quite easy) illustration of the
fact that the weak Church-Rosser property holds.

Termination. If labeled reduction is restricted to contracting redexes whose names are
among a finite set of names, the resulting restricted system should be terminating. This
property entails the Finite Family Developments theorem.

The intuitive reason for this termination property to hold is the following. Let us say that
aredex R is first-generation if it is present on the starting term, and (n+1)th-generation
if the redexes that contribute to creating R are at most nth-generation. An infinite re-
duction sequence cannot contract only first-generation redexes since that would be an
infinite development, contradicting the Finite Developments theorem. More in general,
it can be seen that an infinite reduction sequence must contract nth-generation redexes,
for arbitrarily large values of n. By the Contribution principle, newly created redexes
include the names of all the redexes that have contributed to its creation. So, as eval-
uation proceeds, newer generations have larger and larger names. It follows that an
infinite reduction sequence must involve redexes having an infinite number of names.

As an illustration of this phenomenon consider the term 2 = (Az.xx)A\z.xx and observe
that the name of R is included in the name of RR, i.e. b < d|b|f:

@*(A\Pgp.@c(29, 2°), N2.@8(2h, 21)) — @2lble(\dPIf; @8 (b of) Nelbfy @8 (2P 21))

By appropriately renaming labels, this also shows that the name of RR is included in
the name of RRR, the name of RRR is included in the name of RRRR, and so on. This
confirms that the infinite reduction sequence {2 — €2 — ... involves an infinite number
of redex names.

Reconstruction. The reduction history of a term can be reconstructed from its labeling,
modulo permutation equivalence, supposing that we start from an initially labeled term.

For example, given the term z* we know that it must be the starting term: its history
must be empty. Any non-empty reduction yielding a variable x as its final result would
have left a trace. That is, there would be other labels decorating z, indicating that some
[-redexes were contracted before.

188

On the other hand, consider the two possible reductions I(Iy) — Iy:

R:I(ly) — Iy contracting the outermost redex

S :I(ly) — Iy contracting the innermost redex

This is what Lévy calls a syntactic accident: two derivations happen to start and end
on the same terms, but this is accidental. The Reconstruction property tells us that
the labeled calculus is able to discriminate between computations that start and end on
the same terms by accident and those that do it by necessity, by performing the same
computational work. Carrying on with the example, if we start from an initially labeled
source term, the labeled lifts R‘ and S* of the steps R and S yield different labeled target
terms:
@*(\bx.z¢, @i(\ex.af, 48)) i @z[blelbld(ey of 48)

.

@a(}\bx_mc’ yd[e]f[ejg>

From the labeled target term @2/Plelbld(\eq: 2f 18) we can tell that it is the redex R which
has been fired, even in the presence of a syntactic accident. Similarly, from the labeled
term @*(\Pz.z¢, ydlelflele) we can deduce its history, and conclude that it must be the
single step derivation S. If we extend these derivations with their relative residuals R’
and S’, we obtain a permutation diagram ending on the same labeled term:

@ (APz.z¢, @I Nex.af, yE)) T @alblelbld(Neg of y8)

o |

@2 (\Pz.z¢, yydlelflele) R'* yalblelbldlelflelg

In fact the extended derivations RS’ and SR’ are permutation equivalent, and from the

[ble[bldlelflelg e can deduce that both redexes R and S have been

labeled target term y*
fired. Remark that the order is irrelevant as we are interested in histories only modulo

permutation equivalence.

Paths. Redex names correspond to paths in the graph-representation of the starting
term, connecting two nodes that may take part in an interaction.

For example, let us recall the following labeled reduction:
@a()\bl,‘@c(xd7 ye)’)\fZ.Zg) i @a[b]c()\d[bjfz‘zg’ ye) i ya[b]c[d[bjf]g[d[bjfje

The starting term, seen as a graph, has the following shape. Note that each node has an
incoming edge, and labels on a subterm decorate the corresponding incoming edge. By
convention, nodes corresponding to bound variables are connected back to the binding

189

abstraction node:
ay

@
VAN
AT Az

x Y

The name of the first redex 12 is b. Note that, naturally, b is an edge connecting an
application node and an abstraction node. The name of the second redex S is d|b|f. The
insight of Asperti and Laneve [15] is that, in general, redex names correspond to paths
in the graph of the starting term, connecting an application node and an abstraction
node. In this case, start from the application node at the bottom. The path d|b|f can be
read as follows:

Follow the edge d forwards to x.

Follow the edge connecting x back to its binder \z.

Follow the edge b backwards to the application node at the top.

Follow the edge f forwards to \z.

The presence of this path indicates the presence of a virtual redex, a potential interaction
between the application node at the bottom and \z.

In the remainder of this section we will formulate a labeled variant of the LSC. Later, in
Section [6.3| we prove that the labeled variant of the LSC verifies most of the properties in the
Bestiary. As a means of giving some cohesion to the array of quite disparate properties that we
have just listed, we will show that the labeled LSC without the gc rule forms a Deterministic
Family Structure (DFS). Deterministic Family Structures are an axiomatic framework intro-
duced by Glauert and Khasidashvili [61] to generalize Lévy’s theory of optimal reductions.
Showing that the LSC without gc is a DFS will essentially consist of ensuring that it enjoys
properties 1-7 in the list. We will also discuss reasons that suggest that it is not possible to
define a labeled variant of the full LSC (including the gc rule) that verifies all the properties
above—or at least not without a fundamentally different approach. We will, nevertheless, deal
with the gc rule to the best of our capabilities, and we will show that many of properties above
can still be verified, including the nontrivial properties of Confluence and Termination.

In this this thesis we do not deal with the last two properties, Reconstruction and Paths,
and in fact we consider these to be pending open problems. In the case of Reconstruction,
a technical impediment is that we have not been able to define an extraction procedure such
as the one that has been described in Section for the A-calculus. In Section 8.2l we will
describe some of the difficulties we have found in our attempt to define an extraction proce-
dure. In the case of the last property, Paths, we do not foresee any fundamental obstruction
for adapting it to the LSC without gc.

190

In any case, we hope that the reader will agree that the labeled LSC we propose deserves
to be regarded as a Lévy labeled LSC.

6.2.2 Residual Theory for the LSC

Recall from Def. that the LSC is defined as the rewriting relation — sc obtained from the
union of the three following rewriting rules, closed under arbitrary contexts.

Distant beta (Ax.t)Ls g t[x\s]L
Linear substitution C{x)[z\t] 15 CLE)[x\t]
Garbage collection tla\s] g t if z ¢ fv(t)

As a starting point in our quest to define a Lévy labeled variant of the LSC, let us restate the
most basic of the properties we are after. We would like the labeled calculus to give a name
to each redex, in such a way that:

« Ifaredex R’ is a residual of a redex R, then R and R’ have the same name.
« If a redex R creates a redex S, then the name of R is a subname of the name of S.

Let us remark that in making these statements we are already presupposing the existence of
an a priori theory of residuals. For instance, it seems intuitively clear that the 1s redex S is
the ancestor of the 1s redexes S}, S, S7, and 5} in the reduction graph of Figure6.3| It seems

z[z\y][y\z] & y[z\y][y\7]

rla\z][y\z] = zl2\2][y\z]

Figure 6.3: Reduction graph of z[z\y|[y\z]

also clear that the 1s step R creates the db step .S in the following reduction:

w2\ \yylz B Ogy)[2\\ylz 2 yly\2][2\M\y.y]

However, unlike in most other calculi, in the LSC steps interact at a distance. In fact the three
rewriting rules involve some sort of non-local interaction. The db rule involves an interaction
between an abstraction and an application that are separated by an arbitrary substitution
context L. The 1s rule involves an interaction between a variable that is bound to a substitution
somewhere else in the term. Finally, the gc rule depends on the non-local condition that the
variable bound by the substitution [z\s]| does not occur anywhere in the body ¢. Adapting the
standard techniques that are used to define residuals—e.g. in term rewriting systems—is not
immediate.

Fortunately for us, in [6]], Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos
Lombardi already provide a definition of residuals for the LSC, and they prove that it gives

191

rise to a quite well-behaved residual theory. Let us review the definitions and results of their
work that will be relevant to our own.

Before proceeding, it is worth noting that in [6] residuals are defined using an auxiliary
variant of the LSC that uses labels. The use of labels in the labeled calculus of [6]] should not be
confused with the Lévy labels that we are attempting to define. The purpose of labels in the
labeled calculus of [[6] is to provide an ancestor/descendant relation between the subterms
of ¢ and the subterms of s along a single rewriting step ¢ —sc s. Lévy labels are a much
more powerful formalism. In particular, Lévy labels give a name to every redex that is found
along a derivation, including created redexes. To avoid confusion, we will depart from the
nomenclature of Accattoli et al., and speak of marks, rather than labels, when referring to the
labeled calculus of [6]. The nomenclature is also consistent with the marked \-calculus that
we used as an auxiliary tool to define residuals in the A-calculus (cf. Def.[2.69).

Definition 6.1 (The marked LSC). Consider a denumerable set of marks a, b, ¢, The set of
marked terms is given by the following grammar:

t,s,u,... x variable

a

T marked variable

Azt abstraction

ts application
t[x\s] substitution

|
|
| Az®.t abstraction with marked variable
|
|
| t[z"\s] substitution with marked variable

The notations L for substitution contexts and C for arbitrary contexts are extended to allow
marks. Similarly, the notion of free variables is extended to marked terms as expected, to-
gether with its notion of a-conversion. Marked reduction = on marked terms is defined as
the contextual closure of the following rewriting rules:

(A% t)Ls +>q t[x\s]L

ClaHla\t] s CO[2\t]
tfr®\s] g t if z ¢ fv(t)

A marked redex is a redex R having a pattern of the form (Az®.t)L s, C{x*)[z\t], or t[z™\s],
and a is called the mark of the redex R. Note that a marked step ¢ > s is decorated with the
mark of the corresponding redex. On the other hand, unmarked reduction — on marked terms
is defined as the contextual closure of the usual db, 1s and gc rules—in this case, the redex
is not marked but marks elsewhere in the term are allowed. The anchor of a redex (marked
or not) is the variable possibly carrying its mark. If ¢ is a marked term, ¢° is the term that
results from erasing all the marks in ¢. If t° = s, we say that ¢ is a variant of s. In that case,
we identify redexes of ¢ and redexes of s via the obvious bijection.

Definition 6.2 (Residuals in the LSC). Let R, S be two coinitial steps in the LSC:

R:t—s S:t—u

192

Consider a marked variant ¢’ of t having exactly one mark a on the anchor of S. Let R’ : ' — &'
be the step corresponding to R via the obvious bijection. The set of residuals of S after R,
written S/R, is the set of steps of the form S” : s — r for some term r, such that S’ is marked
with a in the marked variant s’ of s.

For example, the reduction graph of the term z[z\y][y\z] (Figure can be adapted to
the marked LSC by marking the anchors of the redexes R and S, as below—we write R(a) to
emphasize that a is the mark of R:

2 [2\y°][y\z]

S(b) z[2\y*][y\2] y°[r\z][y\z]

e P e 5 1
Moreover, according to the definition of residual:
R/S={R} S/R=1{S,5} Si/Sy={S} S:/S1={S]} R/IR=0

One should have in mind that, to calculate a set of residuals, for example S;/Ss, we should
start from a marked variant of the source term having a single marked redex, which is not
the case for y°[z\y°|[y\z] in the diagram above. Recall also from Def. that the residual
relation can be extended to take the residuals of a step after a derivation, defining S/p by
induction on p:

Sle X (s}
S/Rp ¥ {5”]35.5 € S/Rand 8" € §'/p}

So in particular, in the diagram above we have:
S/RS1 = {S5} S/RSy = {5}

For a different example of marked reduction, the following one involves a db step R, a 1s
step .S, two gc steps T, U, and its residuals:

(A 2) [y] 2 = a2 [\ F] — = 2\][y E] T 2]

U(h)t U’(b)l U”(b)t U’”(b)l
R’ /

(Axt.z) 2 @ x[x\z] : 2[z\s] —F—2

Recall from Section that a step R creates S if the step S is not the residual of any S
after R. In this case, the db step R creates the 1s step S, since = was originally bound by an

abstraction but, after the db step, it becomes bound by a substitution, and is now susceptible
of being substituted by z. Similarly, the 1s step S creates the gc step 7, as it exhausts the
occurrences of x that are bound by the substitution [x\z], enabling the substitution to be
garbage collected. Perhaps it is also interesting to note also that the newly created redexes S
and T are not marked. In the case of the step 7', there is no chance that it could be marked,

193

since the garbage collected substitution is created along the way, i.e. it comes from the right-
hand side of a db step.

To conclude with this section, we restate two results that are already known to hold from
[6].

Proposition 6.3. The LSC forms an orthogonal axiomatic rewriting system.

Proof. Recall from Def. that an orthogonal axiomatic rewriting system in the sense of
Mellies must verify four axioms:

1. Autoerasure (AE). Thatis, R/R = @& for every redex R.
To prove this axiom, note that if ¢ has a single marked redex R(a) and the redex R :
t — s is fired, then s has no occurrences of a.

2. Finite Residuals (FR). That is, R/S is finite for every two coinitial redexes R, S.
This axiom is immediate since the LSC is finitely branching, and the set R/S is a set of
coinitial redexes, so it must be finite.

3. Finite Developments (FD). If M is a set of coinitial redexes, there are no infinite de-
velopments of M.
This axiom is Proposition 1 in [6]]. It can be proved using the notion of potential multi-
plicity, similarly as in the proof that the A-calculus verifies FD (Thm.[2.73).

4. Semantic Orthogonality (SO). For any two coinitial redexes R, S there exist complete
developments p of R/S and o of S/R such that p and o are cofinal and, moreover, Ro
and Sp induce the same residual relation.

This axiom is Proposition 2 in [6]].

O

After presenting the Lévy labeled LSC, and using it as a tool, we will be able to give alter-
native proofs for FD and SO: termination of the labeled calculus restricted to bounded labels
will be a generalization of FD, and confluence of the labeled calculus will be a generaliza-
tion of SO. We also remind the reader that, as was discussed in Section various results
from [[118] are automatically available in any orthogonal axiomatic rewriting system, in par-
ticular multisteps, residuals, permutation equivalence, and algebraic confluence.

Besides Prop. there is a second result from the work by Accattoli et al. ([6]) that we
should mention before going on, concerning redex creation in the LSC. Here we state an
incomplete form of the result, for the sake of clarity. The fully-fledged result is stated and

proved in the appendix (Prop.[A.77).

Proposition 6.4 (Redex creation in the LSC — & Prop. . Lett; 2 t, 2 t3 be a sequence
of two redexes in the LSC such that IR creates S. Then S is created in exactly one of seven possible
ways. Here we provide only representative examples, see the appendix for the full statement and

proof.

194

1. db creates db. For example, (A\x.(Ay.t)s)u — (Ay.t)[x\s] u — t[y\u][z\s].
2. db creates 1s. For example, (A\x.zx)t — (xx)[2\t] — (xt)[z\t].
3. db creates gc. For example, (A\z.y)t — y[z\t] — .

4. 1s creates db upwards. For example, z[z\\y.t]s — (A\y.t)[z\\y.t]s — t[y\s][z\\y.t].

5. 1screates db downwards. Forexample, (zt)[x\\y.s] — ((Ay.s)t)[x\\y.s] — s[y\t][z\\y.s].

6. 1s creates gc. For example, (yx)[x\y| — (yy)[z\y] — yy.
7. gc creates gc. For example, y[z\z][2\t] — y[z\t] — .

Proof. The proof is by exhaustive case analysis on the three possible kinds of redexes that I?
and S might be (db, 1s, or gc), and the position of the anchor of S in the term ¢5. [

6.2.3 Definition of the Labeled LSC Without gc

For expository purposes, we start by giving a definition of a Lévy labeled variant of the LSC
without the gc rule, and then discuss how to extend this definition to also contemplate the gc
rule.

As a general convention, we use the symbol “/” when naming constructions that corre-
spond to labeled calculi, and the symbol “/” when naming constructions that only make sense
in the calculus without gc. For example, 7 is the set of terms in the (unlabeled) LSC, 7" is the
set of terms in the (full) labeled LSC, and 7/ is the set of terms in labeled LSC without g

Definition 6.5 (The Lévy labeled LSC without gc, LLSC’). Consider a denumerable set of
initial labels T = {a,b, c, .. .}. We assume the existence of a distinguished initial label o € Z.
The set of labels L' is defined by the following grammar:

a,B,v,...:=a | af | [a] | |of | db(«a)

Labels are considered up to associativity of juxtaposition, i.e. for every «, 3,7 € L we declare
(af)y = a(S7) to hold. Labels that are not of the form a3 are called atomic. The set of labeled
terms T*! is defined by the following grammar:

t,8,... u= x% | ANt | Q*t,s) | t[zr\s]

Observe that there are labels over variables, abstractions, and applications, but not over sub-
stitutions. The outermost atomic label of a label «, written 1 («), is defined as follows, by
induction on the number of juxtapositions that take part in the construction of the label a:

def {T (al) ifa=a

«Q if o is atomic

'The mnemonic for the symbol “I” is that the LSC corresponds to the full A-calculus, while the LSC without
gc corresponds to Church’s AJ-calculus.

195

For example 1 ([ablac) = [ab|. Similarly, the innermost atomic label of a label «, written
| (@), is defined as follows:

| (a) def {l () ifa=aia

o if «v is atomic

Note that 1 («) and | («) yield atomic labels, and that they are well-defined modulo asso-
ciativity of juxtaposition. The external label of a term t, written /(t), is defined as the label
decorating its outermost node, ignoring substitutions:

lz®) =a L(A\xt) =a £(Q*t,s))=a L(tx\s])=L(t)
The outermost atomic label of a term t, written 1 () is defined as 1 (£(t)). For example:

(A z.2h)[y\y]) = abe and 1 ((A*z.2)[y\y’]) = a
The syntax of contexts is extended to allow labeled terms, namely:

C == [| AaC | @*(C,t) | @Q*(t,C) | Clz\t] | t[=\C]
and similarly for substitution contexts. An operation for adding a label to a term, written «v : ¢
is defined as follows by induction on ¢, by skipping substitutions:
a:gf & gos a: ot = \Prt

a: @B(t,s) o @*(t,s) a: (t[z\s]) o (v : t)[x\s]

The Lévy labeled LSC without gc, LLSC!, is defined as the rewriting system whose objects

are the labeled terms 7% and with the rewriting relation —;; defined as the union of the
following rules, closed under arbitrary contexts:

@ ((Mzt)L,s) —a aldb(B)]: t[z\[db(B)] : s]L
ClaPla\t] —1s Clae - i)[\t]

def def def
—uaw = Cl=a) —is = Cl=1s) —u = —rap Y —is

Regarding the names of steps, the name of a db step like in the rule — g4, is db(3), while the
name of a 1s step like in the rule 5 is | () @7 (#). Sometimes we write ¢ ~>,; s when
t —; s and the name of the contracted redex is «.

In the following paragraphs we will try to understand the reasons motivating the design
of the labeled system we have just defined. The main guiding principles are items 3. and 4. in

the Bestiary of Section
+ Copy: residuals of a redex should have the same name as their ancestor.

« Creation: created redexes should include the name of all the redexes that contribute to
their creation.

196

Forward propagation of labels

A term in a rewriting system has redexes, which represent possible interactions between parts
of the term. When aredex R is fired in a Lévy labeled calculus, labels are propagated along the
term according to precise rules. The informal idea is that labels on the left-hand side should
propagate in such a way that the name of the redex R ends up “tainting” all those positions on
the right-hand side in which there is a possibility of a new interaction due to the contraction
of R. Let us give an informal account of how, and why, labels propagate in LLSC'.

Suppose first that we fire a db redex R. The name of the db redex in a term like @ ((\z.t)L, 5)
is db(3). The informal idea is that /3 records the history indicating how the abstraction \’z.t
reached a position in the term in which it is able to interact with the application @Q°(..., s).
Note that the list of substitutions L does not play any role regarding the interaction of the
abstraction and the application: the substitutions are not able to aid nor interfere.

If we read the rewriting rule ~4, of the LLSC’ forwards, we find out that the name db(/3)
of the contracted redex R is propagated to two places. First, the label db(f) is propagated to
mark the root of the term ¢. This is because the root of the term ¢ might be an abstraction,
and firing R exposes the abstraction, leaving it on the root of the term, allowing it to, possibly,
interact with an external application. This may allow a db creates db creation case, as in item
1. of Prop. In order to comply with the Creation principle, the name of the fired db redex
should be a sublabel of the created db redex. The following example illustrates how the name
of the fired db redex (db(c)) is indeed a sublabel of the created db redex (b[db(c)|d):

@ (@P(Xew \dy.ae, 2F), 28)), o @3((APIER(©)ldy, pe) [\ 2ldp(e)f] 28)

b[db(c)]d o Rldlav(e)]d)le [y\ |ab(b[db(c)]d) Jg] [\ fldb(c)]]

On the other hand, the rule ~—g4, of the LLSC’ also propagates the label db(/3) to mark the
argument of the substitution. This is because the argument s of the substitution might be
replaced for an occurrence of x allowing a db creates 1s situation as in item 2. of Prop.
As before, we would like to comply with the Creation principle. The following example
illustrates how the name of the fired db redex (db(b)) is indeed a sublabel of the created 1s
redex (c e |db(b)]):

@*(\Pz.z¢, y4) db(b) o alemle[) ylab)d]

ce|db(b
[db(b)] o yRle®)les (b))

Note that in LSC the situation is subtler than in other calculi because the interaction between
the variable x and the argument of the substitution is non-local, i.e. at a distance.

Consider now what happens if we fire a 1s redex . The name of the 1s redex in a term
like C{x™»[x\t] is of the form | («) e 1 (¢): it consists of two “halves”. The first half (| («))
represents which copy of = we are contracting. For example, the two 1s steps below should
have different names and, indeed, their names are different: aec and bec.
ave o (Ut a®) 2]

I T
bec (xayboc)[x\yc]

197

The second half of the name 1 (¢) corresponds to the history of the argument ¢. Informally,
the label 1 (¢) indicates how the term ¢ came to be the argument of the substitution [z\ . ..].

By reading the rewriting rule . of the LLSC! forwards, it can be seen that the name
| () @1 (t) of the 1s redex appears on the root of the new copy of the term ¢. This is because
the term ¢ might be an abstraction, and firing the 1s redex R makes a copy of the abstraction.
The new copy of ¢ might possibly interact with an application, allowing a 1s creates db
creation case, as in items 4. and 5. of Prop. As in the previous cases, we would like to
comply with the Creation principle. The following example illustrates how the name of the
fired 1s redex (b e d) is indeed a sublabel of the created db redex (db(b e d)):

bed

(@2 (2P, y°))[x\N2.2¢] 225 (@Y(APedz 22 yo)) 2\ 2. 2]

S0, Al e DI [\ 2

A point that should still be clarified is why the two “halves” of a 1s redex are atomic labels.
That is, why the name of a 1s redex is | («) ® T (), rather than just e £(t). The reason is that
we must comply with the Copy principle. To justify why we take | («) rather than « for the
first half, consider the following example:

z® [w\y'i] [y\2¢] —22 s y2eb [x\?j"] [y\2°]

2 2\2"*] [y\=°] 2 beez\yP[y\2]

The redex at the right-hand side of the diagram is one of the two residuals of the redex at the
left-hand side, so by the Copy principle they should have the same name. If we were to take
«, rather than | («), for the first half of the name of a 1s redex, the name of the redex at the
right-hand side would be a e b e ¢ instead, violating the Copy principle.

To justify why we take 1 (¢) rather than ¢(t) for the second half of the name of a 1s-redex,
consider the following (symmetric) example:

® [x\y'i] [y\2°] bec xa[w\zbr] [y\2°]
Y Pla\yP][y\ 2] Z2ePee [\ 2P][\ 2]

Here the redex at the right-hand side is the (unique) residual of the redex at the left-hand side,
so by the Copy principle they should have the same name. If we were to take /(¢), rather than
1 (t), for the second half of the name of a 1s redex, the name of the redex at the right-hand
side would be a e b e ¢ instead, violating the Copy principle.

The label constructors db(—) and e

An obvious difference between Lévy’s labeled A-calculus and the calculus LLSC’ that we have
just proposed is the presence of labels of the form db(«) and the distinguished label (o). The
presence of these labels is not to be regarded as a fundamental feature of the labeled calculus,
but rather as a technical convenience. Let us motivate their introduction.

198

The idea of labels is that they characterize redex families: two redexes should be assigned
the same name if and only if they belong to the same family. According to the definition of
LLSC/, the name of a db redex in a term like @*((\’z.t)L, 5) is db(/3). For example, consider
a situation like the following, corresponding to a 1s creates db creation.

(@ (2®, %)) [r\\2.2°] (l%m (@ (AP*dz.2%,y°)) [\ N2 2]

o7 Za[db(b ed)le [Z\y[db(b . d)Jc] [x\)\dz.ze]

Suppose that we had not introduced the db(—) constructor, and we had declared that the name
of such a redex is just 3. The name of the db redex above would then be just b e d, and it would
coincide with the name of the 1s redex that contributed to its creation. This would contradict
the principle that redexes in different families should have different names. Another reason
to justify that the name of the 1s redex should be strictly contained in the created db redex,
is to comply with the Termination principle (item 7. in the Bestiary of Section [6.2.1). Recall
that the Termination principle states that redexes of newer generations should have larger
and larger names.

Regarding the distinguished initial label (o), it is simply used as a marker to point out the
places in which two labels have come into contact due to the contraction of a 1s redex.

One may wonder if the addition of the constructors db(—) and e is strictly necessary
to define a Lévy-like labeling for the LSC. It should be possible to formulate a variant of
LLSC! dispensing of both db(—) and e while essentially preserving all the good properties of
the LLSC! calculus, at the expense of treating redex names slightly more carefully. We have
chosen to explicitly mark the places in which db and 1s redexes take place, which simplifies
the treatment of labels.

The distinguished label (o) and associativity

As we have mentioned in the previous section, the distinguished label (o) is used to point
out the places in which two labels come into contact due to the contraction of a 1s redex.
We have chosen to make e an initial label, in such a way that aeb is a list of three labels:
a, o, and b. One may wonder if it would not be more appropriate to regard e as a binary
constructor. To answer this question, consider the following example:

a? [-’L’\y'i] [y\2°] - xa[w\zbi"] [y\2]

e E T | AR I A PN P R A PAPLA [TV

Let ¢ be the term at the bottom right of the diagram, i.e. t = 2***¢[2\2?*¢][y\z°]. Note that,
if we contract y first and then z, the label decorating the leftmost copy z of t isae (bec). On
the other hand, if we contract z first and then the two copies of v, the corresponding label is
(aeb) ec. The Confluence principle (item 6. in the Bestiary of Section requires that
the labeled calculus should be confluent. This basically means that the labels ae (be ¢) and
(aeb) e c should be considered equal. If we were to regard aeb as a new constructor, we

199

would have to work modulo associativity of e, and also the associativity of e with respect
to juxtaposition. That is, we would have to work modulo the following four equations:

a(Bv) (aB)y
a(fey) = (af)ey
ae(By) = (aef)y
ae(fey) = (wef)ey

Rather than doing this, we have chosen the arguably simpler route of working only modulo
the first equation (associativity of juxtaposition), and regarding e as an initial label.

6.2.4 Definition of the Labeled LSC - Extension with gc

Definition 6.6 (The Lévy labeled LSC with gc, LLSC). Similarly as in Def. let 7 =
{a,b,c,...} be a set of initial labels, and assume the existence of two distinguished labels
e € 7 and ® € Z. The set of labels L is again defined by the following grammar,

a,f,7,...:=a|af|[a]]|a]|db(a)

Metavariables 2, ©, U, . .. range over finite sets of initial labels. The set of labeled terms T is
defined by the following grammar:

t,s,... == x% | Azt | Q*t,s) | t[z\s]a

The notions of outermost atomic label T («) of a label «v, innermost atomic label | («) of a label
«, external label ((t) of a labeled term ¢, the operation of adding a label to a term « : t, and the
notions of contexts and substitution contexts are defined as in Def. [6.5

The Lévy labeled LSC with gc, LLSC, is defined as the rewriting system whose objects are
the labeled terms 7* and with the rewriting relation —, defined as the union of the following
rules, closed by arbitrary contexts.

@ (A2z.t)L,s) e afdb(B)] : t[z\[db(B)] : s]aL
ClazD[z\tla 15 Clae :t)[z\t]o
t

tlz\slo g if z ¢ fv(t)

—¢db dzef C<’—>db> —¢1s déf C<'—>1s> —lgc déf C<'—>gc> - déf —¢db Y r1s Y rgc
Regarding the names of steps, the name of a db step like in the rule g, is db(/3), the name of
a 1s step like in the rule —5 is | («) @ 1 (), and the name of a gc step like in the rule — is
the set of labels {ae 1 (s) | a € Q}. As before, we write t <>, s when ¢ —, s and the name of
the contracted redex is a.

Observe that redex names u,v,&, ... have three possibly shapes given by the grammar
below, where « stands for an arbitrary label in £, and w, ', etc. stand for atomic labels:

po= db(a) | wew [{wiew,...,wyew,}

k.

>, S~~~ N —

~~ ~~

name of a 1s step

name of a db step name of a gc step,n > 1

200

Usually we regard redex names as belonging to a separate sort, but occasionally we identify
the names of db and 1s steps with the corresponding underlying label—e.g. the redex name
db(a) can also be thought as the label db(a).

The remainder of this subsection is devoted to motivating the definition of the labeling
scheme introduced in Def. We will also describe some difficulties involving the gc rule.
Motivation of the labeling: sets of labels (2) and dummy labels (&)

Compared to the LLSC! (without gc) the LLSC (with gc) incorporates three new elements:

1. Substitutions are decorated with a set of labels).

2. Abstractions are decorated with a set of labels (2.

3. There are gc steps, and the name of a gc step is a set of labels.

Observe that these elements do not interfere with the behavior of db and 1s steps, and in
particular it does not affect the names of db and 1s steps. Let us motivate each of these new
elements. Consider the following example reduction whose final step is a gc step:

(z2)[2\y] Bors (y2)[2\y] D1 (y9)[2\y] Dge vy

In this reduction sequence, the first two 1s steps R and S contribute to the creation of the gc
step T', which means that, in the labeled calculus, the names of R and S should be sublabels
of the name of 7'. In fact, the order of the first two steps is irrelevant:

(z2)[2\y] Dore (2y)[2\y] Dore (n)[2\y] Doge vy

The observation that the order is irrelevant is reflected in the fact that the name of the gc step
is a set of labels.

Moreover, we note that the labeling scheme of the LLSC! calculus, without gc, is not
sufficient to give an appropriate name to the gc step. The main problem is that we lose track
of the labels decorating each of the two copies of z, for example in this sequence of labeled
steps in LLSC':

@2 (2P, 2°))[x\y?] LAL @ (yPe 4, 2)[z\y]
Ld)Uls @a(ybod’ycod)[m\yd]

a hypothetical gc step of the form:

@a(yb'd,y“d)[x\yd] — 0 ge @a(yb-d’yCOd)

should have a name including the labels bed and ced. But, even though these labels do
appear on the term (in this example), we have no way of knowing what relationship they
have with the explicit substitution [z\y4].

201

The idea is that every substitution ¢[x\s]q should be decorated with a set of labels €,
representing the initial labels that originally decorated each free occurrence of the variables
x in t. For instance, in the LLSC the example above becomes:

a c bed a o c
@2 (2P, 29)) [2\y ey ——eris Q@ (P 2)[2\y (b}
ced a . ce
—ns @ (?Jb d7y d)[x\yd]{b,c}

and as a consequence, the name of the gc step:

@"‘(yb°d, yc.d)[x\yd]{b,c} —/ge @a(ybod7 ycod>

is, according to Def. precisely the set {ae 1 (y) | a € {b,c}} that is, {bed, ced}. Note
that this set does not depend on the order in which the labeled variants of the steps R and S
are fired, as can be seen in the diagram:

@2(2b, 29)) [2\y] o.ep — = @2 (yP* 9, 2%)) [2\y] b.c)

ced ced

@2 (2, ¢) [2\y .o % @2 (5P 3o) [2\y b

Later on, we will introduce an invariant characterizing correctly labeled terms. In a correctly
labeled term, given any subterm ¢[x\s]q and any free occurrences of the form = in ¢, we will
have that | («) € (2.

To justify the presence of the decoration {2 over an abstraction \§z.t, note that a substi-
tution ¢[x\s]q may be created as the result of firing a db step

Q*((Ng@-t)L, 8) —rav afdb(8)] : t[z\|db(B)]s]oL

and the set €2 should appropriately record the set of initial labels originally decorating the free
occurrences of x in ¢. This means that the invariant for correctly labeled terms should request
that, given any subterm \{,x.¢ of a correctly labeled term for any free occurrences of the form
x® in t, we will have that | () € Q.

There is one more issue that we should mention: in a term of the form A&z .t or of the form
t[x\s]q, the invariant for correctly labeled terms should not allow €2 to be the empty set. Note
that if we allow 2 to be the empty set, the name of a gc step ¢[2\s]z — g t is the set of labels
{ae 1 (t) | a € @&}, that is, @. This is objectionable, because it may result in two gc steps that
do not share the same origin but have the same name, for example, the name of the two steps
below is @:

@/rt[x\ya]z
tl2\y*laly\2*)o
T

t[y\zb]@
That is why the invariant for correctly labeled terms will forbid that 2 is empty. In the initial
term, if ¢ has no occurrences of =, we will decorate terms of the form \x.t and of the form

202

t[x\s]q with the set of labels 2 = {®} where ® is a distinguished dummy label. With this
invariant, the names of the gc steps are different:

t2\y*)

t\y* ey [1\2"] (s}

@~

ty\2"]ey

Failure of stability in the LSC with gc

Stability is an abstract property of rewriting systems with residuals, stating that computa-
tional steps are created in an essentially unique way: if any two steps have a common resid-
ual, they must also have a common ancestor. This means that the presence of a computational
step has a unique cause. The property of stability in the context of rewriting was originally
studied by Jean-Jacques Lévy [109,111], and inspired by Gérard Berry’s notion of stability in
denotational semantics [26]].

Definition 6.7 (Stability). An orthogonal axiomatic rewriting system (cf. Def. veri-
fies the Stability property if given steps R, S,T1,T», T3 such that 75 € T1/(S/R) and T3 €
T>/(R/S), there exists a step Ty such that T € Ty/R and T € T,/ S. Graphically:

A
0"
2/ Nm
S/R*« f/R/s
T3

It is not difficult to see that the Stability property fails in the LSC, in presence of the gc
rulefl

Remark 6.8 (Failure of Stability in the LSC). Consider the following diagram:

z[y\z][z\w]

z[y\w][\w]

NN

z[z\w] T

]

T

Note that R is a 1s step and S, S/R, T, and T" are gc steps. Note also that R/S = &. Then T
and 7" do not have a common ancestor, which means that the LSC with gc does not have the
Stability property.

?The Stability property does hold in the LSC without gc, as will be proved in Section

203

The failure of Stability means that we cannot hope to fulfill all the principles of Lévy labels
in the Bestiary of Section In particular, if the Initial principle holds, we know that the
names of R and S must be different. If the Contribution principle holds, we also know that
the name of T should contain the name of R but not the name of S, while the name of 7"
should contain the name of S but not the name of R. Finally, from the Copy principle we
conclude that the names of 7" and 7" must coincide. From this we derive a contradiction.

In the labeled calculus LLSC of Def. [6.6, we have taken the design decision that the redex
creation cases of the form “gc creates gc” (cf. Prop. are not to be reflected in the labels.
For instance, the example of Rem. in the labeled calculus LLSC becomes:

2 [Y\2" ey [2\w®] ny

%m

[\ 2" i@y [2\w] ny T [2\ws)

tbec)] m /{boc}l

[\ (@) 2 [2\w] by z*
{be c}\l/
‘,I;a

Observe that the names of 7" and 7" are both {b e ¢} and they include the name of R (b e ¢) as
a sublabel while, on the other hand, the name of S ({® e b}) is unrelated with the name of 7.

6.3 Properties of the LSC with Lévy Labels

This section is devoted to establishing various properties of the LLSC:

1. In Section we prove basic properties of labeled reduction, including the invariant
for correctly labeled terms.

2. In Section we study permutation diagrams in the LLSC. In particular we prove that
the LLSC is an orthogonal axiomatic rewriting system (Prop. |6.32).

3. In Section we prove that the LLSC is weakly normalizing if the height of redex
names is bounded (Prop. [6.45).

4. In Section we build upon the previous result, and strengthen it to show that the
LLSC is strongly normalizing if the height of redex names is bounded (Thm. [6.51).

5. In Section we obtain as a corollary of previous results that the LLSC is confluent
(Thm. [6.53).

Among these properties, we prove that the LLSC enjoys most of the desirable traits that
we already listed for a Lévy labeled calculus in the Bestiary of Section We summarize
the status of each of these properties after finishing this section:

1. The Lift property is an easy observation. Given any (unlabeled) reduction sequence
p :t —»Lsc s and any labeled variant ¢’ € T* of ¢, there is a labeled variant p’ : ¢ —, s’

204

of p. Moreover, in Lem. we prove that all the labeled terms along the reduction p’
preserve the invariant of being correctly labeled, provided that ¢’ is correctly labeled.

2. The Initial property is proved in Lem.
3. The Copy property is proved in Lem.

4. The Creation property for the calculus without gc is proved in Prop. We also show
an example in which this property does not hold for the calculus with gc (Rem. [6.8).

5. The Contribution property for the calculus without gc is not proved in this section.
We prove it in the next chapter (Prop.|7.12), when we show that the LSC without gc
forms a Deterministic Family Structure (Thm. [7.13).

6. In Thm. we give two alternative proofs of Confluence.
7. The Termination property is established in Thm.

8. As we mentioned, we do not treat the Reconstruction or Paths properties.

6.3.1 Basic Properties

We begin by proving some basic properties of the labeled calculus LLSC as defined in Def.
including the invariant for correctly labeled terms.

Labels and contexts

Lemma 6.9 (Properties of labels and contexts). Operations on labels and contexts have the
following properties:

La:(f:t)=(af):t

2. IfL is a substitution context, then o : (tL) = (o : t)L.

SN

. If C is not a substitution context, then o : C{t) = (a : C){t).

4 1(:t)=1(a)

1 (Cz™)) =1 (Kae : 1))

o 1 CLaP is of the form C'(a™), where | (8) = | (8) anda: (B e : ty = C'(B'w : 1),

Proof. The proofs are straightforward. Item 1. and 4. are by induction on ¢. Items 2., 3., and

Sd

S

5. are by induction on the context. Item 6. is easy by case analysis, depending on whether C
is a substitution context or not, and using items 2. and 3. respectively. [

Lemma 6.10 (Adding labels is functorial). Ift %, s then (o : t) 5, (@ 5).

205

Proof. By induction on the context C under which the redex in ¢ is contracted. The interesting
case is the base case, when C = []. Then we proceed by case analysis, depending on the kind
of redex contracted.

S @(Ogel)ls) s Bab()] ¢\ Lab()] : o
@ (Aga-t')L, ')~ aB[db(7)] : #'[2\|db(7)] : s]oL
2. 1s step. Using Lem. [6.9] we have:
@)\t a: ¢ O\
0"\t e — M e)\

3. gc step.

a:t'[z\s']q e 1) [

Lemma 6.11 (Reduction preserves the outermost label). Ift —, s then 1 (t) = 1 (s).

Proof. By induction on the context C under which the redex in ¢ is contracted. The interesting
case is the base case, when C = [J]. Then we proceed by case analysis, depending on the kind
of redex contracted.

1. db step. Then:

D@ ((Ngzt)L.s)) = 1
=1
T (alab(B)] : #[\[db()] : JoL) by Lem. 63

2. 1s step. Then 1 (C'{a*)) = 1 (C'{ce : t')) by Lem.[6.9]
3. gc step. Then 1 (¢'[2\s]q) = 1 (/).

Initially and correctly labeled terms

Recall that the Initial principle in the Bestiary of properties of Lévy labels given in Sec-
tion requests that, in an initially labeled term, two different redexes should have differ-
ent names. As a consequence, if we have an unlabeled term and we want to decorate it with
initial labels, each subterm (except for substitutions) should be decorated with a different ini-
tial label. For example, xz should be initially labeled as @*(z®, 2¢) or @°(z?, 2P) rather than
@2 (2P, 2P) or @2 (22, 2?).

Moreover, binders in the LLSC, that is, abstractions and explicit substitutions, are deco-
rated with a set of labels ¢). As we have discussed in Section the set () associated to

206

a subterm binding a variable = should start being the set of initial labels decorating the free
occurrences of z, or {®} if there are no free occurrences of z. For example, Af, d}x.@b(wc, x9)
and @*(2P, 2°)[y\2%]) are initially labeled terms.

The property that a term is initially labeled is very restrictive, and the rewriting relation
(—¢) of the LLSC does not preserve the invariant that a term is initially labeled. For example,
in the following 1s step:

P E\N Y-y Tm —eis (A w4 [2\Ng 04Ty

the left-hand side is initially labeled, while on the right-hand side: (1) there is a subterm
decorated with a label which is not an initial label (a e b), (2) there are two subterms decorated
with the same initial label (the two copies of 4°), and (3) the set of labels {a} on the explicit
substitution does not correspond to a free occurrence of z.

In this section, we give a precise definition of initially labeled terms, and we define the
invariant for correctly labeled terms, in such a way that all initially labeled terms are correctly
labeled, and the rewriting relation (—sc) preserves correctly labeled terms.

Definition 6.12 (Leaf labels). Let ¢ € T*. The multiset of leaf labels of ¢, written vl (), is the
multiset of atomic labels of the form | («) for each free occurrence of 2 in ¢. Formally:

V(@) = {] (a)}

vl,(y*) = @ ife #y
vl (AQ 1) L) ifz £y
V(@ (8, s)) Vi (t) w vly(s)
v (t[y\sle) = vL(f) wvl(s) ifz#y

We also extend this operation to contexts by defining vl,.([]) ' . Note that vl (C{t)) =
vl (C) w vl,(t) if C does not bind x. Occasionally we treat multisets as sets when the multi-

plicity of labels is not relevant.

Lemma 6.13 (Properties of leaf labels). Leaf labels have the following properties:
L vl (a: t) = vl (t)
2. Ift — s thenvl,(t) 2 vl,.(s) for any variable x (where “2” denotes the inclusion of sets).

Proof. Item 1. is straightforward by induction on ¢. Item 2. is by induction on ¢. The interesting
case is when we have a step:

1. db step. Q*((ADy.t')L, t) d—“ﬂgdba[db(ﬁ)] :t'[y\|db(B)] : t2]oL. Then:

v (@ (A\y-t')L, ts))

A
X

~
@

vl (t2) w vl (L)
= (Oé[db() :t) w vl (ldb(B)] : t2) w vl (L) by item 1.
AN t'y\lab(B8)] : t2]al)

I
/\
e
-
Q.
o
A

207

() o 1(t2)

2. 1s step. Cy*D[y\t2]a 115 Cla e : to)[y\t2]q. Then:

VI (CLy DIy\t2la) = vIa(C) w via(t2)
= vI(C) w v, (t2) w vl,(t2) (set equality)
= vl,(C) w vl,(ave :t3) w vl (t3) byitem. 1
vl (Clare :ty)[y\t2]a)

t2) | acQ}

3. gc step. t1[y\t2]o Lg gc t1. Then v, (t1[y\t2]a) = vl (t1) w vl (t2) 2 vl (t1).

O
Definition 6.14 (Initially labeled terms). A term ¢ € T* is initially labeled, written IN1T(t), if:
1. For every subterm of s, the external label /(s) is initial and ¢(s) ¢ { e, ®}.
2. For every pair of subterms s1, s, at different positions, £(s1) # £(s3).

3. For every subterm of ¢ that is a binder, ie. of the form (A34z.s), or of the form s[z\u]q,
{®) ifvl(s) =92

vl,(s) otherwise

we have () = {

Remark 6.15. Given an unlabeled term ¢, there always exists an initially labeled variant t¢ of
t.

Example 6.16 (Initially labeled terms). The labeled term ()\?c}ﬁc.@b(:cc, Yy [y\2¢] ey is an ini-
tially labeled variant of (Az.xy)[y\z].

The labeled terms A?c’d}x.@b(xc, 24) and y*[x\z")g; are initially labeled.

The labeled terms x* and 2® are not initially labeled because the distinguished initial labels
e and ® cannot decorate subterms.

The labeled terms @*(z?, 2°) and @*(x®, 2*) are not initially labeled because different sub-
terms should have different labels.

The labeled terms)\a{‘b’c}x.xb and y*[x\2")g; are not initially labeled because sets of labels
over binders should coincide with the set of leaf labels of the bound variable.

The following easy lemma (Lem. [6.18) states that the names of the steps in an initially
labeled term have a very particular shape.

Definition 6.17 (Initial redex names). A redex name is said to be initial according to the
following definition by cases:

1. A db redex name is initial if it is of the form db(a) with a € 7.
2. A 1s redex name is initial if it is of the form aeb with a,b € Z.
3. A gc redex name is initial if it is of the form {® e a}.

Lemma 6.18 (Redexes in initially labeled terms are initial). Lett € T* be initially labeled. Let
1t be the name of some redex in t. Then y is initial.

208

Proof. By cases.
1. db redex. t = @*((A\Bx.t')L, s'); name: db(b).

2. 1s redex. t = C{ax*)[x\t']o; name: ae 1 (). Note that 1 (t') € Z given that ¢’ is an
initially labeled term.

3. gc redex. t = t'[x\s|o; name: {ae 1 (s') | a € Q}. As before, 1 (s') € Z since s’ is an
initially labeled term. Moreover, since a gc step applies, vl,(t') = &, hence Q = {®}.

]

The following lemma proves the Initial property from the Bestiary of Section|[6.2.1}

Lemma 6.19 (Initial property). Lett € T* be initially labeled. IfR : t Y5, s and S : t %, u
are different steps, then p # v.

Proof. If R is a db step, its name is of the form ;1 = db(a), where a is the label decorating the
A. Suppose that v = db(a). Then S is a db step contracting the same A, hence R = S.

If R is a 1s step, its name is of the form ;1 = a eb, where a is the label decorating the
contracted variable. Suppose that v = a e b. Then S is a 1s step contracting the same variable,
hence R = S.

If R is a gc step, its name is of the form ;u = {a e 1 (a) | a € (2}, where a is the external label
of the term s in the substitution ¢[z\s]q erased by R. Suppose that v = {ae 1 (a) |a € Q}.
Then S is a gc step erasing the same substitution, hence R = S. [

Next we define the notion of correctly labeled terms. To do so, we also define an auxil-
iary predicate that states whether a term is good. Roughly speaking, a term is good if the
distinguished initial label e only appears as a result of applying the —;;5 rule, and the dis-
tinguished initial label ® only appears decorating the sets 2 of the binders A&z.t and t[x\s]q
when x ¢ fv(t).

Definition 6.20 (Correctly labeled terms). A label a € L is good, written v’ («) if it verifies
the following inductive definition:

a¢{e,® = V(a)
V() av(B) = v(ap)
Vi) aV(B) = V(aep)

V(o) = V([a])
V(a) = V(la])
V(a) = V(db(a))

A set of initial variables (2 is good, written v'(£2), if it is non-empty, it contains no occurrences
of e, and it does not contain occurrences of ® unless it is precisely {®}. Formally:

VO L Qo)A (e ¢ QA @EQVQ=(®))

209

Atermt € T* is good, written v/ (t), if every label and set of labels is good. More precisely:

V() — V(29)
V) AV Q) AV = V(A\3zx.t)
V) AV (t)Avi(s) = v (Q*t,s))
VAV () AV(Q) = V(t[z\s]a)

We also extend the notion of goodness to contexts, by declaring v'([J) to hold. Note that
v (C(t)) holds if and only if v'(C) and v'(¢) hold.

Aterm t € T' is said to be correctly labeled if and only if all of the following conditions
hold:

1. Good: v (t) holds.
2. Correct abstractions: for any subterm A\3z.t' we have vl (') < Q.
3. Correct substitutions: for any subterm t'[z\s'], we have vl (') < Q.

For points [2} and [3} note that the inclusions are set-theoretical, i.e. we only care about the
underlying set of the multiset vl ().

Example 6.21 (Correctly labeled terms). The labeled term A%’ i g (@)],|ab(e) J}:U.xc[db(dﬂ is a correctly
labeled variant of \z.x.
The labeled terms 2** and y**® are not correctly labeled because a e and a®b are not good.

The labeled term N}y, x.x x4 js not correctly labeled because {d} is not a subset of {®}.

The definition of initially and correctly labeled terms is also extended to derivations. A
derivation p : t —, s is said to be initially (resp. correctly) labeled if ¢ is initially (resp.
correctly) labeled. By Rem. any derivation p : ¢ = sc s in the unlabeled LSC has an
initially labeled variant p' : t' —, s’

Next we show that the notion of correctly labeled terms is indeed invariant by the rewrit-
ing relation (—).

Remark 6.22 (Initially labeled terms are correctly labeled). Initially labeled terms are correctly
labeled.

Lemma 6.23 (Reduction preserves correctly labeled terms). Lett € T* be a correctly labeled
term andt —; s. Then s is correctly labeled.

Proof. In the proof of this lemma we use the fact that if v'(¢) and v'(«) then v'(« : t) and
v (e :t), which can be easily proved by induction on ¢. The proof proceeds by induction on
t. The interesting cases are when there is a step at the root of the term:

1. db step. @ ((\oa.t)L, t2) 2, oo a[db(B)] : [2\[db(8)] : ta]aL

1.1 Good: since the invariant holds for ¢t we have: v’ (), v (3), v/ (2), v/ ('), v (t2), and
v/ (L) which implies v (a[db(5)]), v (|db(8)]). Moreover, v’ (a[db(5)] : t'[z\|db(5)] :
ta]al).

210

1.2 Correct abstractions: immediate by the invariant on ¢.

1.3 Correct substitutions: for substitution nodes in ¢’ and ¢, it is immediate by the
invariant on ¢. For substitution nodes in L, it is also immediate by using Lem.
since L cannot bind any variable in t5. Finally, for the substitution [x\|db(3)] :
to]q we use the fact that ¢ has correct abstractions and Lem. to conclude that
vl (afdb(B)] : t') = vI.(¥') < Q.

o L(e) e 1(t2) ,
2. 1s step. CLax*P[x\tz]o ———>¢1s Clace : to)|x\ta]a-

2.1 Good: by the invariant on ¢t we have that v'(C), v'(a), v'(t2), and v (). So
vV (Clace :ty)[x\ta]q).

2.2 Correct abstractions: abstractions internal to ¢, or internal to C are correct by the
invariant on ¢. The only non-trivial case is that of abstraction nodes in the path to
the hole of C. Let C be of the form C;(\2y.C,). Then vl (Co{z®)) = vl,(Colax : t5))
since © # y, and ¢, cannot have free occurrences of y. We conclude by the fact
that vl,(Co(z*)) < ©, as the invariant holds for ¢.

2.3 Correct substitutions: the only non-trivial case is for substitutions lying in the path
to the hole of C. Let C be of the form C;{Cz[y\s]e). Then vl,(Colx*)) = v, (Colcx :

t2)). We conclude similarly as in the previous item.

{ae(t2) | ac2} . . o .

3. gc step. t1[z\ta]o —————¢ gc t1 With = ¢ fv(t1). This case it is immediate by the
fact that the invariant holds for ¢.

]

Definition 6.24 (Initially reachable terms). A term ¢ is said to be initially reachable if there
exists an initially labeled term ¢, such that ¢, —, ¢.

Remark 6.25 (Initially reachable terms are correctly labeled). Initially reachable terms are cor-
rectly labeled by the fact that reduction preserves correct labelling (Lem. [6.23).

Labeling morphisms

Sometimes it is useful to rename labels. For example, the following derivation in the LLSC:
(2) [2\2Tqapy =50 (227 2) [2\2Tapy

May be renamed by mapping the label a to d e e, the label b to d e e, and the label c to fe g,
obtaining:
(xdoe $d.e)[$\2f.g]{d} e_°f)€ (Zdoeofogmdoe)[x\zfog]{d}

Note that the set {a, b} collapses to the set {d} and that the name of the 1s redex is not
deeefegbut rather e o f. This mechanism can be formalized with the following notion of
labeling morphism.

211

Definition 6.26 (Labeling morphism). A labeling morphism ¢ is a function ¢ : £ — L ho-
momorphic on all label constructors, except for initial labels:

¢p(e) = o (@) = ® ¢(db(a)) = db(¢(a))
¢lal) = fe(@)] ola]) = [o(a)] dlaB) = oéla)e(f)

If Q is a set of labels, we write ¢(£2) to stand for {| (¢(€2)) | @ € ©}. The domain of labeling

morphisms is extended so that they may be applied on terms as follows:

p(z®) = 9 sABzt) = Ao ze(t)
$(@(t,s)) = @I(g(t),6(s)) o(tfx\sla) = o(t)[2\d(s)]s(e)

Labeling morphisms may also be applied on contexts, by declaring that ¢([]) = [], and on

e
4(%
(t)

redex names, as follows:

¢(db(a)) = db(¢(a))
p(aef) L (¢(a)) o1 (0(8))
¢o({aeflacQ}) = {ae? (9(F))|ac ()}

Remark 6.27. A labeling morphism is uniquely determined by its value on the set of initial

labels Z.

Lemma 6.28. If ¢ is a labeling morphism, the following hold for any label o € L and any term
te T

3.1 (o(1) = 1 (o(1 (1))

Proof. Items 1. and 2. are straightforward by induction on . Item 3. is a consequence of item

2. [

Proposition 6.29 (Labeling morphisms are functorial). Let ¢ be a label morphism. Then for
each step R : t %5, s there is a step ¢(R) : ¢(t) M@ o($).

Proof. By induction on the context C under which the redex in ¢ is contracted: The interesting
case is when there is a step at the root of the term.

1. db step

db(p3)

@ (A2 z.t)L,)
¢(—)L o(—)
@@ () 2. 6(1)H(L), 3(5) —2L o g(afab(B)]) : o(8)[2\G(|ab(B)]) : d(s)]se (L)

212

2. 1s step

L) o 1(2)

clayl\ta
¢()l ¢(—)j
()@ Y[2\d() oy ZL D) () o+ GG ooy

Note that ¢(] (a) e 1 (t)) = | (¢(1 (a))) e 1 (&(1 (£))) = | (d(c)) o 1 (¢(t)) by Lem.[6.28]
3. gc step Let = ¢ fv(t) and:

{ae1(s) | acqt}

t[x\s]q t
¢>()j ()
O()[2\B(5) |y AP)

Note that ¢({ae 1 (s) [a e Q}) = {ael (4(1(s))) [a€ 1 (Q)} = {aeT (¢(s)) [ac
1 (©2)} by Lem.[6.28]

O

As a consequence of the previous proposition, labeling morphisms can be applied on

derivations, setting ¢(R; ... R,) = ¢(Ry) ... p(R,).

6.3.2 Orthogonality

In this section we show that the LLSC is confluent. Actually, we prove the much stronger prop-
erty that the LLSC forms an orthogonal axiomatic rewriting system in the sense of Mellies, as
defined in Def. [2.39]

We begin by showing that the LLSC is weakly Church—Rosser. Recall from Def. that
an abstract rewriting system is weakly Church-Rosser if every peak <—— formed by exactly
two steps can be closed with zero or more steps —»«—. In the labeled calculus a stronger result
can be established, which we call strong permutation. It states that every peak <%, where 1

and v are the names of the steps, can be closed with zero or more steps of the same name, that

is Do,

Proposition 6.30 (Strong permutation — & Prop. . LetR:t %, sand S :t %, u be
steps in the LLSC. Then there exists a term r and two derivations o : s Loy randp:u LN
Diagrammatically:

The proof is constructive, and:

1. If R is a db step, o consists of exactly one step.

213

2. If R is a 1s step, 0 may consist of one or two steps.
3. If R is a gc step, 0 may consist of zero or one steps.
And symmetrically for S and p.

Proof. By exhaustive case analysis. See the appendix for the detailed proof. Below we show
three examples that illustrate some interesting situations:

1. Nested db steps.

e db(b) R
@ ()\?c}x € @d<)\{f}y'yfa Zg)) z? aldo(b)le [l’\@ (A{f}yyfa Zg)]c
db(e) db(e)
i db(b) l

@a(/\?c}x'xc’ y d[db(e)]f [y\z |db(e)|g]{f})) xa[db(b)]c[x\yldb(b)Jd[db(e)]f[y\zldb(e)Jg]{f}]c

2. Duplication of a 1s step by a 1s step.

22\ oy [9\ 2] by —2 2 * [\ Y] oy [\ 2)

bec)

bec 2P L\yP [0\ 2 by
bocl
$a[$\2b°c]{a} [y\zc]{b} _aeb za'b'c[x\zb'c]{a} [y\zc]{b}

Note that, if there is duplication, there are exactly two ways to close the diagram, depending
on the order in which the copies of the duplicated steps are contracted.

3. Erasure of a 1s step by a gc step.

a c {®eb} c
2 [w\y* ey [V\2) oy —= 2[4\ 2]y

bec| [

a ocC c {®°b} a c
T [w\zb]{@} [y\z]{b} —T [y\z]{b}

O

Definition 6.31 (Residuals for the LLSC). Recall that the LSC with its usual residual relation
forms an orthogonal axiomatic rewriting system (Prop. [6.3). The LLSC is provided with a
residual relation by relying on the residual relation of the LSC as follows.

Ift € T* is alabeled term, let us write |¢| € T for the term without labels that results from
erasing all labels from ¢. Similarly, if R : ¢ —; s is a labeled step in the LLSC, let us write
|R| : |t| —Lsc |s]| for the corresponding step in the LSC, via the obvious bijection.

Let R : t —, sbe alabeled step and consider two labeled steps S : ¢ —, wand Sy : s — 1.
We declare the residual relation S; (R) S5 to hold in the LLSC if and only if the usual relation
|S1| {|R]|) |52] holds in the LSC.

Proposition 6.32 (Orthogonality). The LLSC forms an orthogonal axiomatic rewriting system.

214

Proof. It can be checked that the LLSC provided with the residual relation of Def.[6.31|forms an
orthogonal axiomatic rewriting system. The first three axioms: Autoerasure, Finite Resid-
uals, and Finite Developments (FD), are immediate consequences of the fact that the LSC
is an orthogonal axiomatic rewriting system. For example, to prove FD, suppose that there
is an infinite development t; —; t5 —, ... of a set of coinitial steps M in the LLSC. Then
[t1] —isc |t2] —isc ... is an infinite development of the set {|R| | R € M} in the LSC,
contradicting the fact that the LSC enjoys the FD property.
The Semantic Orthogonality (SO) axiom is a consequence of Strong permutation (Prop.[6.30).

Strictly speaking, SO can be checked by exhaustively inspecting all the diagrams constructed
in the proof of Prop.[6.30|and checking that they are indeed permutation tiles (cf. Def.[2.37). [

The following lemma proves the Copy property from the Bestiary of Section and a
weak form of the converse implication:

Lemma 6.33 (Copy property). Let Ry, S, and Ry be steps such that src(R;) = src(S) and
src(Ry) = tgt(S). Then:

1. If Ry {S) Ry in the LLSC, then Ry and Ry have the same name.
2. Ifsrc(Ry) is initially labeled and Ry and Ry have the same name, then Ry {S) R,.

Proof. Item 1. is an immediate consequence of Strong permutation (Prop. [6.30). Namely, if we
consider the peak formed by S and R, Prop. ensures that the step R, used to close the
diagram has the same name as R;.

We omit the technical proof of item 2. Define the anchor label of a step as follows. Given
a db step named db(b), its anchor label is the label decorating the lambda, that is, b. Given a
1s step named a e b, its anchor label is the label decorating the contracted variable, that is, a.
Given a gc step named {a; eb, ... a, eb}, its anchor label is the label decorating the erased
substitution, that is, b. Let S : ¢ —; s and recall that ¢ is initially labeled so there is a single
occurrence of the anchor label of R; in ¢. Consider three cases, depending on whether the
number of residuals #(R;/S) is 0, 1, or 2.

0. If R;/S = & then S is a gc step erasing the contracted substitution. Then S erases the
unique occurrence of the anchor label of R;, that is, the anchor label of R; does not
appear anywhere in in s, contradicting the fact that R; and R, have the same name. So
this case is impossible.

1. If R, /S = {R,} then S does not erase or duplicate of the anchor label of R;. This means
that there is a unique occurrence of the anchor label of R; in s, and this implies that
Ry = Ri.

2. If Ry/S = {Ry1, Ry} then S makes exactly two copies of the anchor label of R, so
there are exactly two occurrences of the anchor label of R; in s, and this implies that
Ry € {Ry1, Roa}.

]

215

Remark 6.34. The converse of the Copy property does not hold if the term is not initially
labeled, and even if it is initially reachable. For example, the source of R; and S below is
initially reachable but not initially labeled, and even though R; and R; have the same name,
it is not the case that Ry (S) Rs:
aec S(bec)
(2*2®) [2\y Ty [¥\2 ey == (** ™) [\ Ty [9\2) — (** 4" *) [2\y Ty [0\ o)
Rl(c.d)i Rz(cod)l/

(e) [\ T [\2 e @2 D [2\y Ty [8\ 2 ()

One important corollary of Orthogonality is that labeling is consistent with permutation
equivalence.

Proposition 6.35 (Permutation equivalent derivations yield the same labellings). Let p; and
p2 be permutation equivalent derivations, i.e. py = po. Let p{ and p5 be labeled variants of p;
and py respectively such that src(pt) = src(ph), i.e. they start on the same labeled term. Then
tgt(pl) = tgt(pl), i.e. they end on the same labeled term.

Proof. Recall from Def. that = is the reflexive, symmetric and transitive closure of the
one-step permutation axiom ='. We proceed by induction on the derivation that p; = po.
The reflexivity, symmetry and transitivity cases are immediate. The only interesting case is
the axiom, i.e. when:

pr=TiRon="115pm=ps

where p is a complete development of R/S and o is a complete development of S/R. Consider
the labeled variants Tf, R, S%, of, pt, Tf, and TQM of 7y, R, S, o, p, T2, and 7, respectively, such
that:

o 70 R* o 7¢ is a labelled variant of 71 R o 75, whose source is t‘,
o« 71 S pt 7£ is a labelled variant of 7y S p 75, whose source is t°.

Then we know that R’ o* has the same source as S* p’, and we claim that they have the same
target. This is a consequence of the strong permutation property (Prop.[6.30), observing that
every diagram in the proof of Prop. is closed with the relative residuals of R and S. Since
R’0* and S* p* have the same target, then 7¢ = 75°, so we conclude that p{ and pj have the

same target, as required. U

6.3.3 Weak Normalization for Bounded Reduction

Consider the following infinite derivation in the LLSC, starting from an initially labeled vari-
ant of the non-terminating term 2 = (Az.zz)(Azr.zzx) and lifting the reduction 2 —»sc
) —»sc ... to the labeled calculus:

@a()\l{)d,e}x @C(’xd Z))\{h 1}x Q8 (xh7 xl))
—», @3aldb(b)] °()\?h° a}ldb blf r.@8 (1 21,)\e}: ?Ldb(r.@8(zh 21))
—», @2l db(doa[db(b)]f)]g(/\?'ll;b(d'aldb(b)Jf)Je'aldb(b)J)

e

216

One can see that the names of the db steps become progressively larger in size. More precisely,
the name of each db step is strictly contained in the name of the following db step, as evidenced
by the underlining:

db(b)
(d e a|db(b)|f)
(he|db(dealdb(b)|f)|e ealdb(b)|f)

db
db

This means that the names of the db steps become not merely larger but also deeper in height,
if labels are seen as trees. Informally speaking, this is because the LLSC is designed to verify
the Creation principle in the Bestiary of properties given in Section Recall that the
Creation principle states that whenever a step 2 creates a second step .5, the name of R is
a sublabel of the name of S. In this case, each db redex contributes to the creation of the
following one, and as a consequence the name of each db step is a sublabel of the name of the
following one.

In this section we show that if the rewriting relation of the LLSC is restricted so that the
height of the names of steps is bounded, the resulting rewriting relation turns out to be weakly
normalizing. In the following section (Section we prove that it actually turns out to be
strongly normalizing. Note that the strong normalization result explains and generalizes the
example given above: it means that whenever we have an infinite labeled reduction sequence
t1 —¢ to —y ... the names of the steps must be labels whose height cannot be bounded by
any integer.

