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Semántica dinámica de cálculos de

sustituciones explı́citas a distancia

Tesis presentada para optar al tı́tulo de
Doctor de la Universidad de Buenos Aires

en el área Ciencias de la Computación

Pablo Barenbaum

Directores de tesis: Eduardo Bonelli
Delia Kesner

Consejero de estudios: Alejandro Rı́os

Buenos Aires, 2020



Semántica dinámica de cálculos de

sustituciones explı́citas a distancia

Los cálculos de sustituciones explı́citas son variantes del cálculo-λ en los que la operación
de sustitución no se de�ne a nivel del metalenguaje, sino con reglas de reescritura que la
implementan. Nuestro principal objeto de estudio es un cálculo de sustituciones explı́citas
particular, el Linear Substitution Calculus (LSC), de�nido por Acca�oli y Kesner en 2010. Se
caracteriza por el hecho de que las reglas de reescritura operan no localmente (a distancia).
En esta tesis, en primer lugar, de�nimos máquinas abstractas que implementan estrategias
de evaluación en el LSC: call-by-name para evaluación débil y fuerte, call-by-value y call-by-
need. Demostramos que dichas máquinas son correctas y preservan la complejidad temporal.
En segundo lugar, de�nimos una extensión de la estrategia de evaluación call-by-need en el
LSC para evaluación fuerte. Demostramos que la estrategia es completa con respecto a call-by-
name, usando un sistema de tipos intersección no idempotente, y mostramos cómo extenderla
para lidiar con pa�ern matching y recursión. Por último, estudiamos la teorı́a de residuos y
familias de radicales en el LSC. Para ello de�nimos una variante del LSC con etiquetas de
Lévy, lo que nos permite demostrar que cumple con la propiedad de Finite Family Develop-

ments. Aplicamos esta propiedad para obtener resultados de optimalidad, estandarización y
normalización de estrategias en el LSC, y generalizamos algunos de estos resultados al marco
axiomático de Deterministic Family Structures.

Palabras clave: semántica de lenguajes de programación, cálculo-λ, sustituciones explı́citas,
estrategias de evaluación, evaluación lazy, máquinas abstractas, sistemas de tipos, teorı́a de
residuos.



Dynamic Semantics of Calculi with

Explicit Substitutions at a Distance

Explicit substitution calculi are variants of the λ-calculus in which the operation of substi-
tution is not de�ned at the metalanguage level, but rather implemented by means of rewriting
rules. Our main object of study is a particular explicit substitution calculus, the Linear Substi-
tution Calculus (LSC), introduced by Acca�oli and Kesner in 2010. Its distinguishing feature
is that rewriting rules operate non-locally (at a distance). In this thesis, �rst, we de�ne ab-
stract machines to implement evaluation strategies in the LSC: call-by-name for weak and
strong evaluation, call-by-value, and call-by-need. We prove that these machines are correct
and that they preserve computational time complexity. Second, we de�ne an extension of
the call-by-need evaluation strategy in the LSC for strong reduction. We show that the strong
call-by-need strategy is complete with respect to call-by-name, using a non-idempotent inter-
section type system, and we show how to extend the strategy to deal with pa�ern matching
and recursion. Finally, we study the theory of residuals and redex families in the LSC. To this
aim, we de�ne a variant of the LSC endowed with Lévy labels, which allows us to prove that
it enjoys the Finite Family Developments property. We apply this property to obtain results
on optimality, standardization, and normalization for the LSC, and we generalize some of this
results to the axiomatic framework of Deterministic Family Structures.

Keywords: programming language semantics, λ-calculus, explicit substitutions, evaluation
strategies, lazy evaluation, abstract machines, type systems, residual theory.
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Chapter 1

Introduction

1.1 Computation and λ-Calculi

Computation is about solving problems by mechanically manipulating abstract representa-
tions of reality. We are exposed to computation since very early on in our daily lives. To
count objects, for example, we may use our �ngers as a model of reality: one �nger stands
for one object. �is representation is abstract in that it discards all the irrelevant features of
the objects, such as size or color, and it keeps only the relevant ones: in this case, the abstract
quality we call quantity.

Computation is not inseparably tied to modern digital computers. Computers are of course
invaluable tools for implementing computational processes, but the study of computation
deals primarily with the underlying principles reigning the mechanical manipulation of ab-
stract representations, regardless of their potential implementation. �e Babylonians, for ex-
ample, developed algorithms for solving equations nearly 4000 years before the advent of
digital computers [94].

Far from being a purely theoretical endeavor, computation has profound practical conse-
quences. In our times, so�ware is ubiquituous. It governs most aspects of our societies, im-
pacting not only in seemingly personal ma�ers such as entertainment and communication,
but also in public a�airs such as news broadcasting, monetary transactions, weather forecast-
ing; in safety-critical systems such as medical equipment, nuclear reactors, and avionics; and
in sensitive emerging technologies such as self-driving cars and cryptocurrencies.

Traditionally, computation has been associated to the view of processes as mere input–
output relations, that is, in the �nal result that they yield when given particular input data.
Contrary to this traditional point of view, computational processes exhibit complex behaviors,
and usually many properties besides their output are of signi�cant practical relevance. For
instance, how can one be sure that a computational process will not take too long to arrive to
the expected answer? How can one be sure that a third-party cannot tamper with a system so
that it behaves maliciously? How can one design programming languages so that programs
resemble declarative speci�cations—rather than machine code listings—but in such a way that
execution is still e�cient?

Developing methods to answer these questions satisfactorily, and to aid the development

8
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of correct programs, is of utmost importance, considering the already mentioned critical na-
ture of so�ware. In the last decades, a vast repertoire of formal methods has been developed,
including formal speci�cation languages, automatic theorem provers, program analyzers and
synthetizers, and veri�cation techniques such as data-�ow analysis, model-checking and ab-
stract interpretation, among others. In this thesis, we are specially interested in the theoret-
ical foundations that support the correct and e�cient implementation of programming lan-

guages and proof assistants. �ese theoretical foundations encompass a broad range of topics
in rewriting theory, type theory, and formal semantics.

One of our main concerns is related to the observation that, in general, there may be
many di�erent ways to carry out a particular computation. For example, in the expression
21234 ˚ 0, we may perform the exponentiation �rst, or we may realize that the result will be 0

regardless of the value of 21234. �e ways in which calculations may be carried out are known
as evaluation strategies. �is thesis is about evaluation strategies in a very speci�c se�ing: a
variant of the λ-calculus called the Linear Substitution Calculus.

In the following subsections, we intend to give a bird’s-eye overview of various topics that
we will touch on in this thesis.

�e λ-calculus
�e Static View of the λ-Calculus: as a Logic
�e Dynamic View of the λ-Calculus: as a Programming Language

Evaluation strategies
Abstract Machines and Reasonable Cost Models
Weak vs. Strong Reduction Strategies
Normalization
Residuals and Developments
Sharing and Optimality

Explicit substitutions
�e Linear Substitution Calculus

1.1.1 �e λ-Calculus

In this thesis, the main object of study is a programming language proposed by Beniamino
Acca�oli and Delia Kesner in 2010 [9], the Linear Substitution Calculus (LSC). �e LSC is a
descendant of the λ-calculus, and it owes its existence to a long tradition, starting around
the beginning of the XX century, when logicians sought to lay out formal foundations for
mathematics. In that context, Alonzo Church developed the λ-calculus [36], as a means to
formally de�ne the notion of e�ectively computable method, corresponding to the modern
notions of algorithm or program. Other formalisms to de�ne computation were independently
developed at about the same time, such as the renowned Turing machines [136].

�e λ-calculus is itself an abstract model of computation, in which expressions repre-
sent mathematical functions, and execution proceeds by repeatedly transforming or rewriting

those expressions. Expressions in the λ-calculus are formal syntactical objects called λ-terms
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(or terms for short). An expression of the form λx.t represents a function that maps the vari-
able x to the term t, where t is in turn an expression that might contain occurrences of the
variable x. An expression of the form fa denotes the application of the function f to the
argument a.