Below we introduce the auxiliary calculi LLSC” and LLSC"/, which only allow contracting
a step R if the name of R verifies a given predicate P. We also introduce the notion of bounded
predicate.

Definition 6.36 (The P-restricted LLSC). Let P be a predicate on redex names. We define
two calculi, LLSC” and LLSC?”. The set of terms is 77 in both cases. The reduction relation
—y p is defined as in the LLSC, restricted to contracting only steps whose names verify the
predicate P. The reduction relation —; p; is defined similarly, but restricted to contracting
db and 1s-steps:

tLips & t 5,5 A P(p)holds

tLoprs BLN (t Bpgps v t Bp1g8) A P(u) holds

Note that since there are no gc-steps, the name of a step in the LLSC’/ can always be under-
stood as a label. We write t —; p s if t %4 p 5 holds for some redex name s, and similarly for

—¢PI-

Definition 6.37 (Height of labels and redex names). We define the height of a label as follows:

h(a) = 1
h(la]) = h(la)) = h(db(a)) = 1+ h(a)
h(aB) = max{h(a), h(8)}

217

Similarly, we define the height of a redex name as follows:

db redex: h(db(e)) © 1+ h(a)
1s redex: h(ae B) e max{h(a), h(5)} where o, 3 are atomic
gcredex: h({aef|ac (1} o max{h(ae) |ac)} where [isatomic

Note that in the case of db and 1s redexes the height of the redex name coincides with its
height if seen as a label.

Definition 6.38 (Bounded predicate). A predicate P on redex names is said to be bounded if
and only if there exists a bound H € N such that for every redex name p, if P() holds then
h(p) < H.

The result of weak normalization from this section should be seen as a stepping stone
for the stronger result of strong normalization in the next section. In particular, for the time
being, we can dispense of gc steps and work exclusively with the LLSC”/. Our current goal
is then to prove that the rewriting relation £, p; is weakly normalizing if P is bounded. This
is the content of Prop. below. We sketch the structure of the proof:

1. In Prop.[6.41] we show that the LLSC without gc verifies the Creation principle in the
Bestiary of Section

2. In Lem. 6.43, we show that among the steps from a LLSC”” term, there is at least one
non-duplicating step.

3. In Lem. |6.44] we show that contracting a non-duplicating step has the following effect:

3.1 Every other step is preserved (i.e. it has exactly one residual).
3.2 The created redexes have deeper names than the contracted redex, i.e. the height

of the label increases.

These results will allow us to define a measure on terms that always decreases when contract-
ing a non-duplicating redex.

Creation principle

The following relation of name contribution corresponds to the informal notion that the name
of a redex is “contained” in the name of another redex.

Definition 6.39 (Name contribution). A redex name p is said to directly contribute to a redex
name v, written p Y20 1, if one of the three following cases holds:

db(8) 5T db(a[db(8)]7)
db(B) T ae|db(B)] where « is any atomic label
L(a)et(8) =5 av(aep)

A redex name y is said to (indirectly) contribute to a redex name v, written p ey if M(Wf

).

218

Name

Remark 6.40. If u —7 v then h(p) < h(v).

Proposition 6.41 (Creation property for the LLSC without gc). Lett %5, s 5, u be a
sequence of two steps, each of which may be a db step or a 1s step but not a gc step. If the first
step creates the second one, then p 'Lainf V.

Proof. Recall that the notion of residual in the LLSC is defined in terms of the notion of residual
in the LSC (Def.[6.31), i.e. the residual relation Sy (R) S, holds for three given labeled steps if
and only if | S| {|R|) | S2| holds for the underlying unlabeled variants. Recall also that in the
LSC there are seven creation cases (Prop. [6.4), three of which involve gc steps. So it suffices
to analyze the remaining four creation cases:

1. db creates db. The situation is:
@Y (@((ADz.(\gy.t)Ly)Ly, 5)Ls,)
PO, @ (A PFy.t) L[\ [ab(B)] : s]aLaLs, u)
So indeed db(3) 5% db(5[db(3)]e).

2. db creates 1s. The situation is
@ (A0l H)L, 1) T yTab(B)] - cla®H[w\[db(B)] : oL

By Lem. v[db(B)] : ¢z’ is of the form C'¢z®) with | (§) = | (¢'). Moreover,
by Lem. m 1 (ldb(B)] : t) = 1 (|db(8)]) = |db(8B)]. So we conclude that db(3) ¥
| (0) e |db()], as required.

3. 1s creates db upwards. The situation is:
i o 1(d .
@ (7L [2\(MSyy.5)LalaLs,) “2219, @ (AL 0y.8)LoLy [0\ (\Sy.5)Lo]aLs,)

So indeed | () e 1 (8) "5 db(v e 4).

4. 1s creates db downwards. Similar to the previous case.

Non-duplicating steps

Definition 6.42 (Non-duplicating step). Given any axiomatic rewriting system with a notion
of residual, a step R : t — s is said to be non-duplicating if any coinitial step S : ¢ — u has at
most one residual after R, that is, #(S/R) < 1.

Lemma 6.43 (Existence of non-duplicating —, p; -steps). Lett € T* not in —; py -normal
form. Then t has at least one non-duplicating — pr -redex.

219

Proof. Sincet is notin —, p; -normal form, it has at least one —; p; -redex. Let R : ¢ —; p; sbe
the step whose anchor lies more to the right. Recall that the anchor of a db step is the variable
bound by the A, and the anchor of a 1s step is the variable affected by the substitution. Let
S :t —¢ p;u be any step coinitial to R, and let us check that #(S/R) < 1. If R is a db step,
then trivially #(S/R) < 1. If R is a 1s step, suppose that #(S/R) > 1. Then the step R is
of the form C;(Colz*)[z\r]) — C1{Cola® : r)[x\r]) and the anchor of S must lie inside .
This contradicts the fact that R is the step whose anchor lies more to the right. [

Lemma 6.44 (Effect of contracting a non-duplicating step). Let namesp;(t) denote the multiset
of names of —; pr -steps of t. Let R : t =, p; s be a non-duplicating step. Then there exist
multisets of labels m and n such that:

namespr(t) = m w {a}
namespr(s) = mwn

and moreover h(«) < h(B) for every label 3 € n. Note that « is the name of the contracted step
and n are the names of the created steps.

Proof. Since « is the name of a step of ¢, we can write namesp;(t) as namesp;(t) = m w {a}.
Since R is a non-duplicating step and it is not a gc step, given any step S : ¢t —; p; u such that
R # S we have that S has a single residual, that is, S/R is a singleton. Moreover, by the Copy
property (Lem. [6.33), S/R has the same name as S. So we have that namesp;(f) = m w n,
where n is the multiset of names of the redexes created in this step. Recall that the name of the
contracted redex contributes to the names of the created redexes (Prop. . That is, o '\lir»nf I}
for every (8 € n. This implies, in particular, that h(«) < h(/3) for every (3 € n. O

Weak normalization for bounded reduction without gc

We are now able to prove the main result of this subsection. The argument for weak normal-
ization relies on the extension of a well-founded ordering (X, >) to a well-founded ordering
(>) over multisets of elements of X, as described in Thm.

Proposition 6.45 (Bounded reduction is weakly normalizing). If P is a bounded predicate,
then —, p; is WN.

Proof. Let H € N be a bound for the bounded predicate P. Consider the following measure,

which takes a multiset of labels and yields a multiset of integers, #(m) < {H—h(a)|a € m}.

This measure can be extended to work over terms, by declaring #(t) «f #(namesp;(t)). Note
that #(¢) is finite and its elements are non-negative integers. The proof relies on the following

claim:

« Claim. If ¢t isnot in —, p; -normal form, there is a step t —, p; s such that #(t) > #(s).
Proof of the claim. Let t € T* be a term not in — p; -normal form. By Lem. it has
at least one non-duplicating redex R : t — p; s. By Lem. that there exist multisets
m and n such that namesp;(f) = m w {a} and namesp;(s) = m w n, where moreover
h(a) < h(B) for all 5 € n. It suffices to check that #(t) > #(s).

220

We begin by observing that #(t)(H — h(«)) > #(s)(H — h(«)). To see this, consider
any label that has the same height as «. It cannot belong to n, since all labels in n have
greater height than . Then #(n)(H — h(«)) = 0 and we have:

#()(H = h(a)) = #(m U{a})(H h(e))
> (m)(h(@))
7#(
7#(

m)(H h(@))
8)(h(e))

This observation implies, in particular, that #(t) # #(s). Now consider a value = €
Z=o such that #(s)(x) > #(t)(z). Since #(s)(x) > 0, there is a label § such that
x = H — h(p). Clearly h(B) # h(«a), since we have already proved #(t)(H — h(«)) >
#(s)(H — h(«)), which would contradict the fact that #(¢)(z) < #(s)(x). Therefore
#{a})(x) = #({a})(H -) = 0.

Moreover, there must be alabel 3’ € n of the same height as 3. By contradiction, suppose
that all labels of the same height as 5 were in m. Then #(n)(H —) = 0, which implies:

#()(H = h(p)) = #(m v {6})(1{ h(5))
= (m)(h(5))

7#(

#(

m w)(H h(B))
S)(h(B))

This also contradicts the fact that #(t)(x) < #(s)(z). Thenz = H — h(S") with 8’ € n.
Finally, we want to show that there is a non-negative integer y € Z, such that y > «
and m(y) > m(z). Let y := H — h(a). In fact, since 3’ € n is of greater height than
o, we have y = H — h(a) > H — h(f') = . Moreover, as we have already observed,

#(t)(y) = #()(H — h(a)) > #(s)(H — h(a)) = #(s)(y). This concludes the proof of

the claim.

By repeatedly applying the claim, it is immediate to conclude that —, p; is WN. []

6.3.4 Strong Normalization for Bounded Reduction

In this section we build upon, and strengthen, the normalization result of Prop. by show-
ing that the full LLSC (with gc) is strongly normalizing as long as reduction is restricted so
that the height of redex names is bounded. The structure of the proof is as follows:

1. First we show that — p; is increasing (Lem.|6.48). Recall from Def. that a rewriting
relation —< X? is increasing if there exists a function f : X — N such that z — y

implies f(x) < f(y).

2. Using the previous property, we conclude in Lem. that —, p; is strongly normal-
izing if P is a bounded predicate.

3. Finally, using a technical lemma to postpone gc steps (Lem. [6.50), we obtain the main
result (Thm. |6.51), which states that the reduction relation for the full LLSC is SN, as
long as redex names have bounded height.

221

Strong normalization for bounded reduction without gc

Definition 6.46 (Measure of a labeled term). We define the size of a label as follows:

la] 1
llall = llel] = [db(@)| = 1+ [a]
la Bl < o]+ 8]

Given a labeled term, its measure |t|| is defined as the sum of the sizes of all its labels:

o H def

Jz= =l

def
Mgz t] = ol + [

def

j@t,s) = lal+]+ sl
def

[tlz\slal = [t]+ |s]

The measure of a context |[C|| is defined similarly, by declaring] =

0.

Lemma 6.47 (Properties of the measure of a term). The measure of a labeled term has the
following properties:

L el = el +]

2. ot = llaf + 2]
Proof. Both items are straightforward, by induction on C and ¢ respectively. [
Lemma 6.48 (Labeled reduction without gc is increasing). Ift —, pr s then |t| < |s].

Proof. By induction on the context C under which the —, p; redex in ¢ is contracted. The
inductive cases are easy by induction. The interesting case is when there is a step at the root:

1. db step. t = Q*((\oz.t')L,) pr[aldb(B)] : t'[x\|db(5)] : s']qL = s. Then:

It = lal + 181+ 1¢] + L] + '] by Lem.[6.47]
< e+ 28] +] + L] + '] + 4
= s by Lem.[6.47]

2. 1s step. t = ClaH[2\t']o “2L1, i clace - #5[2\H]o. Then:

[l = lel + =] + 1] by Lem. [6.47]
= [l + llad + 1]
<[l + lladl + [+ 1] + 1
= [l + o] +[#] +]
= lCf + fece - '] +] by Lem. [6.47]
= sl

222

Lemma 6.49 (Bounded reduction in the calculus without gc is strongly normalizing). Let P
be a bounded predicate. Then — p; is SN.

Proof. Note that we already know that —; p; is weakly Church—Rosser, weakly normalizing,
and increasing:

1. WCR. This is a consequence of Strong permutation (Prop.[6.30). Recall that in Prop.[6.30]
all peaks <~% are closed with steps with the same name <<, So if we suppose that
P(p) and P(v) hold for the names of the steps in the peak, the steps closing the diagram
are also related by — p; .

2. WN. This has been shown in Prop.
3. Inc. This has been shown in Lem.

Moreover, Klop-Nederpelt’s Lemma (Lem. [2.22), asserts that WCR A WN A Inc —> SN,
which concludes the proof. [

Strong normalization for bounded reduction with gc

In order to extend the strong normalization result to the full calculus, including the gc rule,
we need the following technical lemma that allows to postpone gc steps.

Lemma 6.50 (Postponement of gc in the LLSC-calculus — & Lem.[A.80). Let p : t —; s bea
reduction sequence. Then there exists a term u and a reduction sequence o : t —¢qp 15 U —¢gc S

Moreover, let #,(p) denote the number of redexes named ji that are contracted along the
reduction sequence p. Then:

1. The number of db and 1s redexes is preserved:

#,(p) = #,(0) if 1 is the name of a db or 1s redex

2. The number of gc redexes may increase:

#,(p) < #,(0) if p is the name of a gc redex

3. The reduction o contracts the same names as p:

#,(0) >0 = #,(p) > 0 for any redex name

Proof. See the appendix for the full proof. [

The following is the main result of this section:

Theorem 6.51 (Bounded reduction in LLSC” is strongly normalizing). Let P be a bounded
predicate. Then labeled reduction —; p is SN.

223

Proof. Suppose given an infinite reduction sequence p : % “—1>g pty... ﬁy pty.... We
show how to construct a second infinite reduction sequence: o : s PSSl oy pSp...
consisting only of db and 1s steps. This construction contradict the fact that LLSC”” (without
gc) is strongly normalizing for bounded families of labels, as already shown in Lem.

First, note that there cannot be an infinite reduction sequence t —», p ... consisting
only of gc steps, since — 5. is SN (as it strictly decreases the size of the term). To alleviate
notation, given i < j, let ¢; L, t; stand for ¢; ﬂm tivy ... ﬁ»g t;. To construct o, proceed
by induction on n, with the following invariant. At the n-th step, for n > 1, we will have
built:

« areduction sequence s Yo p sy of length exactly n;

« consisting of only db and 1s steps;

« and such that ty —>¢ 415 Sn —¢gc th, for some k,, = 0.
We prove the base case and inductive step:

+ Base case, n = 1. By the previous remark, there cannot be an infinite sequence of gc

Hioy
steps, so we can choose k; > 0 such that ¢, LN gc b o s tk,. By postponement

(Lem. [6.50) there exists a term s; such that ¢, k@ abuls 51 —Prge bk, . Take sg 1=t and

vy = Iu’k‘1'

+ Induction, n = n + 17 We already have ¢y —>/ 4o 15 Sn —/gc ti,- As before, since
there cannot be an infinite sequence of gc steps, we can choose k.1 > k, such that

P, .
Sn 0 ge thy, —P0gc ———0dbu1s k.- By postponement, there exists a term s,,41 such

Fhop i1
that s, —— dbuls Sn+l 0 gc tkn+1- Take Unt+1 = Mg, q-

Finally, since v,, = ,, , it is clear that P(v,,) must hold for all n. O

6.3.5 Confluence

In this section we give two proofs that the LLSC is confluent. Both proofs are consequences of
previous facts that we have already established. The first proof is based on purely syntactical
methods, while the second one relies on residual theory.

Lemma 6.52 (Bounded reduction in the LLSC” is confluent). Let P be a bounded predicate.
Then the rewriting relation — p is Church—Rosser.

Proof. By Newman’s Lemma (Lem. [2.20), is suffices to show that —, p is SN (cf. Thm. [6.51)
and WCR (cf. Prop. [6.30). O

Theorem 6.53 (The LLSC is confluent). The rewriting relation —, is Church—Rosser.

Proof.

First proof. If p : t -, sand 0 : t —; u, define P(u) to hold iff i is the name of
redex contracted in p or o. Since the number of such labels is finite, P is bounded and by the
previous result (Lem. we conclude.

224

Second proof. We have proved that the LLSC is an orthogonal axiomatic rewriting sys-
tem (Prop. [6.32). Moreover, orthogonal axiomatic rewriting systems enjoy algebraic conflu-
ence (Coro. [2.56), which is a strong form of confluence.]

Chapter 7

Applications of the Labeled Linear
Substitution Calculus

7.1 Introduction

In his PhD thesis [109], Jean-Jacques Lévy defined a notion of redex family for the A-calculus,
with the goal of understanding what an optimal implementation of the A-calculus would look
like. In a straightforward implementation of the A-calculus, each step in the implementation
corresponds to a single [-step. If the implementation has some non-trivial mechanism of
sharing, however, each step in the implementation may correspond to the simultaneous con-
traction of many [3-steps. Lévy proved that if an implementation of the A-calculus contracts,
in each step, a maximal set of J-steps belonging to the same redex family, in such a way that at
least one [-step is needed, then the implementation is optimal. Later, in [78]], Lévy and Gérard
Huet studied standardization and normalization in the setting of orthogonal term rewriting
systems. In particular, they showed that if a reduction strategy repeatedly contracts a needed
step, the strategy reaches a result whenever possible, i.e. it is normalizing.

In their work [61]], John Glauert and Zurab Khasidashvili generalized the results of opti-
mality and normalization to any abstract rewriting system, provided that it comes equipped
with well-behaved notions of residuals and redex families. The abstract axiomatic structure
encapsulating all the desired properties is called a Deterministic Family Structure in [61]].

In the previous chapter, we have defined a Lévy labeled calculus LLSC (Section and
we have proved that it enjoys a number of properties (Section [6.3). In this chapter, the Lévy
labeled calculus LLSC is used as a tool to prove properties about the usual, unlabeled, LSC. In
particular, the labeled calculus LLSC is used to show that the unlabeled LSC forms a Deter-
ministic Family Structure, and consequently to obtain optimality, standardization, and nor-
malization results. Most of the results concern the LSC without gc.

7.1.1 Our Work

This chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows.
We highlight in boldface what we consider to be the main contributions:

225

226

. In the previous chapter (Rem. [6.8), we have already seen that the LSC with the gc rule

does not enjoy the property known as redex stability. In Section using the LLSC
as a tool, we show that, however, the LSC without the gc rule does enjoy redex

stability (Prop.[7.1).

In Section [7.3] we recall Glauert and Khasidashvili’s notion of Deterministic Family
Structure (DFS). Then, using the LLSC as a tool, we prove that the LSC without gc
forms a Deterministic Family Structure (Thm.[7.13).

When the properties of Deterministic Family Structures are translated into the language
of Lévy labels, the statement that the LSC forms a DFS can essentially be summarized as
the statement that the LLSC verifies the properties 1-7 in the Bestiary of Chapter|6]Sec-
tion[6.2.1] The property of Termination for the LLSC corresponds to the property usually
known as Generalized Finite Developments or Finite Family Developments. The property
of Contribution (Prop. is not immediate and relies on Finite Family Developments.

. In Section[7.4 we recall Lévy’s optimality result for the A-calculus (Thm.[7.17), we also

review Glauert and Khasidashvili’s abstract optimality result (Thm.|7.24), and, as a corol-
lary, we derive an optimality result for the LSC without gc.

. In Section [7.5| we recall the problem of standardization, and we propose a standard-

ization procedure for Deterministic Family Structures (Prop.|7.39), inspired on a
standardization result by Klop. As a corollary, we obtain a standardization result for the
LSC without gc (Coro.[7.43).

In Section we recall the notion of normalization, and we prove a normalization
result for Deterministic Family Structures (Prop.[7.54), giving sufficient conditions
under which a reduction strategy is normalizing. As a corollary, we conclude that, in the
LSC without gc the call-by-name strategy (Coro. and a variant of the call-by-need
strategy (Coro. are normalizing.

Moreover, in Section|[8.2]in the Conclusion (Chapter[8), we discuss an open problem regard-

ing the definition of an extraction procedure for the LSC. We propose an extraction procedure

and we state two unproved conjectures about it.

7.2 Stability

Recall that an orthogonal axiomatic rewriting system is said to verify the Stability prop-

erty (Def. if any two steps that have a common residual also have a common ancestor.

Graphically:

A

To
5/ N
S/R ﬂ'/R/s
T3

227

In Rem. 6.8 we observed that the LSC with the gc rule does not have the Stability property.
On the other hand:

Proposition 7.1. The LLSC without gc has the Stability property.
Proof. Let R, S, T, T», and T3 be five steps such that 73 € T} /(S/R) n T»/(R/S). Consider

an initially labeled variant ¢}, of the term at the peak of the diagram, i.e. the source of R and
S. Consider also all the corresponding labeled variants R¢, S¢, T%, T¥, and Tf of R, S, Ty, T5,
and 73 respectively:

0N
t t
/95 /Ré* ¢'/Rf /SN
Tt tg TS
!

/4
T3

Since T% is a residual of both T} and 7%, by the Copy property (Lem. 6.33), we have that 77,
Ty and T¥ have the same name. We consider two cases, depending on whether T} and Ty
have an ancestor in té or not.

1. If T} has an ancestor in t5. Then there is a step T; such that T} € T¢/R, so T{ has the
same name as T by the Copy property (Lem. |6.33). Moreover, since 7T} and Ty have
the same name and ¢} is initially labeled, we have that T} € T;; /R using the converse of

the Copy property (Lem.[6.33).

2. If T has an ancestor in t§. Analogous to the previous case.

3. If T{ and Ty do not have an ancestor in t;. We argue that this case is impossible. Since
T! has no ancestor, by definition, it is a created redex. By the Creation property
(Prop. the name of R’ directly contributes to the name of 7%, so there are three
possibilities:

db(b) 3T db(a[db(b)]c)
db(b) Y ae|db(b)]
aeb ’\Lagnle db(aeb)

Note that since a, b, and ¢ are initial labels, the name of Tf uniquely determines the name
of R*. Symmetrically, T% is created by S, and the name of S* is uniquely determined
by the name of 7.

Finally, since T} and T} both have the same name, and they uniquely determine the
name of their ancestors, the names of R and S¢ must coincide. Moreover té is initially
labeled, so by the Initial property (Lem. we have that R* = S, and in particular
R = S, which is a contradiction.

]

228

7.3 Redex Families

In this section we study redex families in the LSC without gc. First, we review the definition
of Deterministic Family Structure (DFS), proposed by Glauert and Khasidashvili in [61]. A
Deterministic Family Structure is an abstract rewriting system that verifies a number of par-
ticular axioms. These axioms essentially request that there is a well-behaved notion of redex
family, which allows one to state and prove a generalized version of Lévy’s optimality result
in a framework that abstracts away the low level details of Lévy labels. Second, we prove that
the LSC without gc forms a DFS (Thm.[7.13). This construction relies crucially on the labeled
LSC that we have defined in previous sections (Def. [6.6).

We begin by recalling some notation and definitions:

« An axiomatic rewriting system has the unique ancestor (UA) property (Def. [2.31) if a
step has at most one ancestor, that is, whenever R; (S) R and Ry (S) Rthen R; = R,.

« An axiomatic rewriting system has the acyclicity property (Def.[2.31) if two steps cannot
erase each other, that is, whenever R # S and R/S = @ then S/R # O.

« Inan abstract rewriting system, a redex with history or hredex for short (see Section|6.1.1)
is a non-empty derivation. We are usually interested in the last step of the hredex, so
hredexes are typically written as of the form pR where p is a possibly empty derivation
and R is a composable step. The set of hredexes whose source is an object z is denoted
by Hist(x).

« In an orthogonal axiomatic rewriting system we write p = o whenever p and o are
permutation equivalent derivations (Def. [2.40).

We also give a formal definition of copy:

Definition 7.2 (Copy relation). Let pR and ¢S be coinitial hredexes in any orthogonal ax-
iomatic rewriting system. We say that 0.5 is a copy of pR, written pR < o if there exists a
derivation 7 such that p7 = o and R (1) S. Graphically:

Definition 7.3 (Deterministic Family Structure). A Deterministic Residual Structure (DRS) is
an orthogonal axiomatic rewriting system (cf. Def. that moreover verifies the unique
ancestor (UA) and acyclicity properties.

A Deterministic Family Structure (DFS) is a triple (A, ~, <), where A is a Deterministic
Residual Structure, ~ is an equivalence relation between coinitial hredexes whose equivalence
classes are called families, and — is a binary relation of contribution between coinitial families.
Two families are declared to be coinitial if their representatives are coinitial. The family of an
hredex pR is written Fam. (pR). Moreover, the following axioms hold:

229

1. IntTIAL. If R, S are different coinitial steps, then Fam. (R) # Fam.(95).
2. Copy. The inclusion (<) < (=) holds.

3. FINITE FaMiLY DEVELOPMENTS (FFD). Any derivation that contracts hredexes of a fi-
nite number of families is finite. More precisely, there cannot be an infinite derivation

RiRs ... R, ...such that the set {Fam.(R; ... R,) | n € N} is finite.
4. CrEATION. If pR is an hredex and R creates S, then Fam.(pR) < Fam.(pRS).

5. CONTRIBUTION. Given any two coinitial families ¢, ¢» € Hist(t)/ ~, the relation ¢; —
¢2 holds if and only if for every hredex oS € ¢, there is an hredex pR € ¢; such that
pR is a prefix of o (i.e. 0 = pRo’).

Note that the formal requirements imposed by the definition of a DFS correspond to the
informal principles 2-7 in the Bestiary of Chapter [6] Section While the Bestiary states
these principles using redex names, the notion of DFS states them using the more abstract
notion of family.

The axioms INITIAL, COPY, and CREATION correspond to the principles 2, 3, and 4, respec-
tively, in the Bestiary. Practically speaking, once one has defined an appropriate Lévy labeling
for a calculus, the proof that these axioms are fulfilled should be a technical but direct proof.
The axioms FINITE FAMILY DEVELOPMENTS and CONTRIBUTION correspond to the principles
5 and 7, respectively, in the Bestiary, and their proof is typically non-trivial.

Let us briefly recapitulate notation. So far we have introduced various axiomatic struc-
tures to deal with rewriting systems abstractly. The following table summarizes the relation
between these structures, from most general to most restrictive:

Abstract rewriting system (ARS) Def.[2.2] | Objects and steps.
Axiomatic rewriting system (AxRS) | Def.|2.30| | ARS + residuals.
Orthogonal axiomatic rewriting system (OAxRS) | Def.[2.39 | AxRS + AE + FR + FD + SO.
Deterministic Residual Structure (DRS) Def.|7.3] | OAxRS + UA + acyclicity.
Deterministic Family Structure (DES) Def.[7.3] | DRS + redex families.

The LSC with gc is not a Deterministic Family Structure

We have already shown in Rem. |6.8| that the full LSC (with gc) does not enjoy the Stability
property. A consequence of this fact is that the LSC with gc does not form a Deterministic
Family Structure. To see this it suffices to prove the following proposition, which can already
be found in Glauert and Khasidashvili’s work [61, Lemma 4.1].

Proposition 7.4. If (A, ~, <) is a DFS then A has the Stability property.

230

Proof. Consider a diagram as in the definition of Stability:

A

To
5y \Nn
S/R l'/R/s
T

That is, we have that R # S, where T3 € T} /(S/R) and T3 € T,/(R/S). Let us show that T}
and T, have a common ancestor 7. Note that RT; < (Ru S)T3and STy, < (Ru S) T3
by definition of the copy relation. By the Copy axiom we have that R7} and S 75 are in the
same family:

RTlﬁ(RI_IS)TSESTQ

We consider three cases, depending on whether Fam.(R) contributes to Fam.(RT}), or
Fam. (S) contributes to Fam. (S73), or none of these happens.

1. If Fam.(R) — Fam.(RT}). We argue that this case is impossible. By the CONTRI-
BUTION axiom, since Fam.(R) < Fam.(RT}) and ST, € Fam.(RT}), we must have
that S € Fam. (R). This means that R ~ S, which contradicts the INITIAL axiom, since
R and S are different coinitial steps.

2. If Fam.(S) — Fam.(ST). This case is impossible, by a symmetric argument as in
the first case.

3. If =(Fam.(R) — Fam.(RT})) and —(Fam.(S) — Fam.(ST3)). Then by the con-
trapositive of the CREATION axiom, we have that R does not create 7 so it has an
ancestor, ie. there is a step 7 such that 7 € T;/R. Similarly, 75 has an ancestor before
S, i.e. there is a step T such that 75 € T{j/S. Note that T; and T} are both ancestors
of T3, so by the unique ancestor property we have that 7, = 7§, which concludes the
proof.

]

The LSC without gc forms a Deterministic Family Structure

This section is devoted to proving that the LSC without gc forms a Deterministic Family
Structure. By definition, a DFS is a triple (A, ~, <) where A is a Deterministic Residual
Structure, so we start by showing that it forms a DRS.

Proposition 7.5 (LSC is a DRS). The LSC with gc forms a Deterministic Residual Structure.

Proof. In [8], the LSC has already been shown to form an orthogonal axiomatic rewriting
system. (We also give a proof of this fact in Prop.[6.3). It remains to be checked that the LSC
has the unique ancestor and acyclicity properties:

231

1. Unique ancestor (UA). Let R; (S) R and R, (S) R in the LSC. Let R{, R, R*, S* be
labeled variants of R, Ry, R, S respectively, such that the source of R{, R, and S*

coincides and is initially labeled, and such that moreover the residual relations R¢ (S*)
R’ and RS (S*) R’ hold in the LLSC.

By the Copy property (Lem. [6.33), R¢ and R’ have the same name. Similarly, RS and
R’ have the same name, so in fact ¢ and RS have the same name. Then by Lem.
R{ = RS, so R; = Ry, as required.

2. Acyclicity. Let R and S be different steps such that R/S = &. Since only gc steps
may erase other steps, S must be a gc step of the form S : C{¢[x\s]) —Lsc C{t) and
the anchor of the redex contracted by R lies inside s, i.e. R is a step of the form R :
C(t|z\s]) —Lsc C{t[x\s']). Then S/R is the singleton {5’} where S’ : C(t[x\s']) —Lsc
C(t). So in fact S/R # @.

]

To show that the LSC without gc forms a DFS, we need some preliminary lemmas. Recall
Name

that (=) stands for the relation of name contribution defined in Def.
Lemma 7.6. Let ¢ be a labeling morphism and let ;1 and v be (non-gc) redex names. Then

p "5 v implies (1) "5 o (v).

Proof. Recall that "¢ i the transitive closure of *57, so it suffices to check that the property
holds for one step of pady By cases on the rules defining the relation e

Name

1. If u = db(5) <1 db(a[db(B)]) = v then

¢(1) = db(p(5)) “=7 db((a) [db(¢(8))] 6(7)) = B(v)

Name

2. If p = db(P) =1 ae|db(H)| = v where « is an atomic label, then
6(n) = db(6(8)) 57 | (é()) o ab(6(5))] = é(v)

3. Ifpu=Pey db(af eyd) = v where 3 and are atomic labels then

o(n) = L (6(8)) o1 (¢(7)) =T db(d(a)(B) ® 6(7)6(9)) = b(v)

]

The LSC without gc will be shown to form a DFS with the following notions of redex
family and contribution.

Definition 7.7 (Redex families in the LSC without gc). Let pR and ¢S be coinitial hredexes in
the LSC without gc. Let p° R’ and 0S¢ be initially labeled variants of pRR and oS respectively,

starting on the same initially labeled term. Let z be the name of R‘ and let v be the name of
S*. Then:

232

« Family relation. We define pR "2 5 to hold if and only if 4 = v.
« Contribution relation. We define pR 2% 55 to hold if and only if p ey

Example 7.8 (Redex families and contribution). In the following diagram:

(A\r.) y)[y\2] == z[\y][y\z] == yl2\y][y\?]

Tlt TQL
((Az.z) 2)[y\2] zla\z][y\z]

Fam

We have that T1 X' RT, and that R <5 RS. This can be justified starting from an initially
labeled variant of(()a: x)y)[y\z] and noting that the names of Ty and RT), are both d e e, and

that the name of R contributes to the name of RS, that is, db(b) "&3° c e |db(b)|:

@ (AP,) [y 2] — ol a1y |0 BIA]) z¢]

d.ej ive|

@ (AP, 2%) [y\2°] alde®)le[) Zldb(b)]d e e][y)\ ze]

ce|db(b)]
yalae(®)le e [ab(b)ld[g\ o [db(B)]d] [\ se]

Proposition 7.9 (Redex families are well-defined). The relations (Fa:m) and (25 are well-
defined, in the sense that they do not depend on the choice of the initial labeling.

Proof. Let pR and oS be coinitial hredexes in the LSC without gc. Let p{R{ and o¢S! be
initially labeled variants of pR and ¢S starting on the same initially labeled term ¢, and
let p RS and 0S5 be initially labeled variants of pR and S starting on a possibly different
initially labeled term t5. Let j1;, V1, jiy, Vo be the names of RY, S{, RS, S% respectively. To show

that (Fa:) and (23 are well-defined it suffices to prove that:

L (1 =11) = (1 = 1v2)

2. (i e v1) <= (K e 2
In both cases, to prove the equivalence it suffices to show the implication in one direction,
since the other one is symmetric.

Note that each subterm of t{ is labeled with a different initial label, so there is a label-
ing morphism ¢ : £ — L such that ¢(t{) = t5. Since labeling morphisms are functorial
(Prop. we have that ¢(p{R{) = pSRS and similarly ¢(0tS!) = 0555, This means that
¢(11) = ¢(R}) = Ry = pip and ¢(v1) = ¢(S7) = S5 = v

Now, if j1; = v then py, = ¢(11y) = ¢(v1) = vs, which proves that (™) is well-defined.

On the other hand, if 1, "% 1 then using Lem.we have that 1, = (1) hane o(vr) =
Vs, which proves that (23) is well-defined. O

It is immediate to check that the family relation (Fa:m) is an equivalence relation. This
reduces to the fact that equality of redex names is in turn an equivalence relation. As in
the abstract definition of a DFS, equivalence classes of "2 are called families, and Fam. (pR)
stands for the family of pR.

233

Definition 7.10 (Family contribution relation). Given two coinitial families ¢1, ¢, we say
that ¢, contributes to ¢, and write ¢, ey @9 if and only if given pR € ¢, and 0.5 € ¢, the
condition pR 2% 55 holds.

Note that, by abuse of notation, we write 7 both for the contribution relation between
hredexes and for the contribution relation between families.

Proposition 7.11 (Contribution is well-defined). The contribution relation 23 between families
is well-defined, in the sense that it does not depend on the choice of representative.

Proof. Let t be a term and let ¢, ¢’ € Hist(t)/ " be two families. Let us show that the
condition ¢ ey ¢’ does not depend upon the choice of the representative of the equivalence
classes of ¢ and ¢'. Indeed, let p; Ry, p2 Ry € ¢, and let 0157, 0252 € ¢'. Let us show that
p1 Ry fa 0151 if and only if ps Ry fa 0955.

Let ¢! be an initially labelled variant of the source term ¢, and consider labelled variants
p‘iRz, png, UfSe, and 0555 of p1 Ry, paR2, 0151, and 0955 respectively. Moreover, let 1, (i,
v1, and v5 be the names of R¢, RS, S¢, and Sﬁ respectively.

Fam

Then, by definition of being in the same family, p1 R ~ pyR2 means that p;, = .

.. F
Similarly, 015) 095, means that v; = v,. Then:

Fam

prRi = 015
if and only if RSN by definition of ey
. . Name .
ifand only if p, = vy since fi; = [4y and v = vy

if and only if pyRo fan 0959 by definition of fan

Hence =3 is well defined on the set of families. O]

In the following proposition we state and prove the CONTRIBUTION axiom for the LSC
without gc. The proof relies on various quite technical lemmas whose statement and proof
can be found in Section of the appendix.

Proposition 7.12 (CONTRIBUTION axiom for the LSC without gc). Let ¢4, ¢ € Hist(t)/ " be
coinitial families in the LSC without gc. Then the following propositions are logically equivalent:

1. Syntactic contribution. ¢; Sy 0o.
2. Semantic contribution. For every hredex 0.S € ¢,, there is an hredex pR € ¢, such that
pR is a prefix of 0.

Proof. Let us show each direction of the implication. We refer to the implication (1 = 2)
as correctness and to the implication (2 = 1) as completeness.

(=) Correctness. Let 0S € ¢, be an hredex. Consider an initially labelled variant ¢} of
t, and the labelled variant o S* of oS whose source is t§. Let t{ = tgt(c?) = src(S*).
Moreover, let 71" € ¢, and consider the labelled variant 77" of 7T whose source is té.

Let v be the name of S*, and let i be the name of T%. Since ¢, iy ¢2 we have, by
definition, that "9 1. It can be seen that names contributing to a step must occur in

234

the source (by Lem. in Section of the appendix). This means that there must
exist a label o decorating a subterm of ¢{ such that y is a sublabel of . By Lem.
(in Section[A 4.1 of the appendix), this entails that there must exist a step in ¢ whose
name is y. This means that of = p’ R‘0’ where the name of R’ is j, hence pR T
and so 0 = pRv where pR € ¢, as wanted.

Completeness. Let us show that ¢, tan ¢o. Let S € ¢y be an hredex. Consider an
initially labelled variant té of ¢, and consider the labelled variant o¢S* whose source is
tf. Let v be the name of S’. Let P be the predicate on redex names such that P(u
holds if and only if "¢ . Observe that P is a bounded predicate, since by Rem.
we have that h(u) < h(v) for every p such that P(yu) holds. Hence labeled reduction
in the calculus restricted to P is strongly normalizing (Thm. [6.51). Consider a maximal
derivation p’ starting from ¢}, and contracting redexes whose names verify the predicate
P; then p’ must be finite as we have just argued. Since the LLSC is an orthogonal
axiomatic rewriting system (Prop. [6.32), by algebraic confluence (Coro. we may
close the diagram formed by p* and o* with labelled variants of the relative projections
p/o and o/p. The situation is:

(o/p)

Note that, by definition of the residual relation, any step contracted along p/o must be
the residual of some step in p. Moreover, we know that residuals of redexes have the
same name as their ancestor (Lem. , so given any step T that is contracted along
(p/o)" its name ¢ is also the name of a step T, that is contracted along p‘. Hence £ must
verify the predicate P, which means that § "%). In particular £ # v, since the relation
"20¢ i a strict partial order. Then by Lem. (in Section of the appendix) there
is a residual S; € S/(p/c) and the name of its corresponding labelled variant S is also
v.

We need an auxiliary claim:

Claim: the names of the redexes contracted along (o/p)’ do not contribute to v.
Proof of the claim. By contradiction, suppose that (o /p)¢ is of the form 7{T“75 where
the name of T* is ¢ and it contributes to v, that is £ Name . Without loss of generality,
let T be the first such step. Then the names of the redexes contracted along 7| do not
contribute to &, because if 7{ contracts a redex 7" whose name is & Narpe &, then by
transitivity of "¢ we have ¢ ey, contradicting the hypothesis that 7" is the first
redex with that property. By Lem. (in Section of the appendix) this means
that 7 must have an ancestor T}, that is a step Ty, such that T € Ty/(o/p) and such that
the name of T} is also £. Thus we obtain a derivation p*T where the name of T} verifies
P. This contradicts the hypothesis that p* was a maximal derivation contracting only
redexes that verify P, which concludes the proof of the claim.

235

Now since redexes contracted along (¢/p)¢ do not contribute to the name of S¥, we may
again apply Lem. and obtain that there exists an ancestor S5, i.e. a step Sy such
that S; € Sy/(0/p) and such that the name of S% is also v. The situation is as follows:

F .
To conclude the proof, note that pS; =~ . since S% and S¢ have the same name, namely

v. So pSy € ¢y since oS € ¢9. By hypothesis, this implies that there exists an hredex
p1R € ¢1 such that p can be written as of the form p; Rp,. Consider the labelled variant
p{ R of p; R whose source is tj,. The step R’ is one of the redexes in p’. By construction,
the names of all the steps contracted along p’ verify the predicate P. In particular, if
we let ;1 stand for the name of RY, we have that P(u) holds, i.e. that p Name o, This, by
definition, means that p; R fan pSo, and this in turn means that ¢, fan ¢9, as required.

O

Finally, we are able to prove the main theorem of this section.
Fam Fam

Theorem 7.13 (The LSC without gc is a DFS). The triple (A, ~, <) forms a Deterministic

Family Structure, where A is the DRS constructed in Prop. " is the “same family” rela-

tion between coinitial hredexes (Def. and 25 is the contribution relation between families

(Def.[7.10).

Proof. Let us check each of the axioms:

1. INITIAL. Let R and S be different coinitial steps. Then we claim that R " S does not
hold. Indeed, let ¢ be an initially labelled variant of the source of R and S, and let
R’ and S? be their respective labelled variants. Then Lem. ensures that, since R’
and S* are different coinitial steps whose source is an initially labelled term, they must
have different names. We conclude that R € Fam.(R) but R ¢ Fam.(S), which entails
Fam.(R) # Fam.(S).

2. Cory. Let pR < ¢S, and let us show that pR " 0S. By definition of <, there exists a
derivation 7 such that S € R/7 and pT = 0.

VN
TN
Let ¢ be the source of the derivations p and o, let ¢’ be an initially labelled variant of

the term ¢, and let p’, of, 7%, R?, S*, S* denote labelled variants of p, o, 7, R, S, and S
respectively, in such a way that:

236

. pETZSe is a labelled variant of p7S whose source is tt,
« p'Ris a labelled variant of pR whose source is t/,

« 0S5 is a labelled variant of oS whose source is t’.

To see that pR "8 5S. it suffices to check that R’ and S¥ have the same name. Recall
that coinitial labelled variants of permutation equivalent derivations must be cofinal
(Prop. [6.35). This implies that tgt(p‘T’) = tgt(c’), so S* = S*. Moreover, residuals of
redexes have the same name (Lem. , and S € R/T so the names of Rfand S = S%

coincide, as required.

3. FINITE FAMILY DEVELOPMENTS. Let p be a potentially infinite derivation that contracts
redexes in a finite number of families. Let ¢ be an initially labelled variant of the source
of p, and let p’ be a labelled variant of p starting from ‘. Let P be the predicate on redex
names such that P(u) holds if and only if 12 is one of the names of the redexes contracted
along p’. Then P is bounded, since only a finite number of families are contracted by
p*, so by Thm. p’ must be finite. Hence p is also finite.

4. CREATION. Let pR be an hredex such that R creates S, and let us check that Fam. (pR) ay
Fam.(pRS). By definition, it suffices to check that pR 2% HRS.

Consider an initially labelled variant tf of the source of p, and labelled variants pg, RY,
and S? of p, R, and S respectively, such that pg R’ S*is a labelled variant of pRS whose
source is t‘. Let y be the name of R’ and let v be the name of S*. By applying Prop.
we conclude that ’\‘if;‘f v, as required.

5. CoNTRIBUTION. This has been shown in Prop.

7.4 Optimal Reduction

In previous sections we have endowed the LSC with a notion of Lévy labels (Def. and
we have used this notion of labeling to define a notion of redex family for the LSC without
gc (Def.[7.7): two redexes are in the same family if the labeling scheme gives them the same
name. We have also shown that this notion of family is well-behaved, in the sense that the
LSC without gc forms a Deterministic Family Structure (Thm.[7.13).

In this section: first, we state Lévy’s optimality theorem in the setting of the A-calculus.
This is not strictly necessary for our purposes but it hopefully clarifies the rest of the exposi-
tion. Second, we state and prove a generalization of Lévy’s optimality theorem for an arbitrary
Deterministic Family Structure, due to Glauert and Khasidashvili. Finally, using the fact that
the LSC without gc forms a Deterministic Family Structure, we obtain an optimality theorem
for the LSC without gc, meaning that certain kinds of reductions are optimal. To this purpose,
we study the notion of normal forms up to gc.

237

Optimality in the \-calculus

To state Levy’s optimality result more precisely, we need to introduce a few definitions. Re-
call the notions of multistep and multiderivation from Def. and also recall from Conven-
tion that if M is a multistep we may write just M to stand for its canonical complete
development, which is known to exist and to be unique modulo permutation equivalence.
The definitions and results in this subsection can be traced back to Lévy’s work and are nicely

exposed in Asperti and Guerrini’s book [[14].

Definition 7.14 (Family reduction). Let (A, ~, <) be a DFS. A family reduction is a multi-
derivation M ... M,, in A such that for each i € {1, ..., n} all the steps in M; belong to the
same family. More precisely, for all i € {1,...,n} and for any two steps R, S € M, we have
that M; ... M, 1R ~ M; ... M;_1S. Moreover, a family reduction is complete if each M,
is a maximal set of steps that have src(M,;) as their source and belong to the same family.

The motivation behind Lévy’s definition of complete family reduction is that an optimal
implementation should never duplicate work. Rather it should share the computational work
of contracting all the copies of a redex. Performing one computational step in an optimal
implementation should correspond to contracting all and only the redexes in some family.

Example 7.15 (Family reductions). Consider the following diagram in the LSC without gc:

(z2)[2\y][y\2] —= (y2)[2\y][y\7] (zy)[2\y]ly\2]
T R
(zy)[2\yl[y\2] — (yy)[*\y] [y\ﬂi\Q(yZ) [z\y][v\#]

(yy)[z\z][y\z]

The multiderivation {R, S} (consisting of a sequence of exactly one multistep) is not a family
reduction, because R and S are not in the same family, while { R}{S’} and {S}{R'} are both
complete family reductions. The multiderivation { R}{S'}{11,T>} is a family reduction, but it is
not complete because the set {11, T,} is not a maximal set of coinitial steps in the same family.
The multiderivation { R}{S'}{T}, T», T3} is a complete family reduction.

Starting from a term ¢, we are interested in finding the optimal, i.e. the shortest family

reduction.

Definition 7.16 (Optimal reduction). Let = € A be an object in a DFS. A family reduction
starting on z and reaching the normal form of x is optimal if its length is minimum among all
the family reductions reaching the normal form of z.

By requiring that a multiderivation is a complete family reduction, one guarantees that no
computational work is ever duplicated. Still, a complete family reduction may not be optimal,
because it may perform unnecessary computational work. For example, in the A-calculus,

238

given the diagram:

the multiderivation {R}{S,} is a complete family reduction that reaches the normal form.
However, it is not optimal, since {5} is a shorter complete family reduction reaching the
normal form.

To formally define what it means for a multiderivation to perform only necessary com-
putational work, Lévy defines a step R : t — s to be needed if every coinitial derivation
o : t — wu that reaches the normal form of ¢ contracts at least one residual of R. A family re-
duction M; ... M,, is needed if every multistep M, contains at least one needed step. Lévy’s
optimality result asserts that:

Theorem 7.17 (Optimality — Lévy, 1978). In the A-calculus, any needed, complete family re-
duction reaching a normal form is optimal.

Proof. A particular case of Thm. in the next subsection. O

Optimality in Deterministic Family Structures

In [61]], Glauert and Khasidashvili propose a generalization of Lévy’s optimality result. This
result generalizes Thm. along two dimensions. First, the result does not only apply to the
A-calculus, but in general to any Deterministic Family Structure, of which the A-calculus is a
particular case. Second, the result does not only apply to reductions reaching a normal form,
but in general to reductions reaching an answer, where the notion of answer is an additional
parameter of the generalized optimality theorem. The notion of answer is specified by a set of
terms which may vary in different settings. For example in the A-calculus one may consider
any of the following sets as the set of answers:

{te T|#seT.t— s} (normalforms)
{A\r.t|xeV, teT} (abstractions)
{Azy...xpyty .ty | n,m =0, 2,2,y €V, t1,...,t,, € T} (head normal forms)
Aet|zeViteTu{ety.. . t,|n=0, €V, t,...,t, € T} (weak head normal forms)

where V is the set of variables and 7 the set of all terms. The set of answers is denoted
by X. The definitions and results in this subsection can be traced back to Lévy’s work and
correspond to Glauert and Khasidashvili’s generalization to arbitrary DFSs [61] [14]].

Definition 7.18 (X-needed). Let A be an orthogonal axiomatic rewriting system and let X’ be
a set of objects. A step R : © — y is X' -needed if every derivation o : * — z € X contracts at
least one residual of R. A multistep M is X'-needed if it contains at least one X'-needed step.
A multiderivation M, ... M, is X'-needed if the multistep M, is X'-needed for all i € 1..n.

For technical reasons, the set of answers may not be an arbitrary set. It must be a stable
set:

239

Definition 7.19 (Stable set). A set X" of objects is stable if:

1. X is closed under parallel moves, i.e. for any z ¢ X, any p : ¢ — y € X, and any
reduction o : © — z which does not contain objects in X, the target of p/o is in X.

2. X is closed under unneeded expansion, i.e. for any R : + — y such that x ¢ X and
y € X, the step R is X'-needed.

Example 7.20 (Abstractions are stable in the A-calculus). In the A-calculus, the set of abstrac-
tions {\z.t | t € T} is stable. It is easy to see that NF 3 is closed under parallel moves, because if
p:t—Ar.sando :t — utheno/p: A\x.s — Ax.r. To see that NFg is closed under unneeded
expansion, consider a step R : t — A\x.s such that t is not an abstraction. Then t must be of the
form (Az.ty) to. Any derivationo : (Ax.t1) toy — A\y.u must contract the residual of R, otherwise
all steps are internal to t, and t,, and the target is still an application.

Definition 7.21 (X-optimal reduction). Let = € A be an object in a DFS and let X’ be a stable
set on A. A family reduction D : x — y € X is X' -optimal if its length is minimum among all
the family reductions of the form x — y € X (where z is fixed and y varies).

Let FAM(D) denote the set of families of a multiderivation. More precisely:

def

FAM(Ml .. Mn) = {Famz(/\/ll .. .Mi_lR) | 1<t < n, Re MZ}

Then we can prove the following auxiliary result.

Lemma 7.22. Let X be a stable set of terms in a DFS. If D : v — y € X is a family reduction,
then #FAM(D) < |D|.

Proof. Let D = M, ... M,. By definition, each family ¢ € FAM(D) can be written as ¢ =
Fam.(M;... M;_1R) forsomei € {1,...,n}and some R € M,. Consider the map I giving,
for each family, the minimum such index:

I:FAM(D) — {1,...,n}
¢ — min{ie{l,...,n}|IRe M;. $ = Fam.(M;... M; 1R)}

To show that #FAM(D) < |D|, it suffices to show that I is injective. Indeed, if I(¢) =
I(¢') = i, then there are two steps R, S € M, such that ¢ = Fam.(M;...M;_1R)and ¢' =
Fam.(M;... M;_1S). But D is a family reduction, so M;... M; 1R ~ M;... M;_;S.
Therefore ¢ = ¢'. [

Lemma 7.23. Let X be a stable set of terms in a DFS. If D : x — y € X is a X -needed complete
family reduction, then |D| = #FAM(D).

Proof. In Lem. we have seen that |D| > #FAM(D) for any family reduction, so we are
left to show that |D| < #FAM(D). Let D = M, ... M,. Since D is X-needed, for each
i€ {l,...,n} the set M; contains an X'-needed step R;. It suffices to show that the following
map @ is injective.

®:{1,....,n} — FAM(D)
7 Fam:(./\/ll..../\/ll-,lRi)

240

Indeed, suppose that (i) = ®(j) for some 1 < i,j < n with i # j. Without loss of
generality, let i < j, and suppose moreover that the pair (7, j) is chosen so that j is the least
possible index, i.e. there is no other pair (i, j') such that ®(i') = ®(j’') and i’ < 5/ < j. We
argue that this case is impossible. Let us write D; for the multiderivation M, ... M;, for each
0 < i < n. Since ®(i) = ®(j) we have that R; and R; are in the same family, more precisely,
D, 1R; ~ D;_1R;. We consider two cases, depending on whether step ?; has an ancestor

before the derivation M, ... M;_;:

1. If R; has an ancestor. That is, there is a step R such that R} (M;... M; 1) R;.
By the Copy axiom, R and I?; must be in the same family, more precisely, D; | I ~
D;_1R;. Then by transitivity of the family relation, Di_lR;- ~ D, 1R;. Since D is
a complete family reduction, M, is a maximal set of steps in the same family, so we
obtain that R} € M;. But then by Autoerasure /M, ... M;_; must be empty. This
contradicts the fact that R; € R}/ M, ... M;_,.

2. If R; has no ancestor. That is, there is no step R} such that R} (M;... M; 1) R;.
In particular, the range {i,...,j — 1} cannot be empty. Let g € {i,...,j — 1} be such
that there is an ancestor R (M1 ... M; 1) R; but there is no ancestor R} (M,)
R}. Moreover by CREATION there must be a step in M, that contributes to R, and
since all the steps in M, are in the same family, this means that Fam.(D,_1R,;) —
Fam. (D, R). The situation is:

My Mg MMy Mg M1 M1 My M,
lRi qu lR} le

Note that Fam. (D, 1 R,) — Fam.(D,R}) = Fam.(D;_1R;), so by the completeness
part of the CONTRIBUTION axiom, there must exist a step in the history of R?; in the same

family as R, contributing to R;. That is, there is an index p € {1,...,7 — 1} such that
Fam.(D,_1R,) = Fam~(D,_1R,) — Fam.(D,_; R;). To conclude, observe that (p, q)
is a pair of indices such that ®(p) = ®(¢) and p < g < j. This contradicts the request
that 7 is the least possible index with such condition.

]

The following generalization of Lévy’s optimality theorem (Thm. is due to Glauert
and Khasidashvili ([61, Theorem 5.2]).

Theorem 7.24 (Generalized optimality — Glauert and Khasidashvili, 1996). Let X’ be a stable
set of terms in a DFS. Then any X -needed complete family reduction D : v — y € X is X'-
optimal.

Proof. Let D = My ... M,, : © — y € X be an X-needed complete family reduction and let
E =N, ...N,, : © - z € X be any family reduction to X. First we argue that FAM(D) <
FAM(E). Let ¢ € FAM(D) be a family. By definition, ¢ = Fam.(M; ... M; 1 R;) for some
i€ {l,...,m} and some R; € M,. Moreover, since D is X-needed, for each 1 < i < m, the

241

set M, contains an X'-needed redex S;. Consider the derivation £/ M, ... M;_;. Note that
its target is an object 2’ which coincides with the target of M; ... M;_/FE : z — 2. Since
z € X and X is a stable set, hence closed under parallel moves, we have that 2’ € X" as well.

So for each i € {1,...,m} the situation is:
My .My S
x
Ei iE/Mlel
!/
z z
Ml...Mi_l/E

Moreover, S; is X-needed, so a residual of .S; is contracted somewhere along /M, ... M,;_;.
By the Copry axiom, this means that £ contracts a redex in the same family as S, that is,
the multiderivation F, seen as a derivation, can be written, for each i € {1,...,m}, as of
the form £ = p;T;o;, where My.. M, 1R; ~ My...M;_1S; ~ p;T;. So we have that
¢ = Fam.(p,T;) € FAM(FE). This proves our claim that FAM(D) < FAM(E). To conclude
the proof of this theorem, observe that:

D]

#FAM(D) by Lem. since D is an X'-needed complete family reduction
#FAM(E) since FAM(D) < FAM(E) as we have just claimed
|E| by Lem. since E is a family reduction

NN

]

Example 7.25 (Optimal reduction in the A-calculus). Let A be any term such that A — A’
and consider the following diagram:

(Az.zx) (A\r.y) A) T (Ax.zx) (Az.y) A')

B

Then the family reductions { R}{S, Sa} and {S}{R'} are both optimal reductions to normal form.
The family reductions { R}{S1}{S%} and {R}{S5:}{S} are not complete. Any family reduction
starting with {T'} . .. is not needed, because the step T is not needed to obtain a normal form.

Optimality in the LSC without gc

Combining the fact that the LSC without gc is a Deterministic Family Structure (Thm. |7.13)
with the generalized optimality theorem for DFSs (Thm.[7.24), one obtains an optimality result
for the LSC. However, the generalized optimality theorem depends on the choice of a stable
set X’ that captures the notion of answer that one is interested in.
One may be interested in the set of answers given by the normal forms of the LSC without
gc, that is, in the set:
NFgp,1s = {teT| ﬂs €T .t —qis 5}

242

It is easy to show that NFg, 15 is a stable set. But the notion of NF4, ,s-optimality that one
obtains in that case is not very interesting, for two reasons. One reason is that in the LSC
without gc there is no erasure, which means that every step is always NF4;, 15-needed. Another
reason is that in the LSC without gc one is not really interested in obtaining the normal form
of a term. For example let 2 = (A\z.zz) Az.zx and consider the following derivation:

Az Ayr) 2Q —a (Ay.z)[r\2]Q
o 2[y\Q][z\z]
—1 2[y\Q[z\z]
= z[y\(@r)[p\\eax]][z)\2]

—

In this example, reduction goes on forever without reaching a normal form, evaluating the
term inside the substitution [y\...], even though this substitution is never used. One is actually
interested in the set of normal forms up to garbage collection of unused substitutions. This is
the notion of reachable normal form defined below.

Definition 7.26 (Reachable normal forms). Let nf,(¢) denote the gc-normal form of a given
term ¢. The set RNF of reachable normal forms is the set of terms:

RNE %f {teT |nfy(t) € NFap1s}

The following proposition justifies that Thm. may be applied to the notion of RNF-
optimal reductions.

Proposition 7.27 (The set RNF is stable — & Prop.[A.112).

Proof. The proof is technical and can be found in Section [A.4.2) of the appendix. It requires to
introduce the notion of reachable step, which is, intuitively, a step not erased by any sequence

of gc steps. The proof also relies on the notion of nesting introduced by Accattoli et al. in [6].
O

Example 7.28 (Optimal RNF-reduction in the LSC without gc). Let A be any term such that
A — A’ and consider the following diagram, in which the terms in RNF have been underlined:

2[2\(\y.2) A] —— z[2\(\y.2) A']

o —s
/&Z) A)[»”C\Q\y-% z[x\y[2\A]]
y[2\A][x\(\y-2) A] ((A\y.2) A)[z\z[y\A]]

y[2\Allz\y[=\A]]

Then the family reductions { R}{S1, S2} and {S}{R'} are RNF-optimal by Thm.[7.24 Any family
reduction starting with {T} . .. is not RNF-needed, because T' is not needed to reach a term in
RNF.

243

Note that the family reduction { R}{S.} reaches a term in RNF in the least possible number
of multisteps, but it is not complete because {S1} is not maximal, so Thm. does not ensure
that it is RNF-optimal.

7.5 Standardization

In a very general sense, the problem of standardization consists in finding, for each derivation
p : x — y an equivalent derivation p’ : ' — ¢/ that is standard. There are two keywords
involved here, equivalent and standard, worthy of a short discussion.

In principle, one may be interested in various different notions of equivalence between
derivations. For example, in their original standardization result [46], one could say that
Curry and Feys were interested in the equivalence relation ~ that equates two derivations
whenever they are coinitial and cofinal. That is, given p : © — y and p’ : ¥’ — ¢’ one has
p ~ pif and only if (z,y) = (2, 9/).

Later, Levy noted that the notion of equivalence that Curry and Feys were really after was
the relation of permutation equivalence. Recall from Lem. that if any two derivations are
permutation equivalent then they are coinitial and cofinal, so permutation equivalence is a
finer equivalence relation than ~. In fact, Lévy remarked that in the A-calculus there exist
derivations that are coinitial and cofinal but which are not permutation equivalent, such as in
the “syntactic accident” I (I z) — I .

One may also be interested in other notions of equivalence between derivations. For exam-
ple, Laneve [102] studies distributive permutation equivalence which allows swapping adjacent
steps as long as this does not cause duplication nor erasure.

The word standardization is most commonly used in the literature to refer to standardiza-
tion with respect to the equivalence relation of permutation equivalence.

Given a fixed notion of equivalence ~ between derivations, one may sometimes prove a
standardization result, involving a class of derivations S, whose elements are called standard
derivations. A standardization result states that one may find, for each derivation p, an equiv-
alent standard derivation p’ € S. A stronger standardization result would moreover ensure
that for each derivation p there is a unique equivalent derivation p’ € S, that is, that the set of
equivalence classes modulo ~ is in 1-1 correspondence with the set S. Moreover, the stan-
dardization result is usually proved constructively, by giving a procedure that yields, for every
derivation p the standard representative p’ of its ~-equivalence class.

In this section we define a standardization procedure for Deterministic Family Structures,
by requesting some additional axioms. The proof that the standardization procedure termi-
nates relies on the FINITE FAMILY DEVELOPMENTS property. As a corollary, we obtain a stan-
dardization theorem for the LSC without gc.

Many abstract standardization results have been studied before. The result we present
here is an adaptation of Klop’s parallel standardization theorem ([135] Proposition 8.5.19]) to
the framework of Deterministic Family Structures.

244

Note that in [5, Theorem 3, Theorem 4], Accattoli, Bonelli, Lombardi, and Kesner have
already proposed a standardization procedure for the LSC. Our procedure differs from theirs
in in the following aspects:

1. Our procedure relies on the Finite Family Developments theorem, while [5]] relies on the
fact that the LSC enjoys a number of axioms proposed by Mellies in [118, Chapter 4].

2. Our standardization procedure is inspired by Klop’s [135] Section 8.5.2], and it is based
on selection, resembling selection sort, while [5] is based on permutation of anti—standard
pairs, resembling bubble sort.

3. Our procedure does not deal with the gc rule, while [5] does.

4. Our procedure imposes a fixed order for redexes in such a way that the standard reduc-
tion is syntactically unique, while [5] considers standard forms modulo permutation
of disjoint redexes, in such a way that the standard reduction is unique up to square
equivalence.

Standardization in Deterministic Family Structures

In this subsection we prove a standardization result for Deterministic Family Structures that
verify some additional constraints. The main result of this subsection is the standardization
result for DFSs (Prop.|7.39). We begin by proving a simple technical result.

Proposition 7.29 (Projection does not create families). Let A be a DFS, let ¢ : t — t' be a
derivation in A, and let p and o be coinitial derivations in A starting from t'. Then the set of
families of redexes contracted along p/o is contained in the set of families of redexes contracted
along p, relatively to the history ¢. More precisely, if p/o can be written as 7Tt then p can be
written as v1Uvy such that Fam.(¢v,U) = Fam~(¢ponT).

Proof. By induction on the length of p. The base case is trivial. If p = Rp’ we have that
p/o = (R/o)(p'/(c/R)) by definition. Let p/o be written as 71 T'r5. We consider two subcases,
depending on whether 7y is a proper prefix of R/c or not:

1. If 7y is a proper prefix of R/o. Then R/oc = 1/T'75 and o = 75(p'/(0/R)). Note that
T e (R/o)/m so R{or) T. Then by taking v; := ¢, U := R and vy := p/ we have that
Fam.(¢pR) = Fam.(¢omT) since T is a copy of R, and as a consequence of the Copy
axiom.

2. If 1y is not a proper prefix of R/o. Then p'/(c/R) = 7{T1 and 7y = (R/0)7{. By i.h. on
the derivation p’ (using ¢ R as the new history), we conclude that p’ can be written as
v1Uvy in such a way that:

Fam.(¢RV\U) = Fam~(¢R(c/R)m|T)
= Fam.(¢o(R/o)T{T) by the Copy axiom,
since pR(o/R)T|T < ¢po(R/o)T{T
since pR(0/R)1{ = ¢po(R/o)T]

Hence by taking v, := Rv] we conclude.

245

]

To prove the standardization result, let us state a few further auxiliary definitions, in-
cluding the crucial notion of uniform multi-selection strategy. Recall that in an orthogonal
axiomatic rewriting system, the letters M, N\, ... range over multisteps, D, E, . .. range over
multiderivations, and Multistep stands for the set of multisteps.

Definition 7.30 (Belonging). In an orthogonal axiomatic rewriting system .4, a step R belongs
to a derivation p, written R < p, if and only if p can be written as of the form p = p; R/ ps
where R’ € R/p;. A multistep M belongs to a derivation p, written M < p, if and only if
R < pforall Re M.

Definition 7.31 (Multi-selection strategy). In an orthogonal axiomatic rewriting system A, a
multi-selection strategy is a function M that maps every non-empty derivation p to a coinitial
multistep M € Multistep such that M < p and M/p = &.

Definition 7.32 (Uniform multi-selection strategy). A multi-selection strategy M is uniform
if p = o implies M(p) = M(o) for any non-empty p, 0.

Example 7.33. In the \-calculus, consider the trivial multi-selection strategy Mry;, that always
selects the first step of a given derivation. More precisely, let My, (Rp) o {R}. Then M1y is a
multi-selection strategy because for every non-empty derivation Rp we have that R < Rp and
that R/Rp = @.

However, My, is not uniform. For example, if RS" = SR/, such as in the following diagram,

we have that M, (RS’) = {R} # {S} = M, (SR).

(Az.(\y.2) za)t 25 (Ny.z) tt
s) , 5|

Az.zz)t — s 2t

In the remainder of this subsection, we show that any uniform multi-selection strategy M
induces, for a given derivation p, a permutation equivalent derivation p*. This gives us a stan-
dardization result, parametric on M. The set of standard derivations is the set {p* | p is a derivation}.
Moreover, we show that the induced derivation p* is unique, up to permutation equivalence.

Definition 7.34 (Induced multiderivation). In an orthogonal axiomatic rewriting system, let
M be a multi-selection strategy and let p be any derivation. The sequence induced by M on p,
written M*(p), is a possibly infinite sequence of multisteps, defined by the following recursive

M def)€ ifp=ce
(¢) {M(p) -M*(p/M(p)) otherwise

equations:

If recursion terminates, the sequence is finite and we call it the multiderivation induced by M
on p.

246

In an arbitrary rewriting system, this recursive definition may not terminate. The follow-
ing lemma provides sufficient conditions for M*(p) to be well-defined. Namely, in a Deter-
ministic Family Structure, the recursive definition of M*(p) is well-founded, as a consequence
of FINITE FAMILY DEVELOPMENTS.

Lemma 7.35. Let M is a multi-selection strategy in a DFS. If p is any (finite) derivation, then
M*(p) is finite.

Proof. Let p be a finite derivation, let D = M*(p) be the multiderivation induced by M on p,
and let F be the set of redex families that are contracted along p, more precisely:

F = {Fam(p1R) | Ip2. p = p1Rp2}

Claim. Write D as a possibly infinite sequence of multisteps D = M ... M, Suppose
that o = 07 ... 0, is any complete development of a prefix M, ... M,, of D, where each o;
is a complete development of M;. Then the set of families of the redexes contracted along o
is contained in F.

Proof of the claim. Let 0 = 01...0, and leto; = S} ... S}, for each 1 < i < n. An arbitrary
step of o is one of the steps Sji- with1l <7 <nand1 < j < m;,. It suffices to show that the fam-
ily of each S; is in F. More precisely, we aim to show that Fam. (o ...0;_1S% ... ;‘—15;) e F
holds for every 1, j.

Let1l <7 <nand1 < j < m,; be arbitrary indices. Note that Sji- isaredex in o; and o; is a
complete development of M;, so S} has an ancestor S* (S} ... S} ;) S} with S* € M;. This
means that S;- is a copy of S*, hence they are in the same family, i.e. Fam.(o; ... 0; 15} ... S]’) =
Fam.(oy...0;-15*). Moreover, by construction, M; = M(p/M; ... M;_1). Since M is a
multi-selection strategy, we have that S* < p/ M ... M,;_;. This means that p/ M, ... M,;_;
can be written as p; S** po where S* {p;) S**. This means that S** is a copy of S*, hence they
are in the same family: Fam. (o ...0;_15*) = Fam.(0y ...0;_1p15*"). Moreover, since pro-
jection does not create families in a DFS (Prop. and p/My... M;_1 = ploy...0i 1 =
p15™* po we have that Fam.(oy...0,_1p15**) € F. Collecting all the facts we have al-
ready established above, we have that Fam.(oy...0; 1S ... S;) = Fam.(0y...0,_15"%) =
Fam. (o ...0;_1p15*") € F, which concludes the proof of the claim.

To conclude the proof of the lemma, note that the set F is finite since p is finite. By FFD,
this implies that there cannot be infinite derivations contracting redexes whose family is in
F. Therefore D must be finite. O

By definition, a uniform multi-selection strategy M|, when given two permutation equiva-
lent derivations, always selects the same multistep. It, in fact, yields the same multiderivation.

Lemma 7.36. Let M be a uniform multi-selection strategy in a DFS, and let p, o be finite deriva-
tions. If p = o then M*(p) = M*(0).

Proof. By Lem. we know that M*(p) must be finite. We proceed by induction on the
length of M*(p):

1. Empty, M*(p) = €. Then p = €, so 0 = € and we have M*(p) = ¢ = M*(0).

247

2. Non-empty. Then p is non-empty, so 0 must be also non-empty, and we have that
M*(p) = M(p) M*(p/M(p)) and M*(c) = M(c) M*(¢/M(c)). First, since p = o and
M is a uniform selection strategy, we have M(p) = M(o). Moreover, the tail of M*(p)
is of the form M*(p/M(p)), and it is strictly shorter than M*(p). So we can apply the
i.h. on the tails of M*(p) and M* (o). The i.h. states:

p/M(p) = o/M(0) = M’ (p/M(p)) = M*(0/M(0))

To conclude, we are left to show that p/M(p) = o/M(o) holds. This is an immediate
consequence of the fact that p = o, since the projections of permutation equivalent
derivations are again equivalent (Prop.|2.63).

]

Lemma 7.37. Let M be a multi-selection strategy in a DFS, and p a finite derivation. Then
p = OM*(p).

Proof. By Lem. we have that M*(p) must be finite. We proceed by induction on the
length of the multiderivation M*(p).

1. Empty, M*(p) = €. Then p = ¢, so p = de = IM*(p).

2. Non-empty. Let M = M(p) be the first multistep selected by the strategy. Then M*(p) =
MM*(p/M). To show that p = IM*(p), by Lem. it suffices for us to check that
they are projection equivalent, i.e. that p = dM*(p) C p.

(Z) Let us check that p/0M*(p) = e.

p/OM* (p)
— UMM (p/ M)
= p/(OM) (M (p/M))
= (p/oM)/OM*(p/ M) since o/ By = (a/B)/y
€ since by i.h. p/M = IM*(p/ M)
(=) Since M is a multi-selection strategy, we have that M/p = . Let us check that
oM (p)/p = e.
(OM*(p))/p
(O(MM*(p/M)))/p
= (OM) (M (p/M))/p
= ((@M)/p) (M (p/M))/(p/0M)) since af/y = (a/B)(7/ (/)
= (oM*(p/M))/(p/OM) since M/p = &, s0 (OM)/p = ¢
= (0M*(p/M))/(p/ M) since p/M stands for p/dM

since by i.h. p/M = IM*(p/ M)

248

Definition 7.38 (Standard multiderivation). A multiderivation D is M-standardif M*(0D) =
D.

Proposition 7.39 (Standardization for DFSs). Let M be a uniform multi-selection strategy in
a DFS. For any finite derivation p there exists a unique multiderivation D such that p = 0D and
D is M-standard. Namely, D = M*(p).

Proof. We prove the result in two parts:

1. Existence. First note that p = dM*(p) by Lem. To see that M*(p) is M-standard,
apply Lem. on the fact that IM*(p) = p to conclude that M*(dM*(p)) = M*(p), as
required.

2. Uniqueness. Suppose that there is a multiderivation E such that p = JF and E is M-
standard. We claim that £ = M*(p). By applying Lem. on the fact that 0F = p, we
obtain that M*(0E) = M*(p). Finally, since F is M-standard, £ = M*(0F) = M*(p)
and we conclude.

]

Example 7.40 (Standardization in the A-calculus). In the A-calculus, let M o¢(p) := { R} where
R is the leftmost step such that R/p = &, and let Mp,.(p) := {R | R/p = @}. It can be checked
that M e and Mp,, are uniform multi-selection strategies. Moreover, let A — A’ and let p be
the derivation:

p: Aryrz) (Ar.2)A) - Azyzr) (Az.2)A") - (A\zyxr) 2 — yzz
Then the (leftmost) standard form of p is:
M. (p) : (Az.yzx) (Ar.2)A) = y((Ax.z) A)(Ax.2)A) = yz((A\x.2)A) - yzz
The parallel standard form of p consists of a single multistep:

M. (p) : A\r.yxz) (Ar.2)A) = yzz

Standardization in the LSC without gc

In this subsection we apply the previous standardization result (Prop. to the LSC without
gc.
Definition 7.41 (Arbitrary selector). Let Out(t) denote the set of steps whose source is a term
t in the LSC without gc, and let <; be an arbitrary strict partial order on Out(t). We write <
for the function that, for each term ¢ € T, yields a partial order <, & Out(¢) x Out(¢).

The arbitrary selector on < is written M. and defined as the following function, taking a
non-empty derivation and returning a finite set of coinitial steps:

M.(p) % {R| R/p = @ and R is minimal}

By minimal we mean that there is no step R’ such that R'/p = @ and R’ <, R.

249

Note that M (p) is a non-empty finite set. To see this, note that the set X = {R| R/p = &}
is non-empty, because R/p = @ if R is taken to be the first step of the derivation p. Moreover,
the set X is finite, because the LSC is finitely branching. Hence X must have at least one
minimal element. Moreover:

Lemma 7.42. M_ is a uniform multi-selection strategy.
Proof. Let us check that M is a multi-selection strategy and that it is uniform:

1. ML is a multi-selection strategy. Let p be a non-empty reduction sequence. Recall that
a function M is a selection strategy if M(p) is a non-empty multistep M coinitial to p

such that M /p = @ and M < p.

In our case, we have constructed M_(p) to be a non-empty multistep coinitial to p
(Def. [7.41). Moreover, also by construction, any step R € M_(p) verifies R/p = &, so
indeed M_(p)/p = &. Moreover, in the LSC without gc there is no erasure, so all steps
are essential. That is, if R/p = @& then R < p. Hence we have that M_(p) < p, as
required.

2. ML is uniform. Let p = 0, and let us check that M_ (p) = M_ (o). It suffices to show that
the set A, = {R | R/p = @} coincides with the set A, = {R | R/o = &}, since M. (p)
is the subset of the minimal elements of A, and M (o) is the subset of the minimal
elements of A,.

Note that:
ReA, < R/p=0
<~ Rj/o=2 sincep=oc

< ReA,

So A, = A,, as wanted.
O

Corollary 7.43 (Standardization by arbitrary selection for the LSC without gc). Let M be
the arbitrary selector on <. For each finite sequence p in the LSC without gc, there is a unique
multiderivation D such that p = 0D and D is M -standard. Moreover, if the ordering function
< is computable, then D is computable from p, namely D = M* (p).

Proof. This is a consequence of the standardization result for DFSs (Prop.[7.39) and the fact
that M_ is a uniform multi-selection strategy (Lem.|7.42). Moreover, it is clear by definition
that MX is computable if the ordering function < is computable.]

Example 7.44 (Standardization in the LSC without gc). In the LSC without gc, let p : z[z\t] —
z[x\t'] = t'[x\t'] — t"[x\t'], wheret — ' — t".
1. If <! is the trivial partial order in which every step is incomparable, i.e. R <} S never

holds, then M., (p) : x[x\t] = t'[z\t'] — t"[2\t']. The first step is a proper multistep.

2. Let <? be the total left-to-right order, defined so that R <2 S holds whenever R is to the
left of S. Then M*.,(p) : x[z\t] — t[x\t] — t'[x\t] — t'[2\t'] — t"[2\t'].

250

3. Let <3 be the total right-to-left order, defined so that R <} S holds if R is to the right of
S. Then M 5(p) = p : z[2\t] — z[2\t'] — t'[2\t'] — "[2\V'].

7.6 Normalization of Strategies

A reduction strategy is, informally speaking, a restriction on the computational steps that may
be performed in a rewriting system. For example, in the A-calculus, head reduction is the
restriction of the -reduction rule that only allows to contract head redexes, this is, redexes
that lie below a context of the form Az ... x,.[Ju; ... u,. More precisely, head reduction is
defined by the following rewriting rule:

ALY o T (AYE)S UL o Uy, —head AT - T t{Yy = ST ug LUy,

For instance, underlining the contracted redex, the following is a sequence of head reduction
steps:
Az.(Ay) (Ay.2)Q) —head AT (AY.2)Q —head AT.T

While the following is not a sequence of head reduction steps, because the first step does not
contract a head redex:

Az.(Ay.y)(Ay.x)Q) = Az.(A\Y.y)T —head AT.T

It can be shown that a term has at most one head redex. A term without a head redex is
called a head normal form. It is well-known that, by repeatedly contracting the head redex,
one reaches a head normal form if possible. More precisely, one has the following result:

Proposition 7.45 (Head reduction is head normalizing in the A-calculus). Suppose thatt has
a head normal form, that is, there exists a head normal form s such that t <—>2§ s. Then there is
no infinite head reduction t —neaq t1 —head 2 - - -

Proof. See [130, Corollary 1.5.12 (i)]. O

Observe that a term, such as 2 = (A\zx.zz)(Az.zx), may not have a head normal form, in
which case it is impossible for any strategy to reach a head normal form.

As evidenced in the title of the statement, the result given in Prop. is known as the
fact that head reduction is head normalizing. In general, if X is a set of answers, a strategy is
said to be X-normalizing if repeatedly contracting a step according to the strategy leads to a
term in the set X', whenever possible.

In this section, we give sufficient conditions under which reduction strategies are X'-
normalizing in Deterministic Family Structures. The proof of normalization relies on the
FINITE FAMILY DEVELOPMENTS property. As a consequence, we conclude that two specific
strategies, call-by-name and linear call-by-need, are normalizing in the LSC without gc.

Many normalization results have been studied before. In particular, we should mention
that Glauert and Khasidashvili prove a Relative Normalization result [61, Theorem 4.1] for

251

Deterministic Family Structures, which ensures that any reduction contracting X'-needed
steps (cf. Def. reaches a term in X if possible. The normalization result for DFSs that
we state and prove below is a particular case, i.e. it is a weaker result than Glauert and Khasi-
dashvili’s Relative Normalization. The advantage is that our weaker result only requires to
check a number of local syntactic conditions on rewriting diagrams in order to ensure that a
strategy is A’ -normalizing.

Normalization in Deterministic Family Structures

In this subsection we prove a normalization result for Deterministic Family Structures. The
main result of this subsection is Prop.|7.54] in which we give sufficient conditions for a strategy
to be X-normalizing. We begin by giving formal definitions of all the required notions.

Definition 7.46 (Sub-ARS). A sub-ARS of an ARS A = (Obj, Stp, src, tgt) is an ARS B =
(Obj’, Stp’, src’, tgt’) such that Obj’ = Obj, Stp’ = Stp, and moreover the functions src’, tgt’
are the restrictions of src, tgt to Stp’. A sub-ARS B is closed if the set NF(B) is closed by
reduction, i.e. if z — 4 y and x € NF(B) then y € NF(B5).

Definition 7.47 (Strategy). A strategy in an ARS A = (Obj, Stp, src, tgt) is a sub-ARS B =
(Obj', Stp’, src’, tgt’) having the same objects, i.e. Obj = Obj’, and the same normal forms, i.e.
NF(A) = NF(B).

Remark 7.48. Any sub-ARS B can be extended to a strategy S by adjoining the steps going
out from normal forms, i.e. by setting Stp(Sg) := Stp(B) U {R € Stp(.A) | src(R) € NF(B)}.
Note in particular that if B is already a strategy then S = B.

Example 7.49. In the A-calculus, the notion of head reduction —ye.q is not strictly speaking a
strategy, because the set of J-normal forms does not coincide with the set of head normal forms.

Head reduction can be extended to a strategy Speaq in such a way that an arbitrary [3-step
R : t—p s isin the strategy Shead Whenever IR contracts a head redex or, alternatively, t is a head
normal form.

Definition 7.50 (X'-normalizing strategy). Let X’ be a superset of the normal forms of A. A
strategy S is said to be X'-normalizing if for every object = such that there exists a reduction
x —4 y € X, every maximal reduction from x in the strategy S contains an object in X

The following notion of residual-invariance is the key notion to give a sufficient condition
for a strategy to be X'-normalizing.

Definition 7.51 (Residual-invariance). Let .A be an axiomatic rewriting system (including the
notion of residual). A sub-ARS B of A is residual-invariant if for any steps R and S such that
R e Band S # R, there exists a step R’ € S such that R’ € R/S.

Example 7.52. In the A-calculus, the leftmost outermost strategy S\ o is the strategy that only
allows contracting the leftmost outermost step, i.e. the step contracting the redex whose \ is more
to the left. It is easy to check that S\ ¢ is residual-invariant, because the residual of a leftmost
outermost step is again leftmost outermost.

The following is a straightforward lemma regarding residual-invariance.

252

Lemma 7.53 (Steps of residual-invariant sub-ARSs are preserved in DFSs). Let F' = (A, ~
, <) be a DFS and suppose that I3 is a residual-invariant sub-ARS of A. Let pR be a redex with
history such that R is in B, and let o be any finite reduction coinitial to R. Let us also suppose
that o does not contract redexes in the family of pR. More precisely, let us suppose that whenever
o can be written as 01509 then pR + po1S. Then R has a residual R' € R/o in B.

Proof. By induction on o. If 0 is empty it is immediate. If 0 = T' 7, we know that pR + pT by
hypothesis, so in particular R # T Since B is residual-invariant this means that there exists
a step R’ € B such that R (T") R'. Moreover, by the Copy axiom pR ~ pTR'. By i.h. on the
derivation 7 and the redex with history pT'R’ we conclude that there is a step R” € B such
that R’ () R". So R {I'T) R” and we are done. O

We turn to the main result of this subsection.

Proposition 7.54 (Normalization for DFSs). Let B be a closed residual-invariant sub-ARS in a
Deterministic Family Structure. Then the corresponding strategy Sp is NF(B)-normalizing.

Proof. Let p; be a derivation © — 4 y € NF(B) and consider a maximal derivation o starting
from x in the strategy Sp. We must show that o contains a term in NF(5). Let F be the set
of families of all the redexes contracted along p;. The set F is finite, so by the FFD axiom, the
derivation p; can be extended to a complete family development p;p, of F.

By contradiction, suppose that the reduction sequence ¢ has no terms in NF(B). Then
o is contained in the sub-ARS B, and it is infinite. By the FFD axiom, o cannot be a family
development of F, so there must be at least one redex whose family is not in F. Let S be
the first such step, i.e. let us write o as 0150, where o is a family development of 7 and
Fam. (o) ¢ F. The situation is as follows, closing the square with the derivations p;ps/0y
and o1/ p1 pa:

a2
01¢ igl/plﬂ2 =T

.................. .
Si p1p2/01

o)

First we claim that the derivation 7 = 01 /pps is actually empty. Indeed, by the Cory axiom
the families of all the redexes contracted along o1 /p; p, are contained in the families of all the
redexes contracted along o;. In particular, p;po7 is a family development of F. If 7 were not
empty, it would mean that 7 = T'7/, where Fam.(p1p2T") € F. This contradict the fact that
p1p2 is a complete family development, as it can be extended with 7', so T is indeed empty.
This means that the diagram is as follows:

P1 P2
—_— =

71 $p1p2/0'1
sy
ag$

253

By the Cory axiom, we know that the families of all the redexes contracted along p; p2/0; are
contained in the families of all the redexes contracted along p; po. In particular, oy (p1p2/07)
is a family development of F.

By Lem. we obtain that there must exist a step S’ € B such that S {(p1ps/01) S’. To
be able to apply Lem. [7.53| note that:

+ Sis a step in the sub-ARS B;
+ by hypothesis, the sub-ARS B is residual-invariant;

« the derivation p; ps/0; does not contract redexes in the family of 01 S since Fam. (015) ¢
F while o1 (p1p2/01) is a family development of F.

So the situation is:
p1 P2
—_— :

o1 $p1p2/01 ls,
5y
02$

Finally, recall that tgt(p;) € NF(B), and that, by hypothesis, B is closed residual-invariant,
which means that the set NF(B) is closed by reduction. So tgt(ps) € NF(B), contradicting the
fact that there is an outgoing step S’ in the sub-ARS B. We conclude that o must be have a
term in NF(B), as required. O

Normalization in the LSC without gc

In the following subsections, we give the definition of two strategies in the LSC without gc,
and we prove that they are normalizing.

First, we study head linear reduction, also known as call-by-name, in the LSC without gc.
As we see in Chapter 3] this strategy is in close correspondence with evaluation of A-terms in
the Krivine Abstract Machine. Moreover, this strategy is closely related with Vincent Danos
and Laurent Regnier’s notion of head linear reduction in the A-calculus [47].

Second, we define a new strategy that we baptize needed linear reduction. Needed linear
reduction is very similar to the (weak) call-by-need strategy that we study in Chapters[3|and[4]
with the slight difference that the linear substitution rule that we study here is of the form
given in below, rather than of the form given in below.

C{z)[x\vL] — C{vL)[x\vL] (7.1)

C{x)[x\vL] — C{v)[z\v]L (7.2)

The advantage of the weak call-by-need strategy, as given in (7.2), is that it only copies the
subterm v, sharing the substitution context L. Moreover, corresponds more closely with
Ariola et al.’s established notion of call-by-need [12, [113]]. Unfortunately, the weak call-by-
need is not a sub-ARS of the LSC, so it would not be possible to apply our results directly
to the variant of weak call-by-need given by without redoing some of the work that we

254

have done in previous sections. For example, one should prove that an adapted variant of the
LSC with the sharing linear substitution rule also forms a Deterministic Family Structure. We
leave this task as future work, restricting our attention to the variant of call-by-need given by

only.

Normalization of head linear reduction

In this subsection, we recall the definition of head linear reduction (call-by-name), and we
prove that it is normalizing.

Definition 7.55 (Head linear reduction and head linear normal forms). Head linear reduction
is the sub-ARS HL of the LSC without gc that selects the (unique) db or 1s step whose anchor
is currently below a weak head context. Weak head contexts are defined by the grammar:

H:=[0O|Ht| H|z\t]

The set of head linear normal forms HLNF is defined as the set of terms generated by the
grammar:
A == (Azt)L
| H{x) where H does not bind =

Terms of the form (Az.t)L are called answers, and terms of the form H{z)) are called head
structures (or just structures if clear from the context). The variable x is called the head variable

of a structure H{x)).

Corollary 7.56 (Head linear reduction is HLNF-normalizing — & Coro.[A.113). The strategy
Sy 1, associated to the sub-ARS HIL is HLNF-normalizing.

Proof. A consequence of the previous proposition (Prop. [7.54), using the fact that the LSC
without gc is a DFS (Thm. [7.13). It suffices to show that HIL is a closed residual-invariant
sub-ARS of the LSC without gc, and that NF(HIL) = HLNF. See the appendix for the proof of
these facts. []

Example 7.57. The following is a head linear reduction reaching a term in HLNF.

(Az.zx)((Ay.y)(Az.2)) (zx)[2\(A\y.y) (Az.2)]
(Ay.y)(Az.2)z)[2\(Ay.y) (A2.2)]
(yly\Az.z]z) [2\(Ay.y) (Az.2)]
(Az.2)[y\\z.2]z)[2\(Ay.y) (A2.2)]
z[\x][y\Az.2][2\(Ay.y) (Az.2)]
z[2\z][y\Nz.2][2\(Ay.y) (Az.2)]
(Ayy)(Az.2))[2\z][y\Nz.2][2\(Ay.y) (Az.2)]
yly\\z.2][2\z][y\Az.2][2\(\y.y) (A2.2)]
(Az.2)[y\\z.2][2\x][y\\z.2][2\(Ay.y) (Az.2)]

I A

255

Normalization of needed linear reduction

In this subsection, we define a variant of call-by-need we call needed linear reduction, and we
prove that it is normalizing.

Definition 7.58 (Needed linear reduction and needed linear normal forms). Needed linear
reduction is the sub-ARS NL of the LSC without gc defined as follows. Needed evaluation
contexts are defined by the grammar

W= O WE [N2\E] | N[\N]

The reduction rule —yg, is the union of the usual db rule, and the 1snl rule

N)[#\VL] = 10m NVL)[2\VL]

both rewriting rules are closed by need contexts.

The set of needed linear normal forms NLNF is defined by the grammar A ::= (A\z.f)L |
N{z)). Terms of the form (Az.t)L are called answers, and N{z)) are called structures. In struc-
tures, N does not bind z, the latter called its needed variable.

Corollary 7.59 (Needed linear reduction is NLNF-normalizing — & Coro.|A.115). The strategy
Sni. associated to the sub-ARS NLL is NLNF-normalizing.

Proof. A consequence of the previous proposition (Prop. [7.54), using the fact that the LSC
without gc is a DFS (Thm. [7.13). It suffices to show that NI is a closed residual-invariant
sub-ARS of the LSC without gc, and that NF(NL) = NLNF. See the appendix for the proof of
these facts. []

Example 7.60. The following is a needed linear reduction reaching a term in NLNF.

(Az.zz)((Ay.y)(Az.2)) (zz)[2\(Ay.y) (Az.2)]
()| \yly\Nz.2]]

() [\ (2.2 [\ N> -2]]
(Az.2)x)[x\\z.2][y\)\z.2]
z[2\x][z\Nz.z][y\\z.2]
z[2\z.z][z\\z.2][y\\z.2]

(Az.2)[2\Az.z][2\Az.2][y\\z.2]

R

Chapter 8

Conclusion

In this thesis we have used calculi with explicit substitutions at a distance, and in particular
the Linear Substitution Calculus, to study evaluation strategies. Three main topics have been

addressed:

1. We have showed that some of these evaluation strategies—call-by-name, call-by-value,
call-by-need, and strong call-by-name—distill the behaviour of abstract machines, and
that they are reasonable in terms of time complexity. This methodology has allowed us to
revisit some abstract machines known from the literature (such as the Krivine abstract
machine or Leroy’s ZINC machine), as well as to conceive new abstract machines.

2. We have extended the call-by-need evaluation strategy to a strong setting. Our main
result is the completeness of strong call-by-need, which relies on a recent technique by
Kesner, based on using non-idempotent intersection type systems to characterize weak
normalization.

3. We have studied the theory of redex families in the LSC. For this, we have proposed
a labeled variant of the LSC, following Lévy’s work on the A-calculus. This theory
provides us with results about the optimal evaluation strategy, and also gives us new
proofs of standardization in the LSC, and normalization of the call-by-need strategy.

In the following sections we describe two concrete topics for future work.

8.1 An Abstract Machine for Strong Call-by-Need Reduc-
tion

In Chapter (3, we defined abstract machines for evaluation according to the call-by-name,
call-by-value, call-by-need, and strong call-by-name strategies. Moreover, in Chapter |4} we
defined a strong call-by-need strategy. It is only natural to wonder what an abstract machine
for evaluation according to this strong call-by-need strategy would look like.

In this section, we propose an abstract machine for strong call-by-need evaluation.

256

257

Definition 8.1 (An abstract machine for strong call-by-need evaluation). Abstract machine
states are quadruples (7 | ¢ t | E) comprising: a stack w, a phase ¢, a term t, and an
environment E. Terms are usual terms of the LSC. The phase is a boolean flag which may be
either | or ||. The stack represents the current evaluation context, in a way reminiscent of
zippers [77]. Phases, stacks and environments are defined by the following grammars:

o = Going up (normal form found)
|l Evaluation phase
Tou= € Empty stack (focus at toplevel)
| a(t):w Argument (focus on the left of an application)
| d(t):7 Data structure (focus on the right of an application)
| h(Ey, z):7 Heap (focus on the right of a substitution)
| Az):7 Lambda (focus under an abstraction)
E = € Empty environment
| E:fx—t] Mapping
| E:lz—t] Frozen mapping
| E:K(x) Scope delimiter

The transition rules of the abstract machine are given below:

m | tlz\s] | E s || t |[z—s]E D-Migration
|| ts |FE s ma(s)|| t |FE D-Application
ma(s) | | Azt | E v |l t |[z— s]E Beta
|| Mzt | E v az) | t |A@)E D-Strong
if does not end with a(.), or h(., .)
7| x |Ei[x—s]Es v~ wh(Ey,z)| | s | E. Lookup
7| x |Eifz— s|Ey v 7|1 =z |EiJx— s]E2 Frozenlookup
mh(Ey, z) || v | Es v || v | Ei[x—v]Ey LSV
Tl y |E o T oy |E Up
if y has no mapping in E
ra(s) | t |FE v md(t) || s |FE U-Argument
wh(Ey, z) | t | Es v 7| x | EifJx— t]Ey U-Update
md() |t s |E v | ts | E U-Application
a(z) |t t |[y—s]E > aA(z) | © t[y\s] | E U-Migration
aA(z) |t t |Ax)E v 7| Azt | E U-Strong

Example 8.2. The following is an execution in the strong call-by-need abstract machine. In each
step we underline the focus of evaluation, i.e. the pattern of the db redex or the variable contracted

258

by the 1s redex:

€ [l (Az.zz)Ay.2(I12)y) | €
D-Application > a(Ayz(Iz)y) || Az.zx | €
Beta € [l xx | [z — Ay.z(I2)y]
D-Application v~ a(x) [l x | [z — Ay.z(I2)y]
Lookup v~ h(e, x) [l My.2(1z)y | €
LSV o € [l My.z(1z)y \ [z — A\y.z(I2)y]
D-Strong v Ay) 1 z(I1z)y | AWz = Ay.z(12)y]
D-Application > A(y)a(y) 1V z(1z) | AWz — Ay2(12)y]
D-Application > AMy)a(y)a(Iz) || z | K[z — Ay.z(12)y]
Up v Aal)alz) | . | Al Mya(z)y)
Udrgument o A(p)a(y)d(z) |U 12 | A~ dya(z)y)
D-Application ~~ Ay)a(y)d(z)a(z) || 1 | K(y)[z — My.z(I2)y]
Beta v~ Ay)aly)d(z) [w | [w = z]A(y)[z — Ay.z(12)y]
Lookup ~~ A(y)a(y)d(z) h(e, w)[] z | AW)[E = Ay2(12)y]
Up o Aly)aly) d(z) h(e, w1 . | A~ Aya(z)y)
UUpdate > A)aly)d(z)) w [T — 2JA()[— Ay.2(12)y]
U-Application > AMy) a(y) [0 2w | [w — 2]|A(y)[z — Ay.z(12)y]
U-Argument > AMy)d(zw) [l y | [w — 2]|[A(y)[z — Ay.z(I12)y]
Up v Aly)d(zw) |1 y [[w = 2lA(y) [z — Ay.2(12)y]
U-Application Ay)) 2wy | [w — z[A(y)[x — Ay.z(I12)y]
U-Migration v M) 1 el | A (T2
U-Strong v~ €) Ay (zwy)[w\z] | [z — A\y.z(I2)y]

We omit a proposal for the decoding of machine states as terms. Proposing an appropriate
notion of strong bisimulation = between terms in order to show that this machine simulates
the strong call-by-need strategy is left as future work. The question of whether the strong
call-by-need strategy can be implemented reasonably is open at the moment of writing this
thesis.

8.2 Difficulties Defining an Extraction Procedure

As we detailed in Section Lévy characterized redex families in the A-calculus in three
ways: (1) by means of the zig-zag equivalence relation whose equivalence classes are the redex
families; (2) by means of an auxiliary calculus with labels, in such a way that two redexes with
history are in the same family if and only if they have the same name; and (3) by means of
an extraction procedure, in such a way that two redexes with history are in the same family if
and only if the extraction procedure yields the same canonical representative.

In this section we mention a currently unsolved problem that we have found while at-
tempting to characterize redex families in the LSC. In particular, we propose an extraction
procedure but we leave the question of whether it has all the desired properties as an open
problem.

To clarify the discussion, let us consider three equivalence relations between redexes with
history in the LSC without gc:

+ Zig-zag family equivalence (~7), defined as the reflexive—symmetric—transitive clo-
sure of the copy relation < defined in Def.[7.2]

259

« Labeling family equivalence (~), defined to hold for two redexes with history if
an initially labeled variant gives them the same name. Note that this is precisely the

relation A defined in Def.

+ Extraction family equivalence (~¢), that we will attempt to define below, defined to
hold for two redexes with history if they have the same canonical representative.

The question is now whether these relations all characterize the same notion of redex
family. We have already seen that the LSC without gc verifies the Copy axiom (Thm. [7.13),
which means that (pR < 0S) = (pR ~_ ¢5). From this fact, by induction on the
derivation that pR ~; oS, one can easily prove that zig-zag equivalence is contained in
labeling equivalence, that is, (pR ~7 05) = (pR ~ 09).

The converse implication (pR ~| 0S) == (pR =~z 05) is non-trivial. In the \-
calculus, the proof of this fact that we are familiar with relies on the definition of an extraction
procedure (see [14} Section 6.2.3]).

For the extraction procedure that we will propose below, it will be easy to prove that ex-
traction equivalence is contained in zig-zag equivalence, i.e. the implication (pR ~g 05) =
(pR ~z 0S). The picture, at the time of writing this thesis, is currently:

/ pR ‘_’:zvaS \ (8.1)

Proposal of an extraction procedure

Before proposing the extraction procedure, we introduce some auxiliary notions.
Definition 8.3 (Non-duplication). We write p # S if p does not duplicate S, i.e. #(S/p) = 1.
We say that p does not duplicate o, written p # o, according to the following inductive
definition:
p#S p/SH#o
p#e p# So
Remark 8.4. If p # o then o/p has the same length as o.

Definition 8.5 (Internal derivation). A step R is internal to a context C, written C < R, when-
ever the source of R is of the form C(¢) and, moreover:

« If R is a db redex, the position of the hole of C is a prefix of the position of the pattern
of the db redex.

« If Ris a 1s redex, the position of the hole of C is a prefix of the position of the variable
contracted by the 1s redex.

260

Moreover, a derivation p is internal to a context C, according to the following inductive defi-

nition:
C<R C<p

C<e C<Rp

If Risalsredex and o is a composable derivation, i.e. tgt(R) = src(o), the derivation o is said

to be internal to the subject (resp. argument) of R, written R <5 0 (resp. R <.rg 0) Wwhenever
the redex R is of the form C{Colx)[z\t]) — C1{Co(t)[z\t]) and C1{Co([(P[z\t]) < o (resp.
C1(Co(D[x\O]) < o).

Example 8.6 (Internal derivations). For example, consider the following diagram:

S/(zyy) [2\yyl[p\2] —> (22)[2\yy][y\2]
(yy)[z\yy] [W]&l

() [\ 2] [\2] == () [\ 22][w\2]
’ . z[z\2y][y\2] .
2[#\yy] [W{ Tic[x\zz] [v\2]
\; [2\yz] [y\Z]/7

Then O[x\yy][y\z] < SiT1 so R <gp3 1711, and (yy)[«\O][y\z] < S2T% 50 R <arg SoT5.

Note that if R <; S; for i € {sbj,arg}, then S; has an ancestor Sy, that is S; € Sy/R.
Moreover, Sy/R consists of exactly two redexes, namely Sgp; and Sar, such that S; is internal
to 7. Also note that Sy does not duplicate R. This can be justified by the following diagram:

CrlCallaP[2\t]) = Ci(Ca(Dl\t])

Sol/ Ssbj L Sargl

Definition 8.7 (Retraction). If R <; S, for i € {sbj, arg}, we write S; << R for the (unique)
ancestor of S;, corresponding to Sy in the diagram above. We call (S; «< R) the retract of S;
before R.
The notion of retract is also extended for derivations. If R <; o for i € {sbj,arg}, the
retract of o before R, written o «— R, is defined inductively as follows:
ce~R ¥ ¢
So—~R Y Sy(c/(Sy/RS) = R/S,) where Sy =S «— R

The retraction is well defined as R/S) is a single redex, since, as we have already discussed,
So does not duplicate R. To see that the inductive definition is in fact well-defined, it can be

261

checked that R/Sy <; 0/(Sy/RS) and, moreover, that the length of 0/(.Sy/ RS) coincides with
the length of o, so recursion is well-founded. The following diagram illustrates the situation:

So ;/R\\
Vo Ve
R/Sy : So/RS

o/(So/RS) |o

i

Example 8.8 (Retraction). In the situation of Ex. we have that (51T} <~ R) = (SoTy
R) = ST.

Finally, we may define an extraction procedure.

Definition 8.9 (Extraction procedure). Extraction is a rewriting system whose objects are
redexes with history. Rewriting steps are given by the two following rules:

pR(0c/R) = po ifo #eand R# o
pRo > p(o—~ R) if o # e and R <; o for some i € {sbj, arg}

Example 8.10. In the situation ofEx. we have that RS, = S, RSy = S, RS|T, = ST =T,
and RSQTQ > ST > T'.

It is not hard to show that = is strongly normalizing. Indeed, one can show that if p > o,
then the length of o is strictly lesser than the length of p. Moreover, one may define extraction
family equivalence by declaring the relation pR ~g ¢S to hold if and only if pR (= U ="1)*
0S. With this definition, it is not hard to show that (pS ~g 05) = (pS ~z 09).

On the other hand, the two following problems seem to be non-trivial, and we leave them
as unsolved conjectures.

Conjecture 8.11. The extraction procedure = is confluent.

Conjecture 8.12. The extraction procedure = characterizes redex families. More precisely, the
implication (pS ~| 0S) = (pS ~g 0S) holds, closing the circle of implications of (8.1).

Appendix A

Technical appendix

A.1 Proofs of Chapter 3| - Distilling Abstract Machines

A.1.1 Determinism — proof of Prop.

Proposition A.1 (Full proof of Prop.[3.11}-Determinism). The five reduction strategies of Def.
are deterministic. In each case, if R1, Ry are evaluation contexts, 1,4 are anchors (i.e. an appli-
cation that may be contracted by a multiplicative step or a variable that may be contracted by
an exponential step), and R1(r1) = Ro(rs) thenRy = Ry andr; = r5. So there is at most one way
to reduce a term.

We prove each case separately.

Call-by-Name

Let ¢ = Hy{ry) = Hy{ry). By induction on the structure of t. Cases:
« Variable or an abstraction. Vacuously true, because there is no redex.

« Application. Let ¢ = su. Suppose that one of the two evaluation contexts, for instance
Hy, is equal to []. Then, we must have s = \z.s’, but in that case it is easy to see that the
result holds, because Hy cannot have its hole to the right of an application (in «) or under
an abstraction (in s’). We may then assume that none of Hy, H, is equal to []. In that
case, we must have H; = H{u and Hy = Hju, and we conclude by induction hypothesis.

« Substitution. Let ¢ = s[z\u]. This case is entirely analogous to the previous one.

Left-to-Right Call-by-Value

We prove the following statement, of which the determinism of the reduction is a conse-
quence.

Lemma A.2. Lett be a term. Thent has at most one subterm s that verifies both (i) and (ii):

(i) Either s is a variable x, or s is an application L{v)L'{v"), for v,v' being values.

262

263

(ii) s is under a left-to-right call-by-value evaluation context, i.e. t = R(s).
From the statement it follows that there is at most one —-redex in ¢, i.e. — is deterministic.
Proof. by induction on the structure of ¢:
« t is a variable. There is only one subterm, under the empty evaluation context.

« t is an abstraction. There are no subterms that verify both (i) and (ii), since the only
possible evaluation context is the empty one.

« tis an application u r. There are three possible situations:

— The left subterm u is not of the form L(v). Then s cannot be at the root, i.e. s #
t. Since u[] is not an evaluation context, s must be internal to [Jr, which is an
evaluation context. We conclude by i.h..

— The left subterm u is of the form L{v) with v a value, but the right subterm r is not.
Then s cannot be a subterm of u, and also s # t. Hence, if there is a subterm s as
in the statement, it must be internal to the evaluation context u[. We conclude
by i.h..

— Both subterms have that form, i.e. u = L{v) and r = L'(v') with v and v’ values.
The only subterm that verifies both (i) and (ii) is s = .

« tisasubstitution u[x\r]. Any occurrence of s must be internal to u (because u[z\[]] is
not an evaluation context). We conclude by i.h. that there is at most one such occurrence.

]

Right-to-Left Call-by-Value

Exactly as in the case for left-to-right call-by-value, we prove the following property, from

which determinism of the reduction follows.

Lemma A.3. Lett be a term. Thent has at most one subterm s that verifies both (i) and (ii):
(i) s is either a variable x or an application L{v)L'(v"), where v and v' are values.
(ii) s is under a right-to-left call-by-value evaluation context, i.e. t = R(s).
As a corollary, any term ¢ has at most one —-redex.
Proof. By induction on the structure of ¢:
« Variable or abstraction. Immediate.
« Application. If £ = u r, there are three cases:

— The right subterm r is not of the form L'(v"). Then s cannot be at the root. Since []r
is not an evaluation context, s must be internal to and we conclude by i.h..

264

— The right subtermr is of the form L'{~") but the left subterm u is not. Again s cannot
be at the root. Moreover, r has no applications or variables under an evaluation
context. Therefore s must be internal to u and we conclude by i.h..

— Both subterms have that form, i.e. u = L{v) and r = L'(v'). We first note that
u and r have no applications or variables under an evaluation context. The only
possibility that remains is that s is at the root, i.e. s = ¢.

« Substitution. If ¢ = u[z\r] is a substitution, s must be internal to u (because u[z\[]]
is not an evaluation context), and we conclude by i.h..

]

Call-by-Need
We first need an auxiliary result:

Lemma A.4. Lett = N{x)) for an evaluation context N. Then:
1. for every substitution context L and abstraction v, one hast # L{v);

2. for every evaluation context R’ and variable y, one has that t = R'{y) impliesR' = N and

y =
3. t is a call-by-need normal form.
Proof. In all items we use a structural induction on N. For item 1:
+ N = [: obvious.

« N = N;s: obvious.

N = N;[y\u]: suppose that L = L'[y\u] (for otherwise the result is obvious); then we
apply the induction hypothesis to Ny to obtain Ni{z) # L'(v).

N = Ni{y)[y\N2]: suppose that L = L'[y\No(z)] (for otherwise the result is obvious);
then we apply the induction hypothesis to N; to obtain N;(y) # L'{v).

For item 2:
« N = [: obvious.
« N = Nys: we must necessarily have R’ = R|s and we conclude by induction hypothesis.

« N = Ny[2\s]: in principle, there are two cases. First, we may have R" = R}[z\s], which
allows us to conclude immediately by induction hypothesis, as above. The second pos-
sibility would be R" = R|{2)[2\R}], with R,(y) = s, but this is actually impossible. In
fact, it would imply N;(x) = R|{z), which by induction hypothesis would give us z = z,
contradicting the hypothesis x € fv(t).

265

« N = Ni{2)[2\Ny]: by symmetry with the above case, the only possibility isR" = N;{z)[2\R}],
which allows us to conclude immediately by induction hypothesis.

For item 3, let r be a redex (i.e., a term matching the left hand side of — g, or —145,) and
let R’ be an evaluation context. We will show by structural induction on N that ¢ # R'(r). We
will do this by considering, in each inductive case, all the possible shapes of R’

o« N = []: obvious.

« N = Nys: the result is obvious unless R" = [Jor R" = R/s. In the latter case, we conclude
by induction hypothesis (on N;). In the former case, since r is a redex, we are forced to
have r = L{v)s’ for some abstraction v, substitution context L and term s’. Now, even
supposing s’ = s, we are still allowed to conclude because N;(x) # L(v) by item 1.

« N = N;[y\s]: the result is obvious unless:

— R’ = [I: this time, the fact that r is a redex forces r = R|(y)[y\s]. Even if we admit
that s = L(v), we may still conclude because = # y (by the hypothesis z € fv(t)),
hence N;{(z) # R|(y) by item 2.

- R’ = R/[y\s]: immediate by induction hypothesis on Nj.

- R = R|(y[y\Ry]: even if Ry(r) = s, we may still conclude because, again, x # y
implies Ny{(z) # R|(y) by item 2.

« N = Ni{y)[y\No]: again, the result is obvious unless:

— R’ = [I: the fact that r is a redex implies r = R|{y)[y\L(v)]. Even assuming
R} = Ny, we may still conclude because No(x) # L{v) by item 1.

- R’ = R|[y\Na(z)]: since y € £v(Ni{y)), we conclude because the induction hy-
pothesis gives us N;(y) # R {(r).

- R = Ni{y)[y\R,]: we conclude at once by applying the induction hypothesis to Ns.
[

Now, the proof of Prop. is by structural induction on ¢ := N;(r;) = Ny(ry). Cases:

« Variable or abstraction. Impossible, since variables and abstractions are both call-by-
need normal.

« Application, i.e. t = su. This case is treated exactly as in the corresponding case of
the proof of Prop.

« Substitution, i.e. t = s[x\u]. Cases:

— Both contexts have their holes in s or u. It follows from the i.h..

266

— One of the contexts—say Ny —is empty, ie. s = N3(x),u = L(v), andr, = N3{z)[x\L{v)].
This case is impossible. Indeed, 1) the hole of Ny cannot be in L{v), because it is
call-by-need normal, and 2) it cannot be inside N3{x) because by Lemmal[A.4|3[R(z)
is call-by-need normal.

— One of the contexts—say Ny —has its hole in u and the other one has its hole in s, i.e.
Ny = N3{x)[z\N4] and Ny = N5[z\u]. This case is impossible, because by Lemma

N3(z) is call-by-need normal.

Strong Call-by-Name

Let S1{r1) = Ss(ry) where S1, S, are strong call-by-name evaluation contexts, i.e. S1,S; € S.
Consider the steps contracting these redexes, S1{(r1) —, $1 and Sy(r3) —, S2. By Lem. [3.10]
these are leftmost-outermost steps. Since there is only one leftmost-outermost redex, we have
that S; = Sy and r; = 79, as required.

A.1.2 Structural equivalence is a strong bisimulation — proof of Prop.

Proposition A.5 (Full proof of Prop. Structural equivalence is a strong bisimulation).
Let x € {m, e}. Ift =5 t'—,gs then there exists s’ such that t—,gs' =g s.

We prove it for each strategy separately in the following sections:
1. Call-by-Name (name): Section[A.1.2]

2. Left-to-Right Call-by-Value (value'*): Section[A.1.2]

3. Call-by-Need (need): Section[A.1.2]
4. Strong Call-by-Name (name®): Section[A.1.2]

The proof for Right-to-Left Call-by-Value (value®) is obtained as minimal variation of the
proof for Left-to-Right Call-by-Value (value™®), and therefore it is omitted.

Call-by-Name (name)

Before proving the main result, we need two auxiliary lemmas, proved by straightforward
inductions on H:

Lemma A.6. Lett be a term, H be a call-by-name evaluation context not capturing any variable
infv(t), and x ¢ £v(R{y)). Then R{t[x\s]) = R{t)[x\s].

Lemma A.7. The equivalence relation = as defined for call-by-name preserves the shape of
R{(z). More precisely, if R{x) = t, with x not captured by H, then t is of the form R'(x), with x
not captured by R’.

Now we turn to the proof of the proposition itself. Let & be the symmetric closure of the
union of the axioms defining = for call-by-name, that is of =5 U =gy U =@ U =con U =[.
Note that = is the reflexive—transitive closure of <. The proof is in two parts:

267

(I) Prove the property holds for &, ie. ift —, sand t & wu, there exists r such that
u —,rand s =r.

(IT) Prove the property holds for = (i.e. for many steps of <) by resorting to (I).

The proof of (II) is immediate by induction on the number of & steps. The proof of (I)
goes by induction on the rewriting step — (that, since — is closed by evaluation contexts,
becomes a proof by induction on the evaluation context H). In principle, we should always
consider the two directions of <>. Most of the time, however, one direction is obtained by
simply reading the diagram of the other direction bottom-up, instead than top-down; these
cases are simply omitted, we distinguish the two directions only when it is relevant.

1. Base case 1: multiplicative root step t = L(\x.t")s’ g, L{[2\5]) = s.

If the & step is internal to s’ or internal to one of the substitutions in L, the pattern of
the & redex does not overlap with the —g, step, and the proof is immediate, the two
steps commute. Otherwise, we consider every possible case for &

1.1 Garbage Collection =,.. The garbage collected substitution must be one of the
substitutions in L, i.e. L must be of the form L'(L"[y\u/]). Let L := L/(L"). Then:
Lzt —2 L [2\s])
=gc =gc

LOx.t')s' - s L{t'[2\s'])

1.2 Duplication =4,p. The duplicated substitution must be one of the substitutions in
L, i.e. L must be of the form L'(L"[y\«’]). Then:

db

L tH[y\u'])s’ th
—dup —dup
PR -ty

where

o= L [\ D),
fy = L (L), [0\ [2\])5'
b = L[\ D), [\ N[2\]).

1.3 Commutation with application =a. Here =q can only be applied in one direction.
The diagram is:

268

LAy tH[2\¢']s'[2\¢'] =a ty
Jdb i db

ta 7;2
=dup

_ s

s
ts = s

where

ty = (LOytHs)[2\d],

ty = (LA [Y\s'D)[\d'],

ts = (L [y\s'{z/y} D)2\ [y \d],
ta = LA\ [2\dID[2\d],

ts = (L [\s'{z/y}[y\d' 1)) [2\d'],
to := (L [y\s {2 /y}][v\d D) [2\d']-

1.4 Commutation of independent substitutions =..,. The substitutions that are com-
muted by the =, rule must be both in L, i.e. L must be of the form L'(L"[y\u][2\r'])
with z ¢ fv(u). Let L = L'(L"[2\r'][y\/]). Then:

LOz.t'ys' —2 L [2\s'])

Qv -2 Ko\)

1.5 Composition of substitutions =[.;. The substitutions that appear in the left-hand side
of the =) rule must both be in L, i.e. L must be of the form L'(L"[y\u][2\r’]) with
z ¢ £v(L"\x.t’)). Let L = L'(L"[y\u/[2\r"]]). Exactly as in the previous case:

LOt'ys' — 2 L' [2\s'])

=[] =[]
Lzt --=-» Lt [2\s'])

2. Base case 2: exponential root step ¢ = R'(x)[z\t'| 15 R)H[x\t'] = s. If the &
step is internal to ¢/, the proof is immediate, since there is no overlap with the pattern of
the 1 redex. Similarly, if the < step is internal to R{z), the proof is straightforward

by resorting to Lem.

Now we proceed by case analysis on the & step:

2.1 Garbage collection =4.. Note that =, cannot remove [z\t'], because by hypoth-
esis = does occur in its scope. If the removed substitution belongs to R, i.e. R’ =
H'(H"[y\s']). Let R := H'(H"). Then:

269

R(a)[a\t] —— R{)[2\]
Egc Egc
~ 1s ~
R@)[a\ '] === R[]
If =, adds a substitution as topmost constructor the diagram is analogous.

2.2 Duplication =g4,p. Two sub-cases:

2.2.1 The equivalence =4y, acts on a substitution internal toR'. This case goes as for
Garbage collection.

2.2.2 The equivalence =4y, acts on [z\t']. There are two further sub-cases:
o The substituted occurrence is renamed by =gp:
R [\H] —— R[]
=g =g
Rl D2\ [y\] - oy
where ¢, := Ry, {¢')[z\t'][y\t'] and R}, is the context obtained from R’
by renaming some (possibly none) occurrences of x as y.

« The substituted occurrence is not renamed by =4,,. Essentially as in the

previous case:
R/<.7J>[£C\t/] i) R/<t/>[x\t,]
Edup Edup
R @[\ [y\] -2
where ¢; := R/[y]w<t/>[$\t’] [\].
2.3 Commutation with application =q. Two sub-cases:

2.3.1 The equivalence =q acts on a substitution internal to R. This case goes as for
Garbage collection.
2.3.2 The equivalence =q acts on [z\t']. It must be the case that R’ is of the form

H”s'. Then:
(B x)s")[2\t'] ——)
=a =a
ty ----- SR > 13
where

ty = (H'W s)[2\t'],
ty :=H'(x)[x\t']s'[2\t'],
ty := H'{H[2\t']s'[2\t'].

2.4 Commutation of independent substitutions =.,. Two sub-cases:

2.4.1 The equivalence =, acts on two substitutions internal to R'. This case goes as
for Garbage collection.

270

2.4.2 The equivalence =, acts on [z\t']. It must be the case that R’ is of the form
H”. Then:

H' () [y\|[2\t'] —— B)[y\s'][2\V]
H' @[\][y\s'] --==-- CHH >[%‘\t’] [y\s']
2.5 Composition of substitutions =[.;. Two sub-cases:
2.5.1 The equivalence =[] acts on two substitutions internal to R'. This case goes as
for Garbage collection.

2.5.2 The equivalence =[] acts on [x\t']. Note that the equivalence =[,; cannot be ap-
plied from left to right to [2\t'], because R'(x) must be of the form H'{x)[y\']
with z ¢ fv(H’{(z)), which is clearly not possible. It can be applied from right
to left. The diagram is:

Rp[z\'[y\s]] =a

t t

= by Lem. =dup
ts ts

=[] =com
ts =a 7

where

t = R(@)[\t'][y\s],
ty := RO\][Y\s],
ts := R("{y/z)[x\t'][2\s][y\s],

ta = R Ty\s DIz [y\s]],
ts := RD[\s][2\F'[y\s]],
te := ROy \s][2\'][y\s],
tr = R(t{y/z)l2\s] [2\][y\s].

3. Inductive case 1: left of an application H = R'q. The situation is:
t=tqg—,5q=s
for terms t’, s’ such that either t’ —, s’ or t’ — s’. Two sub-cases:

3.1 Thet & w step is internal tot’. The proof simply uses the i.h. applied to the (strictly
smaller) evaluation context of the step t' —, §'.

3.2 Thet & wu step involves the topmost application. The &> step can only be a com-
mutation with the root application. Moreover, for t'q to match with the right-hand

271

side of the =g rule, ¢’ must have the form «'[2\r’] and ¢ the form ¢/[x\7’], so that
the & is:

u = (u'q)[z\r'] = v'[z\r']¢[z\r'] =
Three sub-cases:

3.2.1 The rewriting step is internal to u’. Then the two steps trivially commute. Let
a € {db, 1s}:
[\]q [2\r'] —— [\]q/[2\r]
=a =a
(W'q)[a\r'] === (u"q)[x\r]
3.2.2 db-step not internal to u'. Exactly as the multiplicative root case |1.3|(read in
the other direction).

3.3 1ls-step not internal to u'. Not possible: the topmost constructor is an application,
consequently any —, has to take place in u/.

4. Inductive case 2: left of a substitution H = R[x\¢]. The situation is:
t =t[z\q] - '[a\q] = s

with ¢ = R'(t"). If the <> step is internal to R'{t"), the proof we conclude using the i.h..
Otherwise:

4.1 Garbage Collection =. If the garbage collected substitution is [x\g¢] then:

t'[v\q] — s'[z\q]

If the substitution is introduced out of the blue, ie. t'[z\q] =, '[2\q]|[y\¢] or
t'[2\q] =g t'[y\¢'][x\¢] the diagram is analogous.

4.2 Duplication =4y,. If the duplicated substitution is [2\¢] then:
t]a\g] ——— s'[\q]

Edup Edup

tl2\d[v\d] --- sy, [2\a]
If duplication is applied in the other direction, i.e. t' = t"[y\¢] and
t'[2\q] = t"[y\q][2\q] =aw t"{y/x}[2\q] = ¥'[2\q]

the interesting case is when t” = H’(y) and the step is exponential:

H'(ly\al[z\a] — H{@)[y\a][2\q]

H'(x){y/x}[2\q] -> B {y/=}[x\q]

272

If ¢ isH"(x) it is an already treated base case and if ' has another form the rewriting
step does not interact with the duplication, and so they simply commute.

4.3 Commutation with application =q. Then t' = t"s". Three sub-cases:

4.3.1 The — step is internal to t”. Then:
(t"s")[2\q] ——— (t"s")[x\q]
=@ =a
t"[x\qls"[x\q] - - - t"[2\q]s"[x\q]

4.3.2 The — step is a multiplicative step. If t” = L(\y.t"”) then it goes like the

diagram of the multiplicative root case|1.3|(read in the other direction).
4.3.3 The — step is an exponential step. Then it must be [x\g] that substitutes on the

head variable, but this case has already been treated as a base case (case .

4.4 Commutation of independent substitutions =.o,. It must be ' = ¢"[y\¢'] with = ¢
£v(q'), so that t"[y\¢'][2\q] =con t"[2\¢][y\¢']- Three sub-cases:

4.4.1 Reduction takes place in t”. Then reduction and the equivalence simply com-
mute, as in case[4.3.1]

4.4.2 Exponential steps involving [x\q]. This is an already treated base case (case
2.4.2).

4.4.3 Exponential step involving [y\¢']. This case is solved reading bottom-up the
diagram of case [2.4.2]

4.5 Composition of substitutions =[. It must be t' = t"[y\¢'] with x ¢ fv(t"), so that
t"[y\d'][z\q] =(; t"[2\q[y\¢']]. Three sub-cases:
4.5.1 Reduction takes place in t”. Then reduction and the equivalence simply com-
mute, as in case [4.3.1]

4.5.2 Exponential steps involving [2\q]. This case is solved reading bottom-up the
diagram of case[2.5.2]

4.5.3 Exponential step involving [y\¢']. Impossible, because by hypothesis x ¢ fv(t”).

Left-to-Right Call-by-Value (value'?)

We follow the structure of the proof in for call-by-name.

Before proving the main result, we need the following auxiliary lemmas, proved by straight-
forward inductions on the contexts. Lem. is the adaptation of Lem. [A.7| already stated
for call-by-name:

Lemma A.8. The equivalence relation = preserves the “shapes” of L{v) and R{(z). Formally:
1. IfL{v) =, thent is of the form L'{x').
2. IfR{x) = t, with x not bound by V, then t is of the form R'{x), with x not bound by R’

Lemma A.9. L{t[z\s]) = L{t[z\L{s)])

273

Proof. By induction on L. The base case is trivial. For L = L'[][y\u], by i.h. we have:

L'Ctx\sDly\u] = L'¢#a\L'(s)Dly\u]

Let (L'(s))[2], be the result of replacing all occurrences of y by z in L'(s). Then:

L[z \LCs)Dy\ul
=awp L'C2\(L'(8))pa, DIW\u][2\u]
=ton L'2\LYS)) e, I[2\uDly\u]
=) VA\LY)) e, [2\u]Dly\u]
=o LA\ [y\ulDly\u]

]

Now we prove the strong bisimulation property, by induction on the derivation of the
reduction step.

1. Base case 1: multiplicative root step ¢ = L{\z.t')L'(v) —gp1sy 5 = L [2\L'(V))).
The nontrivial cases are when the & step overlaps the pattern of the dbv-redex. Note
that by Lem. if the & is internal to L'{(v), the proof is direct, since the dbv-redex
is preserved. More precisely, if L'(v) <& L"(v’), we have:

LOz.t'YL'{v) il L [2\L'(v)])

= =
LOz YL - - =T s L [2\L" VD]

Consider the remaining possibilities for &

1.1 Garbage collection =4.. The garbage collected substitution must be in L, i.e. L must
be of the form L;(Ly[y\L"(v/>]) with y ¢ £v(Ly(Az.t')). Let L := Li{L,). Then:
Lzt L'(v) ——— L [2\L (0]

Egc Egc

dbv

Lzt Y L) ---- - --- > LA [2\ L))

1.2 Duplication =4,. The duplicated substitution must be in L, i.e. L must be of the
form L;(Ly[y\s']). Let L := Li([y\s'][2\s']). Then:

db

Lzt YL/ (v) i L [2\L/ (V)]
L(Loa.t")) g, Y LWy - -2 = t

where t; := L{(Lo(t/[2\L’ SANEN:

274

1.3 Commutation with application =q. The axiom can be applied only in one direction
and there must be the same explicit substitution [y\¢]| as topmost constructor of
each of the two sides of the application. The diagram is:

LOxt)[2\g] L'W[y\g] —— t
=q =
(L)L) [y\g] -~ t2

where

t = LA [2\Lw[y\al DIz \gl,
ty := L[\ DI\l

To prove the equivalence on the right, let L'(v)[.], denote the result of replacing
all occurrences of x by a fresh variable z in L'(v). The equivalence holds because:

L [y\L' vy Dl \d]
=awp W[\ DIz\g][2\d]
=ton LY\,] [2\aD[#\d]
=1 WK \LVe, [\l Dl \a]
=a LA"[Y\LW)[2\g] D[\d]
1.4 Commutation of independent substitutions =..,. The commutation of substitutions

must be in L, ie. L must be of the form L;(Ly[y\s'|[2\u/]) with z ¢ fv(s). Let
L := Li(Ly[2\t'][\s]). Then:

LOw 'Y L(v) —— 2 LW [2\Lo)])

—com —com
dbv

Lzt YL (v ---- - --- s LA [2\ L))

1.5 Composition of substitutions =[.;. The composition of substitutions must be in L,
i.e. L must be of the form Li(Ly[y\s'][2\e/]) with z ¢ fv(Loy(Az.t')). Let L :=
Li(Lse[y\s'[2\t/]])- As in the previous case:

LY L(v) —— 2 L[\

=1 =l
LA YL/ (vy - === 7= T [2\L{(0)])
2. Base case 2: exponential root step t = R{(z)[x\L(V)] —15¢ s = LERV)[x\V]).
Consider first the case when the <> -redex is internal to R{(z). By Lem. we know
& preserves the shape of R(z), i.e. R(z) < V(z). Then:

R(2)[2\L{v)] ———— LRW)[\v])
N _
V()[2\L(w)] == === » LW [2\v])

275

If the & -redex is internal to one of the substitutions in L, the proof is straightforward.

Note that the & -redex has always a substitution at the root. The remaining possibilities

are such that substitution is in L, or that it is precisely [z\L(v)]. Axiom by axiom:

2.1

2.2

Garbage collection =,.. If the garbage collected substitution is in L, let L be L
without such substitution. Then:

R(2)[2\L(v)] ——"—— LRW)[z\v])
Egc Egc
RG)[e\L(w)] == » LAR)[2\v])
The garbage collected substitution cannot be [x\L{v)|, since this would imply = ¢
fv(R{x)), which is a contradiction.

Duplication =g4,p. If the duplicated substitution is in L, then L is of the form
Li(Lo[y\t']). Let L = Li{[y\t'][2\t']). Then:

R(2)[2\L(v)] ———— LRW)[z\v])

where

t1 = R(z)[2\L(Lap, Vi,),
tz 1= LCLapa), SRV, 2\ Ve, 1)
If the duplicated substitution is [2\L(v)], there are two possibilities, depending on

whether the occurrence of x substituted by the — 1, step is replaced by the fresh
variable y, or left untouched. If it is not replaced:

R()[2\L(v)] LR [z \v])

Edup
Edup tQ
= (Lem.
1lsv
t4 ********************** > t3

where

ty := LR [\ V] [y\v]),
ts 1= L{(RW)) 1. [2\V] [\LCV)),
ta = (RG2))), [#\LV][\ L)]

If the occurrence of x substituted by the —415, step is replaced by the fresh vari-
able y, the situation is essentially analogous.

276

2.3 Commutation with application =a. The only possibility is that the substitution
[2\L(v)] is commuted with the outermost application in R{z). Two cases:

2.3.1 The substitution acts on the left of the application, i.e. V.= R't".

(R (@) t)[2\L{v)] ———

=o s
=]
t3 ************** - t4
where
ty 1= L{(R(v)) [z\v]),
to 1= LR(v)[2\v])L{ [2\v]),
ts := R{@)[z\LW ¢ [2\L{w)],
ts 1= LR [2\v])t [2\L(v)].

2.3.2 The substitution acts on the right of the application, i.e. V. = L'(v')R’. Similar to
the previous case:

to

(L) R(@))[2\L(w)] —— h

where

ty == (L' R))[2\v]),

ty := LUV [2\v])LR (vH[z\v]),
t = L \L) R [\ L),
= L)\ L) LB) [\ v]).

2.4 Commutation of independent substitutions =.,. If the commuted substitutions both

~+
N

belong to L, let L be the result of commuting them, and the situation is exactly as
for Garbage collection.

The remaining possibility is that V. = R'[y\t'] and [z\L{v)] commutes with [y\t']
(which implies = ¢ fv(¢')). Then:

R'(a)[y\t'][2\L{v)] —— LR [y\][2\v])

*
com

R(@)[2\LW][Y\E] -~ - - LR [\ [y\t]

—com =

277

2.5 Composition of substitutions =[. If the composed substitutions both belong to L,
let L be the result of composing them, and the situation is exactly as for Garbage
collection.