For example, the expression λx.x represents the function that receives a parameter x and
returns x, that is, the identity function. Occurrences of the variable x inside an expression of
the form λx.t are said to be bound. Occurrences of variables that are not bound are said to be
free. �e set of variables that occur free in a term t is usually denoted by fvptq—for example
fvpxpλy.yzqq “ tx, zu. If a variable is bound, its scope is local, so its name is irrelevant
to outside observers, and it may be renamed as desired. For example, λy.y is another way
of writing the identity function: the terms λx.x and λy.y are formally identi�ed. For this
reason, and strictly speaking, λ-terms are not merely expressions, but actually equivalence
classes of expressions, modulo renaming of bound variables. �e equivalence relation that
identi�es terms up to the names of its bound variables is called α-equivalence. We refer the
reader to standard bibliography, for example [95, Ch. 1, Sec. 2], for the precise de�nition of
α-equivalence, which requires some care. �roughout this work we always freely rename
bound variables, using Barendregt’s variable convention [22, 2.1.13]: during de�nitions and
proofs, we may assume that bound variables have been chosen so that their names are apart
from free variables and from each other.

In the λ-calculus there is only one possible kind of transformation, known as the β-

reduction rule:
pλx.tq s Ñ ttx :“ su

�e β-reduction rule means to re�ect one of the most common mathematical practices: it
expresses the fact that in order to apply a function (λx.t) to an argument (s) one should replace
all the occurrences of the formal parameter (x) in the body of the function (t) by the actual
argument (s). �e expression ttx :“ su represents the operation of substitution of all the free
occurrences of the variable x in the term t by the term s. An example computation is given
by the following sequence of rewrite steps1. Sequences of rewrite steps are sometimes called
derivations or reductions:

pλf.f 2qpλx.x` xq Ñ pλx.x` xq 2 Ñ 2` 2

Even though the de�nition of β-reduction re�ects common mathematical practice, the λ-
calculus was novel, at the time it was conceived, in that substitution was an explicitly de�ned
operation. Explicit de�nition allows one to reason rigorously about its behavior.

In this thesis we aim, in fact, to reason rigorously about the behavior of programs. For
example, we may want to prove that a certain way of executing a program always reaches
a �nal answer, i.e. that it cannot “hang”. �ese properties can be formally stated using the
λ-calculus and related calculi, which are based crucially on the notions of substitution and β-
reduction. Even though these notions are simple from an intuitive standpoint, de�ning them
precisely is not without pitfalls, and the resulting systems turn out to be surprisingly complex.

1�e pure λ-calculus does not have a built-in notion of numbers or addition; we use them in this example for
clarity of exposition.
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A simple example of the richness of the λ-calculus is that, even though functions for-
mally take only one argument, it still allows to simulate many-argument functions. �is
can be achieved by resorting to the well-known technique of currying, a�ributed to Moses
Schön�nkel [133]. A function fpx, yq of two arguments can be curried by regarding it as a
single-argument function g such that gpxq is again a single-argument function, and in turn
gpxqpyq “ fpx, yq. More in general, the λ-calculus is Turing-complete, which means that it
is expressive enough to de�ne all partial computable functions f : Nk Ñ N, via a suitable
encoding. See for example [22, Section 6.3] for a proof.

Another illustration of the complexity of the phenomena that arise in the λ-calculus is
that sequences of rewrite steps can be in�nitely long. �e term Ω :“ pλx.x xq pλx.x xq, for
instance, may be rewri�en to itself in a single β-reduction step: Ω Ñ Ω, which leads to the
in�nite sequence:

Ω Ñ Ω Ñ Ω Ñ . . .

Ensuring that computations do terminate, under appropriate conditions, is a kind of problem
that we encounter very o�en.

For a further signi�cant example of the kinds of structures that we are interested in, con-
sider the term pλx.xxqppλy.yqzq, and note that there are many ways to rewrite it, depending
on the order in which computation steps are performed. �is gives rise to a reduction graph:

pλx.xxqppλy.yqzq

tt ))
ppλy.yqzqppλy.yqzq

uu **

pλx.xxqz

nn

zppλy.yqzq

**

ppλy.yqzqz

sszz

Ensuring that computations always reach the same �nal result, even in the presence of such
“forks”, is another kind of problem that we o�en confront. We are also sometimes interested in
the question of whether two di�erent computations are equivalent in some sense. For example,
all the three reduction sequences leading from the term pλx.xxqppλy.yqzq to the �nal result
zz seem to perform the same computational work, albeit in di�erent order. �ere is indeed
a precise notion of equivalence, called permutation equivalence, which allows one to identify
these three sequences.

One of the most important theorems that we should mention about the λ-calculus is the
Church–Rosser property, also known by the name of an equivalent property, con�uence. We
use the following standard notation: if R is a binary relation, then R˚ stands for its re�exive
and transitive closure, and R´1 stands for its inverse. One may understand the λ-calculus as
an equational theory by de�ning β-equivalence as the least equivalence relation containing
β-reduction. More precisely, two terms are said to be β-equivalent, wri�en t “β s, whenever
t pÑ Y Ñ´1q˚ s. �e following theorem is due to Alonzo Church and J. Barkley Rosser:

�eorem 1.1 (Con�uence). If t “β s then t and s have a common reduct, that is, there exists a

term u such that tÑ˚ u and sÑ˚ u.



12

Proof. See [22, �eorem 11.1.10].

A corollary of this theorem is that the λ-calculus is consistent as a logic, in the sense that
not every β-equality holds—observe for example that x and y do not have a common reduct,
so the equality x “β y cannot hold.

During the 1940s and 1950s, the group of Alonzo Church and his collaborators, including
Stephen Kleene, J. Barkley Rosser, Haskell Curry, Leon Henkin, and Alan Turing, developed
the core metatheory of the λ-calculus. �ey studied not only the original λ-calculus, but also
several of its variants, such as extensions and restrictions of the system, variants endowed
with type systems, and other related formalisms, such as combinatory logics. See [33] for an
excellent overview of the history of the λ-calculus. Standard references for the theory of the
λ-calculus itself are the books by Henk Barendregt ([22]) and J. Roger Hindley and Jonathan
P. Seldin ([74]).

Interest in the λ-calculus was originally motivated by speci�c theoretical concerns; in
particular, in formally characterizing the notion of e�ectively computable method. From this
point of view, the λ-calculus a�ains some kind of local optimum: it is simultaneously concise,
reasonably readable, and Turing-complete.

Over the years, the λ-calculus has been the object of continued interest from both the
logical and the computer science communities, and it is still an active area of research. �e
wide range of concerns addressed by these communities has shi�ed the motivations to study
the λ-calculus since its conception in the 1930s.

�e Static View of the λ-Calculus: as a Logic

In this thesis we are mostly concerned with the ways in which programs may be represented
and executed in run-time, so our point of view of the λ-calculus is chie�y a dynamic one.
Nevertheless, there is a complementary, static view of λ-calculi, in which the logical structure
of programs is the primary interest. �e interplay between the static and the dynamic views
plays a major role in Chapters 4 and 5.

�e static view of programs has its roots on mathematical logic. More speci�cally, variants
of the λ-calculus provided with type systems, are interesting from the logical point of view,
because terms can be interpreted as encodings of deductions in formal logical systems. Gen-
erally speaking, a type is a category (in the ordinary sense of the word) that serves to classify
terms according to their inherent structure or their observable behavior.

�e notion of type can be traced back to the e�ort by Bertrand Russell to mend the contra-
dictions found in Go�lob Frege’s set theory [128, Appendix B]. �e purpose of types in this
se�ing is to stratify the universe of discourse, di�erentiating between objects and predicates

about objects. �is prevents contradictions that spring from diagonalization arguments, such
as Russell’s celebrated paradox: in the absence of such strati�cation, one may consider the set
of sets A :“ tX | X R Xu and obtain a contradiction by noting that A P A holds if and only
if A R A holds.

As part of the a�empt to obtain consistent foundations for mathematics, Church intro-
duced his simple theory of types in 1940 [37]. In this system, terms of the λ-calculus are
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assigned types by means of a formal deductive system. One may assume that there is a set of
basic types (α, β, γ, etc.) and that for any two types A and B there is an arrow type A Ñ B,
reserved for functions mapping elements of typeA to elements of typeB. Variables are intrin-
sically decorated with their type, writing xA for an occurrence of a variable of typeA. Formal
parameters of functions are also decorated with their corresponding type, writing λxA. t for
a function that maps a parameter x of typeA to the term t. For example, the identity function
λxA. xA is of type A Ñ A, and an operator of function composition might be de�ned as the
term

λgBÑC . λfAÑB. λxA. gBÑC pfAÑB xAq

whose type is pB Ñ Cq Ñ ppAÑ Bq Ñ pAÑ Cqq.