The remaining possibility is that [2\L{v)] is the outermost substitution composed
by =. This is not possible if the rule is applied from left to right, since it would
imply that R(z) = R'(x)[y\t'] with x ¢ R'(x), which is a contradiction.

Finally, if the =[; rule is applied from right to left, L is of the form L'[y\t'] and:

R{(2)[\L'(w)[y\t']] —— L'Rw)[2\v])[y\t]
=[] —
R()[a\L'W)][Y\] -~~~ - L'®RLa[2\v][y\F']
3. Inductive case 1: left of an application V = R'q. The situation is:
t=R{"Yq—>R{(sHqg=s

If the < step is internal to R'(¢’), the result follows by i.h.. The proof is also direct if
& is internal to g. The nontrivial case is when the & step overlaps R'(t’) and ¢. There
are two possibilities. The first is trivial: =, is used to introduce a substitution out of
the blue, but this case clearly commutes with reduction.

The second is that the application is commuted with a substitution via the =g rule

(applied from right to left). There are two cases:

3.1 The substitution comes from t'. That is, " = [] and ¢’ has a substitution at its root.
Then t’ must be a —14¢,-redex t' = V'(z)[x\L{v)]. Moreover ¢ = ¢'[x\L{v)]. We

have:
V(@) [2\LW)] ¢ [2\L(v)] ——
PRS-
where

ty := LV W)[2\v]) ¢ [\,
ty := (V'(z) ¢)[z\L(v)),
ts := L{V'(v) ¢)[#\v]),

For the equivalence on the right note that:

LV vl z\v
= KV'Wlr\v
o LV wlz\v
LK(V"¢v) ¢')

—_

)¢ [2\LV)]
Y [2\v])
q'lz\v])
r\v])

—_

—_

I
©

278

3.2 The substitution comes from R'. That is: R = V’[z\u/]|. Moreover, ¢ = ¢/[z\v/]. The
proof is then straightforward:

Vil ¢ fe\w'] ———

fy -mmemmmmeneoa

where

ty = V{sHx\u'] ¢'[x\u'],
ty := (V") ¢')[2\u],
ty = (V'(s') ¢) [x\u].

4. Inductive case 2: right of an application V = L{v)R'. The situation is:
t = Lv)R{W) > LR) = 5

Reasoning as in the previous case (left of an application), if the & step is internal to
R'(t"), the result follows by i.h., and if it is internal to L{v), it is straightforward to close
the diagram by resorting to the fact that = preserves the shape of L(v) (Lem.[A.8).

The remaining possibility is that the < step overlaps both L{v) and R'(¢). As in the
previous case, this can only be possible if =, introduces a substitution out of the blue,
which is a trivial case, or because of a Commutation with application rule (=q, from
right to left). This again leaves two possibilities:

4.1 The substitution comes from t'. That is, R = [] and t’ is a +—>1415,-redex t' =
V"{yy[y\L'(v')]. Moreover, L = L"[y\L'(v")]. Then:

L") [y\L' WOV [\ L)) =

E@ =

where

ty = L[y \L' O] L)y \v']),
ty := (L") V)WL),
ts := L(L" @) V') [y\v']).

Exactly as in the previous case, for the equivalence on the right consider:

L[y \L (OO \v'])
= VL Wy\W DLV @)y\wv])
=6 LLWy\WV @Oy
=a LWV Y\W])

279

4.2 The substitution comes fromR’. That is, R’ = V’[x\u']. Moreover, L = L'[z\«/]. This
case is then straightforward:

LW\ TV @[\] ——— L[\] V' (sH]\u]

=a
(L) VD) [2\u'] === (L) V(sT)) [2\u]
5. Inductive case 3: left of a substitution V = R'[z\¢]. The situation is:

t = R{)[x\g] — R{(s)[x\q] = s

If the & step is internal to R'(#’), the result follows by i.h.. If it is internal to g, the steps
are orthogonal, which makes the diagram trivial. If the equivalence =, introduces a
substitution out of the blue the steps trivially commute.

The remaining possibility is that the substitution [x\¢] is involved in the <& redex. By
case analysis on the kind of the step =:

5.1 Garbage collection =,.. We know = ¢ £v(R'(t')) and therefore also = ¢ fv(R'(s")).
We get:

R'{D[2\q] —————— R'(sH[a\d]

:gc :gc

5.2 Duplication =4up. The important fact is that if R'(#) — R'(s’) and R'{(¥')[,], de-
notes the result of renaming some (arbitrary) occurrences of = by y in R'(t"), then
R't')y1. — R'(S')py),» where R'(s),1, denotes the result of renaming some occur-
rences of = by y in R'(s"). By this we conclude:

R{)[\q] —————— R{()lr\q]

(R 1. [2\al [y \a] ------- (R [7\gl[y\q]

5.3 Commutation with application =q. R'{t) must be an application. This allows for
three possibilities:

5.3.1 The application comes from t'. That is, R = [] and t’ is a —>gp1sy-redex t’ =
L{Ay.t"yL'{v). The diagram is exactly as for the multiplicative base case
(read bottom-up).

5.3.2 The application comes from R, left case. That is, " = V" «/. This case is direct:

(V") u)[\q]

=@ =@
fy oty

51

280

where

ty = (V(sHu)[z\q],
ty := V'{H[x\q] ' [2\q],
ty = V(s")[x\q] u'[z\q].

5.3.3 The application comes from R/, right case. That is, R’ = L(v)V". Analogous to
the previous case.

5.4 Commutation of independent substitutions =.,. Since R'(t") must have a substitu-
tion at the root, there are two possibilities:

5.4.1 The substitution comes from t'. That is, R" = [] and t is a —>1515,-redex t' =

V{yy[y\L{(v)], with = ¢ £v(L{v)). Then:

V'l \LD][2\g] —— LW [y\vD[z\q]

*
com

Vgl [y\Lw)] === - - Lo [a\g] [y\v])

5.4.2 The substitution comes from R'. That is, R’ = V’[y\u/] with = ¢ fv(u'). This
case is direct:

—com =

VA y\uw][z\g] ———— V{sHly\][z\g]
V) [y\e'] - VD \g] [y]
5.5 Composition of substitutions =[]. As in the previous case, there are two possibili-
ties:

5.5.1 The substitution comes from t'. That is, R = [] and ¢’ is a —>1415,-redex t' =

V{yy[y\L{v)], with = ¢ £v(V"(y)). Then:

V' ly\Ln][2\g] —— LW [y\v][z\q]

=01 -

VL [2\g]] -~ - L[\ [\g]

5.5.2 The substitution comes from R'. That is, R" = V"[y\u'] with = ¢ £v(V"{")). The
proof for this case is direct:

V') y\u][z\q] ————— V{(sHy\u][z\g]
=0 =1
V'@ y\u'fa\g]] ------ - > V(s)[y\u'[\q]]

281

Call-by-Need (need)

We follow the structure of the previous proofs of strong bisimulation, in particular the proof
is by induction on the derivation of the reduction step. Remember that for call-by-need the
definition of the structural equivalence is given only by axioms =a1, =con, and =[.

We need two preliminary lemmas, proved by straightforward inductions on N:

Lemma A.10. Lett be a term, N be a call-by-need evaluation context not capturing any variable
infv(t), and x ¢ £v(R{y)). Then R{t[x\s]) =yeea R{t)[x\5s].

Lemma A.11. The equivalence relation =y..q preserves the shape of R{x). More precisely, if
R{T) =yeeq T, With x not captured by N, then t is of the form R'(x), with x not captured by R'.

1. Base case 1: multiplicative root step ¢ = L{\z.t')qg —q s = L{'[x\g]). Every
application of = inside ¢ or inside one of the substitutions in L trivially commutes with
the step. The interesting cases are those where structural equivalence has a critical pair

with the step:

1.1 Commutation with left of an application =q;. If L = L'[y)\r] then

L'zt)[y\rlg ————— L' [z\q])[y\r]
=a@1 =
(L2t [y\r] ----=---> L'F[2\gD[y\r]
1.2 Commutation of independent substitutions =..,. The substitutions that are com-
muted by the =, rule must be both in L, i.e. L must be of the form L'(L"[y\u][2\r'])
with z ¢ fv(u'). Let L= L'(L"[2\r'][y\v]). Then:

LOz.t'ys' —2 L [2\s'])

LOa.tys' - L [2\s'])
1.3 Composition of substitutions =[.;. The substitutions that appear in the left-hand side

of the =) rule must both be in L, i.e. L must be of the form L'(L"[y\u][2\r]) with
z ¢ fv(L"O\x.t’)). Let L = L'(L"[y\u/[2\r"]]). Exactly as in the previous case:

Lzt —2 L [2\s'])

= =
~ db ~
Lx.t')s' ----- > L [2\s'])

2. Base case 2: exponential root step ¢t = R{(z)[x\L{(V)] —15¢ s = LERV)[x\V]).
Consider first the case when the < -redex is internal to R(z). By Lem.[A.11] we know

282

& preserves the shape of R(z), i.e. R(z) < N(z). Then:
R(x)[2\L(v)] LR [z\v])

s =
W) [2\L(w)] === -=%- === L [\v])

If the & -redex is internal to one of the substitutions in L, the proof is straightforward.
Note that the & -redex has always a substitution at the root. The remaining possibilities
are that such substitution is in L, or that it is precisely [z\L{v)]. Axiom by axiom:

2.1 Commutation with the left of an application =q;. The only possibility is that the
substitution [z\L{v)] is commuted with the outermost application in R{x), i.e. N =

R't’. The diagram is:

(R @) t')[2\L(v)] ———— L{Rw)) [\v])

= —%

1lsv

RYz)[2\L(w)Jt - === - - » LR [z\v]) ¢/
2.2 Commutation of independent substitutions =.,. Two sub-cases:

2.2.1 The commuted substitutions both belong to L. Let L be the result of commuting

them, and the diagram is:

R(2)[2\L{v)] ———— LRW)[a\v])

R(x)[2\L(v)] === == --~- » LR [2'\v])

2.2.2 One of the commuted substitutions is [x\L{v)]. Then N = R'[y\t'] and [2\L{(v)]
commutes with [y\t'] (which implies = ¢ fv(t')). Then:

R [y\H][o\L(v)] ——— LR [y\][2\v])

=com =*
com

RC[\LWD][\E] -~ - LR [2\v])[y\F']

2.3 Composition of substitutions =[. Two sub-cases:
2.3.1 The composed substitutions both belong to L. Analogous to case [2.2.1]

2.3.2 One of the composed subtitutions is [x\L{v)]. This is not possible if the rule is
applied from left to right, since it would imply that R{x) = R'{x)[y\t'] with
x ¢ R'{x), which is a contradiction.
Finally, if the = rule is applied from right to left, L is of the form L'[/\¢'] and:

R(@)[2\L W) [y\H]] —— L'RW[2\v])[y\t']

=1

REo)[a\L W] [Y\] ===~ ’ L’<R<$>[$\V]>[y\t’]

283

3. Inductive case 1: left of an application N = R'q. The situation is:
t=R{")g—>R(s)qg=>s

If the & step is internal to R'(t"), the result follows by i.h.. The proof is also direct if
& is internal to ¢. The nontrivial cases are those where < overlaps R'(t') and ¢. The
only possible case is that a substitution commutes with the topmost application via =a;
(applied from right to left). There are two cases:

3.1 The substitution comes from t'. That is, R’ = [] and ¢’ has a substitution at its root.
Then ¢’ must be a +—15;5,-redex ' = N'(x)[z\L(v)|. We have:

(@) [\L(v)] ¢ ———— LA (w)[2\v]) ¢

(W) q)[#\L(v)] === L) @) [2'\v])

3.2 The substitution comes from R'. That is: R" = N”[2\«/]. The proof is then straight-
forward:

N (@Hla\u'l ¢ N'(sHlr\u'l g

W) @la\u'] === ------ > (N(s") g)[2\u]

4. Inductive case 2: left of a substitution N = R'[x\g]. The situation is:

t = R(t)[a\q] — B(H[a\g] = s

If the < step is internal to R'(#’), the result follows by i.h.. If it is internal to ¢, the steps
are orthogonal, which makes the diagram trivial. The remaining possibility is that the
substitution [x\¢] is involved in the < redex. By case analysis on the kind of the step

EbZ

4.1 Commutation with the left of an application =q;. R'(t") must be an application.
Two possibilities:
4.1.1 The application comes from t'. That is, R" = [and ¢’ is a —g,-redex t' =
L{\y.t"yr. This is exactly as the base case|[1.1|(read bottom-up).

4.1.2 The application comes from R/, i.e. R = N”«/. This is exactly as the inductive
case [3.2| (read bottom-up).

4.2 Commutation of independent substitutions =.,,. Since R'(t") must have a substitu-
tion at the root, there are two possibilities:

4.2.1 The substitution comes from t’. That is, R" = [Jand t’ is a r>1415,-redex t' =
N"{y)[y\L{v)], with = ¢ fv(L{v)). This case is exactly as the base exponential
case (read bottom-up).

284

4.2.2 The substitution comes from R'. That is, R = N’[y\v/] with z ¢ fv(u'). The
diagram is:

W) [y\u][2\g) ——— N{s)[y\u][2\q]
N [a\g][y\u'] -~ - - W[\g][y\u]
4.3 Composition of substitutions =[]. As in the previous case, there are two possibili-
ties:

4.3.1 The substitution comes from t'. That is, R’ = [J and t’ is a r>1415,-redex t’ =
N"(y)[y\L{v)], with = ¢ £v(N"(y)). This case is exactly as the base exponential
case [2.3.2](read bottom-up).

4.3.2 The substitution comes from R’. That is, R’ = N”[y\v/] with = ¢ £v(N"{¢")). The
diagram is:

N y\u'][2\q] ———— Ny \u'][2\q]
=1 =0
N Hy\u'[2\g]] -------- > Ny \u/[2\q]]

5. Inductive case 3: inside a hereditary head substitution N = R'(z)[«\N"]. The situ-
ation is:
t = R(@)[z\N'{q)] = R(x)[z\N'(¢)] = s
If & is internal to R'(z) the two steps clearly commutes. If < is internal to N"{(¢) we
conclude using the i.h.. The remaining cases are when <> overlaps with the topmost
constructor. Axiom by axiom:

5.1 Commutation with the left of an application =q;. It must be that R'(x) = N"{(z)r
with ¢ £v(r). Then the two steps simply commute:

(V"¢ pr) [£\N'(q)] ———— (W"Cz)r)[z\N"(q)]

N////<x> [.T\N”<q>:| N N””<x> [x\N”<q,>:| r

5.2 Commutation of independent substitutions =..,. It must be thatR'(x) = N""(x)[y\r]
with = ¢ £v(r). Then the two steps simply commute:

N C)ly\r][2\V ()] ———

=@1 =a@1
tg --------------513

where

ty = N"Co)y\r][2\W"(q)],
ty := N"Co)[\W] [y\r],
ts := N"Co)[\W ()] [y\r]

285

5.3 Composition of substitutions =. There are various sub-cases

5.3.1 [2\N"{(q)] enters in a substitution. It must be that R'(x) = N1{y)[y\No(x)] with
x ¢ £v(N1{(y)). Then the diagram is:

N1y ly \No{w) | [2\N(q)] —— T

=[] =[]
fg--------------> 13

t1 = Ni{y)[y\Nala)] [#\N"(q)],
ty == Ny [y\Nala)[2\N ()]],
ts = Ni{y)[y\Nala)[x\N"(q)]].

5.3.2 a substitution pops out of [x\N"{g)]. Two sub-cases:
5.3.2.1 The substitution comes from N". Then N"{¢q) = N"{¢)[y\r]. The diagram is:

R \N"(@[y\r]] ———

[] =[]

tg ************** > t3
where
t1 1= R [x\N"(¢)[y\r]], (A.1)
ta 1= R{(@)[2\N"(@][y\r], (A.2)
by i= R [\W")]\ (A3)

5.3.2.2 The substitution comes from q. Then N” = []and ¢ is a —>1515,-redex t' =

N"(y)[y\L{v)] and the diagram is:

R'@)[z\W") [y\L(v)]] ——
=) =

1sv

e

where
t1 := R{@)[2\LN"(v)[y\v])], (A.4)
to 1= R{(@)[z\N"(p][y\L{(W)], (A.5)
ts := LR [z \N" (V)] [y\v])- (A.6)

Strong Call-by-Name (name®)

We need the following auxiliary lemma:

Lemma A.12. IfC is a LO context and C does not bind any of the variables in fv(s), then

Clt[x\s]) = CDl\s].

286

Proof. Recall that a context C is LO if and only if C € S (Lem. [3.10). The property is then
proved by induction on the derivation that C € S. O

Now we turn to the proof of bisimulation itself. As in the previous proofs of bisimulation,

we proceed by induction on the derivation of the reduction step:

1. Base case 1: multiplicative root step, t = L{\z.t')s" g, L(t'[2\5]). If the & step
is internal to ¢/, internal to s, or internal to the argument of one of the substitutions in

L, then the pattern of the <& redex does not overlap with the 4, step, and the proof

is immediate, as the two steps commute. Otherwise, we consider every possible case of

=3

1.1

1.2

1.3

1.4

1.5

Garbage collection, =,.. The garbage collected substitution must be one of the
substitutions in L, i.e. L must be of the form L'(L"[y\u/]). Then:

LU O t)[y\e])s” ——— LU/ W[\ Dly\z])

LL O tyys! - o LU [\ 8]

Commutation of independent substitutions, =..,. The substitutions that are com-
muted must be both in L, i.e. L must be of the form L'(L"[y\u/][2\7’]). Then:

LU O t)[y\u [\ s —=— LW [\ DIy \u' [\

LU O [\ [\ D)s” === LU [\ DL\ D)

Composition of substitutions, =[.;. The substitutions that are composed must be
both in L, i.e. L must be of the form L'(L"[y\u'][2\r']). Then:

LU O t)[y\u [\ s —=— LW [\ DIy\u' [\
=0 =0
LU O [y [Ar]]s’ === LW [\ DIy [2\r']])

Duplication, =4,p. The duplicated substitution must be one of the substitutions in
L, i.e. L must be of the form L'(L"[y\«’]). Then:

LU Ot [y\u'])s’ —— LU [\ Dly\u'D)

Lt ey, [\ [\]s” == DL 2\)y, [\][\)

Commutation with abstraction, =,. The commuted substitution must be the inner-
most substitution in L, i.e. L must be of the form L'{[y\v]), and:

Lzt [y\u'])s’ ———— L'[2\s'][y\u'])

L@t D’ - L][\

287

Note that the diagram can be also read from the bottom-up for a reverse application
of the =, rule. In order to be able to apply =, note that x ¢ fv(u’) by application
of the =) rule, and that y ¢ fv(s’) by the bound variable convention.

1.6 Left commutation with application, =q;. The only possibility is that the outermost
substitution of L commutes with the application taking part in the — 4, step. That
is, L must be of the form L'[y\v'] and:

L t)[y\u']s’ ——— L't [a\s Dly\u']s’

=@1 =

(L Oty ") [y\w'] === - L[\ Dy \u']

1.7 Right commutation with application, =a.. Note that every =q, (and =q, ') re-
dex in (Az.t")L s’ must be internal to either ¢/, s/, or the argument of one of the
substitutions in L. We have already argued that in these cases the steps commute.

2. Base case 2: exponential root step, t = C{x)[z\t'] 15 C{')[z\t'].

If the substitution that is contracted by the exponential step does not take part in the
pattern of the & step, it is immediate to check that the property holds. More precisely,
suppose that C{z)[z\t'] & C'{x)[x\t"], where C’ and t” result respectively from C and
t by a single step of <. Note that we have that either C & C'and ¢/ = t” or vice-versa.
Then:

Clap[a\t] —————— C{)[2\¢]

=4 =.
@] -2 S\
Note that when commutation affects ¢’ (i.e. if we are in the case in which C = C’ and
t' & t"), then the right-hand side of the diagram must be closed by two < steps: one
for each copy of t'.

So we may assume that the substitution that is contracted by the exponential step does
take part in the pattern of the & step. We consider every possible case of &.

2.1 Garbage collection, =,.. The garbage collected substitution cannot erase the con-
tracted occurrence of z, since C is a LO context, and it cannot go inside substitu-
tions. Two subcases, depending on the position of the hole of C with respect to
the node of the garbage collected substitution:

2.1.1 If the hole of C lies inside the body of the garbage collected substitution, i.e.
C = C{C"[y\s']) with y ¢ £v(C"(x)), then:

(e (@) ly\s DIa\t'] ———— " E)[y\s' DI\t

C{C (ap[a\t] === C(C) [2\t]

Note that y ¢ £v(C"(t")) since we may assume that y ¢ fv(¢’) by the bound
variable convention.

288

2.1.2 Otherwise, the hole of C must be disjoint from the node of the garbage col-
lected substitution, i.e. there must be a two-hole context C’ such that:

C =0, s'ly\w'])

where y ¢ fv(s'). Then:

e, s'[y\uDla\t] ———— ¢, s/ [y\u'Dlx\F']

O] -2

2.2 Commutation of independent substitutions, =..,. Note that the contracted occur-
rence of x cannot be inside the argument of any of the commuted substitutions,
since C is a LO context and it cannot go inside substitutions. Since the contracted
substitution is commuted, we have that C must be of the form C'[y\s] and the
situation is:

C'(a)[y\s'I[a\t'] ———— CW)[y\s'[z\']
ECOIII ECOIII

Clap[a\][y\s] -- -~ C)[\][y\s']

2.3 Composition of substitutions, =[.|. Note that the contracted occurrence of x cannot
be inside the argument of any of the two substitutions that take part in the =
step, since C is a LO context and it cannot go inside substitutions. We know that
the contracted substitution takes part in the =[] step. We consider two subcases,
depending on whether the = rule is applied from left to right or from right to
left, since the situation is not symmetrical.

2.3.1 If the = step is applied from left to right, then C must be of the form C'[y\s']
with z ¢ £v(C'{x)). This is a contradiction, so this case is not actually possible.

2.3.2 If the =[step is applied from right to left, then ¢ must be of the form ¢"[y\s']
and:

Clap[2\E'[Y\s']] ——— C" [\ D\t [y\s']]
=[] =

Cp[a\t"[y\s'] - === CA [\ [y\s']
To close the right-hand side of the diagram, we are left to show that:
CA [y\s'DIx\"[y\s"l] = CAD\"[y\s]

First note that C is a LO context, and that, by the bound variable convention,
C does not bind any of the variables in fv(s'). By resorting to Lemma

289

this allows us to commute the substitution that:

CA"[y\s'DI=\t"[y\s']]
= C{DY\I[2\t"[y\s']
=1 CD\S[2\"][y\s'
= CW\[x\t"{y/z}

[
[

by Lemma

[2\s'] renaming y to z

[2\s']

—_

e CD[(/)0
—ap CU[E\\S]

2.4 Duplication, =4,p. Note that the contracted occurrence of = cannot be inside the
argument of any of the two substitutions that take part in the =4, step, since
C is a LO context and it cannot go inside substitutions. We consider two cases,
depending on whether =4, is applied from left to right or from right to left:

2.4.1 From left to right: the contracted occurrence of z is either renamed to y or left
untouched as x. Let z denote x or y, correspondingly. In both cases we have:

Clap[a\] ————— C{)[x\t']

Edup Edup

Clyp (N[N - C O\][9]

2.4.2 From right to left: then C is of the form C'[,j,[y\t'], where C" has no occur-
rences of z, and:

Cag, Y\][\] ———— €, Iy \][2\F']

Cpy\] ----- - --- » C'CD[y\']
2.5 Commutation with abstraction, =y. Then C is of the form \y.C’ and:
(Ay.C'¢x))[z\t'] = (Ay.C'(t")) [x\t']

Ay.Cld[a\t'] ----- 2 Ay O\]

2.6 Left commutation with application, =q;. Then C is of the form C s’ and:
(Clay s)[a\t'] ———— (C{)) [2\¢']

=aQ1 =aQ1

Clxy|z\t'] s ----- T D [a\] S
2.7 Right commutation with application, =aq,. Then C is of the form s’ C and:
(8 C(2))[2\t'] ——— (' C{t))[2\t]

=a@r =a@r

s Cla)|x\t'] ----- o e[\

290

3. Inductive case 1: inside an abstraction. Suppose that t = \x.t’ — \r.s’ = 5. We
consider two subcases, depending on whether the < step is internal to the body of the
abstraction, or involves the outermost abstraction:

3.1 If the application of the < step is internal to t', we have by i.h.:

t/ s’

ul 77777777777777 »7*

so is immediate to conclude that:

Azt \x.s'

3.2 If the outermost abstraction takes part in the & step, then a = step must have
been applied, so ¢’ must be of the form ¢"[y\s’]. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

3.2.1 If the reduction step t”[y\s'] — ' is an exponential, and the commuted sub-
stitution [y\s'] is the one contracted by the exponential step, then the situa-
tion is exactly like in case [2.5| (Commutation with abstraction for exponential
steps), by reading the diagram from the bottom up.

3.2.2 Otherwise, note that there cannot be a multiplicative step at the root, and that

the step cannot be internal to s, as LO contexts do not go inside substitutions.
Therefore the reduction step must be internal to ¢t” and the situation is:

Az t"[y\s'] Az.s"[y\s']
(Az.t")[y\s'] ---------- > (Az.s”)[y\s']

4. Inductive case 2: left of an application. Suppose thatt = t'¢ — s'q = s. If
the application of the < step is internal to ¢/, we may immediately conclude by i.h.
(analogous to case [3.1). The interesting case is when the outermost application takes
part in the & step. There are two possibilities, depending on whether a =q; step or a
=ar step is applied:

4.1 =q1 step. Then t’ must be of the form ¢"[z\u']. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

4.1.1 If the reduction step t”[z\u'] — r’ is an exponential step and the commuted
substitution [z\u] is also the one contracted by the exponential step, then
the situation is exactly like in case [2.6| (Left commutation with application for
exponential steps), by reading the diagram from the bottom up.

291

4.1.2 Otherwise, note that the reduction step cannot be internal to u’, since LO
contexts do not go inside substitutions, so it must be internal to ¢ and the
situation is:

t"[2\u'] ¢ ———— s"[z\u'] ¢
=aQ1 =a@1

")z \u'] ----------- > (8" q)[x\u]

4.2 =q, step. Then ¢ must be of the form ¢/[x\«'] and the situation is:
t/ q/[x\u/] N 8/ q/[x\ul]

=a@r =a@r

(t' ¢)[w\] -~ (s) [w\]

5. Inductive case 3: right of an application. Suppose thatt = ¢t — ¢s = s. If
the application of the < step is internal to ¢/, we may immediately conclude by i.h.
(analogous to case [3.1). The interesting case is when the outermost application takes
part in the & step. There are two possibilities, depending on whether a =q; step or a
=ay step is applied:

5.1 =q; step. Then g must be of the form ¢/[z\v'] and the situation is:
[\t]t ———— ¢[z\u'] ¢

=a@1 =a@1

(¢ t)[z\u]----------- > (¢ 8 [x\u]

5.2 =q, step. Then ¢’ must be of the form ¢"[z\u']. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

5.2.1 If the reduction step ¢"[z\u/] — 7’ is an exponential step and the commuted
substitution [z\u] is also the one contracted by the exponential step, then
the situation is exactly like in case|2.7|(Right commutation with application for
exponential steps), by reading the diagram from the bottom up.

5.2.2 Otherwise, note that the reduction step cannot be internal to u/, since LO
contexts do not go inside substitutions, so it must be internal to ¢ and the
situation is:

qt//[x\u/] I q S//[x\ul]
=ar =ar

(gt")[x\u'] ----------- > (g 8")[x\u]

6. Inductive case 4: left of a substitution. Suppose that t = t'[z\q] — §'[z\q] = s.
If the application of the < step is internal to ', we may immediately conclude by i.h.
(analogous to case [3.1). The interesting case is when the outermost substitution node
takes part in the < step. There are four possibilities, depending on whether a =, step,
a =con Step, a =[] step, or a =qy; step is applied:

292

6.1

6.2

6.3

=,. step. The reduction step cannot be internal to ¢, since LO contexts may not
go inside substitutions, so the step must be internal to ', and closing the diagram
is trivial:

t'[x\q] s'[7\q]

Note that if ¢ fv(t’) then x ¢ fv(s’) by the usual property that reduction does
not create free variables.

=.on step. Then ¢’ must be of the form t”[y\u'| with = ¢ fv(u’). We consider two
further subcases, depending on whether the commuted substitution is involved in
the reduction step:

6.2.1 If the reduction step t”[y\u'| — 7’ is an exponential step and the commuted
substitution [y\u'] is also the one contracted by the exponential step, then the
situation is exactly like in case [2.2| (Commutation of independent substitutions
for exponential steps), by reading the diagram from the bottom up.

6.2.2 Otherwise, note that the reduction step cannot be internal to u/, since LO
contexts may not go inside substitutions, so it must be internal to t”, and the
situation is:

t"Ty\u'l[2\g] ————— s"[y\u'][z\q]
ECOH! ECC)III

t"[z\q][y\u'] ---------- » 8" [2\q][y\u']

= step. Two cases, depending on whether the = step is applied from left to
right or from right to left:

6.3.1 = is applied from left to right. Then t' must be of the form t"[y\u'] with
x ¢ fv(t"). We consider two further subcases, depending on whether the
commuted substitution is involved in the reduction step:

6.3.1.1 If the reduction step t"[y\u'] — r’ is an exponential step and the com-
muted substitution [y\u'] is also the one contracted by the exponential
step, then the situation is exactly like in case (Composition of sub-
stitutions for exponential steps), by reading the diagram from the bottom
up.

6.3.1.2 Otherwise, note that the reduction step cannot be internal to «’, since LO
contexts may not go inside substitutions, so it must be internal to ¢”, and
the situation is:

"ly\ul[z\q] ————— s"[y\u'][z\q]

=l =[]

Note that if ¢ fv(¢”), then = ¢ fv(s”), by the usual fact that reduction
does not create free variables.

293

6.3.2 =] is applied from right to left. Then ¢ must be of the form ¢/[y\u'], and the
reduction step must be internal to ¢/, so the situation is:

v\ [y\u']] ———— s'[o\¢'[y\u']]
=01 =1
tle\g T\ ===~ s [2\g'][y\u]
6.4 =4up step. Two cases, depending on whether the =4, step is applied from left to
right or from right to left:

6.4.1 =ayp is applied from left to right. Then the reduction step is internal to ¢’ and
closing the diagram is immediate:

t'[x\q] s'[7\q]

t. [2\q][y\q] --------- > S[y). [2\q][v\d]

6.4.2 =qyp is applied from right to left. Then t’ must be of the form t"[y\¢]. We con-
sider two further subcases, depending on whether the commuted substitution
is involved in the reduction step:

6.4.2.1 If the reduction step ¢"[y\q| — r’ is an exponential step and the affected
substitution [y\g] is also the one contracted by the exponential step, then
t" must be of the form C'[;}, (y) and the situation is:

C'ay, WY \al[2\q] ——— C'a,{D[y\d][#\q]

Cply\g] -----==---- CLP[y\a]

6.4.2.2 Otherwise, note that the reduction step cannot be internal to ¢, since LO
contexts may not go inside substitutions, so it must be internal to ¢”. The
situation is then exactly like in case by reading the diagram from
the bottom up.

]

A.1.3 Pointing MAD invariants — proof of Lem.

Lemma A.13 (Full proof of Lem. Pointing MAD invariants). Let S =t | E | 7 | D bea
Pointing MAD reachable state whose initial code t is well-named. Then:

1. Subterm: any code in S is a literal subterm of t;
2. Names: the global closure of S is well-named.

3. Dump-Environment Compatibility:

294

3.1 ([7]|<t), E1) is closed;
3.2 for every pair (z,7") in D, ([7'[|{z), E1.) is closed;
3.3 ExD holds.
4. Contextual Decoding: [[(E, D)] is a call-by-need evaluation context.

Proof. By induction on the length of the execution. Points|[l]and [2] are by direct inspection of
the rules. Assuming EocD, point 4|is immediate by induction on the length of D.

Thus we are only left to check point (3] We use point 2| i.e. that substitutions in F bind
pairwise distinct variables. Following we show that transitions preserve the invariant:

1. Conmutative 1. We have:
t5|7|D|Ewog t|sSun|D|FE
Trivial, since the dump and the environment are the same and [[(5 :: 7)[[{t) = [7][{¢3).
2. Conmutative 2. We have S v, S’ with:
S=zx|m|D|E;:[2\t] :: Es
S'=t|e|(x,m) D | E;:[2\]:: Ey

Note that since by i.h. ([7][[{z), (Ey :: [z\f] :: E3)1) is closed and z is free in [7]|{z),
there cannot be any dumped substitutions in Fy. Then (F; :: [2\t] :: Fy) 1= E; 1:
[2\t] :: B and we know:

([|<x), By 1:: [2\t] :: E>) is closed (A.7)
For[3.1] note (F, :: [#\(J] :: E2) 1= E». Then we must show (%, E) is closed, which is
implied by (A.7).
For [3.2] there are two cases:

« If the pair is (x, 7), we must show
(7)<x), (Ey == [2\] :: E2) 1) is closed, i.e.
([7]<x), Exq:: [2\O] =2 Es) is closed
which is implied by (A.7).
« If the pair is (y, 7’') in D, with y # x, note first that
(By = [0 = B) 1= Buly: [= By
And similarly for (E) :: [#\(J] :: E2)1,. Moreover, by the invariant on S we know
([7" Ny, Ex 1y [2\E] =2 E9) is closed

and this implies
(7" 1<y, Er 1y [2\O] = E2) is closed

as required.

295

For we have already observed that E5 has no dumped substitutions. Then [z\[]] is
the rightmost dumped substitution in the environment of S, while (x, 7) is the leftmost
pair in the dump. We conclude by the fact that the invariant already holds for S.

Multiplicative, empty dump. We have S v, S’ with:
S=Met|sum|e|E
S'=t|m|e|[x\5]:: FE

First note that, since the environment and the dump are dual in S, there are no dumped
substitutions in .

For point[3.1, we know that:
([7[[{(A\x.t)5), E) is closed (A.8)

and we have to check:
([= <), [x\5] :: E) is closed
Let y € £v([[x[[(t)). Then either y = x, which is bound by [2\3], or y € fv([7]{\z.t)),

in which case y is bound by E. Moreover, since [[7] is an application context, by
we get (5, F) is closed.

Points [3.2| and [3.3] are trivial since the dump is empty and the environment has no
dumped substitutions.

Multiplicative, non-empty dump. We have S v, S’ with:
S=Xet|sum|(y,n) =D | Ey:[y\O :: Ea
S'=t|m|(y,7') = D| Ey:[y\O] = [2\5] 2 By

Note first that since the invariant holds for .S, we know [y\[]] is the rightmost dumped
substitution in the environment of both S and S’. Therefore (F; :: [y\[] :: E2) 1= Es

For proving point we have:
([7[[{(A\z.t) 5), E5) is closed

and we must show:
([[<t), [x\5] :: Es) is closed
The situation is exactly as in point [3.1]for the v~ transition, empty dump case.

For point [3.2] let (z, 7”) be any pair in (y, 7’) :: D. Let also

E1 ify==z
Ej = ‘
{ FE11. otherwise

296

and note that (£, = [y\O] = E) 1,= Ef = [y\(J] = E for any environment E that
contains no dumped substitutions. By the invariant on S, we have that:

(I="1<2), E :: [y\J] :: E») is closed
Moreover, from point[3.1]we know (3, E») is closed. Both imply:
([=" 1<z, E7 == [v\O] :: [2\S] ::) is closed
as required.

For point just note that the substitution [z\3] added to the environment is not
dumped, and so duality holds because it holds for S by i.h..

. Exponential. We have S v, S" with:

S=v|e|(z,m):D| Ey:[2\0OJ] :: By
S'=3v"|7w|D|FE;:[2\V] :: By

First note that since the environment and the dump are dual in S, we know F, has no
dumped substitutions.

For proving point [3.1] by resorting to point 3.1 on the state .S, for which the invariant
already holds, we have that:
(¥, Es) is closed (A.9)

Moreover, by point|3.2jon S, specialized on the pair (z, 7), we also know:

([7]<x), E1q:: [2\[O] == Es) is closed (A.10)
We must check that:

([7]1<F*), Eq 1 [2\V] =2 Es) is closed

Any free variable in [[7][{v®) is either free in 7, in which case by (A.9) it must be bound
by E11:: [2\(J] :: Ey, or free in ¥, in which case by it must be bound by F,. In
both cases it is bound by E; 1:: [2\V] :: Es, as required. To conclude the proof of point

note that by combining (A.9) and (A.10) we get Ey 1:: [2\v] :: E is closed.
For proving point let (y, 7') be a pair in D. Using that « # y, by the invariant on S

we know:
(I7" 1<y, Er 14 [2\O] == E2) is closed
and this implies:

([7" <y, Ex 1y [2\T] =2 E») is closed

as wanted.

Point [3.3]is immediate, given that the environment and the dump are already dual in .S.
O

297

A.1.4 Strong MAM invariants — proof of Lem.[3.64]

Lemma A.14 (Full proof of Lem. [3.64-Strong MAM invariants). LetS = ¢ | F | 5| 7 | E be
a state reachable from an initial term t,. Then:

1. Compatibility: F' and E are compatible, i.e. FocE.
2. Normal Form:

2.1 Backtracking Code: if ¢ = 1), then S is normal, and if ™ is non-empty, then s is
neutral.

2.2 Frame: if F = F' :: (u, ') :: F”, then is neutral.
3. Backtracking Free Variables:

3.1 Backtracking Code: if ¢ = {) then fv(5) < A(F).

3.2 Pairs in the Frame: if F' = F' :: (u,n’) :: F” then fv(u) < A(F").
4. Name:

4.1 Substitutions: if E = E' :: [2\t] :: E” then x is fresh wrtt and E".

4.2 Markers: if E = E' >z E" and F = F' :: x© 2 F" then x is fresh wrt E” and
F", and E'(y) = L for any free variable y in F".

4.3 Abstractions: ifaxt is a subterm of F', 5, w, or E then x may occur only int and in
the closed subenvironment x<1 :: Ey, :: >x of E, if it exists.

5. Closure:

5.1 Environment: if E = E' :: [2\t] :: E” then E"(y) # L forally € £v(¢).

5.2 Code, Stack, and Frame: E(x) # L for any free variable in's and in any code of ™
and F.

We prove each of the items in each of the following subsections:

Compatibility Invariant

By induction on the length of the number of transitions to reach S. The invariant trivially
holds for an initial state. For a non-empty evaluation sequence we list the cases for the last
transitions. We only deal with those that act on the frame or on the environment, as the others
immediately follows from the i.h..

« Case (F,\z.t,5:: 7 E,|) vy (F,t,7,[2\5] :: E,|). By i.h. F and FE are compatible,
ie. F = (Fy Fy)o(Fy » Ey) = E with FiocEy. Since [2\5] :: Ey, is still a weak
environment, we have (F, :: Fy)oc([2\5] :: Ey : Ey), i.e. Foc([2\5] 2 E).

« Case (F,\z.t,e, E,||) ~ys, (x 2 Fit,e,x 2 E,||). By ih. FocE. By definition of
compatibility we obtain (x :: F)oc(>z 2 E).

298

« Case (v = Fit,e, E,) ~ys, (FyAx.t,e,2< = E,{). By i.h, (x :: F)xE. By the
factorization property of compatible pairs (Lem.[3.63) £ = E,, :: =z :: £ with FocE.
Now z< : £ = x< : By = > 0 B/ = E!, : E'. Then, from FocE' by definition
Foc(E! : E'), ie. Foc(z< 2 E).

. Case ((t,m) :: F\S,6, E,) ~s, (F,t5,m, E,\). By i.h, ((¢,7) :: F)ocE, so FocE by
(Lem. 3.63).
« Case (F,t,5 = m E,) ~qs (£,) 2 F,5,¢,E,). By i.h., we have that Foc E' which
implies ((,7) :: F)ocE by (Lem. [3.63).
Normal Form Invariant

The invariant trivially holds for an initial state | | ¢ | ¢ | € | €. For a non-empty evaluation
sequence we list the cases for the last transitions. We only consider the cases for backtracking
phases ({}) or when the frame changes, the others (~ s, , vy,) are omitted because they
follow immediately from the i.h..

« Case (F,\x.t,6,E,|) ~ys, (x:: Fit, e, E).

1. Trivial since ¢ # 1.

2. Suppose z :: F can be written as x :: F' :: (3,7") :: F". Then by i.h. 5 is a neutral
term.

« Case (F,z,m, E,|) ~ys, (F,z,m, E, |) with E(z) = . Note that z € A(E), because
E(x) = .

1. x is a normal and neutral term.

2. It follows from the i.h., as F' is unchanged.
« Case (z :: Fit,e, E, () ~qs, (Fy A2t e,2<: E).

1. By i.h. we know that ¢ is a normal form. Then Az.f is a normal form. the stack is
empty, so we conclude.

2. It follows from the i.h..
« Case ((t,m) :: F\S, 6, E,) ~s; (F 15,7, E,).

1. By i.h. we have that 5 is a normal term while by i.h. { is neutral. Therefore ¢S is a
neutral term.

2. It follows from the i.h..
« Case (F,1,5 7, E,) ~qs () 2 F.S,€6, EL).

1. Trivial since ¢ # 1.

2. t is a neutral term by i.h..

299

Backtracking Free Variables Invariant

The invariant trivially holds for an initial state || | € | ¢y | € | € if #y is closed and well-
named. For a non-empty evaluation sequence we list the cases for the last transitions. We
omit the transitions involving only states in evaluating phase, as for them everything follows

immediately from the i.h..
« Case (Fy,m,E,|) ~ys, (FLy,m, E,) with E(y) = .

1. Backtracking Code: by hypothesis E(y) = =, and so y € A(E) = A(F) by
Lem.[3.63

2. Pairs in the Frame: it follows from the i.h..
« Case (y:: Flu, e, B, () ~ys, (F,\y,e,y< : B,).
1. Backtracking Code: by i.h. fv(u) < A(y :: F) and so fv(ayu) = fv(u)\{z} =
A(F).
2. Pairs in the Frame: it follows from the i.h..
« Case ((u,m) :: F\T, e, E,) ~qs, (Fur,m, E,).

1. Backtracking Code: by i.h. £v(F) < A((u,) :: F') = A(F) and by i.h. fv(u) <
A(F), and so fv(ur) < A(F).

2. Pairs in the Frame: it follows from the i.h..
« Case (F\u,7 = m E, {) ~qs (W, m) = BT, €, E, |).

1. Backtracking Code: nothing to prove.

2. Pairs in the Frame: by i.h. fv(u) < A(F), the rest follows immediately from the
i.h..

Name Invariant

The invariant trivially holds for an initial state |} | € | @ | € | € if Uy is closed and well-named.
For a non-empty evaluation sequence we list the cases for the last transitions:

« Case (F\ur,m, E,||) ~s, (F,u,7 ::m, E,|). Every point follows from its i.h..
« Case (F, \yu,7 = m E,|) v, (F,u,m, [y\F] :: E,).

1. Substitutions: for [y\7] it follows from the i.h., for E it follows from the i.h..

2. Markers: note that by i.h. y simply cannot occur in F’, the rest follows from the
i.h..

3. Abstractions: it follows from the i.h..

« Case (F\ \y,e, E,||) ~ys, (y:: Fiu, e,y = B).

300

1. Substitutions: it follows from the i.h..
2. Markers: for y it follows from the i.h., the rest follows from the i.h..

3. Abstractions: it follows from the i.h..

« Case (F y,m, FE,|) v~ (F,u* m, E,|). It follows by the i.h. and the fact that in ©®
the abstracted variables are renamed (with respect to %) with fresh names.

« Case (Fly,m,E,|) ~ys, (F,y, 7, E, |). Every point follows from its i.h..

« Case (y :: F\u,e, E, 1) ~4s, (F, Ay, e,y< = E,{). By the compatibility invariant
(y :: F)ocE, and by the factorization property of compatible pairs (Lem. E=FE, :
>y B

1. Substitutions: it follows from the i.h..
2. Markers: it follows from the i.h..

3. Abstractions: for ayu it holds because by i.h. y does not appear in /' nor in E; (it
may however occur in Fy, but this is taken into account by the statement). For
the other abstractions, it is immediate to conclude by i.h..

« Case ((u,m) :: F\7,€, E,) ~ys, (F,ur, m, E,). Every point follows from its i.h..
« Case (F\u,7 = m, E, () ~ys ((w,m) = F,7, ¢, E,|). Every point follows from its

i.h.. []

Closure Invariant

The invariant trivially holds for an initial state || | € | o | € | € if ¢y is closed and well-named.
For a non-empty evaluation sequence we list the cases for the last transitions:

« Case (F,ur,m, E, |) ~ys, (F,u,7:: 7, E,|). Every point follows from its i.h..

Case (F\ \yu,7 = m, E,|) vwop (Fyu,m, [y\T] = E, |).

1. Environment: for [y\T] it follows from the i.h., for the rest it follows from the i.A..

2. Code, Stack, and Frame: for y is evident, as [y\T] :: FE is clearly defined on y, for
the rest it follows from the i.h..

« Case (F,\y.t,e,E,|) ~ys, (v Fiu, e,y = B,).

1. Environment: it follows from the i.A..

2. Code, Stack, and Frame: for y is evident, as >y :: I is clearly defined on y, for the
rest it follows from the i.A..

« Case (F,y,m, E,|) v (F,u“,m, E,|).

1. Environment: it follows from the i.h..

301

2. Code, Stack, and Frame: for u® it follows from the i.h., as u appears in the environ-
ment out of all closed scopes (otherwise the transition would not take place). The
rest follows from the i.h..

« Case (Fly,m,E,|) s (Fyy, 7, E,) with E(y) = >.

1. Environment: it follows from the i.h..
2. Code, Stack, and Frame: it follows from the i.h..

« Case (y :: F\u,e, E,) ~s, (F, Ay, e,y< 2 E,{). By the compatibility invariant
(y :: F)ocE, and by the factorization property of compatible pairs (Lem. E=F;:
>y B

1. Environment: it follows from the i.h..
2. Code, Stack, and Frame: note that

2.1 F, does not bind any variable occurring free in w by the backtracking invari-
ant,

2.2 E,, does not bind any variable occurring free in F' by the name invariant, and

2.3 the stack is empty by hypothesis.

Then F, does not bind any free variable in the code, in the stack, nor in the frame,
and we conclude using the i.h., because x<1 :: Fy, :: =z :: E’ by definition is
defined on a variable z if and only if F’ is.

« Case ((u,m) :: F\T, €, E,) ~qs, (F,ur, m, E, 7).

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: it follows from the i.h..
« Case (F\u,7 = m E, {) ~qs (W, m) = BT, 6, E, |).

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: it follows from the i.hA.. O

A.1.5 LO decoding invariant — proof of Lem. [3.67|

For the invariant we need the following lemma.

Lemma A.15 (Compatible Pairs Decode to Non-Applicative Contexts). Let F, be a weak
frame, Ey, a weak environment, and FocE a compatible pair. Then [Fy |, [Ew], and [(F, E)]
are contexts that are not applicative, i.e. not of the form C{Lt).

Proof. The fact that [[F\,]| and [E,, || are not applicative is an immediate induction over their
structure. For [[(F, E)]| we reason by induction on the compatibility of ' and E. The base
case [[(¢, €)]| = [is evident. Inductive cases:

302

1. Weak Extension, i.e. (F, :: Fy)oc(E,, :: E;) with FiocE;. By i.h. [(F;, Ey)] is not applica-
tive and both [[Fy,]| and [[Ey] are not applicative. By definition, [((Fy :: Fy), (Ey
E) = [(F, E) K[Ew]K[Fw])), which is then not applicative.

2. Abstraction, ie. (x :: F)oc(x @1 E) with FocE. Immediate, as [[(F, E)][{\z.[]) is not
applicative.

]

We can now prove that the decoding of the data-structures of a reachable state is a LO
context.

Lemma A.16 (Full proof of Lem.[3.67-LO decoding invariant). Let S = (¢ | F | 5|« | E)
be a reachable state. Then [[(F, E))]| and Cs are LO contexts.

Proof. We prove that [[(F, E')] is a LO context, the fact that Cg is a LO contexts then easily
follows, as Cg := [(F, E)[[{[[=])-

The invariant trivially holds for an initial state || | € | Z | € | €. For a non-empty evaluation
sequence we list the cases for the last transitions. We omit the cases for which the environment
and the frame do not change (i.e. ~»5,, e, ~+s,), as for them the statement follows from

the i.h..

« Case (F,\z.t,5 :: m, E,|) wo, (F t,m [2\5] :: E,|). By ih. [[(F, E)] is LO. Let
F = F, :: Fi,sothat [(F, E)] = [(F, E)[{[F«])- Note that, by the name invariant
(Lem. [3.64), the eventual occurrences of x are all in and so x ¢ £v([[F]]), and in par-
ticular z ¢ 1£v([Fy). Then, [(F}, E)[[{[Fy][[#\5]) is LO: the conditions of Def.[3.5are
satisfied either because [[(F, E)]| = [(F1, E)[{[[F«]) is LO or because = ¢ 1fv (|| Fy]|)-

« Case (F\\x.t,e,E,|) ~ s, (x 2 Fit,e,x : E,|). By i.h. we have [[(F, E)] is LO

and by Lem.[A.15][[(F, E)]| is not applicative, so [((z :: F), (zz :: E))] = [(F, E)[[(\z.00)
is LO (it satisfies the conditions of Def. [3.5because [[(F, E)] does).

« Case (v : Fyt,6,E, 1) ~4s, (F,\z.t,e,2< :: E,{). By the compatibility invariant
(Lem.3.64) (z :: F)oc E, and by the factorization property of compatible pairs (Lem.[3.63)
E = F, :: =x :: E'. By definition

[((x:: F), (Ey = =x E))|| = [(F, E) [z [Ex])

that by i.h. is LO. Now, [(F, E;)] is LO, as it satisfies the conditions of Def. 3.5 because
[(F, E)] does. We conclude by noticing that the compatible pair of the target state
satisfies [(F, (z< :: E))] = [(F, (< :: By, : =2 = Ey)]| =Lem. gza [(F, Ev) |-

« Case ((t,m) == F\5,¢,E,{)) ~>s; (F,15,m E,). By i.h. we have that [(((¢,7)
F), E)] is LO and by frame part of the backtracking normal form invariant (Lem.
t is neutral. By definition, [(((,7) :: F), E)]| = [(F, E)|[{[#[|{{02)), Then, [[(F, E)]—
being a prefix of [(((Z, 7) :: F), E)]—verifies the conditions of Def.[3.5and is LO.

« Case (F,t,5:m E,) ~qs ((t,7) it F\S,€, E, ||). Note that

303

1. [(F, E)] is LO by i.h.,

2. [[(F, E)] is not applicative by Lem.

3. £v(f) € A(F) by the backtracking free variables invariant (Lem. [3.64).

4. t is a neutral term by the backtracking normal form invariant (Lem. , because
the stack at the left-hand side is not empty.

Note that the third item guarantees that x ¢ fv(f), and so in particular x ¢ 1fv(t),
for any ES [2\@] in E (and so in [[(F, E)])). Then [[(F, E)|{[[7]|<¢{CJ)) is LO (because it
verifies the conditions of Def. [3.5} by the listed points), that is to say [(((¢,7) :: F), E)]
is LO.

O

A.2 Proofs of Chapter 4] - Foundations of Strong Call-by-
Need

A.2.1 Technical tools

This subsection is devoted to bringing together various definitions and properties that are
used as technical tools throughout the proofs of Chapter [4| (Foundations of Strong Call-by-
Need). Most proofs in this subsection are ommited since they are straightforward.

Convention A.17. In the proofs of Chapter[d, we adopt the following notational conventions:

FY, Flﬂ, F2’9, etc. range over evaluation contexts in Ey
Iﬁ, I'f, Ig, etc. range over inert evaluation contexts in Eg
N? NP, N, etc. rangeover strong normal forms in nf1
MY,]\/[{9, Mf, etc. range over strong structures in Sy

so rather than saying ‘t is of the form C(s), where C € Ey and s € Sy ”, we might say ‘t is of the
form FO(MP".

Definition A.18 (Frozen variables). The frozen variables fz°(C) of a context C are the rigid
bound variables that bind the hole of C.

fz’(0) = o
f2'(ct) = fZ°(C)
f’(tc) = f2’(c)
2’ (\z.Cc) = 7 (c)
2 (t[z\C]) = f°(C)
5 fzﬁu{x}(c) if t is a strong ¥J-structure
fz7(clx\t]) { fz’(C) otherwise

Lemma A.19. fz’(C1(Cy)) = fzfzﬂ(cl)(cg).

Proof. By induction on C;. [

304

Lemma A.20 (Decomposition of evaluation contexts). IfC1{(Cy) is an evaluation context, then
Cy and Cy are evaluation contexts. More precisely, let XV denote either the set Ey or the set E. If
C1{Cy) € X? then C; € X? and Cy € Ey, where)’ = fz'g(Cl).

Proof. By induction on the formation rules for C;(C,) as a context in X”.]

Lemma A.21. Inert evaluation contexts do not go below answers, and evaluation contexts do not
go below db-redexes. More precisely:

1. If M\x.t)L = I%(s) where IV € Ej is an inert evaluation context, then 1V is a substitution
context, i.e. L can be split asL = LiLy such that 1Y = L,.

2. It cannot be the case that vL. = TV(A) if A is a db-redex or a variable.

3. Lett = (\z.s)Lu be the redex pattern of a db-step. Suppose thatt = F’(t') for some
context 'V € Ey, some set of variables), and some termt'. Then L can be split asL = L;Ls
such that F¥ = L, u.

Proof. The first item is by induction on the length of the substitution context L. The second
item is an immediate consequence of the first. For the third item consider the two possible
formation rules for F'V as a context in Ey. Rule EAPPL is a consequence of the first item. Rule
EAPPRSTR is impossible. O

Lemma A.22 (Answers are stable by reduction). Let (Az.t)L —sn\ge S- Then s is an answer.

Proof. By case analysis on the kind of step (db or 1sv) and its position inside (Az.t)L. The
interesting case is when it is a 1sv step that contracts one of the substitutions in L. If the vari-
able contracted by the 1sv step is inside ¢, the step is of the form (Ax.C{y»)Ly[y\vL'|Ly —
(Ax.C{v))L;[y\v]L'Ly and s is an answer. If the variable contracted by the 1sv step is in-
side one of the substitutions in L, the step is of the form (Az.t)L;[y\C{z)|Lo[y\VL'|Ls —
(Ax.t)Lq[y\C(v)|La[y\v]L'Ls and s is an answer. O

Lemma A.23 (Non-inert evaluation contexts are answers). Let C € Ey\Ej, i.e. an evaluation
context that is not inert. Then C has the form of an answer, i.e. it is either of the form (Az.C')L,
or of the form (Az.t)L;[y\C']La.

Proof. By induction on the derivation that C € Ey. [

Lemma A.24 (Weakening 1J). The set ¥} can be weakened (i.e. extended) both for normal forms
and for evaluation contexts. More precisely, let) < ©'. Then:

1. nfY < nfY and Sy < Sy'.

2. Ey € Ey and Efg - Efy.

305

Proof. The first item is straightforward by induction on the derivation of a normal form. For
the second item, let X” stand for either Ey or E and let us show that C € X¥ implies C € X"
by induction on the formation rules for C as a context in Ey or Ej.

Most cases are straightforward by applying the i.h.. The only subtle case is when C is built
by appending a non-structural substitution (rule ESUBLNONSTR), i.e. when C = C[z\t] € X"
with C; € XY, ¢ ¢ Sy and x ¢ ¥J. Then we consider two subcases, depending on whether ¢ is a
strong v'-structure:

1. Ift € Sy Note that ¥ € ¥ < ¥’ U {x} so by i.h. we have that C; € X?'“{#}_ By applying
the formation rule for generalized 1J'-evaluation contexts using a structural substitution
we conclude that C;[z\t] € X”, as wanted.

2. If t ¢ Sy Note that = ¢ 1 by the variable convention (i.e. ¥ is a set of free variables,
but is bound by a substitution). By i.h. we have that C; € X¥'. By applying the for-
mation rule for generalized 1/'-evaluation contexts using a non-structural substitution
(ESUBLNONSTR) we conclude that C;[z\t] € X', as wanted.

]

Lemma A.25 (Strengthening for normal forms). Lett be a (¥ u {z})-normal form (resp. (¥ U
{x})-structure).

1 Ifz ¢ ngv(t), thent is a V-normal form (resp. J-structure).

2. Ifx € ngv(t), thent can be written ast = C{x)) where C is a (resp. inert) ¥-evaluation
context.

Proof. The first item is by induction on the derivation that ¢ € nf¢) U {z}. The second item is
by induction on the derivation that ¢t € nf¢} U {2}, using the first item. O

Lemma A.26 (Evaluation contexts are closed by adding substitutions). If C is a (resp. inert)
U-evaluation context, then C[z\t] is a (resp. inert) J-evaluation context, provided that x ¢ 1.

Proof. By case analysis on whether ¢ is a strong)-structure, and the weakening lemma (Lem.|A.24).
O

Lemma A.27 (Inversion for normal forms). IftL is a -normal form (resp. ¥-structure) then t
is a f2” (L)-normal form (resp. fz° (L)-structure).

Proof. By induction on L.]

A.2.2 Characterization of J-normal forms — proof of Lem. 4.15]
In this subsection we prove Lem. which states that ¥-normal forms as defined in Def.

are indeed the normal forms of the strategy "

Lemma A.28. Ift € nfv andt is not an answer, thent € Sy.

Proof. By induction on ¢ € nfv. [

306

Lemma A.29. Variables below evaluation contexts are reachable. More precisely, ift = C{x))
where C € Ey (resp. t = EJ), then x € ngv(t).

Proof. By induction on the derivation that C € Ey. [

Lemma A.30 (Full proof of Lem. [4.15/-Characterization of ¥-normal forms). The following
sets are equal:

e The set of V-normal forms nfv (cf. Def.[4.11).

e The set of normal forms of the strong call-by-need strategy W

Proof. (2) Lett € NF(mq?\»). Then by induction on ¢, using Lem. |A.28[and Lem. |A.25| we can
check that ¢ € nfv). (Z) We prove the following more general property: nfd) U Sy < NF(\A?\»),

by taking a term ¢ € nf1) U Sy and proceeding by induction on the derivation that ¢ € nfd U Sy.
The interesting cases are N-APP, NFSUB, and NFSUBG:

1. N-APP: ¢ = {11, with t; € Sy and t, € nfV. By i.h., t; € NF(+%) and t5 € NF(+%). Since

t1 € Sy, then t; is not an answer. Therefore ¢t € NF(J’;).

2. NFSUB: t = t,[2\t3], where t; € X"} and x € ngv(t,)and ¢, € Sy. By i.h., 1, € NF(vi’i»)
and ¢, € NF(mﬁ»). Finally, reduction at the root is not possible since 5 is a structure,
hence not an answer.

3. NFSUBG:t = t,[2\ty], wheret; € X?and z ¢ ngv(t). By i.h.,, t; € NF(JZ»). By Lem.|A.29
reduction at the root is not possible. By the same lemma, the focus of reduction cannot

be any subterm in 5. Thus ¢ € NF(V\?\»).

A.2.3 Unique decomposition — proof of Lem. [4.17]

Our aim is to show that whenever C;{r;) = Cy(ry), where C; and C; are evaluation contexts
over v, and r; and 75 are reducible subterms, then C; = Cy and r; = 5. A technical stumbling
block is that it is not possible to reason inductively: if a term is of the form C{(r)[z\t] where is
areducible subterm, then in the subterm C{r) it is not necessarily the case that r is a reducible
subterm. For instance the underlined occurrence of z is a reducible subterm in (zx)[x\\y.y|
but not in zx. The way out of this difficulty is generalizing the notion of reducible subterm
to that of reduction place. A reduction place is essentially a reducible subterm or the free
ocurrence of a variable. Reasoning inductively will be possible using reduction places, rather
than reducible subterms, since if r is a reduction place in C{r)[x\t] then r is a reduction place
in C{r). More precisely:

Definition A.31 (Reduction place). In a term F”(t), the subterm is said to be a '’ -reduction
place if any of the following hold:

1. t is the redex pattern of a beta-step, i.e. t = (A\x.s)Lu;

307

2. t is the variable contracted by an Is-step, i.e. t = x and F? = C{C'[z\VL]);

3. tis a free variable (not bound by F?) such that z ¢ fz (F?).

Lemma A.32 (Reduction places are stable by trimming a context down). Let F(FY") e Ey,
and let t be a FY{FY")-reduction place. Thent is a I}’ -reduction place.

Proof. Let us consider the three cases in Def. for the fact that ¢ is a F'(F}")-reduction
place:

1. If ¢ is the redex pattern of a beta-step Then ¢ is trivially a Fy -reduction place.

2. If t is the variable contracted by an Is-step That is, ¢ = = and z is bound to an answer
vL. There are two cases, depending on whether x is bound by the external context F
or by the internal context I}

2.1 Ifz is bound by FY.
Then 2 is not bound by Fy'. To show that ¢t = x is indeed a F'-reduction place,
it suffices to show that = ¢ fz” (F?'). By Lem. we know that fz% (FY') =
fz’ (FP(FY"). Since z is bound by F?, let us write F/ = F! (FY% [z\vL]). We
know that x ¢ 1 by Barendregt’s convention. By applying Lem. again we
obtain that fz’(FP(F?"Y) = 27" (FY (FYY[#\vL]), where 9" = fz’(F?). Note
that x is not bound by F7}, so z ¢ 9.
Now note that vL is an answer but not a structure, so 9" = ¢” and fz”" (F¥) (FY' Y[\vL]) =
27" (F% (FY")). Note also that since = ¢ 9" and x is not bound by F% (FY") we
know that = ¢ fz%" (F/(FY")). Finally, we may apply Lem. once more to
conclude that z ¢ 27" (F%(FY")) = 27 (F?"), by which we conclude that z is a
FY'-reduction place, as required.

2.2 Ifx is bound by FY'.

Then t = x is trivially a £ -reduction place, as it is the variable contracted by an
Is-step.

3. Iftis a free variable x such that z ¢ fz’ (FY(F}")) As is not bound by FY(FY"), we have
that z is also not bound by FY’'. Moreover, by Lem. We have that fz (FP(FY")) =
f7(F 119)(F219/). Since the composition F'(FY') is a context in Ey, by the decomposition
of evaluation contexts (Lem. we know that fz/(F”) = 1, so we conclude that
x ¢ 22 (FFYY) = 27 (FY), so t is a FY'-reduction place, as required.

]

Lemma A.33 (Strong normal forms have no reduction places under an evaluation context).
Let NY € nfd) be a strong normal form. Then NV cannot be written as F”(t) such that "’ € Ey
is a generalized evaluation context and t is an F”-reduction place.

Proof. Suppose that NV = FV(t), where t is a F”-reduction place. Let us check that this is
impossible by induction on F”.

308

1. EBox, i.e. FV =[] Then NY must be a [-reduction place, for [] as a context in Ey. Let
us consider the three cases of the definition of [J-reduction place:

1.1 If NV is the redex pattern of a beta-step.
Then NV = MY N{ with M? an answer. But strong structures are not answers, so
this case is impossible.

1.2 If NV is the variable x contracted by an Is-step.
Impossible, since z is free.

1.3 If NV is a free variable = such that z ¢ fz°(J).
Impossible, since = ¢ 1J, but a variable x is a strong normal form in nf4 if and only

ifz e .

2. EAppL, ie. FV = 1Y s Then since F''(t) is a 1-normal form, the subterm IY(¢) must
also be a ¥-normal form. Moreover t is a a I”-reduction place by Lem. By i.h. we
conclude that this is impossible.

3. ESUBLNONSTR, ESUBLSTR, ESUBSR, EAPPRSTR, ELAM Similar to EArpL.

]

Lemma A.34 (Full proof of Lem. Unique decomposition). If F'{t,) = FY{t,) such that
t; is a F? -reduction place fori € {1,2}, then F{ = F andt, = t,.

Proof. By induction on the derivation of I’ as a context in Ey:
1. EBox, FY =[] By cases on the definition that ¢, is a F’-reduction place:

1.1 If ¢, is the redex pattern of a beta-step Suppose that Fy were not empty. Let t; =
(Az.s)Lu. Then Fy(ty) = (Az.s)Lu. By Lem.[A.21] we have that L can be split as
L = L;L, such that FY = Ly u. This means that t, = (Az.s)Li, so ¢, cannot be a
FY-reduction place, as it is neither an application nor a variable. Hence this case
is impossible.

1.2 If t; is a variable x contracted by an Is-step Impossible, as there is no substitution
binding x.

1.3 If t; is a free variable z such that z ¢ fz’(F’) = ¢ Immediate, as F = [] so
tQ =X ¢ ¥ = fZﬁ(Fzﬂ)

2. EAppL, ie. IV = IY s Then I9(t;)s = FJ{t,). By case analysis on the formation rules
for Fy. Note that FY cannot be empty, since the symmetric situation has already been
considered.

2.1 EAppL, ie. FY = 1Y s Then 1V(t;) = I5{ty). The contexts I} and I} are both in
E; and hence also in Ey, and each ¢; is a I?-reduction place (by Lem.|A.32), so by
i.h. we have (I?,t) = (19, t,).

309

2.2

EAPPRSTR, ie. FY = MY FY This implies that M? = 19%(t,) where t, is a I-
reduction place. A strong normal form such as M? cannot have a reduction place
such as ¢, under an evaluation context such as IY. This last fact is a direct appli-

cation of Lem.

3. ESUBLNONSTR, ie. F = F[z\s] with s ¢ Sy and = ¢ ¥ By case analysis on the
formation rules for . Note that F}y cannot be empty, since the symmetric situation

has already been considered.

3.1

3.2

3.3

ESUBLNONSTR, ie. FY = FJ [z\s] Note that each t; is a F}}-reduction place by
Lem. By the i.h. on I we have that (F,¢,) = (FY,t,), so we conclude.

ESUBLSTR, ie. Fy = F;U{I}[x\M Y] This case is impossible, as the formation rule

for I} implies that s ¢ Sy, while the formation rule for FY implies that s = M? €
Sy.

ESUBSR, ie. FY = F¥ {x)[x\1”] We claim that this case is impossible. Note that
we have that F(t,) = FJ{x), where t, is a F¥,-reduction place by virtue of
Lem. Moreover x ¢ ¥, and z is not bound by £}, (by Barendregt’s conven-
tion), so x ¢ fz’(F},); these conditions imply that x is a F}-reduction place. This
allows us to apply the i.h., obtaining (F,z) = (FJ,t1). Since t; = xisa F-
reduction place by hypothesis, and x is bound by F, we conclude that it must be
involved in an Is-step. This implies that the substitution [z\s] contains an answer,
that is, s = vL. But from the formation rule of F, we also know that s = I7(t,).
So the situation is such that I%(¢,) = vL. By the fact that inert evaluation contexts
such as IV do not go below answers (Lem. we conclude that ¢, must be of
the form vL;. This is a contradiction, as t, is a F§9 -reduction place, which means
that it must be either an application or a variable.

4. ESUBLSTR, ie. FY = Fﬂu{x}[x\M] By case analysis on the formation rules for F.
Note that FY cannot be empty, nor built using ESUBLNONSTR or ESUBLSTR, since the

symmetric situations have already been considered.

4.1

4.2

ESUBLSTR, ie. FY = F2" 2\ M?] Then each ¢; is a F},”*"}-reduction place as
a consequence of Lem. , so we may apply the i.h. to conclude (F; ﬂu{m}, t) =
(FQI’;U{"E}7 t), as required.

ESUBSR, ie. FY = FJ{x)[z\1V] Then we have that M? = 1%(t,). Note that
ty is a I”-reduction place by Lem. This is impossible since M is a strong
normal form, and it might not have a reduction place under an evaluation context

(Lem.[A33).

5. ESuBsR, ie. FY = FY{x)[x\1?] By case analysis on the formation rules for F). Note
that Fy cannot be empty, nor built using ESUBLNONSTR, ESUBLNONSTR, or ESUBLSTR,

since the symmetric situations have already been considered. The only remaining pos-
siblity is that F is built using ESuBSR, i.e. FY = FJ«{z)[z\I5]. Then each t; is a

310

I?-reduction place, as a consequence of Lem. By applying the i.h. we obtain that
(1Y,t1) = (19, t,), as required.

EAPPRSTR, i.e. [V = MY F}, By case analysis on the formation rules for Fy. Note that
FY cannot be empty, nor built using EAppL, since the symmetric situations have already
been considered. The only remaining possiblity is that F’ is built using EAPPRSTR, i.e.
FY = MY FJ,. Then each t; is a F}j}-reduction place, as a consequence of Lem. By
applying the i.h. we conclude that (FY,,t,) = (F},t2), as required.

. ELaM, ie. FY =)\a:.Fﬂu{x} Then Fy cannot be empty (the symmetric situation was

already considered), so /¥ must be of the form Ax.Fﬁf{m}. By Lem. we know
that each t; must be a F’-reduction place, so we may apply the i.h. to conclude that
(FP,t1) = (F¥, 1), as required.

O

A.2.4 Conservativity — proof of Thm.

In this section we give a proof of Thm. which states that our strong call-by-need strategy
is a conservative extension of weak call-by-need. The proofs developed in this section rely
on an alternative characterization of weak normal forms. The set of weak normal forms is
captured by WNFy ::= vL | E{z)) with x € ¥). The alternative characterization presented
below is convenient for carrying out the proofs.

Definition A.35 (Head reachable variables). The set of head reachable variables of a term is
defined as follows. Note that hrv(t) < fv(¢).

hrv(z) def {z}
hrv(ts) = hrv(t)
hrv(Az.t) = ©
hv(tfr\s]) % (hrv(f)\a) U {hrv(s) if x € hrv(t)

1%} otherwise

The set of -weak normal forms (NY), is defined below, mutually inductively with the set

of ¥-weak structures (S%). Here, X? stands for either the set N or the set SY:

r e teSy teSy
N"-VAR NY-APP NV-INCL e te NV
z €Sy ts € Sy t e Ny L. 9

N"-LAM

te X gehrv(t) seSY teX” z¢hrv(t)
N"-sUB* N"-SUB
t[r\s] e X¥ t[r\s] e X”

o

Lemma A.36. Ny = WNF,

Proof. Straightforward by induction on the derivations.]

Lemma A.37. Lett € WNFy ort € SY. Then x € hrv(t) implies x € V.

311

Proof. By simultaneous induction on the derivation that ¢ € WNFy or ¢t € Sj. The cases
N"-VAR, N"-INCL, and N"-LAM are immediate.

1. N"-APP: t = t; ty with ¢, € SY. Then z € hrv(¢;) and we conclude by i.h..

2. N"-sUB®*: t = t[y\t2] and t; € X?“{*} and x € hrv(#;) and ¢, € SY. Recall that:

hrv(te) if y € hrv(ty)

1%} otherwise

hv(tfy\ta]) < (hrv(t)\y) u{

If x € hrv(t1[y\t2]), there are two cases. Either = € hrv(ty) and we conclude from the
i.h.. Otherwise, = € hrv(t;)\y. Then x # y and we also conclude from the i.h. too.

3. N"-sUuB®: t = t;[y\t2] with t; € X? and y ¢ hrv(t,) Therefore, hrv(t,[y\t]) = hrv(t;)\y.
Suppose = € hrv(t;)\y. Then x # y and = € hrv(ty) and we conclude using the i.h.
again.

O
Lemma A.38. If s € S} is a weak structure then hrv(s) is a singleton.

Proof. By induction on the derivation that s € SYj. The cases N"-vAR and N"-APP are immedi-
ate.

1. N"-suB®: Then t = t;[z\t2] with = ¢ hrv(t;) and t5 € SY. Thus hrv(t) = hrv(ty)\z =
hrv(t;) and the result follows from the i.h. on t;.

2. N"-suB®: Thent = ti[z\t>] with ¢, € S§ , , and z € hrv(t1) and {, € Sj. By the ih.
hrv(t;) = {z}, for some variable z. We consider two cases:

2.1 If x € hrv(ty). Then z = x and hrv(t;[z\t2]) = hrv(t;)\z U hrv(ty) = hrv(ts). The
result follows from the i.h. on ts.

2.2 If z ¢ hrv(t1). Then hrv(ti[z\t2]) = hrv(t1)\z = hrv(ty) = {z}.
[]

Lemma A.39. Lett € SY. If x € hrv(t), then there is a weak evaluation context E € WCtx such
thatt = ECx)).

Proof. By induction on the derivation that ¢ € S}}.
1. NY-VAR: t = x with x € Y. Take E = [].
2. N"-APP: t = t; ty with ¢; € SY. Resort to the i.h. to obtain E; and set E dof E; to.

3. NW-suB®: t = t1[y\ta] with ¢; € S and y ¢ hrv(¢;). Thus hrv(t) = hrv(t,)\y = hrv(ty).
Therefore x € hrv(t;), hence © # y, and the i.h. yields E; such that t; = E;[z]. We
conclude by setting E “E [y\t].

312

4. N"-suB®: t = l1[y\to] and t; € S§ , and y € hrv(t1) and ¢, € S§. By the i.h. there

duf{x
exists E; such that t; = E;{y)). Also, hrv(t1[y\t2]) = hrv(t1)\y U hrv(ta) = hrv(ty).
The last equality follows from Lem. Thus z € hrv(t2) and the i.h., again, yields E,

such that t; = Eo{x)). We conclude by setting E o E1 y»[y\Ea].

Remark A.40. Strong structures are also weak structures, i.e. Sy < SY.
Remark A.41 (Weakening). If s € S is a weak structure then s € S)j | ()
Note: technically we require that x does not occur bound in s, which we can always guarantee

by a-conversion.

Lemma A.42. If 1V is an inert evaluation context, then 1°{x)) € SHoia}-
Proof. By induction on the derivation that I? € ES.
1. EBox, I? = []. Then z € ¥ U {z} and the result follows from N"-VAR.
2. EAppL, IV = 1Vt. By the i.h. on I? and N"-aPp.

3. EApPRSTR, IV = t; F¥ with t; € Sy. By Rem.|A.40, ¢; € SY. Since x does not occur
bound in ¢{, by Rem. t, € Sgu{x}. We conclude using N"-APP.

4. ESUBLNONSTR, IV = I?Y[y\t] with ¢t ¢ Sy and y ¢ ¥J. By the i.h. IV{z) € S}
Moreover, y ¢ ¢ and, by the statement of the result, also y # x. Hence y ¢ ¥ U {z}. We
conclude from Lem[A.37]and N"-suB°.

5. ESUBLSTR, IV = Ifu{y}[y\tg] with to € Sy. By the ih. Ifu{y}<<x>> isad v {zry}-
structure. Moreover, from Rem. ty € S;’;. We may assume that Y does not occur in
ts. We conclude using N¥-suB®or N"-sUuB®, depending on whether y € hrv(I’fU{y}«x}})
or not.

6. ESuBsR, I = I{{y)[y\I5]. By the ih. I{{y) € Sy, By by Rem. Iy €
S¥(ay)- We conclude using N*'-suB°or N*-sUB*, depending on whether y € hrv(I7(z))

or not.
[
Lemma A.43 (Strengthening). If s € Sgu{x} is a weak structure and x ¢ hrv(s), then s € SY.
Proof. By induction on the derivation that s € 5, .. [

Lemma A.44. Let IV € E; be an inert evaluation context. If 1V[s] ¢ S%, then IV € WCtx.
Proof. By induction on the derivation that I” € E. The case EBoxis immediate:

1. EAppL, IV ¢. Since I”[s] ¢ SY, then IY[s] ¢ S%. Thus by i.h. I! € WCtx. Hence also
1Y e WCtx.

313

2

. ESUBLNONSTR, IY[2\t] with ¢ ¢ Sy, z ¢ . Note that IV[s] ¢ S% for otherwise by x ¢ ¥
and Lem. we would have I?[s] € SY. Therefore I? € WCtx by the i.h. and hence
also I? € WCtx.

ESUBLSTR, I' 1" [2\t] with t € S;. Note that I.7"/[s] ¢ S9. () for otherwise 1%[s] e

¥ given that ¢t € Sy and Rem. Thus I?U{x} e WCtx by the i.h. and hence also
1% e WCtx.

ESussR, IY{z)[x\1]. By Lem. , IY¢x) is in SY (z}- Now it must be the case
that z € hrv(1¢2))) for otherwise IV x)[x\I9[s]] € SY%, contradicting the hypothesis.
Moreover,

« I9[s] must not be a weak structure for otherwise, again, I?¢x)[2\19[s]] would
be a weak structure. Thus we can apply the i.h. on I3 and deduce that I € WCtx.

« From x € hrv(1?¢r))) and Lem. we deduce the existence of E; such that

Ei{z) = I{{a).
We thus set E % E (2)[2\1Y].

EAPPRSTR, t F¥ with t € Sy. In this case, Rem. implies t F ¥ is a weak structure,
contradicting the hypothesis. So this case is not possible.

]

Lemma A.45. If F? € Ey is an evaluation context such that F*{x)) ¢ WNFy then '’ € WCtx.

Proof. Note that F?{x) ¢ WNFy so it is not an answer. Then, by the contrapositive of
Lem. |A.23] the evaluation context F” must be inert, ie. FV € Ej. Note moreover that
FU{x) ¢ S%, so by Lem. we conclude. O

Lemma A.46. Let FV € Ey andy € hrv(EFV[z]) withx # y. Theny € hrv(EV[t]), for any term

t.

Proof. We show this for FV € X?, where X? stands for either the set Ey or the set ES, by
induction on the derivation that F¥ € XV.

1

2

. EBox, []. Holds trivially since y ¢ hrv(F’[z]).
. EArrL, I t. Follows from i.h. and the definition of head reachable variables.

ESUBLNONSTR, FV[2\t] with t ¢ Sy and 2 ¢ 9. If 2 € hrv(F’{z))), then we resort to
the i.h. If z € hrv(F?{x)) and y € hrv(t), then we use the i.h. with respect to z and

FY).
ESUBLSTR, F) vz [#\s] with s € Sy. Similar to the previous case.

ESuBsR, FY{2P[2\I1Y]. If y € hrv(F{2)), the result is immediate. If z € hrv(FY{z)))
and y € IV{x)), then we resort to the i.h. on 17,

314

6. EAPPRSTR, s I 1'9 with s € Sy. Immediate.
7. ELam, Ay.FY'") This case is not possible since hrv(\y. FY'° () = 2.
[

Lemma A.47. Let XY stand for either WNFy or S%. If z ¢ hrv(F’[x]) and F[z] € XY, then
FU[t] e XV,

Proof. By simultaneous induction on FV[z] € WNF and FV[z] € SY. The N"-VAR, N¥-INCL,
and N"-LAM cases are immediate.

1. NV-app: F?[x] = t11, with ¢; € SY. Then two cases are possible:

o t1ty = IY t5. We resort to the i.h..
o Lty =1 Ff. The result is immediate.

2. N"-suB®: FV[z] = t;[y\t2] with t; € X1} and y € hrv(t;) and ¢, € SY. The following
further cases are considered:

o F[z] = FY[z][y\t2] with t5 ¢ Sy and y ¢ ©J. The result follows from the i.h. on
FY and Lem.

« FU[z] = F'YW{2][y\ts] with t, € Sy. The result follows from the ih. and
Lem [A.46]

o Flz] = FP{y»[y\1°[z]] and 5 = I°[x]. Since y € hrv(t;), then = ¢ hrv(I%[z]).

Therefore we conclude from the i.h. on IY.

3. N"-suB®: FY[z] = t[y\to] with t; € XY and y ¢ hrv(t;). The following cases are
possible:

o FU[z] = FP[z][y\t2] with t, ¢ Sy and y ¢ ¥J. The result follows from the i.h.
« Flz] = F Viv} [z][y\t2] with t5 € Sy. The result follows from the i.h.
o Flz] = F?{y»[y\1Y[z]] and t, = I?[z]. The result is immediate.

]

Lemma A.48. Let r be a redex and X? stand for either S or WNFy. If FV[r] € XY, then
hrv(FP[r]) = hrv(EV[s]), for any s. This also holds, in particular, if F¥ is an inert evaluation
context.

Proof. By induction on the derivation that FV[r] € X?. The N"-vaR, N"-INCL, and N"-LAM
cases are immediate.

1. NV-app: FV[r] = t1t, with t; € S%. Then two cases are possible:

o tity = I”ty. We resort to the i.h. with respect to item (2).

o tity =1t Ff. The result is immediate.

315

2. N"-suB®: F[r] = t,[y\t2] with t; € X"} and y € hrv(t,) and ¢, € SY. The following
further cases are considered:

« FU[r] = FP[r][y\t2] with ¢, ¢ Sy and y ¢). The result follows from the i.h. on
FY

[r] =
[r]-
FP[r] = FYYWHr][y\t2] with t5 € Sy. The result follows from the i.h. on Fﬁu{y}[].
. FPlr] = FP¢y»[y\1”[r]] and t; = I”[z]. The result follows from the i.h. on
I7[x].
3. NV-suB®: FU[r] = t[y\t2] with t; € X? and y ¢ hrv(¢;). The following cases are
possible:
« FU[r] = FP[r][y\t2] with ¢, ¢ Sy and y ¢ ¥. The result follows from the i.h.
« FO[r] = F’ wiv} [7][y\t2] with t5 € Sy. The result follows from the i.h.

o FPlr] = F?{y»[y\1?[r]] and t, = 1Y[r]. The result follows from the i.h..

Lemma A.49. Let X” stand for either WNFy or SY. Ift o wandt e X?, thenu e X.

Proof. By induction on the derivation that ¢ e X?. The N"-VAR, NV-1NCL, and N"-LAM cases
are immediate.

1. NV-app: t = tity and t; € SY. Then ¢ty = F’[r] and we have two further cases. If
t; ¢ Sy, then it must be the case that F?[r] = IY[r]t, and the result follows from
the i.h. with respect to item (2) and N"-app. If t; € Sy, then it must be the case that
F?[r] = t; F[r] and the result is immediate from N"-app.

2. N"-suB®: t = t,[x\t,] and t; € X"V{#}, z € hrv(ty), t, € SY. Note that 'V = []is not
possible since 5 is not an answer. Thus one of the following holds:
« F[r] = F{[r][x\ts] witht, ¢ Sy and x ¢ 9. By Lem.[A.37]this case is not possible.
« FO[r] = F U{xn}[r] [2\t2] with to € Sy. The result follows from the i.h. and N¥-
suB®or N"-sUB°.
o Flr] = FP{x)[2\17[r]] and t, = I?[r]. We use the i.h. with respect to item (2)
on t5 and then conclude using either N"-suB®.
3. N"-suB®: t = t,[x\ty] and t; € X¥ and = ¢ hrv(¢,). One of the following holds:
« F? =[O0t = F{{x) and t, is an answer. By Lem.[A .47 F{(t,)) € WNF,. Thus
we conclude using N"-suB°. A similar argument applies if X = S*.

o FU[r] = F?[r][x\ts] with t ¢ Sy and x ¢ oJ. The result follows from the i.h. and
Lem|A.48| (which guarantees that = ¢ hrv(t}), where #} is the reduct of F}[r]).

. FU[r] = F'V¥ [p][2\t,] with t, € Sy. The result follows from the i.h.

316

o Flr] = F?{x)[2\17[r]] and t, = IY[r]. The result is immediate.

]

Theorem A.50 (Full proof of Thm. Conservativity). If ty w2 t1 w2 A w2s tn

there exists an 1 < 1 < n such that the three following conditions hold:

1 tonbt Wo 1, ot

)) V0
AR AN AN S S

3. Ifi <mn, thent; € N foralli < j <n.

Proof. Let C;{x) be the context selected at step ¢; o tir. I C;{x) ¢ SY and C;{x)) not an
answer, then C; € WCtx (cf. Lemin Appendix) and hence step ¢; W ti+1 is also a weak
step. If, moreover, this happens for every step ¢ with ¢ € 1..n, then we are done. Otherwise,
let j € 1..n be the first index such that either C;{x)) € S§ or C;{z)) not an answer. Then
all subsequent steps are non-weak steps; this follows from the fact that weak call-by-need
reduction preserves both answers and weak structures (cf. Lem. [A.49).]

A.2.5 Commutation — proof of Lem. and Lem.

In this section we give a proof of the backward stability by internal steps result stated in
Lem. and the postponement of internal steps result stated in Lem. These proofs
are long and technical. Before being able to give a complete proof, we need many auxiliary
lemmas. The items in the statement of Lem. [4.49]are scattered throughout various lemmas: the
first item of Lem. is proved in Lem. (backward stability of answers) and Lem.
(backward stability of db-redexes); the second item of Lem. is proved in Lem. (back-
ward stability of normal forms); the third item of Lem. is proved in Lem. (backward
stability of evaluation contexts).

The rest of this section is organized in subsections as follows. Sec. deals with back-
ward stability of answers and db-redexes. Sections introduce auxiliary notions
and results: the set of structural variables of an evaluation context (Sec.[A.2.5), critical con-
texts (Sec.[A.2.5), an analysis of the context that results from replacing a value by a variable
in an evaluation context (Sec. , a solution for a unification problem with evaluation con-
texts (Sec.[A.2.5), and non-garbage contexts (Sec.[A.2.5). Backward stability is then addressed
for normal forms (Sec. and evaluation contexts (Sec.[A.2.5). Finally we turn to the post-

ponement result itself (Sec.[A.2.5).

As a notational remark, in this section we use anchor of a redex to refer to the underlined
subterm in each of the following cases:

1. db-redex: C{(Az.t)L s), i.e., the anchor is the pattern of the db-redex.

2. 1sv-redex: C;{Co{x)|x\VL]), i.e., the anchor is the occurrence of = substituted by the
1sv-step.

317

Backward stability of answers and db-redexes by internal steps

In this subsection we tackle the first item of Lem. We recall the statement: if ¢ ;ﬁ>sh t
and ¢ is an answer (resp. a db redex), then ¢, must also be an answer (resp. a db redex).
Backward stability of db redexes is necessary to show that internal steps can be postponed in
a situation like ty —2gp (Az.t)Ls W t[x\s]L, to ensure that there is a db step at the root of
to. Backward stability of answers is necessary to show that internal steps can be postponed

in a situation like z[z\to] —>e z[7\vL] W v[z\v]|L. In that case it can be argued that the
step to — vL has to be internal, so ¢, is an answer and there is a 1sv step at the root of .

Lemma A.51 (Backward stability of answers). Let t Sl (Ax.s)L = t be a U-internal step.
Then the source of the step is of the form ty = (\x.so)Lo. Moreover, the anchor of the step is not
below a substitution context, i.e. it is inside s, or inside one of the arguments of L.

Proof. By induction on the context C under which the step takes place:

1. Empty, C = [] Note that the step cannot be a db step, as it would then be a 1}-external
step, since [] € Ey.
So the step must be a 1sv step, contracting the outermost substitution, that is, ¢, =
C1y»|y\vLs| Sl Ci{v)[y\v]Loa = t. Note that C;{(v) = (Az.s)L; where L =
Li[y\v]Lo.
We claim that C; is not a substitution context. By contradiction, suppose that C; is
a substitution context. Then the 1sv step tg = yL'[y\vLo] ish vLl'[y\v]Ly = tis

U-external since L'[y\vLy| € Ey. This contradicts the assumption that the step is -
internal.

Now, since C1{v) = (Az.s)Ly, there are two cases, depending on the position of the hole
of C1 :

1.1 The hole of C; lies inside s Then C; = (Ax.C3)Ly, and the step is of the form ¢y, =
(Ax.Coly»)L1[y\vLs] A, (Ax.Co{v))L;[y\v]La = t. By taking s¢ := Coy)) and
Lo := Li[y\vLs] we conclude.

1.2 The hole of C; lies inside L Then C; = (Az.s)L11[2\C2]L1a where Ly = Lq1[2\Co{v)]L1a,
and the step is of the form ¢y = (Ax.s)L11[2\Coly »|L12[y\vLs] ish (Az.s)L11[2\Colv)|Lia[y\V]L
t. By taking so := s and Ly := L1[2\Co«y»|L12[y\vLz2] we conclude.

Note that, as already argued, in both cases, the anchor of the step is not below a substi-
tution context.

2. Inside an abstraction, C = Az.C’ The step is of the form ¢ty = A\z.C'(ry) Sl Az.C'{r) =
t,so L = Ly = [, with sg = C'{rp) and s = C'{r). Note that the anchor of the step is
inside s, hence not below a substitution context.

3. Left of an application, C = C’u Impossible, since the step would be of the form ¢, =
Cl{royu = {ryu = t but ¢ is not an application.

318

4. Right of an application, C = u C' Impossible, analogous to the previous case.

5. Left of a substitution, C = C'[y\u] Then the step is of the form ¢, = C'{(r)[y\u] =
C{rHy\u] = (Ax.s)L'[y\u] = t, where L = L'[y\u]. We consider two cases, depending
on whether u is a strong J-structure:

5.1

5.2

If u € Sy Note that the isomorphic step C'(r)—gp\ gc (Az.5)L’, taking place under the
context C’, cannot be (¥ U {y})-external, since then the fact that C’ € Ey_,; would
imply that C'[y\u] € Ey, and the original step would be ¥-external, contradicting
the hypothesis.

—ouiy}

Hence the step C'(r) ——4, (Ax.s)Lis (¥ U {y})-internal. By i.h. we have that
C'{r) = (Ax.s9)Ly, so the source of the original step is of the form C'{(r)[y\u] =
(Ax.s9)Ly[y\u]. By i.h., we also have that the anchor of the step is either inside s,
or inside one of the arguments of L{, By taking L, := Lj[y\u] we conclude.

If u ¢ Sy Similar to the previous case: the isomorphic step C'(r) —gngc (Az.s)L/,
taking place under the context C’, cannot be ¥J-external, as this would imply that
the original step is ¥J-external.

So it must be ¥-internal and we may apply the i.h. to conclude that C'(r) =
(Ax.s9)Ly and, moreover, that the anchor of the step is either inside s, or inside
one of the arguments of L;,. This means that the source of the original step is of
the form C'(r)[y\u] = (Az.so)Lj[y\u], as required.

6. Inside a substitution, C = u[y\C'| Then it must be the case that u = (Az.s)L’ and the
step is of the form (Az.s)L'[y\C'{(r)] i (Az.s)L'[y\C'(r")], with L = L'[y\C'(+")]. By
taking sp := s and Ly := L'[y\C'(r)| we conclude. Note that the anchor of the step is
inside one of the arguments of L, as required.

]

Lemma A.52 (Backward stability of db-redexes). Let t ;ﬁ>sh (Ax.s)Lu = t be a V-internal
step. Then the source of the step is of the form ty = (Ax.Sg)Lo ug. Moreover, the anchor of the
step is not below a context of the form L' uy, i.e. it is inside sy, inside one of the arguments of Lo,

or inside ug.

Proof. By case analysis on the shape of the context C under which the step takes place. The

interesting case is when going to the left of an application, that is C = C’u. Then the step

is of the form C'(r)u s € {r")u. Consider the isomorphic step C'(r) —gn g C'(1’) takes

place under the context C'. We consider two cases, depending on whether C’ is an generalized

evaluation context over ¥:

1. If ¢’ € Ey Note that C’ is not an inert evaluation context, i.e. C’ ¢ Ej, since otherwise we

would have C' u € Ey, which means that the original step is ¥-external. So C' € Ey\Ej
and by Lem.[A.23| we know that C’ has the form of an answer. More precisely, there are
two subcases:

319

1.1 The context C' is of the form (Az.C”)L Then the original stepisty = (Az.C"{(r))L s Sl
(Az.C"(r"))L s = t. Taking sq := C"(r), with Ly = L and uy = u we conclude.

1.2 The context C' is of the form (Ax.s)L;[y\C"]Ly Then the original step is of the
form ty = (Az.s)Li[y\C"(r)|Ly s = (Ax.s)Li[y\C"(r")]Ly s = t. By taking
Lo := Ly[y\C"(r)|Ly, with sy = s and ug = u we conclude.

2. IfC' ¢ Ey Then the step C'(1) —gngc C'(r’") = (Ax.s)L is ¥-internal, so since answers are
backward stable by internal steps (Lem. we have that C'(r) = (A\x.s¢)Lj and the
anchor of the step is not below a substitution context. Hence t = C'{(r)u = (Az.s¢)Lo u
and the anchor of the original step is not below a context of the form L u, as required.

]

Structural variables

In this subsection we introduce structural variables. Intuitively, the structural variables sv(C)
of an evaluation context C are the free variables that must be frozen in order for C to be
an evaluation context. For instance sv((z[J)[y\z]) = {z} and sv((z[0)[z\z]) = {z,z}. To
understand the definition of structural variables, it might be helpful to observe that a term in
the process of being evaluated has already frozen subterms, which have been normalized and
are morally to the left of the focus of evaluation, and still pending subterms, which are yet to
be evaluated and are morally to the right of the focus of evaluation. Structural variables are
defined to be the non-garbage variables that occur in the already frozen subterms.

Structural variables are required as tools to reason over arbitrary evaluation contexts.
In particular, the strengthening lemma for evaluation contexts (Lem. allows obtain-
ing a -evaluation context from a (¢ U {z})-evaluation context C depending on whether
x € sv(C). This mimicks the strengthening lemma for normal forms that we have already
stated (Lem. which allows obtaining a J-normal form from a (¢ U {z})-normal form ¢
depending on whether = € ngv(?).

In this subsection we also introduce a “proof tactic” (Tactic that will be used later.

Definition A.53 (Structural variables). Let C be a generalized evaluation context over ©J. More
precisely, let C € X? where X is either the set Ey or the set E. The set of structural variables

320

of C, written sv(C) is defined by induction on the derivation that C € X as follows:

(EBox) svi() = @
(EAPPL) sv(Cit) X sv(cy)
where C; € Ej
(ESUBLNONSTR) sv(Ci[2\t]) X sv(cy)\{z}
where C; e XV, 2 ¢ 9, andt ¢ Sy
(ESUBLSTR) sC[]) © (sviey)\(x)) o | T EsvC)

o otherwise
where C; € X?“{#} and t e Sy

(ESussR) sv(Cila)[2\Ca]) X (sv(Ci)\{z}) U sv(Ca)
where C; € X and C, € Ej

(EAPPRSTR) sv(tC1) = ngv(t) usv(Cy)
wheret € Sy and C; € Ey
(ELaMm) sv(Az.C;) ¥ sv(C)\{z}

where C; € Eyyqqy

Lemma A.54 (Strengthening for evaluation contexts). Let C be a (resp. inert) (0 U {x})-
evaluation context.

1. Ifz ¢ sv(C) then C is a (resp. inert) J-evaluation context.

2. Ifx € sv(C) and x ¢ ¥ then for any term q there is a (resp. inert) V-evaluation context Cy
such that C{qy = Colx)).

Proof. For the first item of the lemma, let XV denote either the set Ey or the set E§. Let us
show that if C € X"“{*} and x ¢ sv(C), then C € X”. Proceed by induction on the size of the
context C, and then by case analysis on the last step of the derivation that C € X?“{#} The
interesting case is when C is built by applying ESUBLSTR, that is, C = C;[y\t] € X?{#} with
t € Sy and C; € XUV Then x ¢ sv(Ci[y\t]) 2 sv(Ci)\{y}, so x ¢ sv(Cy1)\{y}. Observe
that = # y by the variable convention, so actually x ¢ sv(C;). Hence we can apply the i.h.,
obtaining that C; € X”“{¥}, We consider two cases, depending on whether y is structural in
Cq:

1. If y € sv(C;) Then, by definition of the structural variables, we have that sv(C) =
(sv(C1)\{y}) U ngv(t). In particular, x ¢ ngv(t). By the fact that garbage variables
are not required in “¢” (Lem. we have that ¢ € Sy. Now we can apply the for-
mation rule for generalized contexts adding a structural substitution (ESUBLSTR), and
conclude C; [y\t] € X?, as required.

2. Ify ¢ sv(C;) Then we may apply the i.h. again on the fact that C; € X?“¥} to obtain that
C; € X?. By the fact that adding an arbitrary substitution preserves evaluation contexts

em. |A.26) we have that C;|z\t| € , as required.
@ have that C;[2t] € X", as required

321

For the second item of the lemma, let X” stand for either Ey or Ey, and let C; € xoota}
where z € sv(C;) and = ¢ o). Let us show that for any term q there is a context C, € X? such
that C;{q) = Co{x)). Proceed by induction on the size of the term C;{(g), and then by case
analysis on the last step of the derivation that C; € X?“{#} The interesting cases are the rules
ESuBLSTR, ESUuBSR, and EAPPRSTR:

1. ESUBLSTR, C; = Cy1[y\t] € X"} with ¢ € Sy_(,y and Cy; € XY=} We consider two
cases, depending on whether z is a structural variable in Cy;:

1.1 If 2 € sv(Cy;) Then by i.h. there is a context Cy; € X"} such that C;,{q) =
Ca1{x). We consider two further subcases, depending on whether y is a structural
variable in Co;:

1.1.1 Ify € sv(Cq1) We consider two more cases, depending on whether x is garbage
in the structure ¢:

1.1.1.1 If x € ngv(¢) Since y € sv(Cy;) we may apply the i.h. again, to obtain that
there exists a context C3; € X” such that Cy,{z) = C3;{y). Note that we
are able to apply the i.h. since the term Cy;{z)) = C11{q) is smaller than
the original term, namely C;{q) = C11{q)[y\t].
Since non-garbage variables are below evaluation contexts (Lem.
and t € Sy (,; we know that there exists a context Cy; € Ej such that

t = Cp{(x). So we have Ci(q) = Cul@[y\t] = Crlg[y\Col)] =

CardzH[y\Caal@)] = C1 CyP[y\Coolx)] with C3; € X” and Cas € Ej. By
applying the rule for building evaluation contexts by going inside substi-

tutions (ESuBsR), we have that C3;{y)[y\Caz] € X”.
1.1.1.2 If x ¢ ngv(¢) By the fact that garbage variables are not needed in “¥”

(Lem. |A.25) we have that t € Sy. So C1{q) = C11{q)[y\t] = Carlx)[y\t]
with C; € XY} and t € Sy. By applying the rule for building evaluation
contexts with structural substitutions (ESUBLSTR), we have that Co; [y\{] €
XY,
1.1.2 If y ¢ sv(Cqy) Then since non-structural variables are not required in “0”
(Lem. , Co1 € Xﬂ. So C1<q> = C11<q>[y\t] = C21<<(L’>>[y\t] with Co1 € Xﬂ.
By the fact that adding an arbitrary substitution preserves evaluation contexts
(Lem. |A.26), we have Co;[y\t] € X?, as required.

1.2 If = ¢ sv(Cy1) Recall that, by hypothesis, x € sv(C;) = sv(Cy1[y\t]) and that by
definition of structural variables: sv(Ci1[y\t]) = sv(C11) U A where A = ngv(?)
if y € sv(Cy1), and A = & otherwise. Since x ¢ sv(Cy;), we must have that
y € sv(Cy1) and x € ngv(t).
By applying the lemma that non-structural variables are not required in “¢)” (Lem.
on the fact that C;; € X?{#¥} we have C;; € XY}, Since y € sv(Cy;), by the i.h.
we have that there exists a context Cy; € X such that C;{¢) = Co1{y)). More-
over, x € ngv(t), so since non-garbage variables are below evaluation contexts
(Lem. , there exists a context Coy € Ej such that t = Co{z)). So we have

322

Cilgy = Culply\t] = CulyDly\t] = CalyP[y\Caalx)] with Cy € X” and

Cy2 € Ej. By applying the rule for building evaluation contexts by going inside
substitutions (ESuBsR), we obtain that Co;{y»[y\C22] € X, as required.

2. ESuBsR, C; = Ciy)[y\Ciz] € X"} with ¢, e X7} and €y, € Ej. () Then
sv(C1) = sv(Crily»[y\Ci2]) = (sv(Ci1)\{y}) U sv(Ci2). Observe that x # y by the
variable convention. We consider two cases, depending on whether z is a structural
variable in Cy;:

2.1 If z € sv(Cy1) Then by i.h. there is a context Cy; € X such that C;;{y) = Co1).
By the fact that adding an arbitrary substitution preserves evaluation contexts

(Lem. [A.26), we obtain that Ca;[y\C12{q)] € X?, as required.

2.2 If z ¢ sv(Cyy) Since non-structural variables are not required in “9” (Lem. [A.54),
Cy; € XY, Moreover, it must be the case that = € sv(C12), so by i.h. we have that
there is a context Co € Ej such that C12{(q) = Co2x)). By applying the formation
rule for generalized evaluation contexts going inside substitutions (ESuBsR) we
conclude that C;;{y)[y\Caz| € X?, as required.

3. EAPPRSTR, C; = ¢Cy; € X997} with ¢t € Syuqzy and Ci1 € Eyugyy Then sv(Ci) =
ngv(t) U sv(Cy1) We consider two cases, depending on whether x is non-garbage in ¢:

3.1 Ifz € ngv(t) Since non-garbage variables are below evaluation contexts (Lem.[A.25),
the structure ¢ can be written as of the form Cy;{z)), with Cy; € ES. By applying
the formation rule for generalized evaluation contexts going to the left of an ap-
plication (EAPPL) we conclude that Cy; C11{q) € Ej.

If XV is Ey, we are done. If X? is Ey, we are also done, since Ey < Ey.

3.2 If x ¢ ngv(t) Since garbage variables are not required in “0” (Lem. |A.25), t €
Sy. Moreover, x € sv(Cyy), so by i.h. there must exist a context Cy; € Ey such
that C11{¢) = C21{x)). By applying the formation rule for generalized evaluation
contexts going to the right of a structure (EAPPRSTR) we conclude that ¢ Cy; € XV
as required.

]

The following result will be useful many times throughout the proofs in the remainder
of this section. We call it a “proof tactic”, rather than a “lemma”, following the nomenclature
usual in proof assistants such as Coq. The exact way in which this result has to be instantiated
in each case may vary slightly.

Tactic A.55 (Strengthening ¢J). Consider a 1sv step C{x »[x\vL] — C{v)[z\Vv]L.

1. Strengthening ¢ for normal forms. Let XY stand for either the set nfi) or the set Sy.
Ifcdx) € X2, where 9 = f2° ([x\v]L) then C{x) € X.

2. Strengthening o for evaluation contexts. Let X” stand for either the set Ey or the set
ES. IfC[x\v]L € X? then C{x) € X? and C{x)[z\vL] € XV.

323

Proof. For the first item, note that x ¢) since 2 is bound to an answer, so it is not frozen. So
we have that U < ¢ U domL. The variables in domL do not occur free in the term C{xz)) by
Barendregt’s convention, since C{x)) is outside the scope of L on the left-hand side of the 1sv
step. In particular, all the variables in domL are garbage variables in the term C{z)). Hence,
by repeatedly applying the fact that garbage variables are not required in “9” (Lem.[A.25), we
obtain that C{z) € X?.

For the second item, by the decomposition of evaluation contexts lemma (Lem. the
context C must be an evaluation context in X” where 9 = fz’(['\v]L). Note that z ¢ 9 since
z is bound to an answer, so it is not frozen. So we have that ¥ < ¥ U domL. Note that the
variables in domL do not occur free in the context C by Barendregt’s convention, since C is
outside the scope of L on the left-hand side of the 1sv step. In particular, all the variables in
domL are not structural variables in the context C. Hence, by repeatedly applying the fact that
non-structural variables are not required in “9” (Lem. , we obtain that C € XV, Moreover,
since adding arbitrary substitutions preserves evaluation contexts (Lem. |A.26), C[x\vL] € X?,
as required. O

Critical contexts

Consider a context like C = y[y\2[]] and the set of frozen variables 1} = {z}. Note that C{I) =
y[y\z I] is a ¥-normal form since z I is a ¥-structure. On the other hand, C{x)) = y[y\z] is
not a Y-normal form because z x is not a }-structure, as x ¢ 1J. Remark that C is a 1}-evaluation
context. In the following Lem. we show that this is not just a coincidence. Indeed, we
will show that if a context is such that C(t) is a normal form but C{(z) is not a normal form,
then C must be an evaluation context.

This result will be a useful tool to prove that normal forms and evaluation contexts are
backward stable by internal steps. For example, if C{z)[x\v] LA, C{v)[x\v] is an internal
step and the right-hand side is a normal form, then C{z)) must be a normal form. Otherwise
we would have that C(v) is a normal form while C{x)) is not, hence C would be an evaluation

context, contradicting the fact that the original step was internal.

Definition A.56 (Critical contexts). Let X” be a set of terms depending on a set of variables
. A context C is said to be X?-critical if the following conditions hold:

1. ¢{g) € X? for some term ¢; and
2. Clx) ¢ XY for some variable z ¢ ¥ that is not bound by C.

Lemma A.57 (Critical contexts are evaluation contexts). The following inclusions between sets

hold:
1. The set of nfv-critical contexts is included in Ey.
2. The set of Sy-critical contexts is included in Ej.

Proof. Let XV denote the set nf1 (resp. Sy), and let YV denote the set Ey (resp. E3). Suppose
that C is a XY-critical context, and let us show that C € Y?. Since C is X"-critical, there is a

324

term ¢ and a variable not bound by C such that C{q) € X? and C{z) ¢ X”. We proceed
by induction on the derivation that C{¢) € X”. The interesting cases are rules NFSUBG and
NFSUB:

1. NFSUBG, C(q) = t[y\s] € X’ with t € X¥ and y ¢ ngv(t) Let us check that C € Y”. If C
is empty, i.e. C = [J, we trivially have C € Y?. Otherwise, C is non-empty and there are
two possibilities:

1.1 The hole of C is to the left, ie. C = C'[y\s| Then C'{¢) € X’ by formation of
C{q) € X”. Moreover we claim that C'{z)) ¢ X”. To see this, note that the fact
that y ¢ ngv(C'(¢)) U {x} implies that y ¢ ngv(C'{z)). So, by contradiction, if
we suppose C'{x) ¢ XY we can apply the same formation rule and obtain that
C'dxY[y\s] € X?, contradicting the hypothesis that C{z) ¢ X”.

Therefore we are able to apply the i.h. on the facts that C'(¢) € X” and C'{z)) ¢ X’
to conclude that ¢’ € Y. This in turn implies that C'[¢/\s] € YV since adding an
arbitrary substitution preserves evaluation contexts (Lem. [A.26).

1.2 The hole of C is to the right, i.e. C = t[y\C’] This case is not possible, since ¢ € XY
and y ¢ ngv(t) by formation, and this implies that ¢[y\C'{x)] € XY, contradicting
the hypothesis that C{z)) ¢ X?.

2. NFSUB, C{q) = t[y\M"] e X? with t € X"“{} and M" e Sy Let us check that C € Y. If
C is empty, i.e. C = [, we trivially have C € Y?. Otherwise, C is non-empty and there
are two possibilities:

2.1 The hole of C is to the left, i.e. C = C'[y\M?] Then C'{g) € X"} by formation.
Moreover, we claim that C'¢{x)) ¢ X?“{#}, By contradiction, suppose that C'{z)) €
XUte} Then ¢'{x)[y\M”] € X?, contradicting the hypothesis that C{x) ¢ X”.
So by i.h. we obtain that C' € Y“{#} and, applying the context forming rule for
structural substitutions (ESUBLSTR), we get C'[y\M”] € Y”, that is to say C € Y?,
as required.

2.2 The hole of C is to the right, i.e. C = t[y\C'] Then t € X1} and y € ngv(t) by
formation. This implies that ¢ = C;{y) with C; € Y? by Lem.

Note that C'{q) = M € Sy. Moreover, we claim that C'{xr)) ¢ Sy. By con-
tradiction, suppose that C'{x)) € Sy. Then t[y\C'{z)] € XY, contradicting the
hypothesis that C{x) ¢ X”. So by i.h. we have that C’ € ES,.

Combining the facts that C; € Y” and ¢’ € ES, by applying the formation rule
for generalized evaluation contexts going inside substitutions, we conclude that

C1lyY[y\C'] € Y, as required.
[

Replacing a value by a variable in an evaluation context

To prove that internal steps can be postponed we need to deal with situations such as C(¢, x)[z\v] Sl
Ct, vy[z\v] s C{t',v), where C is a two-hole context. Note that C{(],v) is an evalua-

325

tion context since the second step is external. To postpone the internal step we would like
that C{[], z) is also an evaluation context. Unfortunately this is not always the case. As an
example, consider the two-hole context C = (z[J;)[2\y[J2] with ¥ = {y} and note that
C{0,I) = (z)[2\y I] is a {y}-evaluation context, since z is bound to a strong {y}-structure,
but C{(J, x) = (z[)[2\y x] is not a {y}-evaluation context, since z is bound to y x, which is
not a strong {y}-structure. In such a situation, evaluation should focus on z, that is, what we
do have is that C(t,[]) = (2¢)[2\y[]] is a {y}-evaluation context. The following lemma deals
with this situation in full generality.

Lemma A.58 (Replacing a value by a variable in an evaluation context). Let C be a two-hole
context, x ¢ 1 a variable, v any value, and q be a term such that x is not bound by 6<q,). If
C{O,v) € X? then either C((1,z) € X? (left branch) or C{q,[1) € X (right branch) where
XY is either the set Ey or the set ES.

Proof. Let us write [] and [to distinguish the two holes of C. The proof goes by induction on
the derivation that 6<D, v) is a generalized evaluation context over 7.

1. EBox, C{1,v) = [€ X” Impossible, as C{(J, v) must contain a value v as a subterm.

2. EAppL, ([, v) = 1%t € X with I” € ES If the value v is inside ¢, i.e. C((J, X)) = I’C(X])
then the left branch of the disjunction holds as 1°C(x) € X?,
Otherwise, the value v is inside I, i.e. there is a two-hole context 61 such that 6<D, X)) =
C1(,)t and C1{[J,v) = I” € EY. Then it is straightforward to conclude by i.h..

3. ESUBLNONSTR, C((,v) = F’[y\t] € X’ where I’ € X’ and t ¢ Sy If the value v
is inside ¢, i.e. C(J,) = F[y\C{x))], we may apply the fact that adding an arbitrary
substitution preserves evaluation contexts (Lem.|A.26), obtaining that F?[y\C(z)] € X7,
that is C{(J, z) € X? and the left branch of the disjunction holds. Otherwise the value v
is inside F’, i.e. there is a two-hole context C; such that C((J, &) = C,{(J,®)[y\t] and
C1(d,v) = F? € X”. Then it is straightforward to conclude by i.h..

4. ESUBLSTR, C{1,v) = F"° W[\ M?] € X? where F"°} e X?“{v} and M” e Sy If the
value v is inside M?, i.e. MV = C{v), we consider two further subcases, depending on
whether C{x)) is a strong)-structure:

4.1 If C{x) € Sy Applying the formation rule for generalized ¥J-evaluation contexts,
using a structural substitution (ESUBLSTR), we conclude that F'~#{y\c{z)] e
XY, that is 6<D, x) € X?, and the left branch of the disjunction holds.

4.2 If C{x) ¢ Sy Then, since C{v) € Sy but C{z)) ¢ Sy, we have that C is Sy-critical.
By Lem.[A.57| we have that every Sy-critical context is a Ejj context, so C € Ej.
We consider two further subcases, depending on whether y is a structural variable
in FU,

421 If y € sv(F?“¥}) Since structural variables are below evaluation contexts
(Lem. , there is a context F} € X” such that F'V¥}{q) = F/{y). This
means that F'¥{¢)[y\C] = FY{yH[y\C] € X since C € Ej, is a inert con-
text. So the right branch holds.

326

4.2.2 Ify ¢ sv(F"~}) Since non-structural variables are not required in “v” (Lem.|A.54),
FY°} e XY, Since adding an arbitrary substitution preserves evaluation con-
texts (Lem.|A.26), we conclude that 7“1} [;\C{x)] € X?, and the left branch
holds.

Otherwise, the value v is inside F?“{¥}, ie. there is a two-hole context 61 such that
CO,X) = C{O,DH[2\M?] and C{(J,v) = F?°} e X} Then it is straightfor-
ward to conclude by i.h..

5. ESuBsR, C(,v) = F{yY[y\1’] € X’ with F” € X” and 1Y € ES If the value v is
inside FV{%)), there are two cases, depending on whether the hole of F'” lies inside the
value v or not:

5.1 If the hole of 'V lies inside v Then F? = C;{\z.Co) where v = \2.C,{y) and
¢, = ¢ (E[Y\I?(T]. By the decomposition of evaluation contexts lemma
(Lem. we have that C; € X”. By the fact that adding an arbitrary substitution
preserves evaluation contexts (Lem. [A.26), C;[#\I?(¢)] € X”. This means that
Clg,[0) = C1[2\I%(¢)] € X?, so the right branch holds.

5.2 If the hole of F¥ and the position of v are disjoint Then there is a two-hole con-
text C; such that C;((],v) = F?. Note, in particular, that C;(y,v) = F’{y),
and C(O,X) = C{(y,)[y\I"()]. By i.h. there are two possibilities. Then it is
straightforward to conclude by i.h.; using Lem. in the right branch case.

Otherwise, the value v is inside I?. This means that there is a two-hole context 61 such
that C = F?{y»[y\C1] and C;(J,v) = I”. Then it is straightforward to conclude by
ih.

6. EAPPRSTR, 6<D, v) = MY F? e X?, with M? € Sy and F’ € Ey If the value v is inside
M? ie. M? = ¢(v) and C(,K) = C{X)) F¥{]), we consider two further subcases,
depending on whether C{z)) is a strong ¥-structure:

6.1 If C{x)) € Sy Applying the formation rule for generalized ¥J-evaluation contexts,
going to the right of a structure (EAPPRSTR), we conclude that C({(J, z) = C{z) F €
XY, so the left branch holds.

6.2 If C{x)) ¢ Sy Then, since C(v) € Sy but C{x)) ¢ Sy, we have that C is Sy-critical.
By Lem. we have that every Sy-critical context is a Ej, context, so C € Ej,.
Applying the formation rule for generalized J-evaluation contexts, going to the
left of an application (EAPPL), we conclude that C{g,[]) = C F’(¢) € X’, so the
right branch holds.

Otherwise, the value v is inside F?, that is, there is a two-hole context 61 such that
C = M’C, and F? = C;([J, v). Then it is straightforward to conclude by i.h..

7. ELAM, 6<|:], v) = Ay F?W e By with F7Y0h ¢ Eyouqyy Immediate by i.h..

327

Stripping substitutions

Consider the following unification problem: if C is an evaluation context and we know that
C(t) = sL, then what is the shape of C? We call this the problem of stripping substitutions
out of an evaluation context. It might simply be the case that C = C'L where C’ is in turn an
evaluation context. But it may also be the case that C goes inside a substitution, for example,
C = z[z\y[J] and L = [z\yt]. The relation between C and L can actually get quite hairy: C
can take a number of “jumps” inside L. For instance, C = x1[x1\y[y\z2]][2\u][z2\(J] with
L = [z1\y[y\z2]][z\u][z2\t]. We characterize the solution to this problem by defining an
auxiliary sort of chain contexts. A chain context .Z is intuitively a context with two holes,
and t,.Z{t,} stands for the result of plugging ¢; and ¢, in each of its holes. For instance, in
the example above we would have [, Z{[,} = [i[x1\y[y\z2]][2\t][x2\[J2]. Thus C can be
recovered as s.Z {1} and L can be recovered as [1.Z{t}.

Definition A.59 (Chain context). The sets of (1, z)-chain contexts, ranged over by .Z, .¥”,
etc., are defined inductively with the two following rules:

W = f2’(L)

C € Ej, is a inert evaluation context

W = f2”(Ly)

C € Ej, is a inert evaluation context . L
L is a substitution context

Zisa (¥ U {y}, x)-chain context
(Z,y,C,L)isa (9, r)-chain context

Ly, Ly are substitution contexts

(Ly,x,C,Ly) is a (¥, x)-chain context

Given a (U, z)-chain context .%, its instantiation on two terms ¢y, to, written ¢,.£{t,}, is de-
fined inductively as follows:

1Ly, 2,C L)t} X 4Ly [2\C{ta)]Ls
0(Z,y,C Lt} £ (hL{y)ly\clt)lL

Sometimes we write .27 to stress that .% is a (¢, z)-chain context. The number of rules
required to build a chain context . is called the number of jumps of .Z.

Lemma A.60 (Weakening for chain contexts). If.Z is a (U, x)-chain context, and ¥ < 1)’ then
Zisa (Y, x)-chain context.

Proof. By induction on the formation rules for chain contexts, using the weakening lemma

for evaluation contexts (Lem.[A.24). O

Definition A.61 (Adding substitutions to chain contexts). If L is a substitution context, ¥ =
fz’(L) and .Z is a (¢, x)-chain context then we write .ZL for the (¥, x)-chain context defined
as follows:

1. (Ly,2,C L)L % (L, 2,C, LoL)
2. (& x,C,L’L & (& z,¢LL)

Note that tl ($L>{t2} = (tlg{tz})]-_.

328

Lemma A.62 (Stripping substitutions from a context using chain contexts). Let F'V € X” be
a generalized evaluation context, where X stands for either Ey or E5. Suppose that F?(t) = sL
where all the substitution nodes in the spine of L belong to the context F'V (rather than to the
subterm t), that is, one of the following holds:

e A. IV = CL and s = C{t).
e B. 'V = sL,[2\C|Ly and L = L;[2\C{(t)]Lo.
Then in each case the following more precise conditions hold:

e A. There is an evaluation context " € X where ' = fz°(L) such that F* = F”'L and
s = V().

« B. There is an evaluation context F{" € X" where) = 2 (L), and a (9, x)-chain context
& such that F¥ = F"{x)2{1} and L = (1.L{t}.

Proof. By induction on L, using the fact that if CL is a ©-evaluation context then C is a fz’ (L)-
evaluation context (Lem. [A.20). O

Lemma A.63 (Stripping substitutions from a 1sv redex using chain contexts). Let X” denote
either the set Eg or the set ES. If FY(FY {x)[x\vL']) = tL where F{{FY [z\vL']) € X” is an
evaluation context then at least one of the following four possibilities holds:

1. AF’ = F'L where " = fz°(L) and F € X",

2. BFY = FY{y)L{} such that L = OL{FY {x)[x\vL']}, where 9" = fz°(L), the
evaluation context F?’, is in X" and & is a (19, y)-chain context.

3. CFY) = FY'L such that . = FY(L[x\vL']), where 9" = fz°(L), the context F' is a
substitution context, and the evaluation context Fg is in Egn.

4. DFY = FY'{y){} such that L. = FY{(O0.L{x}[x\vL]), where?" = fz°(L), the context
FV is a substitution context, the evaluation context FY, is in Egr, and £ is a (9", y)-chain
context.

Proof. We know that F'(FY'{x)[x\vL']) = tL. We consider two cases, depending on whether
L is “contained” in F, that is, all the substitution nodes in the spine of L belong to the context
F?, or otherwise:

1. If all the substitution nodes in the spine of L belong to the context F That is, the
substitution nodes in L do not come from the subterm F}'{x)[z\vL']. Then we may
strip the substitution L from F using Lem. which means that we are either in
case A or case B, and we are done.

2. Otherwise Then some of the substitution nodes in L come from the subterm 'z)[2\vL/].
So we have that F is a substitution context and that L = F’(L;) for some substitution
context L;. Note that L; is non-empty since otherwise L would be subsumed in F?,

329

which has already been considered in the previous case. Since L, is non-empty we have
that L; = L[z\vL']. So FY' {x)[2\vL'] = tL[x\vL']. Then we may strip the substitution
L from FY'[x\vL'] using Lem. This gives us two possibilities, which correspond to
cases C and D respectively.

]

Non-garbage contexts

This subsection deals with non-garbage contexts, which are used in the next subsection to
prove backward stability for normal forms.

Definition A.64 (Non-garbage contexts). The set of non-garbage contexts is given by the
following grammar:

R:=0O| Rt |tR]| .R| R[z\t] | Rz)|z\R]

Lemma A.65 (Non-garbage variables are variables below non-garbage contexts). The follow-
ing equivalence holds:

ngv(t) = {x | 3R. R is a non-garbage context and t = R{x)}
Proof. By induction on ¢. [

Lemma A.66 (Generalized evaluation contexts are non-garbage). Let F” € Ey be a generalized
V-evaluation context. Then F"’ is non-garbage.

Proof. By induction on the derivation that FV € Ey. [

Lemma A.67 (Replacing a variable in a non-garbage context yields a non-garbage context).
Let C be a two-hole context such that C(T],) is a non-garbage context and y is not bound by the
context C{q,[J) (for an arbitrary term q). Then for any term s the context C{1, s) is non-garbage.

Proof. By induction on the derivation that 6@, y) is a non-garbage context. []

Lemma A.68 (Preservation of non-garbage variables by internal steps when going to normal
form). Lett = i s be a U-internal step, such that s € nf1 is a strong ¥-normal form. Then
ngv(t) < ngv(s).

Proof. Letr :t ish s be the internal step. The proof goes by induction on ¢. If ¢ is a variable
or an abstraction it is immediate. We consider the cases for application and substitution:

1. Application, ¢t = t¢; t; Note that r cannot be a step at the root, since it would be a db
step, and it would be external. Hence there are two cases, depending on whether the
step r is internal to ¢; or internal to ¢5:

1.1 Ifrisinternal to ¢; Letry : £; —gp\gc 51 be the step isomorphic to r but going under
the context []#2. Then s = s; t5. Note that r; cannot be ¥-external, for otherwise
r would be J-external. So ngv(t; t2) = ngv(t;) U ngv(tz) " ngv(s;) U ngv(ty) =
ngv(si ta).

330

1.2 If r is internal to ¢, Let ry : t5 —gn\g S2 be the step isomorphic to r but going

under the context ¢;[]. Then s = t; so. Recall that by hypothesis s € nfv is a
normal form, so ¢; must be a strong J-structure, i.e. t; € Sy. The step r; cannot be
V-external, for otherwise r would be 1}-external (note that this depends on the fact
that ¢, is a structure). So ngv(t; t2) = ngv(t;) U ngv(ty) S ngv(t;) U ngv(sy) =
ngv(ty $2).

2. Substitution, t = ¢;[x\t2] We consider three cases, depending on whether (1) the step r

is at the root of ¢, (2) r is internal to t;, (3) r is internal to ¢s.

2.1 If r is at the root of ¢ Then r is a 1sv step, which means that ¢; = C{z)) and

to = vL in such a way that r : ¢t = C{x)[x\vL] Sl C{v)[x\v]L = s. Since
s = C{v)[z\v]L € nfd) we may strip the substitution context [z\v]L (by Lem.
to obtain that C(v) € nfd) where 9 < fz’([x\v]L) = fz’(L). We consider two cases,
depending on whether C{x) is a normal form in nf¢:

2.1.1 If ¢{z) € nf We consider two further subcases, depending on whether x is
a non-garbage variable in C{x)):

2.1.1.1 If z € ngv(C{x)) Recall that) = © U domL. Moreover, observe that
C{x) is outside the scope of L in the original term C{x)[x\vL], so by
Barendregt’s convention we may suppose that variables in domL do not
occur in C{x). In particular, variables in domL are garbage in C{z)), so
since garbage variables are not required in “0” (Lem. [A.25), C{z)) € nf .
Since x € ngv(C{x)) and C{x) is a normal form in nfd, by the fact
that non-garbage variables in normal forms are below evaluation contexts
(Lem.|A.25)), we have that there exists an evaluation context FV € Ey such
that C{z) = FY{x)). There are two subcases, depending on whether
C=FlorC=# I
« If C = FV Then C[x\vL] is an evaluation context in Ey, contradicting

the fact that r is -internal.

« If C # F Then there is a two-hole context C such that C({(],z) = F”
and C{z, [J) = C,and the step is of the form: r : ¢ = C{z, 7)[2\VL] > e\ ge
Clz,v)[x\v]L = s. Note that the underlined occurrence of z is non-
garbage on the left-hand side, so it is also non-garbage on the right-
hand side.

More precisely, 6<D, x) = F? is an evaluation context so by Lem.
it is also a non-garbage context. Recall that replacing a variable by
an arbitrary term in a non-garbage context is still a non-garbage con-
text (Lem. , SO 6<D, v) is also non-garbage. Moreover, since non-
garbage variables coincide with variables below non-garbage contexts
(Lem. we have that = € ngv(C{z, v)).

This contradicts the fact that s is a normal form, since to conclude that
Clx,v)[x\vL] is a normal form, given that = € ngv(C{x, v)), we would
require that x is bound to a structure, but it is bound to a value v.

331

2.1.1.2

If x ¢ ngv(C{x))) Let us show that ngv(t) < ngv(s). Consider an arbitrary
variable y € ngv(t) = ngv(C{x)[x\vL]), and let us show that y € ngv(s).
Since x is garbage in C{x)), it must be the case that y € ngv(C{x)).
Moreover, since = # y and y is non-garbage in C{z)), by the fact that non-
garbage variables are below non-garbage contexts (Lem. there must
exist a two-hole context C such that C([J, z) is non-garbage and C(y, []) =
C. By replacing a variable in a non-garbage context (Lem. we obtain
that C{(J,v) = C is also non-garbage. So i € ngv(C{y, v)) = ngv(C(v)).
Hence y € ngv(C{v)[x\v|L) = ngv(s), as required.

2.1.2 If ¢{z) ¢ nfd Then by definition (Def. A.56) C is a nfi-critical context.
By Lem. since C is X"-critical, it is an evaluation context, C € E 5 BY
strengthening) (Tactic [A.55) C[z\vL] € Ey, contradicting the fact that the

step r is ¥-internal.

2.2 Ifrisinternaltot; Letr; : {; — s; be the step isomorphic to r but going under the

context [x\t2]. Then s = s1[x\t2]. Note that r; cannot be ¥J-external, since then r

would be 1J-external. There are two cases, depending on whether x is garbage in

t, or not:

2.2.1 If x € ngv(t;) Note that by ih. = € ngv(s;). Then ngv(t) = ngv(t;) U
ngv(tz) S ngv(s) L ngv(ta) = ngv(si[2\]) = ngv(s)
2.2.2 If z ¢ ngv(t1) Then ngv(t) = ngv(t;) S ngv(s;) < ngv(s;[z\ta]) = ngv(s).

2.3 If r is internal to ¢, Let ry : t3 — S5 be the step isomorphic to r but going under

the context ¢;[x\[]]. Then s = ¢;[z\s2]. We consider two subcases, depending on

whether z is garbage in ¢; or not:

23.1 If x € ngv(t;) We consider two subcases, depending on whether r; is -

external or ¥-internal:

2311

2.3.1.2

If r is J-external Since t1[z\s2] is a normal form, we have that ¢; €
nfY U {z}. By the fact that non-garbage variables in normal forms are
below evaluation contexts (Lem. there must exist an evaluation con-
text F € Ey such that t; = FY{x). Moreover, since the step r; is ex-
ternal, we have that t, = FJ{2)) where Fy € Ey and ¥ is the anchor of
a redex. If we let X2 denote its contractum, we have that the step r is of
the form r : t = F/{aY[a\FXUEY] —Do FILa)[z\FI(X'Y] = s. Note
that F219 cannot be a inert ¥-evaluation context, since otherwise the step
r would be ¥-external.

Hence we have that FY ¢ Ej. Recall that evaluation contexts which are
not inert evaluation contexts have the shape of an answer (Lem. [A.23).
In particular, the subterm FY(Y') is an answer (\y.r)L. This contradicts
the hypothesis that s = FV{z)[z\(A\y.7)L] is in normal form, since z is
below an evaluation context and bound to an answer.

If r is ¥-internal Then ngv(t) = ngv(t;)ungv(ts) S ngv(s;)ungv(ty) =
ngv(s) as required.

332

2.3.2 If z ¢ ngv(t;) Then ngv(t) = ngv(t1) = ngv(s) and we are done.

Backward stability of normal forms

To prove that internal steps can be postponed, we need to deal with situations such as ts LA,

9))) }
t's v~ t's’. Here t'[] must be an evaluation context, since the second step is external, so t’ is

a structure. We would like to obtain that ¢[] is also an evaluation context, i.e. we would like

to show that ¢ is a structure. This is where the following lemma comes into play.

Lemma A.69 (Backward stability of normal forms). Let ¢, ish t be an internal step with

t e X¥ wh

Proof. By

ere XV stands for either nf1) or Sy. Thenty € X”.

induction on the derivation that t € X?. The interesting cases are N-APP, NFSUBG,

and NFSUB.