�e assignment of types to terms is de�ned by means of a typing judgment of the form
$ t : A, representing the knowledge that the term t is of type A. A term of type A is said to
be an inhabitant of A. Valid judgments are de�ned by the following inductive typing rules:

$ xA : A

$ t : B

$ λxA.t : AÑ B

$ t : AÑ B $ s : A

$ t s : B

For example, the third rule states that if we know that t is a term of type A Ñ B and s is a
term of type A, then we may conclude that the application ts is a term of type B.

A remarkable feature of these rules is that types in the simply typed λ-calculus of Church
can be thought as formulas of propositional logic2, and terms of typeA can be thought as wit-
nesses that the formulaA is provable, that is, a proof ofA. For example, the term λxα. λyβ. xα

is of type α Ñ pβ Ñ αq, and it can be interpreted as a proof of the propositional formula
αÑ pβ Ñ αq. A term λxα. t of type αÑ β corresponds to a proof of the implication αÑ β

that proceeds by assuming a proof x of α as a hypothesis, and then providing a proof t of β,
possibly depending on this hypothesis. On the other hand, if t is a proof of the implication
αÑ β, and s is a proof of the antecedent α, then ts denotes the proof of β obtained by modus

ponens.
�e realization that types correspond to formulas and terms correspond to proofs is some-

times known as the Curry–Howard isomorphism or the propositions as types correspondence.
�e correspondence has far-reaching consequences. It can be extended to other logical con-
structs besides implication, including conjunction, disjunction, universal and existential quan-
ti�cation, and classical reasoning. It can also be extended to relate other logical/computational
phenomena: for instance, reducing a term, i.e. performing a computation step t Ñ t1, corre-
sponds to normalizing a proof. Achieving this realization took a number of decades, and it is
the result of the work of many logicians, mathematicians, and computer scientists, including
Haskell Curry [45], Robert Feys [46], Nicolas Goveert de Bruijn [50], and William Howard [76]

Since the 1970s, logical systems have been systematically studied from the type-theoretical
point of view suggested by the propositions as types paradigm. For instance, second order in-
tuitionistic logic corresponds to a variant of the λ-calculus with parametric polymorphism,
known as System F. It was independently discovered by Jean-Yves Girard [59] and John Reynolds [126].

2More precisely, formulas in minimal implicational logic.
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In 1971, Per Martin-Löf proposed the system of intuitionistic type theory [114] as a founda-
tion for constructive mathematics, which has become a �eld of research on its own right. �e
correspondence between propositions and types has been extended to other logical systems,
such as classical logic (in various works, remarkably [68], [124], [44]) and linear logic, an
in�uential system de�ned originally by Jean-Yves Girard in [60]. It has also inspired other
systems such as the Calculus of Constructions [41] and Homotopy Type �eory [138].

�e study of type systems as encodings of logical deductions laid the basis for the devel-
opment of proof assistants. Proof assistants are computer programs that allow the user to
write (using a formal language) mathematical de�nitions, statements of theorems, and proofs
of those theorems, and verify that the proofs are correct. Many modern proof assistants such
as Coq [54], Isabelle [121], and Agda [122] are based on type theory. �e e�cient implemen-
tation of proof assistants poses some of the questions that motivate our work.

Most of the type systems that were mentioned above are examples of type systems à la

Church. �is means that types are an intrinsic part of the language. For example, in the simply
typed λ-calculus of Church, types are an inseparable aspect of the syntax of terms, hence
λxα.xα is the identity function of type α Ñ α, and λxαÑβ.xαÑβ is the identity function of
type pαÑ βq Ñ pαÑ βq. Note that the two variants of the identity function are syntactically
di�erent terms. In this system, it does not even make sense to speak of a term without types
such as λx.x.

�ere is another very common kind of type system in which types are not an intrinsic part
of the syntax of terms. �ese are known in the literature as type systems à la Curry. In these
systems, types are rather extrinsic annotations, representing properties that terms might or
might not have. For example, in the simply typed λ-calculus of Curry, the expression λx.x
is a well-formed term representing the identity function. �e identity λx.x may be assigned
many types: in particular it has type αÑ α, and it also has type pαÑ βq Ñ pαÑ βq, while
it does not have type αÑ pβ Ñ αq. In type systems à la Curry typing judgments are typically
hypothetical judgments of the form Γ $ t : A, where Γ is a typing context representing the
hypotheses required to conclude that the term t has typeA. Formally, contexts are lists of pairs
of the form x : A giving types to the free variables in t. Typing rules are slightly adapted for
the simply typed λ-calculus à la Curry:

px : Aq is a hypothesis in Γ

Γ $ x : A

Γ, x : A $ t : B

Γ $ λx.t : AÑ B

Γ $ t : AÑ B Γ $ s : A

Γ $ t s : B

Note that an abstraction λx.t has type AÑ B in a given context Γ whenever the body t has
type B in the extended context Γ, x : A.

Intersection types. In most of this thesis, we will not work with type systems, since
we are interested in the dynamic view of λ-calculi, and untyped λ-calculi are a be�er �t for
this purpose. However, in Chapters 4 and 5, we will make use of intersection types to study
the dynamic behavior of programs. Intersection types systems are, usually, type systems
à la Curry, originally introduced by Mario Coppo and Mariangiola Dezani-Ciancaglini [38]
to study termination. �ese systems are characterized by the presence of a type constructor
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representing intersection: for any two types A and B there is a type AXB whose inhabitants
are the terms that simultaneously have type A and type B. Intersection type systems also are
accompanied with a relation of inclusion between types, A Ď B. Intersection and inclusion
respect all the laws that one would expect from their suggestive notation; for exampleAXB Ď
A. Besides the usual three rules of the simply typed λ-calculus, the two following typing rules
are added:

Γ $ t : A Γ $ t : B

Γ $ t : AXB

Γ $ t : A A Ď B

Γ $ t : B

�e �rst rule states that a term has type A X B if it simultaneously has types A and B. �e
second one states that a term of type A can be regarded as a term of type B whenever A
is a “subset” of B. �e remarkable feature of this type system is that typability characterizes
exactly the seemingly unrelated property of normalization. A term t is said to be normalizing if
there exists a �nite reduction sequence tÑ t1 Ñ t2 Ñ . . .Ñ tn such that tn is a normal form,
i.e. there is no reduction step tn Ñ tn`1. �e surprising result is that a term t is normalizing if
and only if there exist Γ andA such that Γ $ t : A. See [23, Part 3] for a complete presentation
and a survey of many related intersection type systems and their properties.

In typical intersection type systems, the type constructor pXq is idempotent, that is, the
relationsA Ď AXA andAXA Ď A are both declared to hold. In contrast, in non-idempotent

intersection type systems, the type constructor pXq is not declared to be idempotent. Non-
idempotent intersection type systems were originally formulated by Philippa Gardner [58].
Pioneering works on this topic are also by Assaf Kfoury et al. [93, 92] and Daniel de Car-
valho [34]. �e interest of non-idempotent intersection type systems is that, just as their
idempotent counterparts, they allow to characterize normalization properties but, as opposed
to their idempotent counterparts, the characterization of normalization provides an explicit
decreasing measure. �is makes non-idempotent intersection types suitable for analyzing the
dynamic properties of reduction in a quantitative fashion.

Intersection types play an important role in Chapters 4 and 5 of this thesis, in which we use
a system based on non-idempotent intersection types as a technical tool to ensure termination,
adapting a technique by Delia Kesner [86].

�e Dynamic View of the λ-Calculus: as a Programming Language

As we mentioned before, most of this thesis will be concerned with the dynamic view of
the λ-calculus and related formalisms. �e dynamic view of λ-calculi is interesting from the
computational point of view, because it allows us to understand calculi as execution models for
programming languages in general, and for functional programming languages in particular.