1. N-app, t = MY N? € Sy with M? € Sy and NV € nfv Note that the step r cannot be at
the root of ¢y, since the right-hand side of both db and 1sv steps is a substitution, rather

than an application.

So t(is an application ¢, t5, and we consider two cases depending on whether the step

ris

1.1

1.2

internal to ¢; or internal to t:

If ris to the left of ty = t; NV Letry : 4 —sh\ge M? be the step isomorphic to r but
going under the context [J NV ¥ Note that r; cannot be ¥J-external, since this would
imply that r is ¥-external. So r; is ¥-internal and by i.h. we have that ¢; € Sy.
Hence t, = t; NV € Sy, as required.

If r is to the right of g = M Uty Let ry : to —sn\ge IV ¥ be the step isomorphic
to r but going under the context MV []. Note that r; cannot be ¥-external, since
this would imply that r is -external. So r; is ¥-internal and by i.h. we have that
to € nfv. Hence ty = MV t, € Sy, as required.

2. NFSUBG, t = s[z\u] € X with x ¢ ngv(s) and s € X” We consider three cases,
depending on whether (1) r is a step at the root of ¢, (2) o is a substitution so[z\u]

and

2.1

r is internal to ¢, (3) ¢ is a substitution sq[z\ug]| and r is internal to ¢,.

If r is at the root Note that r cannot be a db step since it would be external, it must
bealsvstepr:ty = Clyy[y\vL] LA C(v)[y\v]L = s[x\u]. So s is of the form
s = s'Ly with Li[z\u] = [y\v]L and C{v) = s'. Note that since s = s'L; € X’ by
Lem. we must have s’ € X where 0 < f2/ (L, [2\u]) = f2’([y\V]L) = fz’(L).
We consider two subcases, depending on whether C{y)) € X,

2.1.1 If Cly) € X" By strengthening (Tactic , Cly) € X?. Consider two
further subcases, depending on whether y is a garbage variable in C{y)):

333

2.2

2.3

2.1.1.1 If y € ngv(C{y)) Recall that non-garbage variables in a normal form are
below evaluation contexts (Lem.|A.25). Then since C{y)) is a normal form
in XV and y € ngv(C{y)), we have that C{y) may be written as [y,
where FV € Ey.
If C and FV are the same context, then C[y\vL] € Ey, which contradicts the
hypothesis that the step r is ¥)-internal. So we may suppose that C # F?.
Then there is a two-hole context C such that C{(J, > = F¥ and C(y,[) =
C, and the step r is of the form: r : 6@, Y[Y\VL] = en\ge 6<g, v[y\v]L = t.
Note that the underlined occurrence of y is non-garbage on the left-hand
side, so it is also non-garbage on the right-hand side.
More precisely, C(J,) = F is an evaluation context so by Lem. it is
also anon-garbage context. Recall that replacing a variable by an arbitrary
term in a non-garbage context is still a non-garbage context (Lem. [A.67),
o) 6<D, v) is also non-garbage. Moreover, since non-garbage variables
coincide with variables below non-garbage contexts (Lem. we have
that i € ngv(C{y, v)).
This contradicts the fact that ¢ is a normal form, since to conclude that
Cly, v)[y\v] is a normal form, given that y € ngv(C{y, v)) we would re-
quire that y is bound to a structure, but it is bound to a value v.
2.1.1.2 If y ¢ ngv(C{y)) Then we are done, as C{y) € X”, so by applying the
NFSUBG rule we obtain that C{y»[y\vL] € X?, as wanted.
212 IfCly)y ¢ XY Note that C(v) = s’ € X”. So by definition (Def. Cisa X’-
critical context. By Lem.|A.57|since C is X@—critical, it is an evaluation context,
C e X”. By strengthening 1 (Tactic I@b’ C[y\vL] € X?, contradicting the fact
that the step r is ¥J-internal.

If r is to the left of ty = so[z\u]| Let r1 : 59 —gn\gc 5 be the step isomorphic to
r but going under the context [J[x\u]. Note that r; cannot be 1-external, since
then r would be -external. So r; is ¥-internal and by i.h. we have that sy € X?.
Moreover, since non-garbage variables are preserved by internal steps (Lem.[A.68),
by the contrapositive we have that x ¢ ngv(sg), hence t, = sg[z\u] € X as
required.

If ris to the right of ¢y = s[x\ug]| Then by applying the rule NFSUBG it is immediate
that ¢y = s[z\ug] € XV

3. NFSUB, t = s[z\M"] € XY with z € ngv(s), s € X"“{#} and M"Y € Sy We consider

3.1

three cases, depending on whether (1) r is a step at the root of ¢, (2) t(is a substitution
So[x\uo] and T is internal to ¢y, (3) ¢, is a substitution so[x\ug] and r is internal to ¢,.

If r is at the root Note that r cannot be a db step since it would be external, it must
be a 1sv step: r : tg = CLy»[y\vL] =, C(WH[y\v]L = s[x\M"]. So let us write
s as of the form s = s'L; in such a way that L [2\M"] = [y\v]L. By Lem.
we have that s’ € X? where 9 < f2” (L, [2\M"]) = fz([y\v]L) = fz’(L). Then the
remainder of this case is analogous to case [2.1| of this lemma.

334

3.2 If r is to the left of ¢, = so[z\M?] Let r; : sg —sn\gc S be the step isomorphic to r
but going under the context [J[2\M"]. Note that r; cannot be (1 U {x})-external,
since then r would be ¥-external. So r; is (¥ U {2})-internal, and since s € X?~{7}
by i.h. we have that s, € X?“1#}, We consider two further subcases, depending on
whether x is garbage in s:

3.2.1 If 7 € ngv(sp) Then so[z\M?] € X? since sy € X?“{#}, by the rule NFSUB.

3.2.2 Ifx ¢ ngv(sp) Then since garbage variables are not required in “0¥” (Lem.[A.25),
we have that sy € X”. Hence so[z\M”] € X?, by the rule NFSUBG.

3.3 If r is to the right of 5 = s[z\ug] Let T1 : ug —emge M be the step isomorphic
to r but going under the context s[x\[]]. We consider two cases, depending on
whether r; is J-external or ¥-internal:

3.3.1 If r; is ¥-external First note that, since x € ngv(s) and s € xootat by the fact

that non-garbage variables in normal forms are below evaluation contexts
(Lem. |A.25) there must exist an evaluation context F € Ey such that s =
FY ().
Moreover, since r; is a ¥-external step, the term v, can be written as F§9 (3,
where F) is an evaluation context in Ey and ¥ is the anchor of a redex. If we let
Y denote the contractum of ¥, the internal stepis T : F'{a)[x\FY(X)] A,
FP{ap[z\F(2)] = s[x\M?] = t. Since the step r is J-internal, the context
FY cannot be a inert evaluation context, i.e. FY ¢ ES. Recall that evaluation
contexts which are not inert evaluation contexts have the shape of an answer
(Lem. [A.23). This means that /(X' = (\y.r)L is an answer. But we also
had that F/(3') = M?, so it is both an answer and a structure, which is
impossible.

3.3.2 If r is ¥-internal Then by i.h. ug is a structure, i.e. ug € M?. Hence s[z\ug] €
X7, as required.

]

Backward preservation of evaluation contexts

To prove that internal steps can be postponed, we need to deal with situations such as ¢t[z\I] ;ﬁ>sh
Folayla\I] s F Y(I)[z\I]. We would like to obtain that ¢ can also be written as C{xz) for
some evaluation context C, to swap the external step before the internal one. This is precisely
the situation addressed by the following lemma.

Lemma A.70 (Backward stability of evaluation contexts). Letty —og F Y{x) be an internal
step with F?{x)) € XY, where X? stands for either Ey or ES, and such that F’ does not bind x.
Then there exists an evaluation context FY € XV such thatty = FJ{x).

Proof. Let r be the name of the ¥-internal step r : ¢, = F U{a). The proof goes by
induction on the derivation that FV € X”. The cases for rules EBox, EAprpL, and ELAM are
easy. We deal with the other rules:

335

1. ESUBLNONSTR, F? = F’[y\t] with F € X" and t ¢ Sy We consider three cases,

depending on whether (1) the internal step r is at the root of %y, (2) £, is a substitution
to[y\10] and the step r is internal to t{,, (3) £ is a substitution ¢{[y\ro] and the step r is
internal to rg.

1.1 The internal step r is at the root of ¢; Note that r cannot be a db step, since it
would be external. So it is an 1sv step of the form: r : t; = C{z)[2\VvL] —>g
CWH[2\V]L = FY{x)[y\t] = ti. Let L, be the substitution context such that
Li[y\t] = [#\V]L, and using Lem.[A.62]let us strip the substitution L from F'{z)).
This gives us two possibilities, A and B:

1.1.1 Case A Then F’ = FUL; and C(v) = F!{z)) where 9 = fz°(L,) and F, €

X?. We consider three further subcases, depending on the position of the hole
of C relative to the position of the hole of F},.

1.1.1.1 The hole of C and the hole of Fﬂ are disjoint Then there is a two-hole

context C such that C({(J, v) = Fﬂ and C(x,[J) = C. By Lem. ‘ 5 8| there
are two possibilities: the left and the right branch of the disjunction. The
right branch case is impossible since it contradicts that r is ¥-internal
(by strengthening 4, Tactic . In the left branch case, C(J, 2) € X?
so by strengthening) (Tactic , C{O, 2)[#\vL] € X”. Hence t, =
Clx, 2)[#\vL] and by taking F{’ := C([J, 2)[2\vL] we conclude.

1.1.1.2 The context C is a prefix of the context Fﬁ By strengthening ¢/ (Tac-

tic C[Z\VL] e X?. This contradicts the fact that r is Y-internal.

1.1.1.3 The context FY, is a prefix of the context C Then C = F,(C;), so C;{v) =

x, which is impossible.

1.1.2 Case B Then F? = F?{w).2{0}, Clv) = Fﬂ {w), and L, = [.L{z}

where § = fz(L,), the evaluation context FY, is in XV, and . is a (¢, w)-
chain context. We consider three further subcases, depending on the posi-
tion of the hole of C relative to the position of the hole of Fﬂ. They re-
mainder of this case is similar to case | except when the hole of C and
the hole of Fﬂ are disjoint. Then there is a two-hole context C such that
C<D v) = F? and C(w,[]) = C, and the internal step r is of the form:
1y = Clw, 2)[z\vL] s Cluw, v)[2\v]L = ¢;. Note that w is bound
by [2\V]L = [O0Z{x}[y\t] on the right-hand side of the step r since .Z is a
(¥, w)-chain context. So w must be bound by [z\vL] on the left-hand side of
the step r, for otherwise it would be free, and free variables cannot become
bound by reduction.
Hence it must be the case that w = z. Note that w is bound to a term of the
form IV'¢w,) on the right-hand side of the step r, and we have just argued
that w = z, so I"w;) = v. This is impossible since answers do not have
variables below inert evaluation contexts (Lem.[A.21).

1.2 The internal step r is to the left of ¢ = ¢{[y\t] Let r1 : t{j —sngc F'2) be the
step isomorphic to r but going under the context [y\t]. Then by i.h. there is an

336

evaluation context I} € X? such that t{; = FU,(x). By taking IV := F[y\t] €
XY we conclude that ty = F{ydx)[y\t], as required.

1.3 The internal step r is to the right of ty = FV{x)[y\ty] By taking F{ := FJ[y\t] €
XY we conclude that ty = F{{x)[y\t], as required.

2. ESuBLSTR, F? = FVW[y\M?] with F?*) ¢ X"} and M? € S; We consider
three cases, depending on whether (1) the internal step r is at the root of ¢y, (2) ¢y is a

substitution t{[y\r¢]| and the step r is internal to ¢, (3) t is a substitution ¢y[y\ro] and

the step r is internal to ry.

2.1 The internal step r is at the root of ¢, Note that r cannot be a db step, since it

would be external. So r is an 1sv step of the form: r : t; = C{2)[2\vL] —>¢
CvY[Z\v]L = F} U{y}<<:v>>[y\M "] = ¢,. Let L; be the substitution context such
that [2\v]L = L;[y\M?], and using Lem.[A.62]let us strip the substitution L; from
F'YW(a). This gives us two possibilities, A and B:

2.1.1 Case A Then F/°¥ — Fﬂu{y}Ll and C(v) = FO® (2 where 9 U {y} =

f22°WHL,) and FI)"% e X990}, We consider three further subcases, de-

pending on the position of the hole of C relative to the position of the hole of
Fﬂu{y}:

2.1.11

2.1.1.2

2.1.1.3

The hole of C and F: ﬂufy} are disjoint Then there is a two-hole context C
such that C(, v) = F;"' and C{z,[]) = C. By Lem. |A.58|there are two
possibilities: the left and the right branch of the disjunction. The right
branch case is impossible, ssible since it contradicts that r is ¢-internal
(by strengthening o), Tactic [A.55).

In the left branch case, by strengthening ¢ (Tactic , ¢, 2)[2\vL] €
X?. Then it is immediate to conclude, since by taking FY := C(J, z)[2\vL] e
X?, we have that t, = C(x, 2)[2\vL], as required.
The context Cis a prefix of F,”) By strengthening ¥ (Tactic|A.55), C[z\vL] €
X?“{v} Moreover, y is bound by L;[y\M"] = [2\V]L, and y # z, since y
is bound to M" and z is bound to v. Hence y cannot occur free in the

subterm C{z)) on the left-hand side of the step r. In particular, y does not
occur as a structural variable in C. So applying the fact that non-structural
variables are not required in “” (Lem. we obtain that C[z\vL] € XV.
This contradicts that the step r is ¥-internal.

The context Fﬂu{y} is a prefix of C Then C = 19U{y}<C1> so C1{v) = ,
which is impossible.

21.2 CaseBThen FY = F;"(w) 2{00), ¢(v) = F)""w), and Ly = 0L 4w},
where 9 U {y} = fz/*¥}(L,), the evaluation context F'“} is in X?“#} and

Zisa (9, w)—chaln context. We consider three further subcases, depending

on the position of the hole of C relative to the position of the hole of F};

19u{y}.

The remainder of this case is similar to except when the hole of C and

du
Fll {y}

are disjoint. Then there is a two hole context C such that C{(J, v) =

337

Fllu{y} and C{w,[J) = C. The step r is of the form: r : C{w, z)[z\vL] A,
Clw, v)[z\v]L. Note that w is bound by [1.Z{z}[y\ M”] = [2\v]L, since .Z is
a (¥, w)-chain context. Hence it must be the case that w = z, for otherwise,
if it were the case that w € domL, w would occur free on the left-hand side of
the step r, since it occurs outside the scope of L. This is impossible since free
variables cannot become bound after a reduction step.

Note that w must be bound to a term of the form I?'(w;) and, since we have
just argued that w = z, we have that IY"(w,)) = v. This is impossible since
answers do not have variables below inert evaluation contexts (Lem. [A.21).

2.2 The internal step r is to the left of to = ¢{[y\M”] Let 11 : t) —sn\ge FPW{a) be
the step isomorphic to r but going under the context [y\ M?]. Note that r; must be
(YU {y})-internal, otherwise r would be (J U{y})-external. By i.h. there is an eval-
uation context Fﬁ)u{y} e X"} such that t), = F, ﬁ)u{y}<<x>>. It is immediate to con-
clude by taking Fy := Ffou{y}[y\Mﬁ] e X7, since then ¢y = F%U{y}<<x>>[y\Mﬁ].

2.3 The internal step r is to the right of t, = F\ U{y}<<x>>[y\t6] Let r1 @t —en\ge
M?. We consider two cases, depending on whether the step r; is ¥-internal or
U-internal:

2.3.1 If ry is ¥-external Two further subcases, depending on whether y is a struc-

uiy}

tural variable in £ f or not:

23.1.1 Ify e sv(Ffu{y}) Since ry : t)—>gmge M is a U-external step, we can write

b = FY(3)yand MY = FJ(¥') where ¥ is the anchor of a redex, Y its

contractum, and F§9 is an evaluation context F§9 € Ey. Moreover, since
structural variables are below evaluation contexts (Lem.[A.54), there exists
an evaluation context FY € X? such that F\ U{y}<<x>> = FJ{y). Hence
the step r is of the form: r : FY {y[y\F3(E)] = sngec Fo KyN[y\Fy (X))
If FY happens to be a inert evaluation context, i.e. Y € Ej then the
composition FY {y»[y\F?] is a ¥-evaluation context and r is a ¥)-external
step, contradicting the hypothesis that it was internal.
So we may suppose that F{ is not a inert evaluation context. By Lem.
we know that evaluation contexts which are not inert evaluation contexts
have the shape of an answer, that is, FV(x) is an answer when filling the
hole with an arbitrary term. In particular, F7(3') = M? isboth an answer
and a structure, which is impossible.

23.1.2 Ify ¢ sv(F 16 e i By the fact that non-structural variables are not required

in “9” (Lem.|A.54), we have that F’ 119 Vi e xo, Then, regardless of whether
t; is a structure or not, adding an arbitrary substitution (Lem. |A.26) we
have F}~ W [y\t}] € X?. Tt is then immediate to conclude by taking Fy :=
FPYWHA\] € XY, since indeed to = F} " a)[y\t)].

2.3.2 If r; is v¥-internal Since structures are backward preserved by internal steps

(Lem. MD t € Sy. We conclude by taking F/ := F ~ o) [y\ty] € X?, since
to = F"W{aY[y\th], as required.

338

3. ESussR, F?

= FP{y»[y\1”] where FY € X? and I? € Ej We consider three cases,

depending on whether (1) the internal step r is at the root of %y, (2) £, is a substitution

to[y\10] and the step r is internal to t{,, (3) £ is a substitution ¢{[y\ro] and the step r is

internal to rg.

3.1 The internal step r is at the root of ¢y Note that r cannot be a db redex, since it

would be external. So r is a 1sv redex of the form: r : t5 = C{z)[z\vL] —
CWH[2\V]L = FP{y»[y\1"«z»] = t;. Let L; be the substitution context such
that L [y\I?{x)| = [2\v]|L, and using Lem. let us strip the substitution L;
from FV{y). This gives us two possibilities, A and B:

3.1.1 Case A Then: FY = FPL; and C(v) = FY{y) where ¥ = fz°(L;) and F¥, €

XV,

We consider three further subcases, depending on the position of the hole of

C relative to the position of the hole of F},.

3.1.11

3.1.1.2

3.1.1.3

The hole of C and the hole of Fﬁ are disjoint Then there is a two-hole
context C such that C(J, v) = F}, and C(y,) = C. Note that y is bound
by the substitution context L;[y\I?¢x)] = [2\v]L on the right-hand side
of the step r. So it must be the case that y = z, for if we had y € domL,
we would have that y is free on the left-hand side of the step r, since it
occurs outside the scope of the substitution L. This is impossible, since a
free variable cannot become bound along reduction.

Also note that y is bound to I?¢{x)) and, since y = z, we have I"{z)) =
v. This is impossible, since answers do not have variables below inert
evaluation contexts (Lem. [A.21).

The context C is a prefix of F! 11’1 Then by the decomposition of evaluation
contexts lemma (Lem. [A.20) the context C must be an evaluation context
in X. By strengthening o (Tactic Lﬁb, C[2\vL] € X", contradicting the
fact that the step r is ¥-internal.

The context F?, is a prefix of C Then C = F(C;), so C1{v) = y, which is
impossible.

3.1.2 Case B Then: FY = FU{w) {00}, C¢(v) = FYdw), and Ly = [1.L{y},
where § = fz°(L,), the evaluation context Fﬂ isin X, and .Z is a (9, w)-
chain context. We consider three further subcases, depending on the position
of the hole of C relative to the position of the hole of F ﬂ. The remainder of
this case is similar to

3.2 The internal step r is to the left of ¢, = ¢{[y\I”] Let 1 : t{, >sngc £ y)) be the
step isomorphic to r but going under the context [y\I?«x)|. Note that r; must be
Y-internal, for if it were 1J-external, by adding an arbitrary substitution (Lem.
it would contradict the fact that r is ¥-internal.

So we may apply the i.h. to obtain that there exists an evaluation context F}j, € XY
such thatt), = F,y). Applying the ESuBsR rule and taking Fy := FL{y»[y\I’] €
XY, we have that t, = F,{y»[y\1"«z)], as required.

339

3.3 The internal step r is to the right of to = F{{y»[y\ty] Let 11 : tf —snge I7¢x)
be the step isomorphic to r but going under the context 'y »[y\[J]. Note that
r; cannot be ¥-external, since then r would be J-external. Hence r; is J-external,
and we may apply the i.h. to obtain that there is a inert evaluation context I € E5
such that t) = IJ{x). Taking FY = FP{y»[y\Iy] € XY, we have that t;, =
FYCy)[y\I§<z)], as required.

4. EAPPRSTR, FV = MY Fl’g where M? € Sy and Flﬂ € Ey We consider three cases, de-
pending on whether (1) the internal step r is at the root of ¢y, (2) ¢, is an application
t, ro and the step r is internal to t{,, (3) to is an application t{, 7y and the step r is internal
to rg.

4.1 The internal step r is at the root of ¢(This case is impossible: r cannot be a db step
or a 1sv step, since the right-hand side of both db and 1sv steps is a substitution,
not an application.

4.2 The internal step r is to the left of ¢ = ¢ FY'{x)) Let T; : t) —>gmgc M be the step
isomorphic to r but going under the context []FV{z). Note that r, must be -
internal, otherwise r would be J-external. Then since normal forms are backward
preserved by internal steps (Lem. , t,, must be a strong J-structure M. By
taking I := M FY € XY we have that t, = M F{x)), as required.

4.3 The internal step r is to the right of tq = M7t Let 1y : t{ —enge FY{x) be
the step isomorphic to r but going under the context MV []. By i.h. there is an
evaluation context Iy € Ey such that tj = F,x)). Taking Y := M"Y F{, € XY
we have that tg = M? F,{x)), as required.

]

Postponement of internal steps

We turn to the proof of postponement of internal steps after external steps. The proof is long
and by a heavy case analysis. For organizational purposes we split the proof in two lemmas:
the first one (Lem. deals with the case in which the external step is a db step; the second
one (Lem.[A.72) deals with the case in which the external step is a 1sv step. Finally in Lem.
we conclude and give the proof of Postponement itself (Lem. in the main body).

Lemma A.71 (Postponement of internal steps after external db steps). Given any set of vari-
ables ¥ such that fv(ty) < 9, iftg ;ﬁ>sh ty o ts where the second step is a db step, there exists

0
a term ty such that ty v~ ty —»gp\gc t3 where the first step is a db step. An explicit construction
for the diagrams is given.

Proof. Let us call r to the internal step % ;ﬂ»sh t; and r’ to the external db step ¢; 2> ts.
Thent, = F?((\z.s)Lu)andt3 = FV(s[x\u]L). Throughout the proof we write A for the db
redex (Az.s)Lu and A’ for its contractum s[z\u]L. Let X” denote either the set Ey or the set
Ej. By induction on the derivation that F' ¥ e XY, the term t, will be shown to be of the form

340

FJ{A), where F? € XY, and A, is a db redex, and t, = FZ(Al), where A}, is the contractum
of Ay, in such a way that the diagram is closed as required by the statement.

1. EBox, F¥ =[] € X” Then there is a db redex at the root of ¢;. By Lem. the internal
step t ish t1 must be of the form r : ¢y = (Az.s0)Lo ug ish (Ax.s)Lu = t; and the
anchor of r must lie either inside s, inside u, or inside one of the arguments of Ly. By
taking I := [] we conclude.

2. EArpL, F? = 177 € X? with IV € Ej The situation is ¢, s I%(Ayr W I9(A"r.
We consider three cases: (1) the step r is at the root of #y; (2) ¢ is an application ty = ;g
and the step r takes place inside t; (3) ¢, is an application t, = ¢ and the step r takes
place inside 7.

2.1 The internal step r is at the root of ¢y Impossible: r cannot be a db step, since it
would be external, and it cannot be a 1sv step.

2.2 The internal step r is to the left of ty = ¢, 7y Then thereisastepr; : tj—gn\gc I7(A).
We consider two subcases, depending on whether r; is -external or ¥-internal.

2.2.1 If ry is U-external Then ¢ is of the form F’(3) where I is an evaluation
context in Ey and X is the anchor of a redex. Note that Y ¢ Ey, ie itis
not a inert evaluation context, since that would imply that F?r e XY and
we would have that the step r : F7(S)r LA, 1?(A)r is external. Hence
since [V € Es\ES by Lem. we conclude that ¢, is of the form v(Lo, ie.
an answer. Moreover, since answers are stable by reduction (Lem. we
have that Iﬁ<A> is an answer, and this is impossible since answers do not have
redexes below inert evaluation contexts (Lem. [A.21).

2.2.2 If ry is ¥-internal Immediate by i.h..

2.3 The internal step r is to the right of ¢y = t{ro Then t, = I(A) and r, s T
By taking F{ := I”ry € X? closing the diagram is immediate.

3. ESUBLNONSTR, F? = FP[y\r] withy ¢ ¥, r ¢ Sy and F € XY The situation is
to S FY{(A[y\r] W FP({A"[y\r]. There are three cases: (1) the step r is at the
root of to; (2) o is a substitution ¢y = t{[y\ro] and the step r takes place inside ¢(; (3) ¢
is a substitution tq = t;[y\ro] and the step r takes place inside 7.

3.1 The internal step r is at the root of £, Note that r cannot be a db step as it would be
external. Suppose that r isa 1sv step. Thenty = C{z)[2z\vL'] =, Cv)H[2\v]L =
FY{A)y\r] s F V(A y\r]. We know that C(v)[2\v|L' = F(A)[y\r]. The
outermost substitution [y\r] is either [z\v] (if L" is empty) or it is the outermost
substitution in L. In any case, the substitution [y\r] is not part of C.

Let L; be a substitution context such that [2\v|L' = L;[y\r]| and using Lem.
let us strip the substitution L; from F(A). This gives us two possibilities, case A
and case B in the statement of Lem.

341

3.1.1 Case A Then F = FYL, in such a way that: C(v) = FY/(A), where ¢/ =
f2” (L [y\r]) = 2 ([2\v]L)) and Fj € X?. We consider three subcases, de-
pending on the position of the hole of C relative to the position of the hole of

19/
FY.

3.1.11

3.1.1.2

3.1.1.3

The hole of C and the hole of F| are disjoint Then there is a two-hole
context C such that C{(J,v) = F? and C(A,[J) = C and the situation is
to = CLA, 2)[2\vL'] =y CUA, W[A\V]L =t s CUN WH[2\V]L = ts.
Recall that C(,v) = F¥ e X where ¢ = fz([z\v]L'). Note that
z ¢ 19’ since the value v is not a strong structure. By Lem. there
are two possibilities: the left and the right branch of the disjunction. The
right branch case, 6<A,) € XY, is impossible, as we would have that
CUA, D2\ € XY, since fz([z\v]L) = ¢’. This implies that there
are two different steps of the generalized call-by-need evaluation strat-
egy under 9 outgoing from ¢: one is the db step t; = C(A, z)[z\v]L/ +

C(A, 2)[2\v]L = t3 and the other one is the 1sv step: t; = C(A, z)[x\v]L' “o

CUA, v>[9c\v] L'. The coexistence of two different steps contradicts the fact
that o is a strategy (as shown in Lem. |4.17).
In the left branch case, C{7, z) € X?'. Then we also have that C(J, z)[z\vL/] €
XY, and it is immediate to close the diagram.

The context C is a prefix of F/ Let F)j = C(C"). By the decomposition of
evaluation contexts (Lem. C € X, By strengthening v/ (Tactic
we have that C € X?. Hence the step r is external, which is a contradiction.
The context | is a prefix of C Let C = F7’/(C"). Hence C'{v) = (A\x.s)Luw.
There are four possibilities for the position of the hole of C': inside s, inside
one of the substitutions in L, inside u, or right above Az.s (i.e. C' = [JLu).

In the first three cases it is easy to close the diagram. For example, if
the hole of C’ is inside s, i.e. C' = (Az.C")Lu and s = C"(v), closing
the diagram is straightforward noting that F[2\vL'] is a ¥-evaluation
context, by strengthening) (Tactic [A.55).

The last case is impossible: if the context C’ is of the form C’ = [JLu, then
by strengthening 1 (Tactic|A.55) we have that F ((JLs)[2\vL/] € X?. and
we obtain that r is an external step.

3.1.2 Case B . Then IV = FY/{a")Z{1} in such a way that C(v) = FY{a")
and L, = [1.Z{A}, where ¢ = 2 (L[y\r]) = fz’([2\v]L"), the evaluation
context is F’| € X”', and . is a (1), 2)-chain context. The remainder of this
case is similar to case Namely, we consider three subcases, depending
on the position of the hole of C relative to the position of the hole of FY/.
The only difference with respect to case is when the context C is a prefix
of FY¥. Then F/ = C{C'), so by Lem. C € X%, and by strengthening ¥
(Tactic[A.55) C € X? which means that r is external.

3.2 The internal step r is to the left of ¢y = #([y/\r¢] Note that isomorphic step #{,—gp\gc

) must be internal, so this case is immediate by i.h..

342

3.3 The internal step r is to the right of ¢, = ¢;[y\ro] Then it is immediate to close
the diagram, recalling that adding an arbitrary substitution preserves evaluation

contexts (Lem. [A.26).

4. ESUBLSTR, F’ = Flﬂu{y} [y\r] withr € Sy and F?“{¥} ¢ X?“{¥} The situation is ¢, =y
FPWHANy\r] = WS FPYWHAN[Y\r] = ts. There are three cases: (1) the step T is
at the root of t¢; (2) to is a substitution t[y\ro] and the step r takes place inside t;; (3)
to is a substitution ¢;[y\ro] and the step r takes place inside ry.

4.1 The internal step r is at the root of ¢, Note that r cannot be a db step, as that
would be an external step. Suppose then that r is a 1sv step. The situation is ty) =
CUNWL] =San CWLAVIL = FPHAN\] = 1y e FVWAD] =
t5. We know that C(v)[2\v]L' = FV"°"{((Az.s)Lu)[y\r]. Note that L’ cannot be
empty since the outermost substitution [y\r] cannot coincide with [z\v], given
that r € Sy is a structure, and therefore it cannot be a value like v.

Let L; be a substitution context such that [2\v]L' = L;[y\r], and using Lem.
let us strip the substitution L; from F' 119 U{y}<A>. This gives us two possibilities, case
A and case B in the statement of Lem.[A.62}

4.1.1 Case A Then FV'°} = F”“WIL, in such a way that [2\v]L' = L;[y\r] and
C(v) = FU VW (Az.s)Lw), where o' Uy} = 22V (L [y\r]) = 22 ([2\v]L)
and F’ f’; VWl ¢ X919}, We consider three subcases, depending on the position
of the hole of C relative to the position of the hole of F' 1191l V) These are similar
to the three subcases of B.1.1]

4.1.2 Case B Then Flﬁu{y} = Fgu{y}(a/»iﬂ{m} such that C(v) = Fﬂlu{y}(x’» and
O.Z{A} = Ly, where ¢ U {y} = fz”“1¥}(L,), the evaluation context Flﬁllu{y} is
in X¥“} and Zisa (9 U {y}, 2')-chain context. We consider three subcases,
depending on the position of the hole of C relative to the position of the hole
of "'} These are similar to the three subcases of @

4.2 The internal step r is to the left of ¢, = ¢{[y\r] Note that the step t; —gn\gc 1]
must be (U U {y})-internal, for otherwise the step at the top of the diagram r :

toly\r] —en\ge t1[y\r] would be a)-external step. Then it is straightforward to
conclude by i.h..

4.3 The internal step r is to the right of ¢y = {[y\ro] Here 19 —gn\gc r and t; =
F f U{y}<A>. We consider two cases, depending on whether the step ry : 7o —gn\gc

is ¥-external or J-internal:

4.3.1 Ifr; is ¥-external Two further subcases, depending on whether y € sv(F’ 119 u{y})

or not:

43.1.1 Ify e sv(Flﬂu{y}) Since r; : 79 —>gn\gc 7 is a ¥-external step, we can write
ro = FY(X)andr = FY(3') where ¥ is the anchor of r; and ¥’ is its con-
tractum, and moreover F§9 is an evaluation context F§9 € Ey. Moreover,
since structural variables are below evaluation contexts (Lem.[A.54), there
is an evaluation context FY € X? such that F{'*"/(A) = F(y). Hence

343

the step r at the top of the diagram is of the form r : ¢y = F§ {y)[y\F3{X)]—sngc
Fyyp[y\FI(X'] = t,. If FY happens to be a inert evaluation context,
i.e. FY € Ej then the composition FY{y»[y\F?] is a ¥-evaluation con-
text and r is a J-external step, contradicting the hypothesis that it was
internal.

So we may suppose that I is nota inert evaluation context. By Lem.
evaluation contexts which are not inert evaluation contexts have the shape
of an answer. In particular FY(¥') = (A2’.t')L” and we have a -external
step: T 1 t; = FV{yy[y\(\z' t')L"] W FPOa' t)[y\\a' +'|L”. Hence
t1 has two distinct external steps, namely r’ and r». This is impossible as
a consequence of the unique decomposition lemma (Lem. [4.17).

4312 Ity ¢ sv(Ffu{y}) Then by Lem. we have that Flﬁu{y} e X7, so
F wiv} [y\ro] € XY, regardless of whether 7y is a 1J-structure or not. Then
it is straightforward to close the diagram.

4.3.2 If ry is ¥J-internal Since normal forms are backward preserved by internal
steps (Lem. [A.69), 1 is a structure; more precisely ry € Sy. This allows us
to conclude that Fl19 U{y}[y\ro] € XY, and it is straightforward to close the
diagram.

5. ESuBsR, FV = F'{yY[y\1?], where F € X” and I? € Ej The situation is #, =,
FPyp[y\17(D)] = t W FPy»[y\I?(A")] = t3. There are three cases: (1) the step
r is at the root of tp; (2) ¢ is a substitution #;[y\ro] and the step takes place inside t{;
(3) to is a substitution t{,[y\1o] and the step takes place inside ry.

5.1 The internal step r is at the root of ¢y Note that r cannot be a db step since
then it would be 1-external, so r must be a 1sv step ty = C{z)[z\vL] s
Cl2Y[2\V]L = FPy»[y\I?(A)] = t;. Let L, be a substitution context such that
[2\v]L' = L;[y\1"(A)], and using Lem. let us strip the substitution L; from
FP{yY. This gives us two possibilities, case A and case B in the statement of

Lem.[A.62:

5.1.1 Case A Then F = FYL; such that F,{y%) = C(v) where ¢ = fz’(L;) and
the evaluation context F\ is in X”". We consider three subcases, depending
on the position of the hole of C relative to the position of the hole of F,.

5.1.1.1 The hole of C and the hole of F?| are disjoint Then there is a two-hole
context C such that C{(J, v) = F and C(y;,[J) = C. So the starting term ¢,
is of the form: ty = C{zY[2\vL'] = Cly, 2)[2\vL/] = F{yY[\vL'] and
to—sn\gc 1. The variable y occurs bound in ¢, so it must also occur bound
in ¢y, which means that y = 2. Since L; [y\IY(A)] = [2\v]L' we have that
I(A) = v. This is impossible since answers do not have redexes under
inert evaluation contexts (Lem. [A.21).

5.1.1.2 The context C is a prefix of F, Then F = C(C’), so by the decomposition
lemma for evaluation contexts (Lem. |A.20) C € X?'. By strengthening ¥

344

(Tactic|A.55), C[z\vL'] € X”. This contradicts the fact that r is an internal
step.

5.1.1.3 The context I/ is a prefix of C Then C = F(C’). Given that C{(v) =

FY {y) we have that v = y, which is impossible.

5.1.2 Case B Then IV = F}{a'».Z{1} such that F/{a") = C{v) and L, =

(.2 {y} where ¥’ = 2 ([2\v]L") = fz”(L.[y\I"(A)]), the evaluation context
F% is in XY, and . is a (¥, 2')-chain context. The remainder of this case is

similar to the previous item For case|5.1.1.1} recall that answers do not
have variables under inert evaluation contexts (Lem. |A.21].

5.2 The internal step r is to the left of ¢y = ¢([y\r¢] Then there is a step ry : {) —gp\gc

FY{y. The step r; must be ¥-internal, otherwise r would be ¥-external. Since
ry is internal, by Lem. we have that), is of the form F{y), where I is an
evaluation context in X”. Then it is immediate to close the diagram.

5.3 The internal step r is to the right of t, = t([y\ro] Then there is a step ry : 79 —gn\gc

IY(A’). We consider two subcases, depending on whether r; is 9J-external or 1J-
internal:

5.3.1 If r; is ¥-external Then its source 7 is of the form ry = F U(3}) where e Ey

is an evaluation context and Y. is the anchor of a redex. Moreover, Fo ¢ ES,
i.e. it cannot be a inert evaluation context, since otherwise we would have
that r is external. So given that P e Es\E$ by Lem. We conclude that
ro is of the form ry = voL, i.e. an answer. By the fact that answers are stable
by reduction (Lem. this means that IV(A’) is also an answer, which
contradicts the fact that answers do not have redexes below inert evaluation

contexts (Lem. |A.21)).

5.3.2 If ry is ¥-internal Immediate by i.h..

6. EAPPRSTR, F¥ = r F’, where r € Sy and F € Ey The situation is t, et FY{A) =
t o 1 FP({A"y = t5. There are three cases: (1) the step r is at the root of ty; (2) ¢, is an
application rq t;, and the step takes place inside ro; (3) ¢, is a substitution 7 ¢, and the
step takes place inside .

6.1 The internal step r is at the root of ¢, This case is impossible. Note that r cannot

6.2

6.3

be a db step at the root, since it would be an external step. Moreover, r cannot be a
1sv step at the root, since then the outermost constructor of t; = r F'{A) would
be a substitution, but it is an application.

The internal step r is to the left of ty = r(¢, Then thereis a step ry : 79 —gn\gc . It
cannot be -external, for this would imply that r is ¥-external. Note that r € Sy,
so by Lem.[A.69 we have that ry € Sy. Then it is immediate to close the diagram.

The internal step r is to the right of ty = rq ¢, There is a step Ty : t{, —sn\gc F} {A).
It cannot be v-external, as this would imply that r is also ¥J-external. Then it is
straightforward to conclude by i.h..

345

7. ELam, F? = Ay F Doiy} Straightforward by i.h..
O

Lemma A.72 (Postponement of internal steps after external 1sv steps). Given any set of vari-
ables U such thatfv(ty) < v, ifty ity o ts3 where the second step is a 1sv step, there exists
a term ty such that t s to —»sn\gc U3 Where the first step is a 1sv step. An explicit construction

for the diagrams is given.

Proof. Let X" denote either the set Ey or the set Ey. Let us call r to the internal step ¢, ;ﬁ>sh
t; and r’ to the external 1lsv step t; > t;. Then t, = FUFY{a)[r\vL]) and t3 =
FUFY(v)[x\v]L), where FY(FY[z\vL]) € X?. We write A to stand for the 1sv redex
FY' {x)[2z\vL] and A’ for its contractum Fy (v)[z\v]L.

By induction on the derivation that F 1“9 € XY, the term t, will be shown to be of the form
FU(FY {ay[x\voLo]), where FU(Fg [r\voLo]) € XY, and then t, = FU {5 (vo)[x\vo]Lo),
in such a way that the diagram is closed as required by the statement. We write A to stand
for the 1sv redex Iy {x)[x\voLo] and Al for its contractum Fly (v)[z\vo]|Lo. Furthermore,
suppose that [Y' € Y. Then the inductive construction will ensure that Iy € Y, where
YV is either Ey or ES.

1. EBox, F =[] € X? Note that in this case ¢’ = fzﬂ(D) = ¢J. Then there is a 1sv redex at
the root of t; = FY{x)[x\vL]. We consider three cases: (1) the step r : ¢, =yt s at
the root of to; (2) to is a substitution t{,[z\ o] and r is internal to t{; (3) ¢, is a substitution
to[x\so] and r is internal to so.

1.1 The internal step r is at the root of ¢y Note that r cannot be a db step, since it would
be external. So r is a 1sv step, i.e. ty = C{y»|y\v'L'] Sl CVHY\WVIL =t =
FY{a)[x\vL]. Let L, be a substitution context such that [y\v'|L’ = L;[z\vL], and
using Lem. let us strip L; from FY{x)). This gives us two possibilities, case
A and case B in the statement of Lem.[A.62}

1.1.1 Case A Then FV{z) = F¥ {x)L, where 9" = fz(L,), the evaluation con-
text FY is in XV and we have C(v') = FJ {x)). We consider three further

subcases, depending on the position of the hole of C relative to the position of
the hole of FY,".

1.1.1.1 The hole of C and the hole of F} are disjoint Then there is a two-hole
context C such that C(J, v) = FY} and C(z,[J) = C. By Lem. there
are two possibilities for C: the left and the right branch of the disjunction.
The right branch, ¢ = C{z,[]) € X?”, is impossible since by strengthen-
ing ¥ (Tactic [A.55), C[y\v'L'] € XY, which contradicts the fact that r is
external.
In the left branch case, C(J,) € X”". By strengthening 9 (Tactic [A.55),
C{O,y) € X?. Note also that z is bound by L [2\vL] = [y\v/]L/, and that
it must occur bound in t, = C{x, y)[y\v'L'], since free variables cannot
become bound. So z it must be bound by [¢\v'L’], which means that z = y,

346

and in particular v = v/ and L = L'. Then it is immediate to close the
diagram.

1.1.1.2 The context C is a prefix of F}); Then F} = C{C'), so by Lem. C must

be an evaluation context in X?". By the fact that non-structural variables
are not required in “¥” (Lem.|A.54) we obtain that C € XY, This contradicts
the hypothesis that r is an internal step.

1.1.1.3 The context F}| is a prefix of C Then C = FY|(C"). Since C(v') = F¥' ()

this implies that v/ = z, which is impossible.

1.1.2 CaseBThen Fy{z) = Fy) {z).Z{x} suchthat C(v') = FY {z) and (1. {x}

L,, where ¢ = fz’(L,), the evaluation context F, isin X?", and % isa (¥, 2)-
chain context. The remainder of this case is by case analysis on the relative
positions of the hole of C and the hole of F|, similar to itemm

1.2 The internal step r is to the left of ¢, = t{[2\so] Then there is a step r; : {{ —sn\gc
FY{x). Note that r; cannot be ¥J-external, for this would imply that r is -
external. Hence r; is ¥J-internal, so given that evaluation contexts are backward

1.3

preserved by internal steps (Lem. |A.70), there is an evaluation context Fy, € X”

such that t), = F{x). Then it is immediate to close the diagram.

The internal step r is to the right of ¢y = ty[x\s0] Then there is a step r1 : 59—>gn\gc

vL.

We consider two cases, depending on whether r; is a 1J-external or a JJ-internal

step:

1.3.1

1.3.2

If r; is ¥-external Then sy is of the form F’(3), where F” is an evaluation
context in Ey and X is the anchor of a redex. Note that F is an evaluation
context but it is not a inert evaluation context, i.e. Y ¢ Ejy, since if we had
Fe ES then the context FY () [\ F""] would be an evaluation context, and
the step r would be external, contradicting the hypothesis that it is internal.

Then since F"” € Ey\E; by the Lem.we may conclude that F7(3) = voLq,
and it is immediate to close the diagram.

If r; is ¥-internal Then since answers are backward stable by internal steps
(Lem.|A.51), sg is of the form sy = voL¢, and the diagram can be closed just as
in the previous case.

2. EAprL, IV = 1Yt The situation is , A, 1At =t W I9(A’yt = t3, where

-

tO >sh

TY(FY'[2\vL]) is a inert evaluation context in ES. This case is analogous to item [2| of
the previous lemma (Lem. [A.71), as the proof does not rely on A being a db redex.

. ESUBLNONSTR, F = FY[y\t], where y ¢ 0, t ¢ Sy, and F}} € XY The situation is

FP(M[y\t] = 1 s FP(A"[y\t] = t5. We consider three cases, depending

on whether (1) the internal step r is at the root of ¢y, (2) ¢ is a substitution #;[y\ro] and
the step r is internal to ¢, (3) t, is a substitution ty[y\7]| and the step r is internal to .

3.1 The internal step r is at the root of ¢, Then r cannot be a db step, since it would

be external. So it must be a 1sv step. Then the step r is of the form: t, =

347

Clap[z\v'L] — Sl CVH[A\VL = F{A)[y\t] = t;. Let L; be a substitution
context such that Li[y\t] = [2\V/]L". Recall that A = FY {z)[x\vL]. Using
Lem. let us strip L; from ¥ (FY'[2\vL]). This gives us four possibilities, A,
B, C, and D in the statement of Lem.

3.1.1 Case A Then FY = F%.L; and C(v') = F? (A, where ¥ = fz’(L;) and
FY, e X". We consider three further subcases, depending on the position of
the hole of C relative to the position of the hole of F,.

3.1.1.1 The hole of C and the hole of F111 are disjoint Then there is a two hole
context C such that C<D vy = F?, and C{A,[]) = C. By Lem. there
are two possibilities for C: the left and the right branch of the d1s1unct10n.
The right branch, C € XY, is impossible, since by strengthening 1) (Tac-
tic i we have C € X?, which contradicts the fact that r is an internal
step.
In the left branch case, C((J, z) is an evaluation context in XY, Since
0 = f2°([2\v']L’) < 9 U domL, by applying the fact that non-structural
variables are not required in “9” (Lem.) we obtain that 6<D, 2y e XY,
Then closing the diagram is straightforward

3.1.1.2 The context C is a preﬁx of F}, By the decomposition of evaluation con-
texts lemma (Lem. , we have that C € X?. Since J < 9 U domL/,
by applying the fact that non-structural variables are not required in “0”
(Lem. |A.54) we obtain that C € X”. This contradicts the fact that r is an
internal step.

3.1.1.3 The context F?,, isa prefix of CThen C = F,(C;), s0 C;{(v'y = FY'{x)[z\vL].
We proceed by case analysis on the position of the hole of C; in the term
FY'{a)[x\vL]: it can be to the left of the substitution [#\vL], or inside
the substitution.
« Left of the substitution, C; = Cy;[z\vL] Now Cy;(v') = FY'{x)). Let

us analyze the relative positions of the holes of the contexts Cy; and

FY'. Observe that FY' cannot be a prefix of Cy;, as this would imply

that x = Cy{v). So there are two possibilities, either the holes of Cy;

and F}' are disjoint, or Cy; is a prefix of F}":

— If the holes of C1; and F§9 " are disjoint Then there is a two-hole con-
text C such that C(J,v/) = FY and C(z,[]) = Cy;. By Lem.
there are two possibilities for C: the left and the right branch of the
disjunction. The right branch case, C;; € Y?', is impossible since then
C = F? (Ci[2\vL])[2\v'L'] € X", which contradicts the fact that T
is an internal step. In the left branch case, C{(J, z) € Y7, so closing
the diagram is straightforward.

— If Cy; is a prefix of FY' Then F‘9' = C11{Cy). The situation is t, =
FluCndWLD[AWL] =S FRCoD\WLD[AVIL = 1
and we have that FY'(z) = C1,{v'). Given that Cy; is a prefix of
FY', we have in particular that x occurs free in v'. This is impossible

348

by Barendregt’s variable convention, since v’ is outside the scope of

the substitution binding x in .
« Inside the substitution, C; = FY'{a)[2\C11] So C1{v') = vL. We con-
sider two further subcases, depending on whether the hole of C; is in-

side v or inside one of the substitutions in L.

- If C; = Cy11L and v = Cy11{v’) There are two possibilities, depending
on whether the context Cy;; is empty. If C1;; is empty, then the situa-
tionisty = F} (FY Capa\L[2\VL] —an (B Capla\vL)[\V]L =
t1. Note that the context F}'},(Fy' {a) [2\[OL])[2\v'L'] is a ¥-evaluation
context, so the step r is external, contradicting the hypothesis that it
is internal.

On the other hand, if Cy1; is non-empty, i.e. C11; = Az’.Cy, then clos-
ing the diagram is straightforward.

- If C; = vLi[y\Ci11]Lo and L = L;[y\C111{v/)|Ly Then closing the
diagram is straightforward.

3.1.2 Case B Then F, = FY,, {w)Z{01}, ¢v') = FP,{w), and L, = [1LZ{A},
where) = fz’(L,), the evaluation context Ff’?u isin X’ and Z is a (Y, w)-
chain context. We consider three further subcases, depending on the position
of the hole of C relative to the position of the hole of {’11.

3.1.2.1 The hole of C and the hole of F {’11 are disjoint Then there is a two hole
context C such that (], v') = F’}, and C(w,[]) = C. By Lem. there
are two possibilities for C: the left and the right branch of the disjunction.
The right branch case, C € XY, is impossible since by strengthening
(Tactic we have C[2\v'L/] € X?, which contradicts the fact that r is
an internal step.
In the left branch case, C([J,) € XV. Note that in the term ¢, the variable
w is bound by [1.Z{A}[y\t] = [2\V']L’ since .Z is a (J, w)-chain context.
Then w must also occur bound in the term ¢, = C{w,v/)[2\v'L/], since
reduction cannot make a free variable become bound. Hence w = =z.
Consider the binding of w in the substitution context [.Z’{A}. We know
that it is of the form I?*(¥) where I?! is a inert evaluation context for
some value of 11, and ¥ is either A (if .Z has exactly one jump) or a
variable (if .# has more than one jump). So we have that v'L' = I91(3).
This is impossible since answers do not have redexes or variables below
inert evaluation contexts (Lem.[A.21).

3.1.2.2 The context C is a prefix of Fgl Then by Lem. Ce X, By strength-
ening 1 (Tactic|A.55), C[z\v'L’] € X?. This contradicts the fact that r is an
internal step.

3.1.2.3 The context F}, is a prefix of C Then C = F},(Cy), sow = C;{v"), which
is impossible.

3.1.3 Case C'Then F}’, is a substitution context, and: FY = F¥/Ly, Ly = F¥(L, [2\vL]),

and C(v') = Ffl/ {x), where I = fz”(L,) and the evaluation context FY, is

349

in Y?'. The remainder of this case is similar to case by case analysis on
the position of the hole of C relative to the position of the hole of Ff{
3.1.4 CaseD Then F}, is a substitution context, FY = FIquwyL{), 1y = 1<D${x} [z\VvL]),
and C(v') = Fg’i’ (w, where 0 = 27 ((1.%{x}), the evaluation context FY) is
inY”, and Zisa (¢, w)-chain context. The remainder of this case is similar
to case by case analysis on the position of the hole of C relative to the
position of the hole of ng’ .

3.2 The internal step r is to the left of ty = t{[y\ro] Then there is a step ry : t) —gn\gc
FY{(A). Note that r; must be ¥-internal, for otherwise r would be J-external.
Then it is straightforward to conclude by i.h..

3.3 The internal step r is to the right of t, = ¢{[y\7o] Then r : rp —gn\gc 7 and closing
the diagram is immediate.

4. ESUBLSTR, FY = F}°1¥) [y\t] with FI,"W e X991} and ¢ € S, The situation is t) —>s
19U{y}<A>[y\t] = t, o FIYWIANNE] = t5. We consider three cases, dependmg
on whether (1) the internal step r is at the root of ¢y, (2) £ is a substitution ¢,[y\ro] and
the step r is internal to ¢{, (3) ¢, is a substitution ¢{[y\7(] and the step r is internal to .

4.1 The internal step r is at the root of ¢, Note that r cannot be a db step, since it would
be external. So it must be a 1sv step of the form: r : t; = Cz)[2\V'L] —g
Cv")[2\V']L" = t;. Let L; be a substitution context such that L;[y\t] = [2\v/]L".
Recall that A = FY'{x)[x\vL]. Using Lem.let us strip L; from F: ﬂu{y}<F Y [2\VL]).
This gives us four possibilities, A, B, C, and D in the statement of Lem.

4.1.1 Case AThen: F'° = FPUWL andc(v'y = FUSWHAY, where d = f27° L))\ {y)
and Ffff{y} e X1}, We consider three cases, depending on whether the
holes of C and Fﬁkf{y} are disjoint, C is a prefix of Fﬂk{{y}, or Fﬂkf{y} is a prefix
of C.
4.1.1.1 The hole of C and the hole of F: f’ﬁ ¥ are disjoint Then there is a two-hole

context such that C((J, v/) = F] ka{y} and C(A,[]) = C. By Lem.|A.58|there
are two possibilities for C: the left and the right branch of the disjunction.

The right branch case, C € XU} i impossible, since by strengthening
¥ (Tactic we have C[2\v'L'] € X¥ which contradicts the hypothesis
that r is an internal step.

In the left branch case, C((J, 2) € XUv14}, By strengthening ¢ (Tactic ,
¢O, 2)[2\v'L'] € X? and closing the diagram is straightforward.

4.1.1.2 The context C is a prefix of F "2} Then by the decomposition of evalua-
tion contexts lemma (Lem.) we know that C € XV}, By strength-
ening o (Tactic|A.55), C[2\v'L'] € X". This contradicts the hypothesis that
r is an internal step.

4.1.1.3 The context Fﬁkf{y} is a prefix of C Then C = f’ﬁ{y}<C1> So A = C(v').
Recall that A = FY'{a)[z\vL]. The remainder of this case is analogous

350

to case by case analysis on whether the hole of C; lies to the left

or inside the substitution [z\vL].
4.1.2 Case B Then FIVW = FIVWwy.2(0), o'y = FUYW¢w), and L, =
O.Z{A}, where 9 = 27V (L,)\{y}, the evaluation context Fnl{y} is in

X9} and Zisa (¢ U {y}, w)-chain context.

We consider three further subcases, depending on the position of the hole of

C relative to the position of the hole of F i

4.1.2.1 The hole of C and the hole of F"" 111 Vare disjoint Then there is a two-hole

context C such that C({J,v') = F{,ﬁ{y} and C(w,[J) = C. By Lem. |A.58
there are two possibilities for C: the left and the right branch of the dis-

junction. The right branch case, C € X0 i impossible, since by strength-
ening ¥ (Tactic , we have that C({(J, 2)[2\v'L'] € X?, which contra-
dicts the fact that the step r is internal.

In the left branch case, C([J, z) € X"}, By strengthening (Tactic ,
C{, 2)[2\v'L'] € X”. Then closing the diagram is immediate.

4.1.2.2 The context C is a prefix of I f’;\f{y} By the decomposition lemma for eval-
uation contexts (Lem. we know that C € X7V}, By strengthening)
(Tactic|A.55), C(J, z)[2\v'L/] € X?. This contradicts the fact that the step
r is internal.

4.1.2.3 The context Ff’ﬁ{y} is a prefix of C Then C = f’ﬁ{y}@ﬁ Hence w =
C1{v), which is impossible.

4.1.3 Case CThen F}, is a substitution context, and: Fy' = F. 2’9;/ Ly, L = FY{Ly [x\vL]>
and C(v') = F¥'{x), where ¥ = fz” (L;) and the evaluation context FY, is
in Y?. The remainder of this case is analogous to case “ 3} by case analysis
on the relative positions of the holes of C and F! 21’1

4.1.4 Case D Then F?, is a substitution context, and: FY = F¥/(w).Z{]}, L =
19U{y}<D,,§f{$}[x\vL]> and C(v') = FY{w, where ' = f2°°WH(L,), the
evaluation context FY is in Y, and . is a (¢, w)-chain context. The re-
mainder of this case is analogous to case[3.1.4] by case analysis on the relative
positions of the holes of C and Fg’}’ .

4.2 The internal step r is to the left of ¢y = t{[y\ro| Then there is a step 1y : t{; —gn\gc
FOPWHASY\E]. Tt must be a (9 U {y})-internal step, for otherwise r would be
V-external. Then it is straightforward to conclude by i.h..

4.3 The internal step r is to the right of y = t[y\7] Then the internal step r is of the
form: FY°W{(ANy\ro] —an FVVWI(AYy\t] and there is a step Ty : 7 — sn\ge L

We consider two cases, depending on whether y is a structural variable in F} oy,

43.1 If y € sv(F ﬁu{y}) Then since structural variables are below evaluation con-
texts (Lem.) there is a context F? € X” such that F{'*/(A) = FP¢y.
Consider two further subcases, depending on whether r; is ¥-external or ¥-
internal:

351

43.1.1

43.1.2

If ry is a V-external step Then r is J-external, contradicting the hypothesis
that it is ¥-internal.

If rq is a ¥-internal step Then since normal forms are backward preserved
by internal steps (Lem. , ro is a structure in Sy, so F’ ~ o) [y\10] is an
evaluation context in X” and closing the diagram is straightforward.

432 Ify ¢ sv(7Su{y}) Then since non-structural variables are not required in “”
Lem. , FY°1} is an evaluation context in X. Regardless of whether
T¢ is a structure or not a structure, the context F' 119 Viv} [2\10] is an evaluation

context in X”. Then closing the diagram is straightforward.

5. ESussR, FY = Fydy)ly \Iﬂ] with F} € XY and IV € Ej The situation is tg =,
FPy»y\ 1% AY] =t WS FPy»[y\IP(A")] = t5. We consider three cases, depend-
ing on whether (1) the internal step r is at the root of ¢, (2) ¢, is a substitution ¢y[y\ro]

and the step r is internal to ¢, (3) ¢ is a substitution #{[y\ro] and the step r is internal

to rg.

5.1 The internal step r is at the root of ¢, Note that r cannot be a db step, since it would

be external, so it must be a 1sv step of the form r : t; = C{z)[z\v'L'] =,
C(v)[z\V']L/ = t;. Let L; be a substitution context such that L;[y\I?(A)]| =
[2\v']L". Using Lem. let us strip L; from FJ\[y\I?(A)]. This gives us two
possibilities, A and B in the statement of Lem.

5.1.1 Case A Then F¥, = FY L, and C(v') = F?,{y), where ¥ = fz’(L,) and
F ﬁl e X?. We consider three cases, depending on whether the holes of C and

Fﬁl are disjoint, C is a prefix of F111s or FV,, is a prefix of C.

5.1.11

5.1.1.2

5.1.1.3

The hole of C and the hole of F) 11, are dlSJOlnt Then there is a two-hole
context C such that C(J,v') = F¥, and C<y,D> C. Note that the
internal step T is of the form: T : C(y, 2)[2\V'L'] =5 Cy, v/)[2\v']L’ and
y is bound by L;[y\I"(A}] = [2\Vv/]L’ on the right-hand side, so it must
be the case that y = z, for otherwise iy would be free on the left-hand side,
and free variables cannot become bound. Therefore, since y = z, we have
that v/ = IY(A). This is impossible, since answers do not have redexes
below inert evaluation contexts (Lem. [A.21]).

The context C is a prefix of F! 31 By the decomposition of evaluation con-
texts lemma (Lem. we know that C € X, By strengthening ¢ (Tac-
tic|A.55), C[z\v'L’] € X". This contradicts the fact that r is a ¥-internal
step.

The context of FY, is a prefix of C Then C = F},(C;), soy = C1{v') which
is impossible.

5.1.2 Case B Then FY, = F11<<w>>${D} Cv') = ﬂ1<<w>> and Ly, = [1.Z{y},

where U = fz(L,), the evaluation context F?, is in XV, and . is a (¢, w)-

chain context. The remainder of this case is similar to case|5.1.1}, by case anal-

ysis on the relative positions of the holes of C and FY,.

352

5.2 The internal step r is to the left of o = t{[y\ro] Let 11 :) —>enge F11<y) be
the step isomorphic to r but going under the substitution [y\I?(A)|. Note that
ry cannot be ¥-external since, by Lem. this would imply that r is also v-
external. So r; is ¥-internal and we may apply the fact that evaluation contexts
are backward preserved by internal steps (Lem. to conclude that ¢, has to be
of the form FY,,{y). Then closing the diagram is straightforward.

5.3 The internal step r is to the right of ¢y = #{[y\10] Let r1 : 79 —gn\gc I(A) be
the step isomorphic to r but going inside the substitution I,y »[y\[]]. Note that
r; cannot be ¥-external since this would imply that r is ¥-external. Then it is
immediate to conclude by i.h..

6. EAPPRSTR, Ff9 = MﬁFﬂ, where MY € Sy and Fﬂ € Ey The situation is tg ;ﬁ>sh
MYFP(A) =t W MPYF?’ (A" = t3. Note that the internal step r cannot be at the
root: it cannot be a db step, since it would be external, and it cannot be a 1sv step, since
then there would be a substitution node at the root of ¢;. So ¢, must be an application
node r r5 and there are two remaining cases: (1) the step r is internal to 7y, (2) the step
r is internal to 7.

6.1 The internal step r is internal to the left of ty = 775 Then ¢, = ry Fj(A). Let
1 71 —snge M be the step isomorphic to r below the context [] F};(A). Note
that r; cannot be ¥-external as this would imply that r is also ¥J-external. By the
fact that strong normal forms are backward stable by internal steps (Lem. [A.69),
r1 must be a strong ¥J-structure. Then closing the diagram is straightforward.

6.2 The internal step r is internal to the right of ¢y = 7179 Then ty = M Ury. Let
1 T2 —snge F11(A) be the step isomorphic to r below the context M? []. Note
that r; cannot J-external since this would imply that r is also ¥J-external. Then it
is immediate to conclude by i.h..

7. ELam, F 119 = \y.F 9y} where FV € Ey Straightforward by i.h..

O
Lemma A.73 (Full proof of Lem. Postponement of internal steps). Let ¥ be such that
fv(ty) < V. Ifty ish t Zs ts there exists a term ty such that t, s to —smge t3. Fur-

-0 0 -0 9 .. .
thermore, (—> shap, ““>dbs —sh1sv, “1sv) fOrms a square factorization system according to

the terminology of [3], taking o g (resp. vﬁ»lsv) to be the external db (resp. 1sv) reduction,

and ishdb (resp. ishlsv) to be the internal db (resp. 1sv) reduction. More precisely, only the
following swaps are allowed:

- 9 [-
~shdb™"db c (o)t (—omm)”
-9 J J -9
T ?shlsv " 1sv - (Wlsv>+(—)shlsv)*
-9 9 9 -
~—shdb ¥ 1sv S ey (_’sh)

- U U -
(—sn)"

~shlsv¥db

IN
;
o

353

Proof. Let r be the internal step ish t1 and r’ the external step t; s t3. The proof goes
by case analysis on the kind of step r’. If r’ is a db step, this is a consequence of Lem. If
r’ is a 1sv step, this is a consequence of Lem. Note that in both cases the construction
is given inductively. In all the base cases, the diagram is closed according to the allowed
swaps. In all the inductive cases, the diagram is closed using the same kind of swaps as in the
inductive hypothesis. [

A.3 Proofs of Chapter [6| - A Labeled Linear Substitution
Calculus

A.3.1 Redex creation — proof of Prop.

Definition A.74 (Ancestor of a variable). Let C;(z)) 2> Co{z) be a step in the LSC. Consider
the term that results from marking the occurrence of x under the context Cy, i.e. C;{z")), and
let R’ be the step in the LSC with marks corresponding to R via the obvious bijection, ie.
R’ : C1¢a*) 5 t. Then the occurrence of = under C; is an ancestor of the occurrence of
under C, before the step R if ¢t = C,{z")) where the context C) is a variant of the context Cy
(with possibly some other marks).

It is a well-known fact that in the A\-calculus free variables cannot be created. That is, if
t — sisa step, then fv(t) 2 fv(s). The same property also holds in the LSC. Actually, both in
the A-calculus and in the LSC, a stronger property holds: for any step ¢ — s, every occurrence
of a free variable x in s has an ancestor in ¢.

Lemma A.75 (Every variable occurrence has an ancestor). Let R : t; — to = C{x)) be a step
in the LSC. Then x has an ancestor, i.e. there exists a context Cy such that t; = Co{x)) and such
that the occurrence of v under Cy is an ancestor of the occurrence of x under C before the step R.

Proof. This property can be checked by a straightforward case analysis on the kind of redex
R (db, 1s, or gc). If R is a db redex, the step is of the form:

t1 = (Ayt)Ls D t[y\s]L = t,

Consider an occurrence of a variable = on the term ¢,, under a context C, i.e. t = C{x). Then
there are three possibilities:

1. The variable occurrence is inside ¢. That is, C = C'[z\s|L. Then taking Cy :=
(Ax.C')L s, the occurrence of x in t; under Cy is an ancestor of the occurrence of x
in t5 under C.

2. The variable occurrence is inside s. Similar to the previous case. More precisely, we
have that C = ¢[x\C'|L, and we take Cy := (A\z.t)LC'.