Historically, the understanding of programming language semantics has evolved from
a concrete, machine-oriented perspective to an abstract, machine-independent perspective.
When the �rst programming languages were conceived, in the mid-1950s, they were seen as
auxiliary tools to mechanically translate mathematical expressions into machine code. A pro-
gramming language in this sense is a convenient way of abbreviating machine instructions,
relying on the remarkable observation that a mathematical expression implicitly encodes a
computation mechanism: the post-order traversal of the abstract syntax tree of an arithmetic
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expression corresponds closely to a sequence of instructions that calculate its value on a stack-
based machine. �is was the approach taken in languages like Fortran [18], developed at
IBM by John Backus and his team. Although Fortran was a revolutionary breakthrough at
the time, it lacked an intrinsic notion of semantics, and it was meant to be understood through
the semantics of the target machine.

On the other hand, programming languages can be de�ned much more abstractly, as for-
mal objects provided with rigorous notions of syntax and semantics. �is perspective started
to emerge in the 1960s with languages like John McCarthy’s Lisp [116], based on the manip-
ulation of symbolic expressions in a way independent of the underlying machine; APL [81], a
mathematical notation devised by Kenneth Iverson to describe computational manipulations
on arrays; and Algol [112], an international e�ort to standardize the then incipient algorithmic
notation.

In the 1960s, Peter J. Landin published a series of in�uential papers [99, 100], proposing
a family of programming languages, or rather a framework for understanding programming
language semantics, named Iswim. It was based on the λ-calculus, and it a�empted to cap-
ture the common mechanism of abstraction underlying all existing programming languages.
Landin provided a formal semantics for Iswim by de�ning an abstract machine to execute
Iswim programs, the SECD machine. He also discussed how the semantics of languages like
Lisp and Algol could be understood by encoding Lisp and Algol programs in Iswim.

�is abstract take on programming language semantics crystallized during the 1970s with
the advent of functional programming languages. �ese languages are characterized by being
built upon a λ-calculus substratum. Some notable examples are Scheme [134], which intro-
duced some novel ideas like lexical closures and control operators (in particular, call/cc); and
the language ML [65], which was the �rst one to implement a Hindley–Milner type system.
It is remarkable that, still today, Scheme and ML are among the few relatively mainstream
programming languages whose standard speci�cations include a formally de�ned semantics
(see [131] and [119]). Another in�uential work from this era was John Backus’ 1977 Turing
award lecture, Can Programming be Liberated from the von Neumann style?, in which he en-
visioned a style of programming based on the functional composition of smaller subprograms.
�ereby, programs respect well-de�ned algebraic laws and they are subject to being reasoned
about mathematically.

Since the 1970s, the community surrounding functional programming languages has been
growing steadily, which has put forth the λ-calculus as the quintessential programming lan-
guage. Most aspects of programming language theory, such as extensions with new features
and compilation techniques, have been routinely studied by considering suitable adaptations
of the λ-calculus. Features that were �rst conceived and studied in theoretical se�ings, such as
parametric polymorphism, type-inference, inductive data-types, and pa�ern matching, have
been successfully exported to mainstream programming languages.

Let us end this subsection by mentioning a series of in�uential functional programming
languages that were designed in the 1980s and 1990s, namely Hope [32], Miranda [137], and
Haskell [83], in which all functions are required to be pure. �is means that they behave like
actual mathematical functions: they are not allowed to perform side-e�ects like mutation or
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external input/output. �is restriction brings the execution model of these languages even
closer to the pure λ-calculus. Some of these languages are also characterized by the fact that
they use lazy evaluation, that is, the evaluation of expressions is delayed until their value is ac-
tually needed. �e evaluation strategy known as call-by-need (introduced below in Sec. 1.1.2),
closely related with lazy evaluation, is a recurring topic throughout this thesis.

1.1.2 Evaluation Strategies

In most of this thesis we will be interested in studying di�erent “ways” of executing programs.
�e way of executing a program depends on the execution model of the underlying program-
ming language, whose design space has many dimensions. For example, one dimension that
drew the a�ention of early language designers is that there are various alternatives for im-
plementing the mechanism of parameter passing. Suppose that fpxq is a function depending
on a formal parameter x, and fpeq represents a function call, where e is some expression.
�e question is when the argument e should be evaluated, and what should happen when
the function f accesses its parameter. Di�erent choices lead to di�erent “ways” of executing
programs. �ese ways are known as evaluation strategies. Some evaluation strategies may be
more convenient than others in di�erent contexts.

One very common evaluation strategy, call-by-value, establishes that e should be evaluated
before performing the function call. Whenever f needs to use its parameter, it su�ces to
retrieve the parameter x, which is already bound to a fully evaluated value. Another possible
evaluation strategy, call-by-name, establishes that the function call should be performed �rst,
leaving the expression e unevaluated. If f ever needs to access its parameter, it must retrieve
the parameter x, which is bound to an unevaluated expression e, and then proceed to evaluate
e to a value.

For example, let fpxq “ x ` x and suppose that we want to evaluate the function call
fp2 ˚ 3q. A call-by-value strategy would result in the following execution:

fp2 ˚ 3q Ñ fp6q Ñ 6` 6 Ñ 12

In contrast, a call-by-name strategy would result in the following execution:

fp2 ˚ 3q Ñ 2 ˚ 3` 2 ˚ 3 Ñ 6` 2 ˚ 3 Ñ 6` 6 Ñ 12

Note that, in call-by-value, the argument e is evaluated exactly once, and that holds even if fpxq
is a constant function not depending on x. On the other hand, in call-by-name, the argument
e is evaluated as many times as needed, and that may mean zero, one, or more times. As a
consequence, call-by-value may perform unnecessary computational work (if the parameter
is never used), while call-by-name may duplicate computational work (if the parameter is used
more than once).

In his PhD thesis, Christopher Wadsworth proposed a mechanism for implementing pa-
rameter passing that combined the bene�ts of call-by-value and call-by-name [145]. �is
results in the evaluation strategy known as call-by-need. Call-by-need establishes that, to
evaluate a function call fpeq, the call itself should be performed �rst, leaving the expression e



18

unevaluated, similarly as in call-by-name. However, all occurrences of the formal parameter
x become bound to the same copy of the expression e, which is shared by means of pointers.
If f ever needs to access its parameter, the expression e is evaluated once and forever. Subse-
quent accesses to the parameter, a�er the �rst one, merely retrieve the value, similarly as in
call-by-value.

Using the call-by-need strategy to evaluate fp2 ˚ 3q, de�ning fpxq “ x ` x as before,
results in an execution that may be graphically depicted as follows, where ‚ Ñ e represents
a pointer to an expression e:

fp2 ˚ 3q Ñ ‚

��

` ‚

��

2 ˚ 3

Ñ ‚

��

` ‚

��
6

Ñ 6 ` ‚

��
6

Ñ 6` 6 Ñ 12

In call-by-need, expressions are not limited to being trees anymore. Instead, they must become
directed acyclic graphs, to account for the sharing of subterms. �is means that, in a language
like the λ-calculus, it is technically not possible to formulate call-by-need as a strategy, be-
cause it relies on a special representation for λ-terms. In 1997, Zena Ariola and Ma�hias
Felleisen [12] and, independently, John Maraist, Martin Odersky, and Philip Wadler [113],
de�ned a variant of the λ-calculus that extends the syntax of λ-terms with a let construct
that allows to encode the sharing of subterms explicitly. �us they were able to formulate
call-by-need as a strategy internally in this language.

In this thesis we work with the Linear Substitution Calculus, a variant of the λ-calculus
extended with explicit substitutions. An explicit substitution is a construct of the form trxzss

which means, informally, that all the occurrences of the variable x in the term t are pointers to
the term s.3 �e call-by-need strategy is formulated on terms with explicit substitutions. For
example, the call-by-need evaluation of fp2 ˚ 3q as above can be rendered using this notation
as follows:

fp2 ˚ 3q Ñ px` xqrxz2 ˚ 3s Ñ px` xqrxz6s Ñ p6` xqrxz6s Ñ 6` 6 Ñ 12

Call-by-need, as we have mentioned, is a recurring theme of this thesis.

�e relevance of formalisms based on rewriting, such as the λ-calculus, for the purpose
of studying evaluation strategies, is that they allow to formulate strategies precisely. �is
in turn makes it possible to reason about their behavior. �e somewhat vague notion of
evaluation strategy has a rigorous counterpart, namely the notion of reduction strategy. A
reduction strategy is a function that, given a term t, selects the computation step t Ñ s that
should be performed next, provided that t is not already an answer

4. Reduction strategies
have been studied from the theoretical point of view since long ago. Indeed, the notions of
call-by-name and call-by-value in the λ-calculus were already known in the 1930s by Church
and his collaborators. An in�uential work from 1975 is by Gordon Plotkin [125], in which

3Explicit substitutions and let constructs are, in fact, synonyms; an explicit substitution trxzss is nothing
but a let construct plet x “ s in tq, wri�en with di�erent syntax.