3. The variable occurrence is inside one of the substitutions in L. Similar to the
previous cases. More precisely, we have that there exist substitution contexts L; and

354

Ly such that L = L;[2\C'{x)|Ly and C = ¢[x\s]L;[2\C'|Ly. Then we may conclude by
taking Cy := (Az.t)L;[2\C']Ly s.

The proofs for the 1s and gc cases are similar. [

Lemma A.76 (Creation of an answer). Recall that an answer is a term of the form (Ax.t)L.
Suppose that C{x)) is not an answer and C{t) is an answer. Then C is a substitution context and
t is an answer.

Proof. Straightforward by induction on C. [

Proposition A.77 (Full proof of Prop. Redex creation in the LSC). Let t; KN t3 be
a sequence of two redexes in the LSC such that R creates S. Then S is created in exactly one of
the following possible ways. The anchors of the redexes R and S are underlined in each case for
clarity.

1. Creation case 1: db creates db.
t1 = C{((Az.(Ay.t)L1)Lg s)Ly u) 2> C{(Ay-t)Li[x\s]LoLg u) =ty
2. Creation case 2: db creates 1s.
tr = Gz Col@D)Lt) = CrCala[w\HIL) =t
3. Creation case 3: db creates gc. Forz ¢ fv(t):
h = C{(Az)Ls) 5 Cltf\s]L) = b
4. Creation case 4: 1s creates db upwards.
t = C(aLy[z\(Ay.t)Lo]Ls s) 2> C{(Ay-t)LoLy [2\(Ay.t)La]Ls s) = 15
5. Creation case 5: 1s creates db downwards.
t1 = C1{ColxLy t)[z\(Ay.s)La]) LA C1<C2<(AQ.S)LQL1 Hlx\(A\y.s)La]) = to

6. Creation case 6: 1s creates gc. For x ¢ Co(t):

t = CiCal@)[a\t]) = CiCal®[2\t]) = to
7. Creation case 7: gc creates gc. Fory € fv(s) andy ¢ £v(Co(t)):

tr = Ci(Colt[z\sDly\ul) = i Calty\ul) =t
Proof. Throughout the proof, we let A stand for the pattern of S and A’ for its contractum.
Similarly, ¥ stands for the pattern of S and >’ for its contractum. By case analysis on the kind
of redex R:

355

1. If Ris a db redex. Then t; = C{(Az.t)Ls) =5 C(t[x\s]L) = t,. Consider the position

of the hole of C, relative to the position the pattern X of .S.

First, if the position of the hole of C is a prefix of the position of ¥, then there are two
subcases, depending on whether ¥ overlaps the spine of ¢[x\s|L or it does not overlap
the spine:

1.1 If ¥ overlaps the spine of ¢[x\s|L. Then the redex S must be either a 1s redex
contracting one of the substitutions among [z\s]L, or a gc redex collecting one of
the substitutions among [x\s]L. Let us call the affected substitution the one that is
either contracted by a 1s step or collected by a gc step.

If the substitution that is being affected is one of the substitutions in L then it is
immediate to observe that this case is impossible, as S has an ancestor before R.
For example, if S is a gc step, then L = L[y\r|L, and the situation is:

C{(Ax.t)Li[y\r|La s) =g C{t[z\s]L1[y\r]Ls2)

S| |s

C{(Ax.t)L1Ls s) C{t[x\s]L1Lg)

observe that y ¢ fv(¢[x\s]L;) implies y ¢ £v((Ax.t)Ly).

If the substitution that is being affected is [2\s] then the step S is created by R,
and we are either in Creation case 2: db creates 1s or in Creation case 3: db
creates gc. For example, if S is a gc step:

t1 = Cc((at)Ls) B ct[z\s]L) = t,

1.2 If ¥ does not overlap the spine of ¢[x\s|L. Then it may be the case that ¥ lies
inside t, or inside s, or inside one of the subsitutions of L. In all of these cases, S
has an ancestor and the situation is impossible. For example, if 3 lies inside ¢ then
t is of the form t = C'(¥), and the situation is:

C((a.C{EN)L s) B C(C(ED [\ s]LY

o) Is
(M. QML) C(C(S[z\s]L)

Second, if the positions of the hole of C and ¥ are disjoint, then S has an ancestor and
this case is impossible. More precisely, there must exist a two-hole context C such that
C = C{[J, ©), and the situation is:

C{(Az.t)Ls, XY E= Clt[x\s],)

So |s

C{(Azt)Ls, Xy Ct[z\s], X"

Finally we arrive to the more complex case, when the position of the pattern of ¥ is a
prefix of the position of the hole of C, that is, there exist contexts C; and C, such that
to = C1(X) and C = C;{Cy). Note that ¥ = Cy(t[x\s|L). We proceed by case analysis
on the kind of redex S:

356

1.1

1.2

If S is a db redex. Then ¥ = (Ay.u)L'r = Co(t[x\s]L). If the hole of C, is inside
u, inside 7, or inside one of the substitutions of L’, then S has an ancestor S. For
example if the hole of C, is inside u then Co = (A\y.C3)L' r, and the situation is:

Cl<()\y.C31<A>)L’ ry & C1<()\y.C3l<A’>)L’ r

CCs(A)[Y\ L) ColCa(AD[y\rIL)

The only remaining possibility is that there exist substitution contexts L; and L
such that L’ = L;Ly and C, = Ly r. The situation is:

t1 = (AL 8) Ly) 2> C{t[x\s]L Lo) = 5

so t is of the form ¢ = (\y.r)Ls. Hence we are in Creation case 1: db creates db.
If S'is a 1s redex. Then ¥ = C3y»[y\r] = Co{t[x\s]L). Let us consider three
subcases, depending on the position of the hole of Cs inside ..

First, if the hole of C; lies inside C3{y), then Co = C4[y\r]| and C3{y) = C4(A").
By Lem. there is a context C; such that C,(A) = C;(y) and, moreover, the
occurrence of y under C} is an ancestor of the occurrence of y under Cs before the
step [2. This means that S has an ancestor 5y, so this case is impossible. More
precisely, the situation is:

Cl<Cé<<y¢>>[y\T]> — 1L A)Y\r]) == ColCl A [y\r]) = C1<C§,<<yl> [y\r])
C1{Cs(rly\r]) Cr(Ca(rly\r])

Second, if the hole of Cy lies inside r, then Co = C3{y)[y\Cs]. Then S has an
ancestor Sy, so this case is impossible. More precisely, the situation is:

Co{CalyP[Y\Ca(A)]) — = ColCalyHY\Cu(A)])

S0/ |s

Cr{Cs(C{ADY\C(A)]) Cr{C3(Ca(A))[Y\CaC(AD])

The interesting case is the last, when C, is an empty context. Then C3{y»[y\u]| =
t[x\s]L. Again we consider two subcases, depending on whether L is empty or
non-empty:

1.2.1 If L is empty. Then x = y and s = u, so the situation is:

t = Ci{(Az.Csla))s) = CilCsla)lz\s]) = t,

and we are in Creation case 2: db creates 1s.
1.2.2 If L is non-empty. Then L = L'[y\r] and C3y) = t[x\s]L’. The situation is:

Ci{(Az)L[y\u]s) = Crdt[a\s]L [y\ul)

357

Note that y cannot occur in s by Barendregt’s convention. So y occurs either
in t or in L, which means that the redex S has an ancestor S, before R. For
example, if y occurs in ¢, then ¢t = C;{y)) and:

Ci{(Ae.Csy))L [y\uls) = Ci(Csypla\s]L [y\u])
S0 |s
Cr{l(Az Cs{w))L[y\uls) Ci{Cslw[x\s]L [y\u])
1.3 If S is a gc redex. Then ¥ = uy\r] = Co{t[z\s]L) with y ¢ fv(u). Let us
consider three subcases, depending on the position of the hole of C, inside >..
First, if the hole of C; lies inside u, then u = Co(A"). Note that fv(A) = fv((Az.f)Ls) =
fv(t[z\s]L) = £v(A’), so £v(Ca{A)) = £v(Co(A’)). In particular, y ¢ £v(Co(A)).

Then this case is impossible, since S has an ancestor Sy. Graphically:

C1<C2<AL>[y\T -+ CI<C2<AL/>[y\T D
C1(C2(A)) C1{C2(A"))

Second, if the hole of C, lies inside 7, then r = C3(A). This case is impossible since
S has an ancestor Sj. Graphically:

C1<U[y\fz<A>]> o CI<U[y\iJ2<A/>]>
C1{u) Ciu)y

Finally, if C is the empty context, then u[y\r] = t[z\s]L. Again we consider two
subcases, depending on whether L is empty or non-empty:

1.3.1 If L is empty. Then x = y,t = u, and s = r. Note that x ¢ fv(t), so the
situation is:

ty = Azt)Ls S t[z\s]L = £,
and we are in Creation case 3: db creates gc.

1.3.2 IfLis non-empty. ThenL = L'[y\r], sou = t[z\s]L’. Note that fv((\z.t)L’) 2
fv(t[z\s]L'), so y ¢ fv((Az.t)L’) implies y ¢ fv(t[z\s|L'). This means that
this case is impossible since .S has an ancestor Sy. More precisely the situation
is:

Ci{(Az)L [y\r]) = Crt[2\s L [y\r])
) Is

Ci{(Az.t)L" s) Ci(t[z\s]L")

2. If R is a 1s redex. Then t; = C{ColaY[2\t]) 2> C1{(Co(t)[2\t]) = t,. Consider the
position of the hole of C;, relative to the position of the pattern X of S.
First, if the position of the hole of C; is a prefix of the position of ¥, then there is a
context Cg such that Co{t)[z\t] = C3(33). We consider three subcases for the position of
the hole of Cs: to the left of the substitution, inside the substitution, or at the root (i.e.
Cs empty):

358

2.1 If C3 = Cy[x\t]. Then Co(t) = C4(X). Now again we consider the position of the

hole of C, relative to the position of X.
First, if the position of the hole of C, is a prefix of the position of X, then there is

a context C) such that C; = C9(C}) and t = C/(¥). Then this case is impossible
since S has an ancestor Sy. More precisely, the situation is:

C1<Cz<<$>>£$\ci<2>]> S Cl<Cz<CZ<E>l> [2\C(E)])
So S
C1{Callz[2\CKED]) Cr{Ca{CU(ED)[2\C(E)])

Second, if the positions of the hole of C, and the hole of C, are disjoint, then there
exists a two-hole context C such that C((J, %) = C, and C{¢,[]) = C4. Then again
this case is impossible since S has an ancestor Sy:

Ci(C, f>[w\t]> = Cu(Ct, lE>[x\t]>
Ci(Cla, [a\t]) ColClt, T)[a\t])

Third, if the position of the hole of C, is a prefix of the position of the hole of C,,
then there is a context C, such that C, = C4{C},) and X2 = C,{t). We consider three
subcases depending on the kind of redex S

2.1.1 If S is a db redex. Then ¥ = (A\y.s)Lu = C4(t). The proof proceeds by
analyzing the position of the hole of C} inside 3.
First note that, if C/, is empty, we have already considered this situation since
Co is a prefix of C,.
Second, if the hole of C), lies inside s, inside u, or inside one of the substitutions
in L, then this case is impossible since S has an ancestor Sy. For example, if
the hole of C) lies inside s, we have that C, = (Ay.C5)Lu, s = C5{t), and the
situation is:

C1<C4<(Ay-C’z’<i$>>)L wlz\t]) = Cl<C4<(Ay-C’2’it>)L wx\t])
Cr(CalCola)Liy\ulle\t]) Ci{CalCo(HLIy\ul[2\E])

The only remaining possibility is the interesting one, when the hole of C), lies
somewhere along the spine of (A\y.s)L, more precisely, there exist substitution
contexts Ly and Ly such that L = LLy and C, = CjLy u. Thent = (Ay.s)L; so
the situation is:

ty = C1{CylaLy wd[x\(Ay.s)L1]) D> C1{C{(Ay.8)LiLy w)[2\(Ay.5)L1]) = o

and we are in Creation case 5: 1s creates db downwards.

2.1.2 If S is a 1s redex. Then ¥ = C5;{y»[y\s]. The proof proceeds by analyzing
the position of the hole of C, inside X.

359

2.13

First note that, if C/, is empty, we have already considered this situation since
Cs is a prefix of Cy.

Second, if the hole of C is to the left of the substitution and it is disjoint from
the hole of C;, that is, there is a two-hole context C such that C([J, y)[y/\s] = C}
and 6<t, (1) = C;. Then this case is impossible as S has an ancestor Sy. More
precisely, the situation is:

Co{CalCl, ly\sD[\t]) = Co{CalClt [y D\])

) Is
C1{Ca(Cla, H[Y\sDI2\L]) C1{Ca(CL,)[y\s][2\t])

Third, if the hole of C, is to the left of the substitution and it is a prefix of the
position of the hole of Cs, that is, C; = C,(CL). Then t = CL{y). Note that the
steps R and S would need to be of the form:

Cr{CalCyla)y\sDI2\C5yH]) == Cl<C4<C’2<C’5<<y>>>L[y\S]>[w\Cé<<y>>]>
C1(Ca(Cy{C5{s) [y \sD[x\C5y)

However, this case is impossible, since the variable y is outside the scope of
the substitution binding y on the left-hand side of R, so by Barendregt’s con-
vention the step S’ cannot exist.

The only remaining possibility is that the hole of C) is inside the substitution,
that is, C, = C5{y»[y\Cs] with s = CJ{t). Then this case is impossible, as .S
has an ancestor Sj. In fact the situation is:

Co{CulCsLyDy\Cala)DIa\t]) — " C1{Ca(CsCy) [i\c’z’<t>]>[x\t]>

s

C1{Ca(Cs(Coa [y \Cola pDla\t]) Ci{CalCs(Col))[W\Co{t) D] x\E])

If S is a gc redex. Then ¥ = s[y\u] = C4(t), with y ¢ fv(s). The proof
proceeds by analyzing the position of the hole of C} inside .

First note that, if C}, is empty, we have already considered this situation since
Cs is a prefix of Cy.

Second, if the hole of C} is to the left of the substitution, that is, C, = Cj[y\u]
and s = Cj{t). Note that y ¢ s = Cj{t) implies that y ¢ Ci{x)), since x # y.
Then this case is impossible since S has an ancestor Sy. More precisely, the
situation is:

Cl<C4<C'2/<<SC>i [\ul)[z\t]) -~ C1<C4<C’2’<t>l[y\u]>[a:\t]>
So S
C1{CLCoLx) \t]) C1{CaLCE N[\t])

The only remaining possibility is that the hole of C, is inside the substitution,
i.e. that C, = s|y\Cy] with u = Ci(t). Then this case is impossible since S has

360

an ancestor Sy. More precisely, the situation is:

Co{Cals[y\Cola D2 \E]) == Cr(Ca(s[y\CHED [\t

sl s
C1(Cals)[z\t]) C1(Cals)[z\t])

2.2 If C3 = Colt)[x\Cy4]. Then t = C4(X). This case is impossible, since S has an
ancestor Sy. More precisely, the situation is:

C{CalaY[2\Ca(E)]) = C1{CalCalEN[2\Ca(E)])
So \LS
C1(Calz P[2\C(ED]) C1{Ca{Ca(E))[2\Cos(E)])
2.3 If C3 = []. Then Co(t)[x\t] = X. This means that ¥ must be either a 1s redex or a
gc redex, because its pattern is a substitution. Let us check each of these cases:

2.3.1 If S is a 1s redex. Then Cy(t) = C4{x). Note that it cannot be the case that
Cy is a prefix of Cy, since this would mean that C; = C(C}) and t = Cj(x).
This would mean that the step 12 should be of the form

Co{ColaM)[2\Cila)] = CrlCa(Cilap)[2\Cida)]

but this is impossible by Barendregt’s convention, since the free occurrence

—

[y P —

of the variable x in C;{z)) becomes bound when performing the substitution.
So the holes of C; and C4 must be disjoint. More precisely, there exists a two-
hole context C such that C(J,z) = C, and C{t,[]) = C,. Then this whole
case is impossible, as S would have an ancestor Sy, as shown in the following
diagram:

Ci(C,)[\t]) =+ Co(Ct, ap[2\])

) Is
CilCla, ty[2\t]) CulCt [a\t])

2.3.2 If S is a gc redex. Then z ¢ £v(Cy(t)). So the situation is:
t = Ci(Cla)[a\t]) = G\t = o
and we are in Creation case 6: 1s creates gc.
Second, if the positions of the hole of C; and the position of 3 are disjoint, then there

must be a two-hole context C such that ¢; = 6<D, Y)). Then this case is impossible, since
S has an ancestor Sj. Graphically, the situation must be:

ClCalapla\t], By L= CCa(ty[2\t], B
) Is
CCalap[at],) CColy[2\t],)
Finally, if the position of X is a prefix of the position of the hole of C, then C; = C11{C12)

such that ¥ = C19(Co{t)[x\t]) = C12(A’). We proceed by case analysis on the kind of
redex S:

361

2.1 If S is a db redex. Then ¥ = (A\y.s)Lu = C12{Co{t)[x\t]). We proceed by case
analysis on the position of the hole of Cy, inside ¥..
First, if the hole of Cy5 lies inside s, or inside w, or inside one of the substitutions in
L, then this case is impossible since .S has an ancestor Sj. For example, if the hole
of Cy2 lies inside s, that is C1o = (Ay.C),)Lu with s = C[,(A"), then the situation
is:

(Clad AL (g Cha(AL
o Is

CrolMy\ull Clp(AD[y\u]L

The remaining possibility is that the hole of C;, lies along the spine of (\y.s)L.
More precisely, there exist substitution contexts L; and L, such that L = L;Ls,
with A’ = (\y.s)L; and C3 = Ly u. Then the situation is:

ty = Cuu(CalaD [\t Lo w) = CulColtyle\t] Lo w) = 1o

S~ N~ 7 ~ o~~~

A A
where Co(t)[z\t] = (Ay.s)Ly.
To conclude, note that there are two possibilities in this case, depending on whether
the term Co{(z)) is of the form (Ay.sg)Lg (an answer) or not.

2.1.1 If Colx) is an answer. Then S has an ancestor Sj. Indeed, the situation is:

C11{(Ay.50)LoLo u) = C11<C2<<$>>[$_\t] Lyuy® C11<C2_<t>[$_\t] Lyu) = C11<(>&5‘)L1L2 u)

S~~~ “ S~ N~~~ ~ ~~ -

So A A/ Lz

s
Cr1so[y\u]LoLa) Cri{s[y\uJLiLa)
_\f_J

E/

2.1.2 If Co(x) is not an answer. Since Co{x)) is not an answer but Cy(t) is an
answer, by Lem. it must be the case that C, is a substitution context Ls,
and ¢ is an answer, ¢ = (\y.t')L". Hence the situation is:

tl = C11<$L3[$\()\yt/)L/]L2 u> i C11<()\’yt/)L,Lg[Q?\()\yt,)L/]LQ 'LL> = t2
and we are in Creation case 4: 1s creates db upwards.
2.2 If Sis a 1s redex. Then ¥ = C3{y»[y\s| = C12(Ca(t)[x\t]). We proceed by case
analysis on the position of the hole of C;5 inside X..
First, if the hole of Cy5 is to the left of the substitution and disjoint of the hole
of C3[y\s], more precisely if there exists a two hole context C such that C;y =
C{O, y)[y\s] and C3 = C(A’,[), then this case is impossible, since S has an an-
cestor Sp:
Cu(CA, p[Y\s]) =+ CrCA, ly\s])
) is
Cu(CA, s)[y\sl) CudClA, s)[y\s])

362

Second, if the hole of Cy5 is to the left the substitution and it is a prefix of Cs[y\s],
more precisely if C1o = C5[y\s] and C3 = C},(C}), then we have that C;(y) =
Co(t)|z\t]. We consider three subcases, depending on whether the hole of Cj lies
inside the left copy of ¢, inside the right copy of ¢, or in a disjoint position in Cs:

2.2.1 If the hole of C} lies inside the left copy of ¢ . That is, C; = Co(Cy)[z\t].
Then this case is impossible, as .S has an ancestor Sjy. More precisely:

C1i(Cha(Cal@)[2\CalyHD[y\s]) = CrndCialCalCaly M\ Caly) DIy\s])

~~r ~~r
So t t

Ys

Cra(CralCoal)[x\Cal)DIY\s]) C1adCra{CalCuls)[a\Caly) DY \s])

2.2.2 If the hole of C; lies inside the right copy of ¢ . That is, C; = Co{t)[x\Cy].
Similar to the previous case.

2.2.3 If the hole of C} lies in a disjoint position of C,. Then there is a two hole
context C such that C(J, t)[x\t] = Cs and C{y,[]) = C,. Then this case is
impossible, as S has an ancestor .S;. More precisely:

C11(C1(Cy, fif>[$\t]>[y\8]> - C11(C,(Cy, 1>[$\t]>[y\8]>
So S
Cia(CiaplCls, [2\ED[Y\s]) CudCia(Cls, H2\t][y\s])

Third, if the hole of Cy5 lies inside the substitution [y\s], thatis, C1o = C3y»[y\C}2],
then this case is impossible, since S has an ancestor Sj. More precisely:

C11¢Csy» iy\ciz<A>]> . 011<CS<<?/>>[¢?/\C'12<A'>]>
So S
C11{Cs(Cra{AN[H\CLa(A)]) Cra{Cs(CraAD)H\C1o(AD])

The remaining possibility is that Cy, is empty, that is, C1o =[],z = y,t = s, and
there is a two-hole context C such that C{(J, #) = C, and C(¢,[]) = Cs. Then this
case is impossible, since S has an ancestor Sy. The situation is:

C11(Clx, w)[2\t]) > Cou(Clt, [2\t])
) Is
Ci(Cla, [\t CradClt, [2\])

23 If S is a gc redex. Then ¥ = s[y\u] = C12(Co{t)[x\t]) where y ¢ fv(s). We
proceed by case analysis on the position of the hole of C;, inside >..

First, if the hole of Cy5 is to the left of the substitution, that is, C1o = C/,[y\u], then
this case is impossible since .S has an ancestor .Sy. More precisely:

CH<C/12<LA>[y\U]> - 011<C’12<?’>[y\U]>

C11{C12(A)) C11{C1(A))

363

Observe that fv(A) = fv(Colazp[z\t]) = £v(Colt)[x\t]) = £v(A’) so from the
fact that y ¢ £v(C|,(A’)) we may conclude that y ¢ £v(C|,{A)).

Second, if the hole of Cy5 is inside the substitution, that is, C1o = s[y\C],] then this
case is impossible since S has an ancestor Sy. More precisely:

Cri(s [y\f/12<A>]> S Cn<8[y\$’m<ﬁl>]>
Cuis) Ci1(s)

The only remaining possibility is that C5 is empty, i.e. C1o =[], = y, u = t, and
s = Cy(t). Then the situation is the following, with = ¢ £v(Co(t)):

t = Cra(Colap[a\t]) = CrulCalty[2\t]) = 12

and we are in Creation case 6: 1s creates gc.

3. If R is a gc redex. Then ¢; = C{t[z\s]) &> C(t) = t, with z ¢ £v(t). Consider the

position of the hole of C, relative to the position of the pattern > of S.

First, if the position of the hole of C is a prefix of the position of 3}, then ¢t = C;(X).
Then this case is impossible since S has an ancestor Sy. The situation is:

CC(D[x\s]) == CLC1(D))
| Is
CCi(EN[z\s]) C(Ci (X))

Second, if the position of the holes of C and the position of ¥ are disjoint, then there is
a two-hole context C such that C = C{[7J, ©). Then this case is impossible since S has an
ancestor Sy. The situation is:

c(Ct [91\8], £)) > C<a<1i> %))
CCt[z\s], X)) C(CLE))

Finally, if the position of X is a prefix of the position of the hole of C, then C = C;{Cs)
such that ¥ = Cy(t). We proceed by case analysis on the kind of redex S:

3.1 If S is a db redex. That is X = (\y.u)Lr = Co(t). Then the hole of C, lies either
inside u, inside r, inside one of the substitutions of L, or along the spine of (\y.u)L
(i.e. there exist substitution contexts L, Lo such that L = L;Ly and Cy = Lyr). In
any case, this case is impossible since S has an ancestor Sy. For example, if the
hole of C, lies inside u, then Cy = (Ay.C},)Lr and the situation is:

Cl<(Ay~C§<it [2\s]))Lr) == Cl<(Ay-<i’2<t>)L?“>
CL(Colt[zx\sDIy\rILy CilCy(Dy\r]L)

364

3.2 If S is a 1s redex. That is ¥ = C3{y)[y\u] = Co(t). Then the hole of Cy lies
either inside u, inside C3 disjoint from the variable v, or it is a prefix of C3[y\u].
In any case, this case is impossible since S has an ancestor Sy. For example, if the
hole of C, lies inside u, then Cy = C3{y »[y\C,| and the situation is:

Co{CalyHy\Coltl\s])]) ——= CrlCalyDly\Ca(D])

S0/ |s

Cr{CalColt[\s])[y\Colt[z\s DIy Ci{CalColt)[y\Co(B)])

3.3 If S is a gc redex. That is ¥ = u[y\r] = Co(t) with y ¢ £v(u). Then the hole of
C, lies either inside u or inside r. Let us consider each case.
First, if the hole of C; lies inside u, that is Co = C,[y\r], there are two subcases,
depending on whether y € fv(s):

3.3.1 If y € £v(s). Then the situation is:

t = CiCa\sDly\ul) = ¢ CDly\ul) =t

where y € fv(s) and y ¢ £v(C,{t)), so we are in Creation case 7: gc creates
gc.

33.2 If y ¢ fv(s). Then note that y ¢ £v(C,{(t[x\s])), so this case is impossible,
since S has an ancestor Sy. The situation is:

Cl<C’2<t[wL\S]>[y\r]> - Cl<C'2<71> [y\rD)
Cr(Colt[x\s])) C1(Cy(t))

Second, if the hole of C; lies inside r, that is C; = u[y\C}], then this case is impos-
sible, since S has an ancestor Sy. The situation is:

C1<U[y\C/2L<t [2\s])]) =+ Cl<U[y}C’2<t>]>
C1<u> C1<U>

A.3.2 Strong permutation — proof of Prop.

For the proof of Prop.[6.30] we need an auxiliary technical tool. We already know that adding
a label to a context is not always defined as a context. For instance, o : [] is not a valid
labeled context. Sometimes it will be convenient to allow this to stand for a generalized notion
of contexts, which we call pseudo-contexts. Pseudo-contexts will be allowed to have a label
decorating the hole. For instance, « : [] will be a pseudo-context such that (o : [(J){t) = a : t.

365

Definition A.78 (Pseudo-contexts). A pseudo-context P is given by the following grammar,
where C is a regular context:
P:=C| a:[)

The operation of plugging a term into a pseudo-context is defined as follows:

P oty ifP=c
Cla:ty if P=Cla:[)

The result of adding a label « to the empty context [] can be defined to be precisely the pseudo-
context o : [J. With this extension, the operation « : C can always be thought as yielding a
pseudo-context.

Proposition A.79 (Full proof of Prop. Strong permutation). Let R : t %, s and S :
t 5, u be steps in the LLSC. Then there exists a term r and two derivations o : s sy 1 and
p:u Y, r. Diagrammatically:

Moreover:
1. If R is a db step, o consists of exactly one step.
2. If R is a 1s step, 0 may consist of one or two steps.
3. If R is a gc step, o may consist of zero or one steps.
And symmetrically for S and p.

Proof. If R and S lie in disjoint positions, the result is immediate. The non-trivial case is,
without loss of generality, when the position of the redex occurrence R is a prefix of the
position of the redex occurrence S. We only consider the case when R and S are different
redexes. Note that even if R and S are different, they might lie in the same position; for
instance (z22°)[z\y]q has two 1s redexes at the root. The proofis by induction on the context
C under which the redex occurrence R is contracted:

1. Base case, C = []. Depending on the kind of the redex R:

1.1 R is a db-redex. That is t = @*((\Jz.t')L, s') and ;1 = db(f3). If S is internal to
t', s' or L (i.e. without overlapping the hole of L), the steps are disjoint, and it is
immediate. Furthermore, since any application must be internal to ¢/, s’ or L, we
have already considered all the possible cases of S being a db-redex.

The remaining possibilities are that .S is a 1s-redex or a gc-redex, involving one
of the substitutions in L. That is, L must have the form L, [y\u']oLs, and one of the
two following cases applies:

1.1.1 S is a 1s-redex, contracting [y\u']e.

366

1.1.2 S is a gc-redex, erasing [y\u']o.
Let us prove each case separately:

1.1.1 S is a 1s-redex, contracting [y\u']e. Since there is a 1s-redex, we know that
(A&z.t")L; must be of the form C'{(y")). The contracted occurrence of y can
be either inside ¢’ or inside L;. The name of the redex Sisv = | (7)1 (/).
We consider two subcases:

1.1.1.1 If the affected occurrence is inside ¢/, we have ' = C;{y"). Let ¢’ be
the corresponding term after contracting the affected occurrence of y, i.e.:
t':=Ci(ye :). Then:
@ (M-t JoLz.) 2% afab(8)] : #[2\[ab(8)] : 'laLa[y\u oLy
1 et 1 e 1))
@ (Ao D) [y\w'oLe, ') o afdb(8)] : Pa\[db(B)] : s'Tali [y\u'oLe

Note that on the right hand side we are using Lem. |6.9|to conclude that:
a[db(B)] : ¥ = afdb(B)] : C1dy™) s of the form Ci{(y”")
where | (7) = | (7/) and, moreover:
a[db(8)] : T = aldb(B)] : Culy e s uy = Cily' e <)

1.1.1.2 Ifthe affected occurrence is inside L, we have that Ly = Ly[2\C1{y”)]wLs.
Let L; be the corresponding substitution context after contracting the af-

fected occurrence of y, i.e. Ly := Ly[2\C1(ye : u/')]yLs. The situation is
then:
a((\B . 4 ’ &8 / / ’
Q*((Agz-t")La[y\uleLe, s) — afdb(B)] : t'[x\|db(B)] : s]oLi[y\u']eLe
L(v) e t(u') Lv) e t(u)
l db(B) l

@*((A\g-t)Li[y\w'leLz, ') — afdb(8)] : '[#\|db(8)] : s'JoLi[y\u/]eLz

1.1.2 S is a gc-redex, erasing [y\u/]e. Since it is a gc-redex, we know (A2 z.t/)L; has
no free occurrences of y. The name of the redex S'isthen: v = {ae 1 (u/) |a €
©}. By the usual fact that reduction cannot create free variables, we have:

@ (Mgt)Li[y\w oL,) = afdb(8)] : £[\[ab(B)] : 'laLa[y\e/JoLo
(ae () | aco} fae 1) | ac0} |
@ (Aot)LiLa, ') — L0~ a[db(8)] : ¢'[2\[db(B)] : 5'lLiLs
1.2 R is als-redex. Thatis t = C{a*)[z\t']q and p = | () @ 1 (’). Note that if S is
internal to C (i.e. without overlapping the hole of C), the steps are disjoint, and the
proof is direct. If S is internal to ¢/, it is also straightforward to close the diagram,
although the 1s-step duplicates ¢, which requires contracting two residuals of S.

367

More precisely, suppose '~ #'; then:

a0 — 1 cdae - 1’>>[x\t/]g

v Clas - T)[z\t]a

o = L(a) o 1(¥) l n
Clala\Pg ————=Clas - T)[x\1q
Note that the name v in the step marked with % is not changed, by the fact that

adding labels preserves redex names (Lem. [6.10). To close this diagram, note also
that 1 () = 1 (') by the fact that reduction preserves the first label of a term

(Lem. [6.11).

We have already considered the cases when S is internal to C and internal to ¢'.
The remaining cases are that the redex occurrence S contains as a subterm either
the affected variable * or the affected substitution [z\t']q. Some situations are
impossible and can be dismissed:
« A db-step cannot possibly involve [z\t']q, since there is no application node
that contains such substitution.
« A gc-step cannot erase [x\t']q, since there is at least one free occurrence of x
in C{x*)).
So we are left to check the following cases:

1.2.1 S is a db-redex, including x® as a subterm
1.2.2 S is a 1s-redex, including x® as a subterm
1.2.3 S is a 1s-redex, contracting [x\t']q

1.2.4 S is a gc-redex, including x® as a subterm
Let us prove each of these separately:

1.2.1 S is adb-redex, including x* as a subterm. Let ¢ be the subterm corresponding
to the db-redex S. Since ¢ is a subterm of C{z*)), we know C{z*)) = C1{(q).
Also, since ¢ is a db-redex, it has the form ¢ = @%((\y.s')L, ') where v =
db(). Note that for this case we are also assuming that the occurrence of the
affected variable x“ lies inside this subterm ¢. This leads to three cases for C,
depending on whether the hole of C corresponds to a position inside s, inside
u’ or inside L:

(C{@P((\y.Co)L,) with Colz®) = ¢
“the hole is internal to s’”
¢ 4 C1{ @ ((AQy.s')L,Ca)) with Colla®) = o’

“the hole is internal tou'”

C1< @5(()\ Y.S)Ll [Z\CQ]\I;LQ,)> with Ll [Z\C2<<$a>>]\pL2 =1L

“the hole is internal toL”

368

Respectively for each case, let C be the pseudo-context that results after con-
tracting the db-redex in C. Respectively in each of the three cases above:

db(y)

C =5, C= 1 Blab()] : 8[\|db

Having defined 6, we have:

(a)

Wa\]o LT clae s)2\ o

db(v) l db(v)l
Saya\lo 21 B [\

Culp[z\']e

Note that since C is a pseudo-context, the expression C(z®) could prepend
additional labels to the label o decorating the variable node x. However, the
residual of the step R has the same name as R, namely | («) e 1 ('), since
| (0a) = | () for any label 6.

1.2.2 S is a 1s-redex, including x as a subterm. Since the redex occurrence S in-
cludes z® as a subterm, it cannot contract the same substitution as the redex
occurrence R, for in that case they would be the same redex, substituting the
same occurrence of . Let ¢ be the subterm corresponding to the 1s-redex
S. Since ¢ is a subterm of C{x®), we know C{x“)) = C1{¢). Moreover, since
q is a 1s-redex, it has the form: ¢ = C'{y®H[y\s']e where v = | (3) e 1 (s).
Here we are also assuming that the affected occurrence of 2 is internal to q.
This leads to two cases for C, depending on whether the hole corresponds to
a position inside C’ or inside s':

(C1< Col3,¥°Y[y\s']le) where Cy is a two-hole context
such that Cola®,[T) = C/
C=A “the hole is internal to C'”

Ci{C' Yy Hly\Celo) where Crla) = &

“the hole is internal to s'”

\

We analyze these two subcases separately:
1.2.2.1 C = C1{C{, ¥’)[y\s']e). This case is straightforward:

C<<»’Ca>>”[x\t’]ﬂ
61 Cala®, Y Yo T W\l — - y Calare <,y Y\ T DI\l
i(ﬂ)-T(S')l — 1B)*1(1)
C1{Cala™, B : Y\ o Va\ o~ = G Caae ¥ Be 2 Y3\l Va\t']e

369

1.2.2.2 C = C{C'y’H[y\Ca]e). Let us abbreviate A := Cy{ave : t'). Then:

CaDla\t]q

C1l CLYP Y[\ la Do Y\ o — 2T ¢ (Y)\ Ao M\
1(B)e T(Cz<<fr°‘>>)l

G LB e Cla®)PY\Cala Do P2\t]a TORNCED)

L) o 1(t)

Ci(C(Be - M[y\Ale)[z\]a
To be able to close the diagram, we need the two following observations:

» By Lem.[6.9) 1 (C2{(z*)) =1 (Colae : 17)).
« By Lem. Be : Colx™)is of the form C,{x®"), where | (o) =
| (&/)and fe : Cola : t") = Chla : t/).

1.2.3 S is a 1s-redex, contracting [v\t']q. That is, C{z®) = C'{x?)), where 2 is the
occurrence affected by R, and 27 is the occurrence affected by S. Since the two
occurrences are distinct, there is a two-hole context C” such that C"¢{[J, z°) =
C C"¢x*,[0) = C'. It is then immediate to close the diagram:

C"da, 2P Y[\t]a C"dae : t' 2P Y[\t]
l(B)°T(t')L l(ﬁ)ﬂ(t')t
U, Bo [\ 0 LT e 1, Be s Y\]

1.2.4 S isagc-redex, including x as a subterm. Let ¢ be the subterm corresponding

to the gc-redex. As in the previous cases, since ¢ is a subterm of C{z*)), we
have that C{x®)) = C1{q). Moreover, ¢ must have the form ¢ = §'[y\v/]e,
with y ¢ fv(s'). As we are also assuming that the affected occurrence of =% is
in g, there are two possibilities for C, depending on whether the hole of C lies
in a position inside s’ or inside u':

Ci{Co[y\u']le) where Coa®)) = &'
“the hole is internal to s'”
Ci(s'[y\Calo) where Colla®)) = v/

“the hole is internal tou'”

We analyze these two subcases separately:

C<<ff“>>”[$\t’]ﬂ
C1 Colz*PHy\u'le H[z\t']a SALY C1{ Colare ' D[y\u'le H[2\t']o
faet() | ae}| eyt faet() | ace}|

CrlCalz™) Pla\t']a —————=CiCalae 1) [x\V']o

370

1242 C=C{s[y\Calo)

C<<5C“>>|[l“\t']ﬂ
C1{s"[y\C2zD]e N[\t']e K= 16) C1{s [y\Colare Do P[z\']o
{ae 1(C2KzD) | ae@}i {aet(Calae:t’)) | ae@}l
Ci{s" P\t Ci{s" Hlz\]a
We conclude this subcase noting that 1 (Colz®)) = 1 (Colace : 7)) by
Lem.

1.3 Risagc-redex. Thatis: t = t'[z\s']q z ¢ fv(t')and u = {ae] (s') |a e Q}. If

the redex occurrence S is internal to ¢/, it is straightforward to close the diagram.
If it is internal to &', it is also straightforward, taking in account the fact that the
contraction of R erases S. More precisely, if we suppose that s’ -, &', we have:

{ae1(s') | acQ)}

t'[2\s]q t
t,[l'\/S\I]Q {ae1(5) | aeQ2} t/

Note that 1 (s') = 1 (§') by the fact that reduction preserves the first label of a

term (Lem.|6.11)).

The remaining possibility is that the redex occurrence S involves the substitution
at the root of . This cannot happen:

+ The redex occurrence S cannot be a db-redex, as there is no application node
at the root.

+ The redex occurrence S cannot be a 1s-redex, since that would require at least
one free occurrence of x in t'.

« If Sisa gc-redex, then R and S are the same redex ocurrence, which is trivial
and was already considered.

2. Inductive case. All the inductive cases are trivial, since we only care about the case when

the position of R is a prefix of the position of S. Hence both redex occurrences R and
S must be internal to the same subcontext of C, and we conclude by i.h..

]

A.3.3 Postponement of gc in the LLSC-calculus — proof of Lem.

Lemma A.80 (Full proof of Lem. Postponement of gc in the LLSC-calculus). Let p :
t —y s be a reduction sequence. Then there exists a term u and a reduction sequence o : t —»

dbuls U —Ppgc S.

Moreover, let #,(p) denote the number of redexes named ji that are contracted along the

reduction sequence p. Then:

371

1. The number of db and 1s redexes is preserved:

#,(p) = #,(0) if p is the name of a db or 1s redex

2. The number of gc redexes may increase:

#,(p) < #,(0) if p is the name of a gc redex

3. The reduction o contracts the same names as p:

#,(0) >0 = #,(p) > 0 for any redex name

Proof. The proof is split in two parts:

1. First we show that any two steps ¢; 5, gc b2 L rabu1s ts can be swapped in such a way
that t; S /ap01s th (L, gc)" t3, requiring 1 < n < 2 steps of gc to close the diagram.

2. We then argue that this process terminates. It is easy to check that the conditions on
#,(p) are preserved by the swapping operation.

Swapping. Let t; £, ge 12 rabo1s tse By induction on the context C under which the — 4
redex in ¢ is contracted, we show that the following diagram can be closed with 1 < n < 2
steps of gc:

t —>t,

v v
N
S

to vt tg
1. Base case, C = []. The situation is:
{as1(s) | ac}

t; = tafa\slg —————1t2

QV ly
{ae1(s) | a2}
tg[x\S]Q > fs

Since we know = ¢ fv(t,), we use the fact that t, =5, 415 t3 does not create free
variables to conclude = ¢ fv(t3).

2. Inductive case, under an abstraction, C = \3x.C’. Direct by i.h., since both steps must be
internal to C'.

3. Inductive case, left of an application, C = Q*(C', s). The situation is:
@a(t/b S) i@gc @a(té’ 8) i)Edb Uls 13

with ¢} £, gc t5. There are three subcases, depending on whether the —/ 4,15 Step is
internal to t), internal to s, or at the root.

372

3.1 =y apu1s Step internal to ty. Then t3 is of the form @Q*(t}, s) and ¢] LN A %,
abu1s 5. We conclude by ih.:

Q“(t], s) == Q°(th, s)

|

VV
@ (7}, 5) 5= @ (1}, 5)

3.2 >y au1s Step internal to s. Then t3 is of the form @Q*(¢),, s") with ¢} £, g Uy and
s Srapu1s S The steps are disjoint and can be swapped trivially:

Q(t], 5) —= Q*(th, 5)

Ly \LV
\

QO(t], 8') = @(th, ')

3.3 =/ abu1s Step at the root. The —4 4,15 involves the topmost application, so it
must be a db step. Then ¢}, must be of the form (AJz.u/)L. We have v = db(f3),
and the situation is as follows:

@ (t, s') ———= @*(A\z.u/)L, s')
fees)
aldb(B)] : v/ [z\|db(5)] : s']aL
where t) X5, th = (Ajx.u/)L. Then | must be of the form (\j,z.uo)Lo and there
are three possibilities:

« The gc step is internal to uy. That is, L = L, and:

{ae1(r)) | ac®}
lo) —————

uo = C{rfy\ry rge CCry) =

Then by Lem. we have that

{ae1(ry) | acO}
0 _—>

aldb(B)] : u

And so we conclude:

tge 0[db(B)] = W

ae (1) ac®
@ (Mzug)L, ') —— DO (AL,)

VB , {ae1(r}) | 2€O} , \l]ﬁ ,
ofdb(B)] : ugle\[ab(8)] :] 1 2 afan(8)] w/[\ab(8)] : lol

« The gc step is internal to one of the arguments of Ly. That is, v’ = ug and:

Lo = Li[y\r']eLe L = Li[y\r"]eLs

W
r L r’

Then:

Q*((\gz.u')Lo, 8') a*((\pz.u')L, s)

. lﬁ
aldb(B)] : u'[2\|db(B)] : 8'laLo "= a[db(B)] : u'[2\[db(B)] : §']oL

373

« The gc step erases one of the substitutions in Ly. That is, v’ = g and:

Lo = Li[z\r']ely L =1LiLy

{ae (') | acO)
0 _—

qL tgc gL for any term ¢

The diagram is closed exactly as in the previous case, taking 1 := {ae 1 (') |a €
O}.
4. Inductive case, right of an application, C = Q%(s, C"). The situation is:
@a(s’ tll) ﬂ)ch @a(s’ t/2) i)Zdb uls t3

If the —; 4o 15 step is internal to s or t), the situation is analogous to the left of an
application case (points[3.1]and [3.2] of this lemma). The non-trivial case is when there is
a —yqp step at the root. That is:

s=\rs L v=23

By Lem. since we had a step t} %>, g th, we also have a step |db(B)| : #;
gc |db(B)] : t5. Then:

@ (\oa.s')L, 1)) @ (\oa.s")L, th)

o) I

afdb(B)] : s'[z\[db(B)] :)]oL - > aldb(f)] : s'[z\[db(B)] : t5]aL
5. Inductive case, left of a substitution, C = C'[x\s]q. The situation is:
tll [x\S]Q ﬁ)ﬂ gc 7(;/2 [x\S]Q LZ dbuls t3

If the —/ 415 step is internal to ¢} or s, the situation is analogous to the left of an
application case (points[3.1/and [3.2] of this lemma). The non-trivial case is when there is
a —y1s step at the root. Then t, must be of the form C{z®)) and:

(a) e 1(s)

thlz\slo = ClaP[r\slo “L 1 Clave - $H[@\s]a = ts

Moreover, since | 5, 4 t}, we have that #) must be of the form C'(v/[y\1']e), with
y ¢ fv(u'), so that:

ty = C'[y\r'le) rge Cu') =ty = CLa™)

This implies that the substituted occurrence of z* in t} lies either in C’ or in u’. Let C'

{ae?1(r') | 2O}

and @’ denote the result of replacing the affected occurrence of z“ (if any) by («v e : s),
in C' and v’ respectively. Then:

th [I|\S] Q t [56”\8]9
o)\ sl S [slg = ca sl
JH(@) o 1(s) . [rerero
6’<ﬁ’ [Y\r']e)[x\s]q e > 6’<ﬁ’>[x\s]g = Clae : s)[z\s]a

We use the fact that y ¢ fv(u') and y ¢ fv(s) to conclude that y ¢ fv(@’), and thus be
able to apply the gc step on the bottom of the diagram.

374

6. Inductive case, right of a substitution, C = s[x\C']q. The situation is:
sla\th]o ge s[2\thlo “ravos s

If the —; 4o 15 Step is internal to s or t), the situation is analogous to the left of an
application case (points[3.1and [3.2] of this lemma). The non-trivial case is when there is
a —y1s step at the root. Then s = C{z*)) and:

o

Cla*Plz\tla clepla\tslo

JHe) e ll(a)-T(t'z)

Clas :)[e\Hle > clae : tp)[a\t]a > Clae s thY[a\t5]o

We use the fact that reduction preserves the first label (Lem. to conclude that since
t) L5y g th then 1 (t}) = 1 (t,); this is to ensure that the 1s steps both have the same
name. Moreover, we use the fact that adding labels preserves redex names (Lem.
to conclude that cve :] %5, ;. cve : th; this is to ensure that the first gc step at the
bottom of the diagram has the right name.

Finally, note that this is the only case throughout the proof by induction that duplicates
the number of gc steps that are required to close the diagram. All the other cases either
resort to the inductive hypothesis or require exactly one gc step. Since this case corre-
sponds to having a 1s step at the root, it can be applied at most once, implying that the
number n of gc steps that are required to close the diagram must be 1 <n < 2.

Termination. The process of swapping gc and db U 1s steps is modeled by the string

ba—ab
R :
ba—abb

rewriting system:

where a represents db U 1s steps and b represents gc steps. To see that R is strongly nor-
malizing consider the decreasing measure m : {a, b}* — N given by:

m(s) ;= Z g#{i>i | sj=a}

i,8;=Db

]

A.4 Proofs of Chapter[7]- Applications of the Labeled Lin-

ear Substitution Calculus

A.4.1 Contribution — auxiliary lemmas for Prop.

In this section we state and prove auxiliary results that are needed to prove that the LSC
without gc verifies the CONTRIBUTION axiom. Note that, even though Prop. is about the
LSC without gc, the LLSC (with labels) is used as an auxiliary tool, so most lemmas in this

375

section concerns the labeled version of the LSC. Since the gc rule is never used here, in order
to alleviate notation, we omit the sets of labels on abstractions and substitutions, which are
irrelevant in this context. That is, we write *x.t and t[x\s] rather than \3x.t and t[z\s]q,
omitting the “(2” subscripts.

Correctness

The following definitions and lemmas are used to prove the implication (1 = 2) (Correct-
ness) of Prop.

Definition A.81 (Inclusion of labels). The order relation of inclusion between labels «, 3,
written av < 3, is given by the reflexive and transitive closure of the following rules:

acClal ac|al acdb(a) a<af ac fa

Definition A.82 (All labels in a term). Given a labeled term ¢t € T, the set of all labels
decorating nodes in t is written labels(t). Formally:

labels(x®) & {a}
labels(Q(t, s)) o {a} U labels(t) U labels(s)
labels(A*z.t) o {a} U labels(t)
labels(t[z\s]) o labels(t) U labels(s)

) g,

This definition is also extended to contexts, by setting labels([]

Lemma A.83 (Redex names that contribute to a step must occur in the source). Let R’ : t§ —
t¢ be a step in the LLSC without gc. Let v be the name of RY, and let ;1 be another redex name

such that 1 "% 1. Then there exists a label o € labels(t§) such that i S a.

Proof. It is easy to check that name contribution implies label inclusion, so from the hypoth-
esis [Name , we have that i < v. Moreover, the inclusion is proper, i.e. @ # v since, by
definition, hane p does not hold. We proceed by case analysis on the kind of step R*:

1. db step. Then we have:
th = (@ (Mr.tL,) 22, clafab(B)] : t/[2\[ab(B)] : s‘IL) = £}

Since 1 € v = db(3) and p # v, it must be the case that 1 = 3 and 3 € labels(t§), so
we are done.

2. 1s step. Then we have:

t = Ci(Cala Y[\ D) YL ¢y olan s N\ = 1

Observe that 1 € v = | (a)e 1 (#*) and that | (o) and 1 (%) are atomic labels. We
claim that either < | () or 1 S 1 (#%). Indeed:

376

2.1 If u is the name of a db redex, then it is of the form db(~y) so necessarily db(7y) <
| (@) ordb(y) = 1 ().

2.2 If pu is the name of a 1s redex, then it is of the form @ 9 where and J are atomic
labels. Since we already know that i # v, the “ e ” in ;» must occur either in | («)
or in 1 (*). This in turn implies that ye § = | (o) or yed = 1 ().

Now there are two possibilities: if 4 S | («) then u S « € labels(tf), and we are
done. Otherwise, it must be the case that u = 1 (t/). Let us write the term t¢ as of
the form t' = s’L where L is a list of substitutions and s’ is a term whose root is
not a substitution node (i.e. it is an application, an abstraction or a variable). Then
by definition 1 (#) = 1 () where 3 is the label decorating s‘. Thus we obtain that
pw<t(t) =1 (B8) < B e labels(t’), as required.

Definition A.84 (Labels of variables). Let vI(¢*) be defined as the following set:

vl(tY) = {| (a) | z* is a subterm of ¢ for some z}

Inductively:
vl(z®) < {l ()}
vl(A\z.t) © ()
ol(@ (¢, s0)) X w1ty U vl(s)
(

ol(t[2\sY]) X wl(th) U vl(s)

This definition is also extended to contexts by setting vi([]) = &.

Remark A.85. vl(C{t*)) = vI(C) U vi(t")

Remark A.86. vl(a : t') = vl(t")

Lemma A.87 (Labels of variables are not created). Lett§ — t! be a step in the labeled calculus.
Then vl(th) 2 vi(t%).

Proof. Straightforward by case analysis on the kind of contracted redex. []

Definition A.88 (Labels of substitutions). Let sl(t‘) be defined as the following set:
sl(tY) = {1 (s°) | [¢\s] is a substitution occurring in ¢’ for some z}

Inductively:
sl(z%) = @
sidezt) s
sl(@(t, s0)) € s1(th) U sl(s)
slt[a\s]) = {1 (s} sl(t) U si(s”)

This definition is also extended to contexts by setting sl([]) = .

377

Remark A.89. For any context C and any term ¢’ we have:

{1 (")} ifCis of the form C'{(s‘[z\[L])

%) otherwise

sI(C(Y)) = sl(C) U sl(th) U {

Remark A.90. sl(a : t*) = sl(t)

Lemma A.91 (Creation of labels of substitutions). Lett§ —, t{ be a step in the labeled calculus.
Then:

1. Ifit is a db step of name db(3), then sl(t§) U {|db(B)]} = si(t}).
2. Ifitis a 1s step, then sl(t5) = sl(t}).
Proof. Straightforward by case analysis on the kind of contracted redex. O

Lemma A.92 (Possible shapes of redex names). Let p’ : t§ —, t{ be a derivation in the LLSC
without gc, where t§ is an initially labeled term. Let ji be the name of a redex contracted along
p°. Then y must have one of the following three forms:

db(«) aeb ae|db(a)]

Proof. We claim that if t§ —, u* and t{ is an initially labeled term, then the following proper-
ties hold for u‘:

(I1) If 2 is a subterm of v, i.e. | (a) € vl(u’), then | () is an initial label a.

(I2) If [x\t*] is a substitution occurring in u?, i.e. 1 (t) € sl(u’), then 1 () is an initial label
a or a label of the form |db(a)|.

By induction on the length of the derivation té —, u', it can be checked that this invariant is
preserved More precisely, let s§ —; s{ be a labeled step and suppose that the invariant holds
for s{. By the fact that variable labels are not created, as shown in Lem. condition (I1)
is preserved. By the fact that substitution labels are only created with the form |db(«)|, as
shown in Lem. condition (I2) is preserved.

Moreover, if the invariant holds for a term sf), the name of any labeled step sf) —y sl{ has one
of the forms in the statement. Indeed, by case analysis on the kind of step taken:

1. db step. Then the name of the step is db(/3) and it has the first of the forms in the
statement.

2. 1s step. Then the step is of the form:

56 = C{Ca [\ L, ¢ (Colare [\ H]) = s

The name of the step is | («) e 1 (t). Since the invariant holds for sj, condition (I1)
ensures that | («) is an initial label and condition (I2) ensures that 1 (¢¢) is either an
initial label or of the form |db(«a)|. Hence the name of the step has either the second
form or the third form in the statement.

378

]

Lemma A.93 (Set of labels after a step). Let R’ : t§ —, t{ be a step in the LLSC without gc, let
i be the name of RY, and let o € labels(t%). Then at least one of the following conditions hold:

() « € labels(t)

(I) u = db(B) and o = y[db(B)]|§ with+y, 3,6 € labels(t§)

(I) 1 = db(B) and o = |db(B) |y with B, € labels(t§)

(V) p=1(B)e1 (v) anda = e~ with 3, € labels(t})

Proof. By case analysis on the kind of redex R*:

1. db redex. Then y = db(3) and we have:

th = (@ (ML, 5)) =y Cly[db(B)] « tx\[db(B)] : s"IL) = £

Let o € labels(t}). We consider the following cases, depending on the position where

« occurs in t{:

1.1
1.2
1.3

1.4

Internal to C, i.e. v € labels(C). Then «v € labels(t) and we are in the situation (I).
Internal toL, i.e. a € labels(L). Then « € labels(t}
Internal to (y[db(B)] : t¥), i.e. a € labels(y[db(B)] :). Let § be the external label
of t¢, i.e. the one decorating the outermost node of t! which is not a substitution.
More precisely, let § = £(t*). Note that:

labels(y[db(B)] : t) = labels(t)\{6} U {y[db(B3)]6}

) and we are in the situation (I).

So either a € labels(t*) < labels(ty) and we are in the situation (I), or o =
7[db(/3)]6 and we are in the situation (IT) since 7, 3, § € labels(t§).

Internal to (|db(B)] : s%), i.e. a € labels(|db(B)] : s*). Let ~y be the external label
of %, i.e. the one decorating the outermost node of st which is not a substitution.
More precisely, let § = £(s*). Note that:

labels(|db(B)] : s%) = labels(s")\{6} U {|db(B)]6}

So either a € labels(s’) < labels(t§) and we are in the situation (I), or a =
|db(/3)|6 and we are in the situation (IIT) since 3, § € labels(t§).

2. 1s redex. Then = | () ¢ 1 () and we have:

t5 = Ci(ColaP[\t]) 2T ¢y (co(Be [\ = £

where v is the external label of t! ie. the label decorating the outermost node of tt
which is not a substitution, that is v = £(t‘). Let o € labels(t]). We consider the
following cases, depending on the position where o occurs in #{:

379

2.1 InternaltoCy,i.e. a € labels(Cy). Then « € labels(t§) and we are in the situation (I).
2.2 InternaltoCy,i.e. a € labels(Cy). Then « € labels(t§) and we are in the situation (I).

2.3 Internal tot’,i.e. o € labels(t"). Then a € labels(t§) and we are in the situation (I).

2.4 Internalto (Be : t'),ie. o € labels(S e : t°). Since v is the most external label of
t* we have that:

labels(B o 1) = labels(t)\ [y} U {27}

So either o € labels(t’) < labels(t}) and we are in the situation (I), or o« = e~
and we are in the situation (IV), since 3,7 € labels(t5).

]

Lemma A.94 (Redex names in a term result from contracting a redex of that name). Let
P t§ —» ¢ t{ be a derivation in the LLSC without gc, where t} is an initially labelled term. Let j
be a redex name such that ;1 = o for some label o € labels(t%). Then p* has a step whose name
is j1, i.e. p* can be written as of the form p{ R p', where the name of R is ju.

Proof. By induction on the length of p':

1. Base case, i.e. p* empty. We claim that this case is impossible. By hypothesis, there exists
a label o such that ;1 € « € labels(tf). Since ¢} is an initially labelled term, the label o
must be an initial label, i.e. @ = a. Then we have that ;x < a. If i is the name of a db
redex, we have that 1 = db(f) < a, which is a contradiction. Similarly, if y is the name
of a 1s redex, we have that 4 = J ey C a, which is also not possible.

2. Induction, ie. p* = 0'S*. Let s* = tgt(o’) = src(SY) and let v be the name of ¢*. Since
o € labels(t]), by Lem. at least one of the following cases applies:

(I) Ifa € labels(s"). Then by i.h. o can be written as of the form o = of R‘of where
the name of R’ is i, so p* = ot R‘c5S* and we conclude.

() If v = db(B) with « = ~[db(B)]0 and ~y, 3,0 € labels(s’). Since up < a =
~[db(B)|d we consider three posibilities, depending on the position where 1 occurs
in a:

2.01 Ifp S vorpu € Boru € 6. Then since 7, 3,9 € labels(s’), we may apply
the i.h. to obtain that o can be written as of the form o = o{ R‘c§ where the
name of R’ is 11, so we conclude.

2.0.2 If ;i = db(f3). Then the name of the step S* is v = 1, so we conclude.

2.0.3 Otherwise. Note that i cannot be of the form [db()], because p is the name
of a redex. Hence the only remaining possibility is that ;o overlaps at least
one of the two boundaries in the expression v[db(3)]d. By “overlapping one
of the two boundaries” we mean that p is a label of the form 1 = ¢ where
either:

¢ is a suffix of v and (is a prefix of [db(/3)]d

380

Completeness

or
e is a suffix of y[db(/3)| and (is a prefix of ¢.

Note that the label ;2 cannot be the name of a db redex, and it must be the
name of an 1s redex. This leaves us with only two possibilities, namely that
p = ~' e[db(B)] or that ;1 = [db(/3)] @ ¢’. This contradicts the fact that the
shape of the name of a 1s step, when starting from an initially labeled term,
is either of the form a eb or of the form a e |db(’)], as has been shown in

Lem.[A.92

() Ifv = db(B) with a = |db(B) |y and B, € labels(s*). Since u = o = |db(B)]y
we consider three possibilities, depending on the position where . occurs in a:

2.0.1

2.0.2
2.0.3

Ifu < B orpu S 7. Then since 3, € labels(s’), we may apply the i.h. to
obtain that o can be written as of the form ¢ = ¢{ R‘c where the name of
R is (4, so we conclude.

If u = db(f3). Then the name of the step S* is v = p, so we conclude.

Otherwise. Note that ;1 cannot be equal to |db(3)| since p is the name of
a redex. So p must necessarily overlap |db(/)| and 7. This implies that p
cannot possibly be the name of a db redex, and it must be the name of a 1s
redex. In particular, 4 must be of the form |db(f)]| o /. This contradicts the
fact that the shape of the name of a 1s step, when starting from an initially
labeled term, is either of the form a e b or of the form a e |db(/3’)], as has been
shown in Lem.[A.92]

(V) Ifv = | (B)e1 (y) witha = e and 3,7 € labels(s*). Since u S o = ey we
consider two possibilities, depending on the position where p occurs in a:

2.0.1

2.0.2

Ifu < B orp € 7. Then since 3, € labels(s’), we may apply the i.h. to
obtain that o can be written as of the form ¢ = o{ R‘c where the name of
R is (4, so we conclude.

Otherwise. In any other case, ;1 must overlap one of the two boundaries in the
expression 3 @ v. Then p cannot be the name of a db redex, and it must be the
name of a 1s redex, i.e. 1 = 0 e ¢ where ¢ and ¢ are atomic labels. The only
remaining possibility is that § = | () and ¢ = | (). Hence the name of the
step Stisv = | (B) e | (v) = i, and we conclude.

O

The following definitions and lemmas are used to prove the implication (2 = 1) (Com-
pleteness) in Prop.

Lemma A.95 (Any redex has a residual after a derivation not including its name). In the LSC

without gc, let Ry be a step and p be a coinitial derivation. Lett‘ be an initially reachable variant

of the source, and consider the labeled variants RS and p* of Ry and p respectively, whose source is

381

t¢. Let pu be the name of RS, and suppose that yu is not among the names of the redexes contracted
by p. Then there exists a step R1 € Ry/p. Moreover, the name of its labeled variant R{ is also ji.

Proof. By induction on p. If p is empty it is immediate by taking R, := R,. Otherwise, p is of
the form S‘c*. The names of R and S* are different by hypothesis, hence Ry and S must be
different steps. Since in the LSC without gc there is no erasure, there is at least one residual
Ry € Ry/S, and given that residuals have the same name as their ancestors (Lem. , the
name of the labeled variant RY of R, is also x. Applying the i.h., we conclude that there is a
step Ry € Ry/o, i.e. Ry € Ry/So, and the name of the labeled variant Rf of R, is also y, as
required.]

Lemma A.96 (Any redex has an ancestor before a derivation not contributing to its name). In
the LSC without gc, let p be a derivation and let R, be a composable step, i.e. tgt(p) = src(Ry).
Let t be an initially reachable variant of the source of p, consider the labeled variant p* of p
whose source is t‘, and the labeled variant of R% of R, whose source iftgt(p?). Let j1 be the name
of Rt, and suppose that the names of the redexes contracted by p* do not contribute to 1, i.e. every
step S* in p* has a name v such that v hane it does not hold. Then there exists a step R such that
Ry € Ry/p. Moreover, the name of its labelled variant R} is also yu.

Proof. By induction on the length of p. If p is empty it is immediate by taking Ry := Rj;.
Otherwise, p’ is of the form oS*. The name of S* does not contribute to the name of R by
hypothesis.

Recall that Prop. states that whenever a step 7} creates a step 75 we have that the
name of T} contributes to the name of T}. By the contrapositive, whenever the name of a step
T? does not contribute to the name of a step T, the second step 7% must have an ancestor.

In our case, given that the name of S* does not contribute to the name of RY, there must
exist an ancestor, i.e. a step Ry such that Ry € Ry/S. Moreover, by the fact that residuals have
the same name as their ancestors (Lem. the name of the labeled variant RS of R, must
be .

Then, by applying the i.h., we conclude that there is a step R; such that Ry € Ry /0, ie.
Ry € Ry/0S, and the name of the labeled variant Rf; of Ry is also p, as required. O

A.4.2 Reachable normal forms are stable — proof of Prop.

Definition A.97 (Reachable contexts). Reachable contexts are defined by the following gram-
mar:

R:u=[] | Rt | tR | A\zR | R[z\t] | RCz)[2\R]

A variable x is reachable in a term t if it occurs free under a reachable context, i.e. t = R{x))
such that R does not bind 2. We write rv(¢) for the set of reachable variables of ¢. Given a
term ¢, a reachable step is given by either a db redex whose application lies below a reachable
context, or an 1s redex contracting a variable which lies below a reachable context. A term ¢
is a reachable-normal form if it has no reachable redexes. The set of reachable-normal forms is
written RNF. If a context (resp. variable, redex) is not reachable we say that it is unreachable.

382

Our aim is to prove that the set of reachable normal forms is a stable set. The proof depends
on a number of technical definitions and lemmas. We omit the long proofs by case analysis
of these lemmas.

Definition A.98 (Nesting). We follow the definition of nesting given in [6]. Namely R imme-
diately nests S (written R <} S) if the anchor of S lies inside the box of R. Moreover, R <p S
is defined as the transitive closure of <é, and then we say that R nests S.

Definition A.99 (Strongly reachable redex). A step R : ¢ — gp 15 S is strongly reachable if
and only if R is reachable and it is not nested by any other redex, i.e. R is minimal with respect
to <3.

Lemma A.100 (Characterization of reachability). The following properties hold:
1. A variable x is reachable int if and only if v € £v(nfyc(t)).