4�e notion of answer may vary depending on the context. For call-by-name and call-by-value, the set of
answers is typically the set of terms of the form λx.t.
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he established a precise relationship between call-by-name and call-by-value, showing how
the call-by-name λ-calculus may be simulated in the call-by-value λ-calculus, and vice versa,
using continuation-passing style translations.

�ere are other well-known reduction strategies, besides call-by-name and call-by-value,
such as le�most-outermost, innermost, and parallel-outermost, to name a few. Most of these
strategies have been also extended to formalisms other than the λ-calculus, such as term
rewriting systems and higher-order rewriting systems. Standard reference material dealing
with reduction strategies and their properties may be found for example in [22, Ch. 13] or
[135, Ch. 9].

Abstract Machines and Reasonable Cost Models

In this thesis, and in particular in Chapter 3 we study the question of whether the Linear
Substitution Calculus can be regarded as a cost model. �e λ-calculus is a �ne model of com-
putation from the point of view of mere computability, in the sense that a function Nk Ñ N is
computable in a Turing machine if and only if it is computable in the λ-calculus. On the other
hand, it is not clear whether the λ-calculus is a reasonable model of computation from the
quantitative point of view of computational complexity. For example, can complexity classes,
such as P, NP, EXP, etc. be characterized in terms of reduction in the λ-calculus?

�e λ-calculus is an abstract model of computation, but from the point of view of com-
plexity it seems to be too abstract. One reason is that execution is based on performing
“surgery” on terms, using the metalanguage operation of substitution. Substitution is more
complex than it might seem at �rst sight. On one hand, substitution may cause duplication
or erasure of arbitrarily large terms. For example, the reduction step pλx.x xq t Ñ t t dupli-
cates the arbitrary term t. Moreover, substitution must avoid variable capture; for example
pλy.xqtx :“ yu should not equal λy.y, as that would result in capturing the free variable y.
Rather, in the expression pλy.xqtx :“ yu the bound variable y should be renamed to a fresh

variable, for example z. We then have that pλy.xqtx :“ yu “ pλz.xqtx :“ yu and, as a re-
sult, pλy.xqtx :“ yu “ λz.y, thus avoiding capture. It is not immediate to implement this
kind of operations in a traditional model of computation like a Turing machine or a random-
access machine: their execution models are based on a radically di�erent mechanism, namely
mutating an array (or a “tape”) whose entries contain one of a �nite number of symbols.

�e fact that the λ-calculus is “too abstract” is, on one hand, of practical concern. �e mis-
match between the high level of abstraction of the λ-calculus and the lower level of abstraction
of actual computers means that implementing the λ-calculus e�ciently is a non-trivial task.
Understanding and reasoning about these implementations is hindered by the fact that actual
computers are built on complex hardware. Instruction sets vary radically from one processor
architecture to another, they are usually ridden with corner cases, and their speci�cations are
seldom formal or complete.

In order to bridge the gap between higher-level languages like the λ-calculus and lower-
level machines, many abstract machines have been proposed. An abstract machine is a for-
malism de�ned by a set of possible states that the machine might be in, and a binary relation
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of transition between states. Formally speaking, this is not unlike the de�nition of a rewriting
system (or a directed graph, for that ma�er), but there is an important di�erence in intent.
Abstract machines are intended to model the relevant aspects of the behavior of an actual
computer, thus serving as a stepping stone between programming languages and actual hard-
ware. As a result, the state of an abstract machine is de�ned in terms of relatively primitive
data structures such as stacks and environments. �e transitions of the machine manipulate
these structures in a similarly primitive fashion. Transitions are (usually) deterministic, and
they are expected to be easily implementable in hardware in such a way that they typically
take constant time.

Some of the be�er known abstract machines for the λ-calculus are the SECD machine,
introduced by Peter J. Landin in [99] to implement call-by-value evaluation, and the Krivine
machine, introduced by Jean-Louis Krivine [97] to implement call-by-name evaluation. Other
well-known machines of our interest are Xavier Leroy’s ZINC machine [106], designed as
the target for an ML compiler, Peter Sesto�’s machine for call-by-need evaluation [129], and
Pierre Crégut’s machine for evaluation to normal form [42].

On the other hand, there is a more profound and theoretical reason why the λ-calculus is,
in a way, “too abstract”. Consider, for example, the following families of terms ptnqnPN and
psnqnPN:

t0
def
“ y

tn`1
def
“ pλx.xxqtn

s0
def
“ y

sn`1
def
“ snsn

Observe that the size of the term tn is Θpnq and the size of the term sn is Θp2nq. By induction
on n, it is easy to see that tn reduces to sn in exactly n steps:

tn`1 “ pλx.xxqtn Ñ . . . Ñ
n steps, by i.h.

pλx.xxqsn Ñ snsn “ sn`1

In contrast, in a traditional model like a Turing machine, the space complexity of a program
is always bounded by its time complexity: in particular, the memory occupied by a program
cannot grow exponentially relative to its execution time. As a consequence, if an implemen-
tation of the λ-calculus encodes λ-terms naı̈vely as trees, then the execution time required to
simulate n reduction steps may require a number of elementary steps exponential in n.

Computational complexity theorists have a�empted to capture what it means to be a rea-

sonable model of computation. Peter van Emde Boas Invariance �esis [140] proposes that

reasonable sequential models simulate each other with polynomial overhead in time

and constant factor overhead in space.

Is the λ-calculus a reasonable model of computation? By the preceding remark, we know that,
naı̈vely encoding terms as trees, Turing-machines cannot simulate the λ-calculus with poly-
nomial overhead. However, this does not forbid that there may exist smarter representations
for terms. As a ma�er of fact, Beniamino Acca�oli and Ugo dal Lago [11] have shown that
le�most-outermost reduction in the λ-calculus can be reasonably simulated with only poly-
nomial overhead in time, by representing λ-terms in a way that avoids the size explosion
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problem by suitably sharing subterms. �e representation used in [11] is based on the same
calculus that most of this thesis is about—the Linear Substitution Calculus.

Chapter 3 of this thesis is dedicated to studying abstract machines that implement various
evaluation strategies in the Linear Substitution Calculus. In particular, the abstract machines
that we propose implement their corresponding evaluation strategies preserving time com-
plexity. For example, n steps of call-by-name evaluation in the Linear Substitution Calculus
are simulated byOpc¨nq transitions of the Krivine machine, where c is a factor proportional to
the size of the starting term. Given that the Krivine machine can be reasonably implemented
in a traditional model of computation, this in turn justi�es that call-by-name evaluation in
the Linear Substitution Calculus is a reasonable cost model.

Weak vs. Strong Reduction Strategies

In this thesis, and in particular in Chapters 3, 4 and 5, we design and we study evaluation
strategies that are well-suited for the e�cient implementation of reduction with open expres-
sions.

In typical programming languages, only closed expressions are ever evaluated. An expres-
sion is closed when it has no free variables. For example, pλx. x` xq 3 is a closed expression
that evaluates to 6. On the other hand, px` xq is not a closed expression, because it has free
occurrences of the variable x. In a typical programming language like OCaml or Haskell, at-
tempting to evaluate an expression with free variables does not even make sense, and it leads
to a compile-time error.

In contrast, the β-reduction rule of the λ-calculus may take place under an arbitrary con-

text. �is means that, in the λ-calculus, reduction steps may be performed anywhere inside
a term, so one may have to deal with open expressions, in which variables may occur free.
Formally, β-reduction is de�ned as a binary relation (Ñ) over the set of λ-terms T e, that is,
ÑĎ T e ˆ T e, by means of a formal deductive system that includes four inductive rules:

β
pλx.tqsÑ ttx :“ su

tÑ t1

µ
t sÑ t1 s

sÑ s1

ν
t sÑ t s1

tÑ t1

ξ
λx.tÑ λx.t1

�e �rst rule, pβq, speci�es the actual mechanism by which computations proceed. �e re-
maining rules, pµq, pνq and pξq, merely specify what are the subexpressions in which compu-
tations may take place. Rules like pβq, embodying the actual mechanism of computation, are
called rewriting rules or computation rules. Rules like pµq, pνq and pξq are called congruence

rules. Congruence rules state that a reduction relation like pÑq enjoys certain closure prop-

erties under a number of term constructors. For instance the pµq rule allows one to embed a
reduction step t Ñ t1 below the context ls, thus obtaining a reduction step ts Ñ t1s. Like-
wise, the step λx.zppλy.yqxq Ñ λx.z x might be justi�ed by applying the computation rule
pβq to conclude that pλy.yqxÑ x holds, and then applying the congruence rules pνq and pξq
to embed the computation under the context λx.zl. It should be clari�ed that the distinction
between computation and congruence rules is not clear-cut, but still it is a standard and very
useful one.

We have mentioned before that the execution model of traditional programming languages
does not make sense for terms with free variables: only closed terms may be evaluated. As
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a necessary consequence, traditional programming languages do not allow performing com-
putations under arbitrary contexts. �e reason is that the subexpression t in the expression
λx.t may not be a closed term, since it possibly involves free occurrences of x. As a result,
traditional programming languages use weak reduction, meaning that the congruence rule
corresponding to pξq is missing, so that evaluation under lambdas is forbidden. For example,
a program like λx.pλy.yqx is already considered to be an answer in a language like OCaml
or Haskell, even though λx.pλy.yqx Ñ λx.x is a valid β-reduction step in the λ-calculus.
Evaluation strategies for traditional programming languages, and speci�cally call-by-name,
call-by-value, and call-by-need, all implement weak reduction. Whenever we wish to em-
phasize the opposition between the usual notion of reduction in the λ-calculus, which allows
the pξq congruence rule, and weak reduction, which forbids the pξq rule, the former is called
strong reduction.

Evaluation strategies for strong reduction are a mostly neglected topic. A few notable
exceptions are Pierre Crégut’s strong version of the Krivine Abstract Machine [42] and Ben-
jamin Grégoire and Xavier Leroy’s [66] formulation of strong reduction based on the recursive
application of a weak evaluator.

However, strong reduction is a central component in the implementation of modern proof
assistants based on constructive type theory, such as Coq and Agda. A distinctive characteris-
tic of constructive type theory is the presence of dependent types: expressions that represent
types and may depend on terms. For example the proposition stating the fact that the natural
number 2 is even may be encoded as a type IsEven(2), whose inhabitants represent witnesses
of this fact. In this kind of systems, a type typically has many possible representations; for
example IsEven(2) and IsEven(1 + 1) are equal types by de�nition. As a consequence, the type
checking engine must perform computations to decide type equality. Moreover, types may
depend on assumptions in the form of symbolic (free) variables, and they may as well depend
on functions wri�en using lambda abstractions. �is means that reduction must be able to
deal with open terms, i.e. terms that might contain free variables, in full generality, making
strong reduction an indispensable feature.

In the last decade, proof assistants have received increasing a�ention, as a result of such
milestones as the formalization of the Four-Color theorem [62] and the Feit–�ompson the-
orem [64] by the team of Georges Gonthier, the formal veri�cation of the C compiler Com-
pCert [107] by the team of Xavier Leroy, the formalization of the Kepler conjecture [71] by the
team of �omas Hales, and the Univalent Foundations Program [138]. �ese developments
indicate that proof assistant technology has become mature enough to undertake signi�cant
projects. On the other hand, the fact that formalization projects have grown larger and more
complex has aroused concern regarding the e�ciency of proof assistant implementations.
Most proof assistants currently rely either on ad hoc evaluation mechanisms that are not
well-documented, or on relatively straightforward but ine�cient mechanisms. Given this sit-
uation, it seems apparent that proof assistants could bene�t from solid theoretical foundations
to support their e�cient implementation.

We are concerned with the e�cient implementation of strong reduction at various points
in this thesis. In Chapter 3, we propose an abstract machine for strong call-by-name reduction,
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based on a reformulation of Crégut’s abstract machine. Chapter 4 is devoted to studying an
extension of the call-by-need strategy for strong reduction.

Normalization

In this thesis we are interested in developing reduction strategies for evaluating programs, and
in showing that these strategies are “good” in various precise senses. One important question
is whether a reduction strategy is normalizing. Informally, a reduction strategy is normalizing
if following the strategy always leads to a answer, whenever possible. For example, de�ning
I “ λx.x as the identity function, and Ω “ pλx.xxqpλx.xxq as the non-terminating term par

excellence, then following the call-by-value strategy does not terminate for the term pλx.IqΩ,
for it repeatedly leads us to choose to evaluate the argument Ω:

pλx.IqΩ Ñ pλx.IqΩ Ñ pλx.IqΩ Ñ . . .

�is example a�ests that the call-by-value strategy is not normalizing, because it fails to reach
an answer, even though reaching an answer is possible. Contrast this with what happens using
the call-by-name strategy, which reaches an answer in just one step:

pλx.IqΩ Ñ I

Indeed, the call-by-name strategy is normalizing in general, which is a well-known fact5.
In Chapters 4 and 5 we prove, using a di�erent technique, that a strong variant of the call-

by-need strategy is normalizing. In Chapter 7 we give su�cient conditions to ensure that a
strategy is normalizing, and we apply it to a variant of the call-by-need strategy.

Residuals and Developments

In order to prove that reduction strategies are “good” in various senses, one must confront
more fundamental questions. For example, one may want to prove that a given computation
requires to perform less computational work than any equivalent computation. �is leads to
a fundamental question: when can one say that two computations are equivalent?

In this thesis, especially in Chapter 7, we use an established notion of equivalence be-
tween sequences of rewriting steps, the notion of permutation equivalence, due to Jean-Jacques
Lévy [109]. Informally, two sequences of rewriting steps are permutation equivalent if they
perform essentially the same computation steps, although possibly in di�erent order. For
example the following three reduction sequences are permutation equivalent:

pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq Ñ zppλy.yqzq Ñ zz

pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq Ñ ppλy.yqzqz Ñ zz

pλx.xxqppλy.yqzq Ñ pλx.xxqz Ñ zz

To de�ne permutation equivalence precisely, the notion of residual has to be introduced.
First, a redex in the λ-calculus is a subterm of the form pλx.tqs. For example, the term

5See for instance [130, Corollary 1.5.12 (i)]. In Coro. 7.56 we prove a related result.
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pλx.xxqppλy.yqzq has two redexes, respectively underlined and overlined. Each redex is as-
sociated with one—and only one—computation step. For example, contracting the underlined
redex corresponds to the step:

pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq

while contracting the overlined redex corresponds to the step:

pλx.xxqppλy.yqzq Ñ pλx.xxqz

Conversely, each computation step is associated with one—and only one—redex, so some-
times, both in the literature and in this thesis, redexes and steps are identi�ed. If R : t Ñ s

and S : tÑ u are steps going out from the same starting term t, the set of residuals of S a�er

R, denoted by S{R, can be de�ned (semi-formally) as follows:

1. Mark the lambda of the redex S in the starting term t (for example by underlining it).

2. Execute the stepR on the marked term, obtaining the target s of the stepR, which now
has some marked lambdas.

3. A step S 1 starting from s is a residual of S a�er R, that is S 1 P S{R, if and only if the
lambda of S 1 is marked.

For example, let:

R : pλx.xxqppλy.yqzq Ñ ppλy.yqzqppλy.yqzq

S : pλx.xxqppλy.yqzq Ñ pλx.xxqz

�e following diagram justi�es thatR has exactly one residual a�er S, more preciselyR{S “
tR1u:

pλx.xxqppλy.yqzq

R
��

S // pλx.xxqz

R1

��
ppλy.yqzqppλy.yqzq zz

In turn, the following diagram justi�es that S has two residuals a�erR, more precisely S{R “
tS1, S2u:

pλx.xxqppλy.yqzq

S
��

R // ppλy.yqzqppλy.yqzq
S1

vv

S2

((
pλx.xxqz zppλy.yqzq ppλy.yqzqz

Note that a step may have zero, one, or more residuals. For example, S has more than one
residual a�er R, in which case we say that R duplicates S. On the other hand, if we let
R : pλx.yqpIzq Ñ y and S : pλx.yqpIzq Ñ pλx.yqz then S has no residuals a�er R, that is,
S{R “ ∅, in which case we say that R erases S. If R1 is a residual of R a�er S, we say that R
is an ancestor of R1 before S.
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Another important phenomenon is creation. In a sequence of two steps RS, we say that
R creates S if it has no ancestor before R. In the following three examples, the second step is
created by the �rst step:

pλx.xqpλy.zyqt Ñ pλy.zyqt Ñ zt

pλx.λy.zxyqts Ñ pλy.ztyqs Ñ zts

pλx.zpxz1qqpλy.tq Ñ zppλy.tqz1q Ñ z tty :“ z1u

To de�ne residuals formally, one may proceed as above, introducing an auxiliary λ-calculus
with marked lambdas (as we do in Def. 2.70), or directly by case analysis [46, pp. 115–116]. In
any case, one obtains the same notion of residual.