2. Atermt is a reachable normal form if and only if nfgc(t) is in — 4y 15 -normal form.

Proof. The proof of the first item is by induction on ¢. The interesting case is when ¢t = s[z\u].

Then:
(1) = {nfgc<s>[y\nfgc<u>] ify € £v(nfy(s))

nfgc(s) otherwise

so there are two cases:

1. Ify € fv(nfg(s)). Then by ih,y € rv(s),sox € rv(t) <= x € (rv(s)\{y}) U rv(u)
— 1z € (fv(nfg(s))\{y}) U fv(nfec(u)) <= € fv(nfy(t)).

2. Ify ¢ fv(nfy(s)). Then by ih, y ¢ rv(s), soz € rv(t) < z € rv(s) <
x € fv(nfg(s)) <= x € fv(nfe(s[y\u])) <= z € fv(nfy()).

The proof of the second item is similar, by induction on ¢. As before, the interesting case is
when t = s[z\u] and there are two cases.

1. Ifz € fv(nfy(s)). By item 1. of this lemma, we have that = € rv(s), so s = R{z)). Then
the term ¢ is not a RNF, since ¢ = R{x)[x\u] so it has a reachable 1s step. On the other
hand, the term nf,. () is not a — gy, 15 -normal form, since nfgc(t) = nfyc(s)[z\nfgc(u)]
and x occurs free in nfy.(s), so there is a 1s step.

2. If v ¢ fv(nfy(s)). By item 1. of this lemma, we have that z ¢ rv(s), so ¢ isa RNF <
s, uware RNFs <= nfy(s), nfgc(u)are — 4y 15 -normal forms <= nfy(s)[z\nfg(u)]
is a — g, 15 -normal form.

]

Definition A.101 (Free occurrence, descendant of a free occurrence). We say that (¢, C, x) is
a free occurrence if t = C{x)) where C does not bind z. A free occurrence (t,C, x) is reachable
if C is a reachable context, and unreachable otherwise. If p : ¢ — s is a reduction sequence,
we say that a free occurrence (s, Cy, x) is a descendant of a free occurrence (¢, Cy, z) after p if
given an initially labelled variant p’ : t¢ —, s’ of the reduction p we have that t* = C/(x}(®))
and s’ = C5(x®), where C{ and C} are labelled variants of C; and C, respectively.

383

Remark A.102. Since the labeled calculus LLSC is an orthogonal axiomatic rewriting sys-
tem (Prop.[6.32), descendants after a derivation p coincide with descendants after a derivation
o whenever p and o are permutation equivalent.

Lemma A.103 (Unreachable occurrences and steps can be erased). Consider a reduction to
gc-normal form o : t —» g nfgc(t). Then:

1. If (t,C, x) is an unreachable free occurrence, then (t,C, x) has no descendants after .
2 IfR:t — 415 S is an unreachable step, then R/c is empty.

Proof. We only give the proof of item 1., by induction on C. The proof of item 2. is similar, by
induction on the context C, under which the step R takes place, and depends on item 1.

1. Empty, C = []. Impossible, since then C is a reachable context.

2. Left of an application, C = C’' s. Note that C’' must be an unreachable context, otherwise
C would be reachable. So (C’'{z),C’, x) is an unreachable free occurrence. Consider a
derivation to gc normal form o : C'x)) s — ¢ nfgc(C'C@))) nfgc(s). By algebraic conflu-
ence, we know that o is permutation equivalent to the composition of two derivations,
ie. 0 = 01 09, where 0 carries C'{(x)) to gc-normal form and o carries s to gc-normal
form. More precisely, 0, is defined as the embedding of the reduction sequence 7 under
the context [J s, and o5 is defined as the embedding of the reduction sequence 75 under
the context nf,. (C'{z)) [, where 7y : C'{x)) — g nfgc(C'x)) and 75 1 § — e Nfge(s).
By ih. (C'dx),C’, x) has no descendants after 71. This implies that (C{x)), C, x) has
no descendants after 0y. Hence (C{x)),C, z) has no descendants after o100 = 0, as
required.

3. Right of an application, C = sC’. By i.h., similar to the previous case.
4. Under an abstraction, C = A\z.C'. By i.h., similar to the previous case.

5. Left of a substitution, C = C'[x\s]. Note that C’ must be an unreachable context, other-
wise C would be reachable. So (C'{(x)), C’, x) is an unreachable free occurrence. Consider
a derivation to gc normal form o : C'{@)[2\s] — gc nfac(C'Cx))[2\nfec(5)]*. By alge-
braic confluence, we know that ¢ is permutation equivalent to the composition of three
derivations, i.e. 0 = 01 09 03, where oy carries C'{z)) to gc-normal form, o, carries s to
gc-normal form, and o3 performs the garbage collection of the outermost substitution,
if possible. More precisely, o, is defined as the embedding of the reduction sequence
71 under the context [J[x\s], and o5 is defined as the embedding of the reduction se-
quence 7, under the context nfy.(C'{x))[z\(J], where 71 : C'{z)) — gc nfgec(C'Cx))
and 75 : § — g nfgc(s). Moreover, o3 is defined either an empty derivation or a single
gc step, in such a way that o3 : nfy(C'{a))[2\nfgc(s)] — ge Nfgc(C'Cx))[2\nfgc(s)]*.
By i.h. (C'{x),C’,x) has no descendants after 71. This implies that (C{z)), C, z) has
no descendants after 0. Hence (C{x)), C, x) has no descendants after 010903 = 0, as
required.

384

6. Inside a substitution, C = s[y\C']. We know that C is an unreachable context. Hence

there are two possibilities, depending on whether y is a reachable variable in s:

6.1

6.2

Ify is a reachable variable in s. Then C’' must be an unreachable context, otherwise
C would be reachable. The result follows by applying the i.h., similarly as in the
previous case.

Ify is not an reachable variable in s. That is, y ¢ rv(s). Then y ¢ £v(nfg.(s)) by the
characterization of reachable variables (Lem.[A.100). This means that nfg. (s[y\C'{x)]) =
nfgc(s) so, by algebraic confluence, o is permutation equivalent to the composi-

tion of a derivation and a step, i.e. ¢ = 015, such that o; normalizes s and S
performs the gc step that erases the outermost substitution. More precisely, o is
defined as the embedding of a derivation 7; under the context [][y\C'{z)|, where

Ti 1§ — g Nfgc(s) and S is ge step S 1 nfy(s)[y\C'z)] — gcnfgc(s). Then

the free occurrence (¢, C, x) has no descendants after 015 = o, since S erases the
subterm that contains the descendant of said free occurrence.

]

Lemma A.104 (Composition of reachable contexts). The composition C1{Cy) is a reachable

context if and only if C; and Cy are reachable contexts.

Proof. Straightforward by induction on C;. O

Lemma A.105 (Strongly reachable redexes are not nested). Let R be a strongly reachable
redex. Then for any other redex S we have that —(S <z R).

Proof. Suppose that S < R. Then since < is defined as the transitive closure of <}, we have
that S <g &’ <é R. Note that S’ cannot be a reachable redex, since R is strongly reachable,
and hence minimal among the reachable redexes. So S’ is unreachable. Let us show that this

is impossible, by case analysis on the kind of redex 5"

1. If S" is a db redex. Then S’ is of the form S" : C{(Az.t)Ls) — g4 C{t[x\s|L) and since

S’ <g R, the anchor of R is inside s, i.e. s = C'(u) where the root of u is the anchor
of R. Then since R is reachable we have that the context C{(A\x.t)LC’) is a reachable
context. By Lem.[A.104 we conclude that C must also be a reachable context. Hence S’
is reachable, which is a contradiction.

. If S" is a 1s redex. Then S’ is of the form: S’ : C{(Colx)[2\t]) —1s C1{Col(t)[z\t])
and since S’ <p R, the anchor of R is inside t, i.e. ¢ = C'(s) where the root of s is
the anchor of R. Then since R is reachable we have that the context C;(Colz)[2z\C'])
is a reachable context. By Lem. we conclude that C; and Collx)[x\C'| must
also be reachable contexts. Now observe that the only production that can be used
to derive that Co(x»[x\C'] is a reachable context, is “R ::= R{z))[2\R]”. So we must
have that Co{(x)) = C3{z)) where Cj is a reachable context. By Lem. we have
that C;{C3[z\t]) is a reachable context. Hence the 1s step T" : C;{(Cs{x)[x\t]) — 15

385

C1{Cs{t)[x\t]) is reachable. Moreover T' <4 R, since the anchor of R is inside the ar-
gument of the substitution [x\¢]. This contradicts the fact that R is strongly reachable,
and we obtain a contradiction, as required.

O

Lemma A.106 (Context-freeness). Let R, S, and T be coinitial redexes such that R’ € R/S
andT' € T/S. If —(S <g R) then (T <g R < T' <3z R').

Proof. This is the context-freeness property. See [[6, Proposition 4] for a proof. [

Definition A.107 (Chained substitution context). A substitution context L is said to be (z, z)-
chained according to the following inductive definition:

x ¢ dom(L) x #y y#z Cisareachable context L is (x,y)-chained
L is (z, x)-chained L[y\C«=z)] is (z, z)-chained

x#y y#z Lis(z,z)-chained
L[y\t] is (z, z)-chained

Remark A.108. In general a x-chained substitution context is of the form:

Lo[wo\Colx1 p|L1[z1\Ci1lx2)] - - - L1 [Tn-1\Crn1dTn)]0

for some integer n > 0, where xy = x, x,.1 = 2, and C; is a reachable context for every
0<i<n.

Remark A.109. If L, is (z, y)-chained and L is (y, z)-chained, then L;L, is (z, z)-chained.

Lemma A.110 (Reachability inside a substitution). A context tL|2\C| is reachable if and only
if there exists a variable x such that the following three conditions hold:

1. C is a reachable context,
2. t is of the form t = C'{(x)) where C' is a reachable context, and
3. L is a (x, z)-chained substitution context.

Proof. Let us check each side of the implication:

(=) Itisimmediate to check that C must be a reachable context by Lem. Let us check
the second and third conditions by induction on the length of L. If L is empty, then ¢
must be of the form C'{(z)) and indeed L = [Jis (z, z)-chained. If L = L'[y\s] there are
two possibilities:

1. If z is reached via s. That is s = C"{z)) where tL'[y\C"] is a reachable context. By
ih.t = C'{x) and L' is a (z, y)-chained substitution context. So L = L'[y\C"{z)]
is (x, z)-chained.

386

2. Otherwise. Then tL' is of the form C"{z)) where C” is a reachable context, so
tL'[2\C] is a reachable context. By i.h. this means that { = C'{x)) and L' is a
(x, z)-chained substitution context. So L = L'[y\s] is also (z, z)-chained.

(<) Lett = C'{x). By induction on the derivation that L is (x, z)-chained:

1. IfL is (2, z)-chained with z ¢ dom(L). Then x = z and C'{(z))[2\C] is reachable
since C’ and C are reachable.

2. IfL = L'[y\C"«z))] where C" is reachable and L' is (x,y)-chained. By i.h. we have
that C'{(x))L'[y\C"] is a reachable context. Hence C'{(x)L’ [y\C"{ 2 »][2\C] is reach-
able.

3. IfL = L'[y\s] where L’ is (x, z)-chained. By i.h. we have that C'{z)L'[2\C] is a
reachable context. Hence by Lem.[A.104]C’x)L’ must be of the form C;{z)) where

C; is a reachable context. Then C;[y\s] is also reachable, which in turn implies that

C1z»y\s][z\C] = C' x)L'[y\s][2\C] is reachable, as required.
[]

Lemma A.111 (Strongly reachable redexes have reachable residuals). Let R be a strongly
reachable redex and let S # R be any other redex coinitial to R. Then:

o The set of residuals R/S is a singleton and it is reachable.
e Iftgt(R) is in RNF, then R/S is strongly reachable.

Proof. During the proof we shall implicity use the fact that these two conditions are equivalent
for a reachable redex R:

(1) For every redex S we have that —(S <z R).
(2) For every reachable redex S we have that —(S <g R), i.e. R is strongly reachable.

The implication (1 == 2) is immediate. The reverse implication is Lem. The proof
proceeds by induction on the context C under which the S step takes place. We study only
the base case, when C = []. The inductive cases are not all straightforward, but they can be
proved using the same ideas. By case analysis on the kind of redex S:

1. db redex. Then the step S is of the form (Az.t)L s =, t[x\s]|L. Note that S is a reachable
redex so, since R is minimal, the anchor of R cannot be internal to s. We consider two
subcases, depending on whether the anchor of R is internal to ¢ or internal to L.

1.1 If the anchor of R is internal to t. Then t = C'(u) where the anchor of R is at the
root of u and the situation is:

(Az.C'{u))L s —>— C{ud[x\s]L

Rl R/Si
(Ax.C'(u'))L s C'{u'y[x\s]L

387

Note that R is reachable, so (A\x.C')L s is a reachable context. Then, by Lem.
we have that C'[x\s]L is also a reachable context. Hence R/S is reachable.

Moreover, let us show that R/S is strongly reachable. By contradiction, suppose
that T <, R/S for some reachable redex T'. We consider three cases, depending
on whether 7" is a db redex created by S, a 1s redex created by .S, or it has has an
ancestor before S:

1.1.1 T is a db redex created by S. This case is not possible, since there should be an
outermost application in order to create a db redex in this way.

1.1.2 T isals redex created by S. This case is not possible as we would have — (T <}
R), since the box of T" is the argument of the substitution [z\s] and the anchor
of R/S is inside u.

1.1.3 T has an ancestor before S. Let Ty be an ancestor of T, i.e. T' € Ty/S. Then
since —(S < R) and T' <z R/S, by Context-freeness (Lem. we have
that T, <g R, contradicting the fact that R is minimal with respect to the box
order.

1.2 If the anchor of R is internal to L. Then L = L;[y\C'u]Ls, where the anchor of R is

at the root of u, and the situation is:

(Az.t)L, [yl\C’<u>]L2 s —>> t[z\s]L, [gi\C’<u>]L2
R R/S
(Az.t)Ly[y\C'(u')]Ly s t[x\s]L1[y\C'(uw')]Ly

Then since R is a reachable redex, the context (Az.t)Li[y\C'|Ls s must be reach-
able. By Lem. there must exist a variable z such that A\xz.t is of the form
C"{z) where C” is a reachable context, and moreover L; is a (z, y)-chained sub-
stitution context. Note that Az.t = C"{z)) so C" = Ax.C; and x # z. In particular,
t = C1{z)) and C; is a reachable context. By applying Lem. now in the op-
posite direction, we have that the context ¢[z\s]L;[y\C'|Lz is reachable, so R/S
is a reachable redex. Moreover, let us show that R/S is strongly reachable. By
contradiction, suppose that 7' <} R/S for some reachable redex 7. We consider
three cases, depending on whether 7" is a db redex created by .S, a 1s redex created
by .S, or it has has an ancestor before S:

1.2.1 T is a db redex created by S. This case is not possible, since there should be an
outermost application in order to create a db redex in this way.

1.2.2 T is a 1s redex created by S. Then T contracts an occurrence of in ¢, and the
box of T is the argument of the substitution [z\s]. The anchor of R/S is not
inside that substitution, so we have —(T <3 R/S).

1.2.3 T has an ancestor before S. Let Ty be an ancestor of T, i.e. T' € Ty/S. Then
since —(S < R) and T' <z R/S, by Context-freeness (Lem. we have
that 7y <p R, contradicting the fact that R is minimal with respect to the box
order.

388

2. 1s redex. Then the step S is of the form: C;{z)[x\{] LR Ci(t)[x\t]. Let us consider two
cases, depending on whether the anchor of R is to the left of the substitution, or inside

the substitution:

2.1 If the anchor of R is to the left of the substitution, i.e. internal to C;{x). Let
Cilxp[x\t] = C'{uy[x\t] such that u is the anchor of R. We consider three further
subcases, depending on the relative positions of the hole of C; and the hole of C':

2.1.1

2.1.2

If Cy is a prefix of C'. That is, C' = C1{Cq). Then C'{x)) = C1{Calu)), so Cq
must be empty and v = z must be the anchor of R, so R is an 1s redex.
Furthermore R contracts the same variable occurrence as S, so R = S, which
is impossible.

If C' is a prefix of C;. That is, C; = C'(Cq). Then the source of R and S is of
the form C'(Co{z)))[x\t], where the subterm Co(x)) is the anchor of R. Note
that R cannot be a 1s step, since then we would have that Co = []. This
would in turn mean that R and S contract the same variable occurrence, so
R = S, which is impossible. Hence R must be a db step, that is, Cox)) =
(Ay.s)Lu. Let (\y.5)L @ be the term that results from (\y.s)Lu by replacing
the occurrence of under the context Cy by ¢, ie. (M\y.5)L@ = Co{t). The
situation is:

C{(Ay-s)Luwy[z\f] == C{(Ay-8)L @[]
Rj R/S l
C'(sly\ulL)lx\] C'(sly\alLy[=\t]
By hypothesis, R is a reachable redex, so the context C'[x\] is reachable. Then
R/S is also a reachable redex. Moreover, let us show that R/S is strongly
reachable. By contradiction, suppose that 7" <. R/S for some reachable redex

T'. We consider two cases, depending on whether 7" is a db redex created by
S, or it has has an ancestor before S:

2.1.2.1 T is a db redex created by S. In order to create a db redex, we know

that two conditions must hold. On the first hand, the argument of the
substitution contracted by S must be an answer, more precisely, we know
that ¢ is of the form ¢ = vL;, where v is an abstraction. On the other
hand, C; must be an applicative context, more precisely we know that
Cy = CL(CLo 7).

To conclude, note that the application node involved in the pattern of
T is strictly contained either in 3, or in L, or in 4, so it cannot possibly
nest R/S. To state it more precisely, we consider three similar subcases,
depending on whether the hole of C; lies inside s, inside L, or inside u:

« The hole of Cy lies inside s. Then s = Cij((JLy7) and C, = (\y.Cj)Lu.

389

The situation is:

C'{(Ay.ClxLy)L ud[2\vLy | —2= O/ (Ay.Co(vL Ly 7))L ud[x\vLy |
R ws)
C'(ColaLy [y \u]L)[x\vLs] C'(CovLiLy [y \uL)[2\ VL]
The redex T is underlined and clearly —(T <g R/S) since the anchor
of R/S is to the left of the box of T'.
« The hole of C, lies inside L. Similar to the previous case.
« The hole of C, lies inside u. Similar to the previous case.
2.1.2.2 T has an ancestor before S. Let T; be an ancestor of T, i.e. T' € Tj/S. Then
since —(S < R) and T' <3 R/S, by Context-freeness (Lem. we
have that T, <z R, contradicting the fact that R is minimal with respect
to the box order.
2.1.3 If C' and Cy are disjoint. Then there is a two hole context C such that: ¢’ =
C{, z) and C; = C(s,[), and the situation is:

Cls, 2)[a\t] —2= Cls, H[x\t]
A) X R/s|
C(s', xy[x\t] C(s", tH[x\t]

Since R is a reachable redex, the context C(J,) is reachable. Hence C{(J, t)
is also reachable, which implies that R/S is also a reachable redex. Moreover,
let us show that R/S is strongly reachable. By contradiction, suppose that
T <} R/S for some reachable redex 7. We consider two cases, depending on
whether T is a db redex created by .5, or it has has an ancestor before S:

« T is a db redex created by S. In order to create a db redex, we know
that two conditions must hold. On the first hand, the argument of the
substitution contracted by S must be an answer, more precisely, we know
that t is of the form ¢ = vL; where v is an abstraction. On the other
hand, C; must be an applicative context, more precisely we know that
C; = C{{JLy u). Moreover, since the anchor of R/S is inside the box of
T, we have that u = C3(s), and C = C((JsLy C3{(1)) where [and [T,
are the first and second parameters of the two-hole context C. Then the
situation is:

€, {xLy Cy(sHM\vL1] —2= C(vL Ly C5(sH)[\vLi]

R| o R/s|
O (L Gy s [\ VL]~ € (WL L Gy (s [\ VL1]

Since R is a reachable redex by hypothesis, the context C}(xLy C3)[x\vL;]
must be reachable. By Lem.[A.104this implies that C|{(JL, C3{s"))[2\vL;]
must also be a reachable context. Hence the step at the bottom of the
diagram S/R is a reachable redex. This contradicts the hypothesis that
the target of R is in RNF.

390

« T has an ancestor before S. Recall that R is strongly reachable so it is
minimal with respect to the box order and in particular —(S <z R).
Let Ty be an ancestor of T, i.e. T € Ty/S. Then since —(S < R) and
T <g R/S, by Context-freeness (Lem. we have that T, <z R,

contradicting the fact that R is minimal with respect to the box order.

2.2 Ifthe anchor of R is inside the substitution, i.e. internal tot. This case is impossible,
as we would have S <é R, but R is strongly reachable, and in particular minimal
with respect to the box order.

]

With these tools, we can prove the main result of this section.

Proposition A.112 (Full proof of Prop.[7.27-The set RNF is stable).

Proof. The proof goes by checking items 1. and 2. in the definition of stable set:

1. RNF is closed under parallel moves. It suffices to check that RNF is closed under

reduction. Let R : t — 4,15 S With ¢ € RNF, and let us check that s € RNF. It can be
proved as a lemma that RNFs given in Lem. that t € RNF if and only if nfg. (%) is
in — g, 15 -normal form, and similarly for s.

Let 0 : t — g nfgc(t) be a sequence of gc steps to normal form. Since ¢ € RNF, by
Lem. [A.100, we have that nfg.(¢) is in — 415 -normal form. Consider the relative
projections 0/R and R/o. Since o/R is the projection of a sequence of gc steps, it is
also sequence of gc steps. Let 0/R : s — 4 s". The situation is:

Nfgc(t) oo &'

Since nfg(t) is in — 4,15 -normal form, R/c must be empty, so s = nfg(t). In
particular, s’ is a gc normal form, so by confluence s is the gc normal form of s, ie.
nfgc(s) = s = nfg(t). Therefore nfy(s) is in — 4 15 -normal form which means, by

Lem.|A.100} that s € RNF as required.

RNF is closed under unneeded expansion.. Let R : t — 4,15 5 with £ ¢ RNF and
s € RNF, and let us show that R is RNF-needed. In fact, it suffices to show that R is a
strongly reachable redex. First we prove that R is reachable.

Claim: R is a reachable redex. By contradiction, suppose that R is unreachable,
consider a reduction from ¢ to gc-normal form o : t — g¢ nfgc(t), and the relative
projections R/o : nfg(t) = avu1s5" and 0/R : s — g_15 8'. By the fact that
unreachable redexes have no residual after going to gc-normal form (Lem.
we know that R has no residual after o, so R/o is empty. Hence nf,(t) = ¢/, so

391

s" is in gc-normal form and by confluence we obtain that nfg.(s) = " = nfg(2).
The situation is:

Nfgc(t) oo s’

Since t € RNF, by the characterization of RNFs given in Lem.[A.100| we have that
nfgc(t) is not a — g5 15 -normal form. On the other hand, since s € RNF, by
Lem. |A.100, we have that nfg.(s) = nfg.(t) is @ — 4p 15 -normal form. This is a

contradiction, which concludes the proof of the claim.

To see that R is a strongly reachable redex, we are left to check that R is minimal, among
the reachable redexes, with respect to the nesting order <g. Indeed, by contradiction,
suppose that 1 is not minimal. Then since the order <y is well-founded (as there are
finitely many redexes in any given term) there is a reachable redex such that S <z R
and such that S is minimal among the reachable redexes. That is, S is a strongly reach-
able redex. Then by the fact that strongly reachable redexes have reachable residuals
(Lem. the redex S/R is reachable. This contradicts the fact that s is in RNF. So

R must be minimal with respect to the nesting order <g, as required.

]

A.4.3 Head linear reduction is normalizing — proof of Coro.[7.56]

Corollary A.113 (Full proof of Coro.[7.56|-Head-linear reduction is HLNF-normalizing). The
strategy Sy, associated to the sub-ARS HIL is HLNF-normalizing.

Proof. To show that Sy, is HLNF-normalizing, using Prop. we must show that:

1. The set NF(HL) coincides with the set HLNF, so being NF (HIL)-normalizing is equiva-
lent to being HLNF-normalizing. For this we will show the two inclusions:
1.1 NF(HL) < HLNF
1.2 HLNF < NF(HL)
2. The sub-ARS HL is closed and residual-invariant, to be able to apply Prop. For this
we will show that:
2.1 The set NF(HL) is closed by reduction.
2.2 The sub-ARS HL is residual-invariant.
Part 1a: every HIL-normal form is a HLNF.
By induction on ¢ it is straightforward to check that if ¢ € NF(HL) then ¢t € HLNF.

Part 1b: every HLNF is a HL.-normal form.
It is immediate to check that (Az.t)L and H{x)) have no db or 1s redexes under a head

392

context.

Part 2a: the set NF(HL) is closed by reduction.

We have already seen that NF(HIL) = HLNF. Let t € HLNF and ¢ — s, and let us check that
s € HLNF. More precisely, wee show that if ¢ is an answer, s is still an answer, and if ¢ is a
structure whose head variable is z, s is still a structure with the same head variable:

1. Ift is an answer, t = (Az.t')L. There are three cases depending on the kind of the step
t— s:

1.1 db step. A db step can be internal to ¢’ or internal to one of the substitutions in L.

1.2 1s step. The variable contracted by an 1s step can be internal to ¢’ or internal to
one of the substitutions in L; the substitution affected by the 1s step might be or
not be one of the substitutions of L.

In any case, the contractum s is still an answer.
2. Ift is a structure, t = H{x)). By induction on H:

2.1 Empty, H = []. Trivial, as there are no steps from z.

2.2 Left of an application, H = H'u. Three cases, depending on the position where
the step ¢ — s takes place:

2.2.1 At the root. This case is impossible, as the step should be a db step, but H'{(x)
is not of the form (A\y.t')L.

2.2.2 Left of the application. That is, the step is internal to H'{x)). Then we have
that t = H'{x))u — ru = s, and r is a structure by i.h., so s = ru is also a
structure.

2.2.3 Right of the application. That is, the step is internal to u. Then we have that
t=H{{a)u— H{x)r=s,and s = H'{x) ris still a structure.

2.3 Left of a substitution, H = H'[y\u].

2.3.1 At the root. The step must contract an occurrence of y in H'{(z)). Note that,
since ¢ is a structure, the head context H = H'[y\u] must not bind z, and in
particular = # y. So there is a two-hole context C such that H' = C{J,),
and the step is of the form:

t = Cla,yly\u] — &z, wly\u] = s

Note that 6<D, u) is still a head context as a consequence of , so sisa
structure with head variable .

2.3.2 Left of the substitution. Then the step is t = H'{x))[y\u] — r[y\u] = s. By
ih. 7 is a structure with the same head variable, i.e. 1 = H"{x)). Note that
x #y,s0 s = H'{x)[y\u] is a structure with head variable .

2.3.3 Inside the substitution. Then the step is t = H'{xp[y\u] — H'{xpy\r] = s.
So s = H'{x»[y\r] is still a structure with head variable .

393

Part 2b: the sub-ARS HL is residual-invariant.
Let R € HL and consider R # S. Let us show that there is a residual R’ € HLL. n R/S.
Before, let us state two simple facts:

C{,t) is a head context —> C{[7, ') is a head context

~ A1l
where C is any two-hole context ()

C1{Cq[x\t]) is a head context = C;{Cy) is a head context (A.12)

These properties can be shown by induction on C.

Now we proceed by induction on the head context /7 under which the step R takes place:

1. Empty, H = []. Two cases, depending on the kind of redex of R:

1.1 If R is a db step. Then R is of the form:

(Ax.t)L s — t[x\s]L

There are three cases, depending on the position where S takes place. Note that S

cannot be at the root:

1.1.1

1.1.2

1.1.3

If S is internal to t. By this we mean that S is a db redex completely internal to
t, or an 1s redex whose anchor is a variable y that lies inside ¢ (the substitution
binding y might be also inside ¢, or it might be one of the substitutions in L).
Let ¢ denote the result of applying S on . Then:

(Az.t)L s —— t[z\s]L
J
(Az.f)Ls 5 (Azf)Ls

and R/S is also in HL.

If S is internal to L. By this we mean that L = L;[y\u|L3, and S is either a db
redex completely internal to u, or an 1s redex whose anchor is a variable z
that lies inside u (the substitution binding z might be also inside u, or it might
be one of the substitutions in Ly). Let L denote the result of applying S on L.
Then:

(Az.t)L s —— t[z\s]L

|
(Az.t)Ls 5 (Az.t)L s

and R/S is also in HL.
If S is internal to s. Let § denote the result of applying S on s. Then:

(Az.t)L s —— t[z\s]L
d
Oz)LE %)L s

and R/S is also in HL.

394

1.2 If R is a 1s step. Then R is of the form:

Hapla\t] — H{b[a\t]

There are four cases, depending on the position where S' takes place.

1.2.1

1.2.2

1.2.3

At the root. Note that S # R and that S cannot be a db step, since there
is not an application at the root. The remaining possibility is that S is a 1s
step contracting a different occurrence of z. That is, that there is a two-hole
context C such that:

«O,zy=H

Then:
O, H[x\t] —E= Ct, 2d[z\t]

J
G, V] 2= Gt B[]
To conclude that R/S € HIL it suffices to observe that C((J, ¢) is a head context
as a consequence of and the fact that 6<D, x) is a head context.

Internal to H{x)), disjoint from the hole of H. Then there is a two-hole context
C such that

O, s)=H
and C{x,) is the context under which the step S takes place. Then:

G, sH[a\t] —2= Ct, sH[2\t]

y

&, 5 a\t] 256t 5[\]

To conclude that R/S € HL it suffices to observe that C{(J, s') is a head con-
text as a consequence of (A.11) and the fact that a<|j, s) is a head context.

Internal to H{x)), above the hole of H. Two cases, depending on the kind of
redex of S:

1.2.3.1 If S is a db redex. Then the step S is of the form:

Cr{(Ay-s)Lup[z\t] — Cils[y\ulLy[x\t]
such that H{z)) = C;{(A\y.s)Lu) and C; is a prefix of H (i.e. H = C1{Cs)).
So the hole of H can be either:

« Internal to s. This is impossible as head contexts do not go under ab-
stractions.

« Internal to one of the substitutions in L. This is impossible as head con-
texts do not go inside substitutions.

« Internal to u. This is impossible as head contexts do not go to the right
of applications.

395

1.2.3.2 If S is a 1s redex. Then the step S is of the form:

CLColyply\sDIx\t] — CrlCols)[y\sD]2\l]

such that H{x) = C1{Co{y)[y\s]) and C; is a prefix of H (ie. H =
C1{C3)). Note that the hole of H cannot be internal to s since head contexts
cannot go inside substitutions, so the hole of H must be internal to Co{(y)
The occurrences of x and y must be disjoint, since they are different vari-
ables and R and S are different 1s redexes, so there must exist a two-hole
context C such that:

CiCO,wly\sl) = H Cla,) =Cy

Then:
C1(Clr, yy[y\sla\t] — = Cu(Clt, yly\sDl\E]

S

C1(Ca, $)[\sDla\] —= Ci(Eet, s)[y\sD[\]

To conclude that R/S e HIL it suffices to observe that C;(C{[7, s)[¢/\s])isa
head context as a consequence of and the fact that C;(C(J, y)[y\s])

is a head context.
1.2.4 Internal tot. Then:

H{@)[a\t] —"= H{t)[2\1]

J
R/S

Hap[a\t'] —— H{E)[x\t']

2. Left of an application, H = H't. We argue that the step S cannot take place at the root.
Suppose that S takes place at the root. Then it is a db step. Then (Az.s)L must have a
db or 1s redex under the head context H'. Two cases:

2.1 If R is a db redex. Then there must be an application node in (Az.s)L under a head
context. But head contexts do not go below abstractions or inside substitutions, so
this is impossible.

2.2 If R is a 1s redex. Then there must be a variable in (\z.s)L under a head context.
But head contexts do not go below abstractions or inside substitutions, so this is
impossible.

Then the step S must take place either to the left of the application (and we conclude
by i.h.) or to the right of the application (and then R and S are disjoint, so it is trivial).

3. Left of a substitution, H = H'[z\t]. Three cases:

3.1 If S takes place at the root. Then S must be a 1s redex. Depending on the kind of
redex of R:

396

3.1.1 If R is a db redex. Then R is of the form:

H{(Ay.s)Lu)[x\t] — H'(s[y\ulL)[\t]

Four cases depending on the position of the contracted occurrence of x:

3.1.1.1 The contracted occurrence of x is in H'. Then there is a two-hole context ¢
such that:

«O,2)=H
and:
C(Ay-s)L u, 2\ t] —= Cs[y\ulL, 2)[2\]
5|
C(Oy-s)Lu, O[] =2 s [y\ulL, H[\¢]

To conclude that R/S € HIL it suffices to observe that C({(J, ¢) is a head
context as a consequence of and the fact that C(J,z) is a head

context.

3.1.1.2 The contracted occurrence of x is in s. Let S denote the result of replacing
the corresponding occurrence of = in s by ¢. Then:

H'{(Ay.s)Lup[a\t] —= H'(s[y\u]L)[2\(]

|

HY{ Oy S wy[n\f] == H(S[y\ulty[\]

3.1.1.3 The contracted occurrence of x is in L. Analogous to the previous case.
3.1.1.4 The contracted occurrence of x is in u. Analogous to the previous case.
3.1.2 If R is a 1s redex. Then R is of the form:

Hi(H Xy ply\sDle\t] — HiCHa(s)[y\sDl\E]
with H' = H{(H[y\s])-

Three cases depending on the position of the contracted occurrence of x:

3.1.1 The contracted occurrence of x is in H. Then there is a two-hole context C such
that:

6<D, $> = H1
and:
C(Ha{y) [yl\SL o)[a\t] = CLHas)[y\s], w)[2\E]
CCH) [y\s]. O\t~ ECH [\ s], D \]

To conclude that R/S e HL it suffices to observe that C(J, ¢) is a head context
as a consequence of and the fact that 6<D, x) is a head context.

397

3.1.2 The contracted occurrence of x is in H,. Analogous to the previous case.

3.1.3 The contracted occurrence of x is in s. Then s = C;{x)) and:

Hi(Hy{yH[y\Crla)Dla\t] — = Hi(Ha(Crla))[y\CrlapD[\1]

S
R/S

Hy (Hy(y)ly\Colt)DIa\t] —— Hi{H(CidE))[y\Ci (D[]

To conclude that R/S € HL it suffices to observe that H,{Hs[y\C1{t)]) is a
head context as a consequence of and the fact that H1{Hs[y\C1{(z)]) is

a head context.
3.2 If S takes place to the left of the substitution. Then we conclude by i.h..
3.3 If S takes place to the right of the substitution. Then R and S are disjoint, so it is

trivial.

]

A.4.4 Need linear reduction is normalizing — proof of Coro.[7.59

Lemma A.114 (Properties of needed contexts). The following hold:

1. Answers have no redexes or variables under need contexts.
If (Az.s)L = N(A) then A is not a redex nor a free occurrence of a variable.

2. Unique needed variable.

IfN (x) = Noy)) then Ny = No.

3. Erasing a substitution in a need context.
IfN (No[z\t]) is a need context, then N1{Ns) is also a need context.

4. Replacing a term in a need context.
IfC is a two-hole context, C{(J, t) is a need context, andt has no variables bound by C, then
6<D, s) is also a need context (where s is an arbitrary term).

Proof. Item 1 is by induction on L. Items 2 and 3 are by induction on Ny. Item 4 is by induction
on the formation of the need context {7, t). O

Corollary A.115 (Full proof of Coro. [7.59-Needed linear reduction is NLNF-normalizing).
The strategy Syi, associated to the sub-ARS NIL is NLNF-normalizing.

Proof. To show that Sy, is NLNF-normalizing, we will apply Prop. to conclude that Syy,
is NF(NL)-normalizing. We must show that:

1. The set NF(NL) coincides with the set NLNF, so being NF(NL)-normalizing is equiva-
lent to being NLNF-normalizing. For this we will show the two inclusions, (1a) NF(NL) <
NLNF and (1b) NLNF < NF(NL).

398

2. The sub-ARS NL is closed residual-invariant, to be able to apply Prop. For this we
will show that (2a) the set NF(NL) is closed by reduction, and (2b) the sub-ARS NL is
residual-invariant.

Part 1a: every NL-normal form is a NLNF.

By induction on ¢ it is straightforward to check that if ¢ € NF(NIL) then ¢ € NLNF.

Part 1b: every NLNF is a NL-normal form.

Given t € NLNF it can be shown that it is a NIL-normal form. There are two cases, depending
on the shape of ¢. If ¢ is an answer it is a direct consequence of Lem. If it is a structure,
t = N{x)), then it is straightforward by induction on N.

Part 2a: the set NF(NL) is closed by reduction.

By items (1a) and (1b), we know that NF(NLL) = NLNF. Let ¢; € NLNF and let t; — t; be an
arbitrary step (not necessarily in the strategy). We claim that ¢5 € NLNF. There are two cases,
depending on the shape of #;: if ¢; is an answer (Az.t)L, then by induction on L it can be seen
that ¢, is also an answer. If ¢; is a structure N{z)), then by induction on N it can be seen that
to is also of the form N'{(x).

Part 2b: the sub-ARS NL is residual-invariant.

Let R € NL and consider R # S. Let us show that there is a residual R € NL n R/S.
By induction on the need context N under which the step R takes place. Most overlappings
between redexes R and S are uninteresting, and it is immediate to show that there is a residual
R’ € R/S in the strategy, resorting to Lem. when required. Below we deal with the
interesting cases:

. 1snl vs. 1s at the root: let C be a two-hole context such that C{(J, x) is a need context.
Then:
N(C(a, a)[x'\vL]) — = N(C(VL, z)[\vL])

(G, vLY[2\VL]) —L2 N(G(VL, vL)[2\VL])

To conclude that R/S e NL it suffices to observe that C{(J,¢) is a need context as a

consequence of Lem.

« 1snl vs. db above the variable: that is, R : N;(Nox p[x\vL']) — Nj(No(vL/)[z\vL'])
and S : Ny(Ny{(Ay.s)Luy[z\vL']) — Ni{N4(s[y\u]L)[z\vL']) such that the context N}, is
a prefix of the context Ny, i.e. Ny = NL(N}). The variable = must lie somewhere inside
the db-redex (\y.s)L u, below the need context N3. But need contexts do not go below
abstractions or to the right of applications, so this case is impossible.

« 1snl vs. 1s above the variable: let C be a two-hole context such that C((J, /) is a need
context. Then:

N1 (Vo (G, y)[y\s]) [\WL]) —> M (Ma(CVL,) [y\s D'\ vL])

°

My (Wa(C,) [\ sDIWL]) — = My (o CVL,)[\s D[\ vL])

399

To conclude that R/S € NL it suffices to observe that No(C([J, s)[1/\s]) is a need context
as a consequence of Lem.

1snl vs. 1s duplicating R on the needed position: let = be bound to an answer vL
either in Ny or in N3. Then:

N (Nay Yy \Naa)]) —— WMol y) [y \Na(vL)])

s
Ry
N1 (No(N3 () [y \Na{w)]) —= N1 (NoNa{vL)) [y \N3(z)])
Note that R; is one of the two residuals of R, and R; € NL.

1snl vs. 1s duplicating 1? on a non-needed position: let z be bound to an answer
vL either in N; or in Ny, and let C be a two-hole context such that C{{],y) is a need
context. Then:

N(Cy, y) [y \Wa(z)]) ——= N (Cly, y)[y\Wa (L))

°

Ny, Moo [y \Na)]) = Ny, Nala)) [y \NadvL)])

To conclude that R; € NL it suffices to observe that C{(J, No(z)) is a need context as a

consequence of Lem.

1snl vs. step internal to the argument: Let v — ¢ be a step. By Part 2a, the set of
Sy z-normal forms is closed by reduction and, more specifically, the set of answers is
closed by reduction. So ¢t = v'L’. Then:

Ny (Vo) [2\WL]) —— N (Mt [r\VL])

°

M [\ VL)~ W (L) [\ L)

Bibliography

[1]

(2]

8]

[10]

Martin Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit sub-
stitutions. j. Funct. Program., 1(4):375-416, 1991.

Beniamino Accattoli. Jumping around the box: Graphical and operational studies on \-
calculus and Linear Logic. PhD thesis, Universita degli Studi di Roma “La Sapienza”,
december 2010.

Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In
23rd International Conference on Rewriting Techniques and Applications (RTA’12), May
28 - June 2, 2012, Nagoya, Japan, pages 6-21, 2012.

Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract ma-
chines. In J. Jeuring and M. Chakravarty, editors, Proceedings of ICFP, pages 363-376.
ACM, 2014.

Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstan-
dard standardization theorem. ACM SIGPLAN Notices, 49(1):659-670, 2014.

Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A nonstan-
dard standardization theorem. In Suresh Jagannathan and Peter Sewell, editors, The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 14, San Diego, CA, USA, January 20-21, 2014, pages 659-670. ACM, 2014.

Beniamino Accattoli and Giulio Guerrieri. Abstract machines for open call-by-value.
Sci. Comput. Program., 184, 2019.

Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, 24th International Workshop, CSL
2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.
Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 381-395. Springer,
2010.

Beniamino Accattoli and Delia Kesner. The structural A-calculus. In International Work-
shop on Computer Science Logic, pages 381-395. Springer, 2010.

Beniamino Accattoli and Delia Kesner. Preservation of Strong Normalisation modulo
permutations for the structural lambda-calculus. Logical Methods in Computer Science,
8(1):44, March 2012.

400

401

[11]

[12]

[13]

[14]

[15]

(17]

(18]

[19]

Beniamino Accattoli and Ugo Dal Lago. Beta reduction is invariant, indeed. In
Thomas A. Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Aus-
tria, July 14 - 18, 2014, pages 8:1-8:10. ACM, 2014.

Zena M Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journal of
functional programming, 7(3):265-301, 1997.

Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.
A call-by-need lambda calculus. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 233-246, 1995.

Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Pro-
gramming Languages. Cambridge Tracts in Theoretical Computer Science. CUP, 1999.

Andrea Asperti and Cosimo Laneve. Paths, computations and labels in the lambda-
calculus, 1995.

Andrea Asperti and Harry G. Mairson. Parallel beta reduction is not elementary re-
cursive. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL *98, pages 303-315, New York, NY, USA, 1998. ACM.

Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

John W Backus, Robert J Beeber, Sheldon Best, Richard Goldberg, L Mitchell Haibt,
Harlan L Herrick, Robert A Nelson, David Sayre, Peter B Sheridan, H Stern, et al. The
fortran automatic coding system. In Papers presented at the February 26-28, 1957, western
joint computer conference: Techniques for reliability, pages 188-198. ACM, 1957.

Thibaut Balabonski. Optimality for dynamic patterns. In Proceedings of the 12th Interna-
tional ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming,
PPDP ’10, pages 231-242, New York, NY, USA, 2010. ACM.

Thibaut Balabonski. Weak optimality, and the meaning of sharing. SIGPLAN Not.,
48(9):263-274, September 2013.

Hendrik Pieter Barendregt, Jan A. Bergstra, Jan Willem Klop, and Henri Volken. Some
notes on lambda reduction. Technical Report 22, University of Utrecht, Department of
Mathematics, 1976.

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103. Elsevier,
1984.

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cam-
bridge University Press, 2013.

402

[24]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

[38]

Zine-El-Abidine Benaissa, Daniel Briaud, Pierre Lescanne, and Jocelyne Rouyer-Degli.
Av, a calculus of explicit substitutions which preserves strong normalisation. Journal
of Functional Programming, 6(5):699-722, 1996.

Alexis Bernadet. Types intersections non-idempotents pour rafiner la normalisation forte
avec des informations quantitatives. PhD thesis, Ecole Polytechnique, 2014.

Gérard Berry. Stable models of typed A-calculi. In International Colloquium on Au-
tomata, Languages, and Programming, pages 72—89. Springer, 1978.

Gérard Berry and Jean-Jacques Lévy. Minimal and optimal computations of recursive
programs. j. ACM, 26(1):148-175, January 1979.

Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment ma-
chines. ACM Trans. Comput. Log., 9(1), 2007.

Roel Bloo and Kristoffer H Rose. Preservation of strong normalisation in named lambda
calculi with explicit substitution and garbage collection. In In CSN-95: Computer Science
in the Netherlands. Citeseer, 1995.

Sander Bruggink, Dimitri Hendriks, Vincent van Oostrom, and Roel de Vrijer. Optimal
implementation of higher-order rewriting, 2002.

Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection
types for the lambda-calculus. Logic Journal of the IGPL, 25(4):431-464, 2017.

Rod M Burstall, David B MacQueen, and Donald T Sannella. Hope: An experimental
applicative language. In Proceedings of the 1980 ACM conference on LISP and functional
programming, pages 136-143. ACM, 1980.

Felice Cardone and J. Roger Hindley. J.r.: History of lambda-calculus and combinatory
logic. In Handbook of the History of Logic, volume 5: Logic, 2006.

Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD thesis,
Ecole Doctorale Physique et Sciences de la Matiere (Marseille), 2007.

Stephen Chang and Matthias Felleisen. The call-by-need lambda calculus, revisited. In
European Symposium on Programming, pages 128-147. Springer, 2012.

Alonzo Church. A set of postulates for the foundation of logic part i. Annals of Mathe-
matics, 33(2):346-366, 1932. http://www.jstor.org/stable/1968702Electronic Edition.

Alonzo Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(02):56-68, 1940.

Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for A\-terms.
Arch. Math. Log., 19(1):139-156, 1978.

403

(39]

[40]

[41]

(53]

Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic function-
ality theory for the A-calculus. Notre Dame Journal of Formal Logic, 21(4):685-693, 1980.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters
of solvable terms. Mathematical Logic Quarterly, 27(2-6):45-58, 1981.

Thierry Coquand and Gérard Huet. The calculus of constructions. Information and
computation, 76(2-3):95-120, 1988.

Pierre Crégut. Strongly reducing variants of the krivine abstract machine. Higher-Order
and Symbolic Computation, 20(3):209-230, 2007.

Pierre-Louis Curien. An abstract framework for environment machines. Theoretical
Computer Science, 82(2):389-402, 1991.

Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ACM sigplan
notices, volume 35, pages 233-243. ACM, 2000.

Haskell B. Curry. The combinatory foundations of mathematical logic. The Journal of
Symbolic Logic, 7(2):49-64, 1942.

H.B. Curry and R. Feys. Combinatory Logic. Number v. 1 in Combinatory Logic. North-
Holland Publishing Company, 1958.

Vincent Danos and Laurent Regnier. Head linear reduction. Technical report, 2004.

Olivier Danvy. A rational deconstruction of landin’s secd machine. In IFL, pages 52-71,
2004.

Olivier Danvy and Ian Zerny. A synthetic operational account of call-by-need evalua-
tion. In PPDP, pages 97-108, 2013.

Nicolaas Govert De Bruijn. The mathematical language automath, its usage, and some
of its extensions. In Symposium on automatic demonstration, pages 29-61. Springer,
1970.

Nicolaas Govert de Bruijn. A namefree lambda calculus with facilities for internal def-
inition of expressions and segments. 1978.

Flavio L. C. de Moura, Delia Kesner, and Mauricio Ayala-Rincon. Metaconfluence of
Calculi with Explicit Substitutions at a Distance. In Venkatesh Raman and S. P. Suresh,
editors, 34th International Conference on Foundation of Software Technology and Theoreti-
cal Computer Science (FSTTCS 2014), volume 29 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 391-402, Dagstuhl, Germany, 2014. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

Roel De Vrijer. A direct proof of the finite developments theorem. The Journal of sym-
bolic logic, 50(2):339-343, 1985.

404

[54]

[55]

[56]

(57]

(58]

The Coq development team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0.

Matthias Felleisen. The Calculi of Lambda-Nu-CS Conversion: A Syntactic Theory of
Control and State in Imperative Higher-Order Programming Languages. PhD thesis, 1988.

Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD-machine, and
the lambda-calculus. In 3rd Working Conference on the Formal Description of Program-
ming Concepts, August 1986.

Mattias Felleisen and Daniel P Friedman. A calculus for assignments in higher-order
languages. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, page 314. ACM, 1987.

Philippa Gardner. Discovering needed reductions using type theory. In Theoretical
Aspects of Computer Software, pages 555-574. Springer, 1994.

[59] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de

Parithmétique d’ordre supérieur. PhD thesis, Universite Paris 7, 1972.

[60] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1-101, 1987.

[61] John R. W. Glauert and Zurab Khasidashvili. Relative normalization in deterministic

[62]

[65]

[66]

residual structures. In Hélene Kirchner, editor, Trees in Algebra and Programming -
CAAP’96, 21st International Colloquium, Linképing, Sweden, April, 22-24, 1996, Proceed-
ings, volume 1059 of Lecture Notes in Computer Science, pages 180-195. Springer, 1996.

Georges Gonthier. The four colour theorem: Engineering of a formal proof. In Com-
puter Mathematics, 8th Asian Symposium, ASCM 2007, Singapore, December 15-17, 2007.
Revised and Invited Papers, page 333, 2007.

Georges Gonthier, Martin Abadi, and Jean-Jacques Lévy. The geometry of optimal
lambda reduction. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL *92, pages 15-26, New York, NY, USA, 1992.
ACM.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, Francois
Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana
Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-
checked proof of the odd order theorem. In Interactive Theorem Proving - 4th Interna-
tional Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings, pages 163-179,
2013.

Mike Gordon. Proof, language, and interaction. chapter From LCF to HOL: A Short
History, pages 169-185. MIT Press, Cambridge, MA, USA, 2000.

Benjamin Gregoire and Xavier Leroy. A compiled implementation of strong reduction.
ACM SIGPLAN Notices, 37(9):235-246, 2002.

405

[67]

[71]

Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction.
In ICFP °02, Pittsburgh, Pennsylvania, USA, October 4-6, 2002., pages 235-246, 2002.

Timothy G Griffin. A formulae-as-type notion of control. In Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 47—
58. ACM, 1989.

Stefano Guerrini. A general theory of sharing graphs. Technical report, Theoret. Com-
put. Sci, 1998.

Stefano Guerrini and Marco Solieri. Is the optimal implementation inefficient? elemen-
tarily not. In 2nd International Conference on Formal Structures for Computation and
Deduction (FSCD 2017), volume 84, pages 17-1, 2017.

Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen,
Truong Quang Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey
Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu,
and Roland Zumkeller. A formal proof of the kepler conjecture. CoRR, abs/1501.02155,
2015.

Thérese Hardin. Confluence results for the pure strong categorical logic ccl. A-calculi
as subsystems of ccl. Theoretical computer science, 65(3):291-342, 1989.

Thérese Hardin and Luc Maranget. Functional runtime systems within the lambda-
sigma calculus. J. Funct. Program., 8(2):131-176, 1998.

J Roger Hindley and Jonathan P Seldin. Lambda-calculus and combinators: an introduc-
tion, volume 13.

Roger Hindley. Reductions of residuals are finite. Transactions of the American Mathe-
matical Society, 240:345-361, 1978.

W. A. Howard. The formulae-as-types notion of construction, pages 480-490. Academic
Press, London-New York, 1980.

Gérard Huet. The zipper. Journal of functional programming, 7(5):549-554, 1997.

Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems,
L. In Computational Logic - Essays in Honor of Alan Robinson, pages 395-414, 1991.

Gérard P. Huet and Jean-Jacques Lévy. Computations in orthogonal rewriting systems,
II. In Computational Logic - Essays in Honor of Alan Robinson, pages 415-443, 1991.

John Hughes. Why functional programming matters. The computer journal, 32(2):98—
107, 1989.

Kenneth E Iverson. A programming language. In Proceedings of the May 1-3, 1962, spring
joint computer conference, pages 345-351. ACM, 1962.

406

(82]

(83]

(84]

(87]

(88]

[91]

Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection handbook: the
art of automatic memory management. Chapman and Hall/CRC, 2016.

Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

Fairouz Kamareddine and Alejandro Rios. A A-calculus a la de bruijn with explicit
substitutions. In International Symposium on Programming Language Implementation
and Logic Programming, pages 45—62. Springer, 1995.

Delia Kesner. The theory of calculi with explicit substitutions revisited. In International
Workshop on Computer Science Logic, pages 238—252. Springer, 2007.

Delia Kesner. Reasoning about call-by-need by means of types. In Proceedings of the 19th
International Conference on Foundations of Software Science and Computation Structures
(FoSS5aCS), pages 424-441. Springer-Verlag, 2016.

Delia Kesner. Reasoning about call-by-need by means of types. In International Con-
ference on Foundations of Software Science and Computation Structures, pages 424-441.
Springer, 2016.

Delia Kesner and Stéphane Lengrand. Extending the explicit substitution paradigm.
In International Conference on Rewriting Techniques and Applications, pages 407-422.
Springer, 2005.

Delia Kesner and Fabien Renaud. The prismoid of resources. In International Symposium
on Mathematical Foundations of Computer Science, pages 464-476. Springer, 2009.

Delia Kesner, Alejandro Rios, and Andrés Viso. Call-by-need, neededness and all that.
In Foundations of Software Science and Computation Structures - 21st International Con-
ference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, pages
241-257, 2018.

Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus.
In Theoretical Computer Science - 8th IFIP TC 1/WG 2.2 International Conference (TCS’14),
Rome, Italy, September 1-3, 2014., pages 296-310, 2014.

Assaf] Kfoury. A linearization of the lambda-calculus and consequences. 2000.

Assaf] Kfoury and Joe B Wells. Principality and type inference for intersection types
using expansion variables. Theoretical Computer Science, 311(1-3):1-70, 2004.

Donald E Knuth. Ancient babylonian algorithms. Communications of the ACM,
15(7):671-677, 1972.

Jean Louis Krivine. Lambda-calculus, Types and Models. Computers and their applica-
tions. Ellis Horwood, 1993.

407

[96] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Horwood, 1993.

[97] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-order and sym-
bolic computation, 20(3):199-207, 2007.

[98] John Lamping. An algorithm for optimal lambda calculus reduction. In Proceedings of
the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL °90, pages 16-30. ACM Press, 1990.

[99] Peter J Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308-320, 1964.

[100] Peter J Landin. The next 700 programming languages. Communications of the ACM,
9(3):157-166, 1966.

[101] Cosimo Laneve. Optimality and Concurrency in Interaction Systems. PhD thesis, Dipar-
timento di Informatica, Universita di Pisa, august 1993.

[102] Cosimo Laneve. Distributive evaluations of A-calculus. Fundamenta Informaticae,
20(4):333-352, 1994.

[103] Fredéric Lang. Explaining the lazy krivine machine using explicit substitution and ad-
dresses. Higher-Order and Symbolic Computation, 20(3):257-270, 2007.

[104] Julia L. Lawall and Harry G. Mairson. Optimality and inefficiency: What isn’t a cost
model of the lambda calculus? In Proceedings of the First ACM SIGPLAN International
Conference on Functional Programming, ICFP °96, pages 92-101, New York, NY, USA,
1996. ACM.

[105] Julia L. Lawall and Harry G. Mairson. On global dynamics of optimal graph reduction.
In 1997 ACM International Conference on Functional Programming, pages 188-195, 1997.

[106] Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
PhD thesis, INRIA, 1990.

[107] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107-115,
2009.

[108] Pierre Lescanne and Jocelyne Rouyer-Degli. Explicit substitutions with de bruijn’s lev-
els. In International Conference on Rewriting Techniques and Applications, pages 294-308.
Springer, 1995.

[109] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,
Université de Paris 7, 1978.

[110] Jean-Jacques Lévy. Optimal reductions in the lambda calculus. Essays on Combinatory
Logic, Lambda Calculus and Formalism, 1980.

[111] Jean-Jacques Levy. Redexes are stable in the A-calculus. 27:1-13, 07 2015.

408

[112] Barry James Mailloux, John Edward Lancelot Peck, Cornelis HA Koster, and A Van Wi-
jngaarden. Report on the algorithmic language algol 68. In Report on the algorithmic
language Algol 68, pages 80-218. Springer, 1969.

[113] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.
Journal of functional programming, 8(3):275-317, 1998.

[114] Per Martin-Lof. A theory of types, 1971.

[115] Gianfranco Mascari and Marco Pedicini. Head linear reduction and pure proof net
extraction. Theor. Comput. Sci., 135(1):111-137, 1994.

[116] John McCarthy and Michael I Levin. LISP 1.5 programmer’s manual. 1965.

[117] Paul-André Mellies. Typed A-calculi with explicit substitutions may not terminate.
In International Conference on Typed Lambda Calculi and Applications, pages 328-334.
Springer, 1995.

[118] Paul-André Mellies. Description Abstraite des Systemes de Réécriture. PhD thesis, Uni-
versite Paris 7, december 1996.

[119] Robin Milner. The definition of standard ML: revised. 1997.

[120] Robin Milner. Local bigraphs and confluence: Two conjectures. Electronic Notes in
Theoretical Computer Science, 175(3):65-73, 2007.

[121] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[122] Ulf Norell. Dependently typed programming in agda. In Proceedings of the 4th inter-
national workshop on Types in language design and implementation, pages 1-2. ACM,
2009.

[123] Chris Okasaki. Purely functional data structures. Cambridge University Press, 1999.

[124] Michel Parigot. Ap-calculus: an algorithmic interpretation of classical natural deduc-
tion. In Logic programming and automated reasoning, pages 190-201. Springer, 1992.

[125] GordonD. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical computer
science, 1(2):125-159, 1975.

[126] John C Reynolds. Towards a theory of type structure. In Programming Symposium,
pages 408-425. Springer, 1974.

[127] Kristoffer Hogsbro Rose. Explicit cyclic substitutions. In International Workshop on
Conditional Term Rewriting Systems, pages 36-50. Springer, 1992.

[128] Bertrand Russell. The principles of mathematics. WW Norton & Company, 1938.

409

[129] Peter Sestoft. Deriving a lazy abstract machine. Journal of Functional Programming,
7(3):231-264, 1997.

[130] Morten Heine Serensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomor-
phism, volume 149. Elsevier, 2006.

[131] Michael Sperber, R Kent Dybvig, Matthew Flatt, Anton Van Straaten, Robby Findler,
and Jacob Matthews. Revised6 report on the algorithmic language scheme. journal of
Functional Programming, 19(S1):1-301, 2009.

[132] John Staples. Efficient combinatory reduction. = Mathematical Logic Quarterly,
27(2530):391-402, 1981.

[133] Christopher Strachey. Fundamental concepts in programming languages. Higher Order
Symbol. Comput., 13(1-2):11-49, April 2000.

[134] Gerald Jay Sussman and Guy L Steele Jr. Scheme: An interpreter for extended lambda
calculus. In MEMO 349, MIT AI LAB, 1975.

[135] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

136 an M. luring. n computable numbers, with an application to the entscheidungs
[136] Alan M. Turing. O putabl b ith an applicati h heidung
problem. Proceedings of the London Mathematical Society, 42(2):230-265, 1936.

[137] David Turner. An overview of miranda 1. In Research Topics in Functional Programming,
pages 1-16. Addison-Wesley Longman Publishing Co., Inc., 1990.

[138] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced
Study, 2013.

[139] Steffen van Bakel. Complete restrictions of the intersection type discipline. Theoretical
Computer Science, 102(1):135-163, 1992.

[140] Peter van Emde Boas. Machine models and simulations. 1989.

[141] Vincent van Oostrom. Higher-order families, pages 392-407. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

[142] Vincent Van Oostrom and Roel De Vrijer. Four equivalent equivalences of reductions.
Electronic Notes in Theoretical Computer Science, 70(6):21-61, 2002.

[143] Jean Etienne Vuillemin. Proof-techniques for Recursive Programs. PhD thesis, Stanford
University, Stanford, CA, USA, 1974. AAI7413700.

[144] Jean Etienne Vuillemin. Syntaxe, sémantique et axiomatique d’un langage de program-
mation simple. PhD thesis, Université de Paris VII, 1975.

https://homotopytypetheory.org/book

410

[145] Christopher P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD
thesis, Oxford University, 1971.

	Introduction
	Computation and -Calculi
	The -Calculus
	Evaluation Strategies
	Explicit Substitutions

	This Work
	Background
	Distilling Abstract Machines
	Foundations of Strong Call-by-Need
	Strong Call-by-Need for Pattern Matching and Fixed Points
	A Labeled Linear Substitution Calculus
	Applications of the Labeled Linear Substitution Calculus
	Publications and Work Not Included in This Thesis

	Background
	Abstract Rewriting
	Residual Theory
	Properties of Orthogonal Axiomatic Rewriting Systems

	The -Calculus
	Positions and Contexts
	Residual Theory for the -Calculus

	The Linear Substitution Calculus

	Distilling Abstract Machines
	Introduction
	Our Work

	Reduction Strategies
	Call-by-Name
	Call-by-Value
	Call-by-Need
	Strong Call-by-Name
	Determinism

	Structural Equivalences
	Distilleries
	Reflective Distilleries

	Abstract Machines
	Call-by-Name: the KAM
	Call-by-Name with Global Environment: the MAM
	Left-to-Right Call-by-Value: the CEK
	Left-to-Right Call-by-Value: the Split CEK
	Right-to-Left Call-by-Value: the LAM
	Call-by-Need: the MAD
	Call-by-Need: the Merged MAD
	Call-by-Need: the Pointing MAD
	Strong Call-by-Name: the Strong MAM

	Complexity Analysis
	Call-by-name and call-by-value
	Call-by-need
	Strong call-by-name

	Foundations of Strong Call-by-Need
	Introduction
	Call-by-Need for Weak Reduction
	Call-by-Need for Strong Reduction
	Our Work

	Strong Call-by-Need
	The Theory of Sharing
	The Strong Call-by-Need Strategy
	Basic Properties of Strong Call-by-Need

	Completeness of Strong Call-by-Need
	The Non-Idempotent Intersection Type System HW
	Completeness of the Theory of Sharing
	Factorization of the Theory of Sharing

	Strong Call-by-Need for Pattern Matching and Fixed Points
	Introduction
	Our Work

	Extending the Theory of Sharing
	The Extended -Calculus
	The Extended Theory of Sharing

	Extending the Type System
	The Extended Non-Idempotent Intersection Type System
	Characterization of Weakly Normalizing Terms

	Extending the Strong Call-by-Need Strategy
	The Extended Strong Call-by-Need Strategy

	A Labeled Linear Substitution Calculus
	Introduction
	Optimality and Redex Families
	Our Work

	The LSC with Lévy Labels
	What is a Calculus with Lévy Labels?
	Residual Theory for the LSC
	Definition of the Labeled LSC Without gc
	Definition of the Labeled LSC – Extension with gc

	Properties of the LSC with Lévy Labels
	Basic Properties
	Orthogonality
	Weak Normalization for Bounded Reduction
	Strong Normalization for Bounded Reduction
	Confluence

	Applications of the Labeled Linear Substitution Calculus
	Introduction
	Our Work

	Stability
	Redex Families
	Optimal Reduction
	Standardization
	Normalization of Strategies

	Conclusion
	An Abstract Machine for Strong Call-by-Need Reduction
	Difficulties Defining an Extraction Procedure

	Technical appendix
	Proofs of Chapter 3 – Distilling Abstract Machines
	Determinism — proof of Prop. 3.11
	Structural equivalence is a strong bisimulation — proof of Prop. 3.11
	Pointing MAD invariants — proof of Lem. 3.57
	Strong MAM invariants — proof of Lem. 3.64
	LO decoding invariant — proof of Lem. 3.67

	Proofs of Chapter 4 – Foundations of Strong Call-by-Need
	Technical tools
	Characterization of -normal forms — proof of Lem. 4.15
	Unique decomposition — proof of Lem. 4.17
	Conservativity — proof of Thm. 4.23
	Commutation — proof of Lem. 4.49 and Lem. 4.50

	Proofs of Chapter 6 – A Labeled Linear Substitution Calculus
	Redex creation — proof of Prop. 6.4
	Strong permutation — proof of Prop. 6.30
	Postponement of gc in the LLSC-calculus — proof of Lem. 6.50

	Proofs of Chapter 7 – Applications of the Labeled Linear Substitution Calculus
	Contribution — auxiliary lemmas for Prop. 7.12
	Reachable normal forms are stable — proof of Prop. 7.27
	Head linear reduction is normalizing — proof of Coro. 7.56
	Need linear reduction is normalizing — proof of Coro. 7.59