�e set of residuals S{R can be generalized to the case in which, rather than a single step
R, one has a sequence R1 . . . Rn. Namely, one declares that Sn P S0{R1 . . . Rn if and only
if there exist steps S1, . . . , Sn´1 such that Si P Si´1{Ri for all 1 ď i ď n. �is allows one
to give the following notion of development. Let M be a set of steps, all starting from the
same initial term t. A possibly in�nite sequence R1 . . . Rn . . . is a development of M if for
every 1 ď i ď n there exists a step S P M such that Ri P S{R1 . . . Ri´1. For example, in
the diagram below, the sequence RS1S

1
2, the sequence RS2, and the sequence SR1 are three

di�erent developments of tR, Su:

pλx.xxqpIyq
R

ww
S

((
IypIyq

S1

yy
S2

''

pλx.xxqy

R1

oo

ypIyq

S12 &&

Iyy

S11vv
yy

Moreover, we say that a development of a set M is complete if it is maximal. For instance,
RS1S

1
2 is a complete development of tR, Su, while RS2 is not a complete development of

tR, Su because it may be extended to form a longer development RS2S
1
1 of the set tR, Su.

Note that some sequences are not developments of any set M. For example, letRS be any
sequence such that R creates S, e.g. IIxÑ IxÑ x. �en RS cannot be the development of
any set.

One of the most important theorems about developments is the Finite Developments the-
orem, stated below. �e �rst item was already known to Church and Rosser [75], while the
second and third items are due to Lévy [109]:

�eorem 1.2 (Finite Developments). Let M be a set of steps with the same source t in the

λ-calculus. �en:

1. Finite. �ere are no in�nite developments of M.

2. Co�nal. If ρ and σ are two complete developments of M, they have the same target, that

is there exists a term s such that ρ, σ : tÑ˚ s.
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3. Equivalent. If ρ and σ are two complete developments of M and T : t Ñ t1 is any step

then T {ρ and T {σ are the same set.

Proof. See [109, p. 33].

Relying on the Finite Developments theorem as a cornerstone, an equivalence relation on
reduction sequences may be de�ned. Permutation equivalence (”) is the least equivalence
relation such that ρστ ” ρσ1τ for any derivations ρ, σ, σ1, τ such that σ and σ1 are complete
developments of the same set M.

�ere are many alternative ways to characterize permutation equivalence [118, 135, 142].6
One way is by proposing a standardization procedure, which converts an arbitrary sequence
of rewriting steps into standard form. A reduction in standard form is the canonical represen-
tative of its permutation equivalence class, hence two reduction sequences are permutation
equivalent if and only if they have the same standard form.

Sharing and Optimality

In Chapters 6 and 7 we will study reduction strategies from the point of view of optimality, i.e.

on whether they yield optimal reductions. �ere are two related but slightly di�erent senses
of the word optimality. For clarity, we distinguish these two meanings by referring to them
as length-optimality and work-optimality respectively.

On one hand, a reduction t0 Ñ t1 Ñ . . . Ñ tn from a term t0 to an answer tn is said
to be length-optimal if it is the shortest reduction leading from t0 to an answer. In the λ-
calculus, de�ning a reduction strategy that yields length-optimal reductions in this sense is
trivial from a strictly mathematical point of view. Unfortunately, as one may suspect, there is
no computable length-optimal strategy [22, Prop. 13.5.2].

On the other hand, a reduction t0 Ñ t1 Ñ . . . Ñ tn from a term t0 to an answer tn is
said to be work-optimal if it does not duplicate computational work and it does not perform
unnecessary computational work.

�estions related to optimality, in both of the senses, are far from straightforward to an-
swer. In fact, the notion of work-optimality is not even straightforward to de�ne, as it requires
to formally specify what it means to say that computational work be duplicated or unneces-

sary. For the moment we content ourselves with this informal de�nition of work-optimality.
�e question of optimal reduction was �rst studied in the 1970s by Jean Vuillemin [144], John
Staples [132], and Jean-Jacques Lévy [109, 110] together with Gérard Berry [27], and later
extended and generalized by others.

One may expect that the notions of length-optimality and work-optimality coincide. How-
ever, in the λ-calculus there are terms that admit length-optimal reductions, but no work-
optimal reductions. Consider for example the following term, where I “ λx.x stands for the
identity as usual:

pλx.xpxIqqpλy.pλz.zzqpyIqq

6In Def. 2.40 we give the formal de�nition of permutation equivalence that we use. In Lem. 2.59 we recall a
useful alternative characterization.
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�ere are only �nitely many reductions pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ ... Ñ I so it is easy
to see that there exists a length-optimal reduction. Moreover, there are only two possibilities
for the �rst step, and it can be checked that none of them leads to a work-optimal reduction:

1. On one hand, we may reduce the expression that is underlined in the diagram below.
But doing so duplicates the computational work required to evaluate the overlined ex-
pression, necessarily leading to a reduction that is not work-optimal:

pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ pλy.pλz.zzqpyIqqppλy.pλz.zzqpyIqqIq

2. On the other hand, we may reduce the expression that is underlined in the diagram
below. But this duplicates the overlined subexpression yI , and this in turn leads to
duplicating the computational work to evaluate II :

pλx.xpxIqqpλy.pλz.zzqpyIqq Ñ pλx.xpxIqqpλy.pyIqpyIqq

Ñ pλy.pyIqpyIqqppλy.pyIqpyIqqIq

Ñ pλy.pyIqpyIqqppIIqpIIqq

With regard to the relationship between optimality and other evaluation strategies, it can
be noted that call-by-name and call-by-value do not necessarily yield work-optimal reduc-
tions. �e call-by-name strategy is not optimal because it may duplicate work, as in the fol-
lowing example, in which the underlined expression is duplicated and then evaluated twice:

pλx.xxqpIIq Ñ IIpIIq Ñ IpIIq Ñ II Ñ I

�e call-by-value strategy is also not optimal, because it may perform unnecessary work, as
in the following example, in which the underlined expression is evaluated, even though it is
not needed:

pλx.IqpIIq Ñ pλx.IqI Ñ I

More in general, Lévy showed in his PhD thesis that no reduction strategy consistently yields
work-optimal reductions for the λ-calculus [109]. Nevertheless, this does not rule out the
possibility that an implementation of optimal reduction may exist. An optimal implemen-
tation, should it exist, would need to be based on another representation for λ-terms, other
than trees. For example, one may conceive representing terms using graphs, as was done for
call-by-need.

Considering the impossibility results that we have mentioned so far, it is perhaps surpris-
ing that it is actually possible to de�ne an e�ective optimal implementation for the λ-calculus.
In his thesis, Lévy gave su�cient conditions that an evaluation mechanism should meet in or-
der to ensure work-optimality, whenever possible. John Lamping later proposed an e�ective
implementation [98], based on sharing graphs, that ful�lls these conditions, yielding an opti-
mal implementation of the λ-calculus.

We return to the topic of optimality in later chapters. Studying optimality for the Linear
Substitution Calculus is one of the primary motivations behind Chapters 6 and 7.
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1.1.3 Explicit Substitutions

As we have mentioned before, the main object of study in this thesis is a variant of the λ-
calculus called the Linear Substitution Calculus. �e λ-calculus has one rewriting rule, the
β-reduction rule:

pλx.tqsÑ ttx :“ su

Its de�nition relies on the auxiliary operation of substitution, wri�en ttx :“ su, which belongs
to the metalanguage.

�e operation of substitution is too coarse-grained. �e notation ttx :“ su suggests that
all the free occurrences of x are simultaneously replaced by s. Implementations, however,
rarely perform the textual replacement of the formal parameter x by the actual argument s
simultaneously. Instead, they rely on an auxiliary data structure, called an environment, that
keeps track of variable bindings. An implementation of the β rule would typically create an
association rx ÞÑ ss in the environment, mapping the variable x to the value s. �is creates a
signi�cant gap between theory and practice.

In order to bridge this gap, many works have considered extensions of the λ-calculus
incorporating a construct to allow for local de�nitions, a feature known by various names (such
as “let constructs”, “closures”, or “explicit substitutions”, among other names, depending on
the point of view). For example, Nicolas Goveert de Bruijn [51] extends the λ-calculus with a
facility to de�ne constants, and Pierre-Louis Curien [43] studies a calculus of closures in order
to model environments. A milestone paper in this line was by Martin Abadi, Luca Cardelli,
Pierre-Louis Curien and Jean-Jacques Lévy [1], in which they propose a calculus with explicit
substitutions, the λσ-calculus.

During the 1990s, a plethora of calculi with explicit substitutions emerged, including λx
by Kristo�er Rose [127, 29], λs by Fairouz Kamareddine and Alejandro Rı́os [84], λχ by Pierre
Lescanne and Jocelyne Rouyer-Degli [108], λυ by Zine-El-Abidine Benaissa et al. [24], and
many other calculi. �eir de�ning characteristic is that they include a rewriting rule corre-
sponding to the β-reduction rule in the λ-calculus, sometimes called beta:

pbetaq pλx.tqs Ñ trxzss

with the di�erence that trxzss is an explicit substitution operator, internal to the object lan-
guage. �is formally means that the syntax of terms is extended to include not only variables,
applications, and abstractions, but also explicit substitutions of the form trxzss. In order to
implement the explicit substitution operator, these calculi include also other rewriting rules
that indicate the mechanism by which substitutions are performed. For example, a typical
calculus with explicit substitutions may include rewriting rules to specify how substitutions
should act when confronted with variables, and how they should propagate over abstractions
and distribute over applications:

pvar1q xrxzts Ñ t

pvar2q yrxzts Ñ y if x ‰ y

pabsq pλy.tqrxzss Ñ λy.trxzss if x ‰ y and y R fvpsq
pappq ptsqrxzus Ñ trxzus srxzus
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In fact, the beta rule plus the four rewriting rules var1, var2, abs, and app form the system
known as λx.

An interesting consequence of including substitutions explicitly in the object language is
that it allows one to model the sharing of subterms. For example, in the following reduction
sequence,

pλx.yxxqppλz.zqyq Ñ pyxxqrxzpλz.zqys Ñ pyxxqrxzzrzzyss

the �rst reduction step binds the variable x to a term pλz.zqy. Here it is appropriate to think
of the variable x as a pointer referencing a memory location, and of the explicit substitution
rxzpλz.zqys as the memory cell itself. �e second reduction step a�ects the term pλz.zqy,
modelling a destructive update of shared memory.

�ere are many desirable operational properties that an ideal calculus with explicit sub-
stitutions should meet. A crucial property is simulation of β-reduction: if a term t reduces to
s in the λ-calculus, then t should also reduce to s in the calculus with explicit substitutions in
question. For example, the β-reduction step pλx.λy.xqz Ñ λy.z is simulated by the following
three reduction steps in λx:

pλx.λy.xqz Ñ pλy.xqrxzzs Ñ λy.xrxzzs Ñ λy.z

A closely related property is known as full composition: a term built using the explicit substi-
tution operator trxzss should reduce to the actual substitution ttx :“ su. For example, in the
calculus λx, the term pxxqrxzys reduces to yy in three steps:

pxxqrxzys Ñ xrxzysxrxzys Ñ y xrxzys Ñ yy

�e full composition property is subtler than it seems at �rst sight, since the term t may itself
have other occurrences of the explicit substitution operator. For example, λx does not enjoy
full composition—it is easy to check that zrzzxsrxzys does not reduce to zrzzys. �is suggests
that the following rewrite rule should be added to have the full composition property:

psubq trxzssryzus Ñ tryzusrxzsryzuss if x R fvpuq

but unfortunately this rule leads to non-terminating behavior, since the right-hand side of the
rule is an instance of the le�-hand side:

trxzssryzus Ñ tryzusrxzsryzuss

Ñ trxzsryzussryzurxzsryzusss

Ñ . . .

In fact, there is another important operational property that calculi with explicit substitutions
should ideally enjoy, known as preservation of strong normalization (PSN). Recall that a term
t is said to be strongly normalizing if there are no in�nite reduction sequences t Ñ t1 Ñ

t2 Ñ . . .. A calculus with explicit substitutions is said to enjoy PSN if whenever t is strongly
normalizing in the λ-calculus then t is also strongly normalizing in the given calculus with
explicit substitutions. Around 1995, the question of whether the λσ calculus enjoyed PSN
was open, and the community was hoping for a positive answer, when Paul-André Melliès
famously exhibited a counterexample [117].
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Most of the research on the �eld of explicit substitutions during the late 1990s and 2000s
was concerned with �nding a calculus with explicit substitutions verifying a number of de-
sired good properties. Super�cially, this means that the calculus should enjoy good opera-
tional properties, such as con�uence, PSN, and full composition. More profoundly, this means
that the operational behavior of the calculus should be backed up by an appropriate semantical
justi�cation.

As an answer to this quest, Delia Kesner and Stéphane Lengrand proposed an explicit
substitution calculus λlxr with explicit operators for weakening and contraction, whose oper-
ational semantics is justi�ed by a sound and complete correspondence with linear logic proof
nets [88, 85]. �is calculus enjoys good operational properties. �ese ideas led Delia Kesner
and her collaborators to develop further explicit substitution calculi in close correspondence
with linear logic proof nets, the prismoid of resources [89]—with Fabien Renaud—, which in
turn lead to the Linear Substitution Calculus [9]—with Beniamino Acca�oli.

�e Linear Substitution Calculus

�e object of study of this thesis, the Linear Substitution Calculus (LSC), was introduced by
Beniamino Acca�oli and Delia Kesner in 2010 [9], inspired by previous calculi by Kesner et
al. [88, 85, 89]. It also turns out to be similar to an earlier calculus by Robin Milner [120].

Why LSC?

• Its formulation is simpler than previous calculus of explicit substitutions, having
only three rules.

• It is semantically orthogonal in the sense of residual theory [5]. Previous explicit
substitution calculi do not have well-behaved residual theories.

• Its operational semantics can be justi�ed via a translation into linear logic proof
nets [2].

�e starting point of the LSC is a representation of λ-calculus terms as λ-graphs. Roughly
speaking, λ-graphs are λ-terms wri�en using graph syntax. �e syntax of λ-graphs is given
by graphs that are built using nodes (‚) connected by three kinds of links: variable links (v),
application links (@), and abstraction links (λ):

Variable link Application link Abstraction link

‚

��
v

��
‚

‚

��
@

		 ��
‚ ‚

‚

��
λ

��
‚

55

‚

Variable occurrences in the λ-calculus are represented using variable links. �e target of a
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‚
��
λ

��
‚
��
λ

��
‚
��

@


 ��
‚
��

‚
��

v

//

@


 ��
‚
��

‚
��

v
��

v
��

‚

//

‚

//

Figure 1.1: �e λ-term λx.λy.ypyxq represented as a λ-graph

variable link points to a node representing the current binding of the variable, i.e. its value. An
application link corresponds to an application in the λ-calculus: the le� target points to a node
representing the function, and the right target points to a node representing the argument. An
abstraction link corresponds to a lambda abstraction in the λ-calculus: the incoming arrow
from the bo�om le� is connected to a node representing the name of the bound variable, while
the target at the bo�om right points to the body of the abstraction. For example, the λ-graph
representation of the λ-term λx.λy.ypyxq is shown in Figure 1.1.

An advantage of λ-graphs is that, much like explicit substitutions, they allow to easily
represent shared subterms. For instance, the term pλx.xqpλx.xq may be represented by the
following λ-graph:
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Compare this with a calculus with explicit substitutions, in which the term pλx.xqpλx.xqmay
be rendered as pyyqryzλx.xs.

In this thesis we are not interested in representing λ-terms directly using λ-graphs. We



32

‚
��

@


 ��
‚
��

‚
��

v

,,

v

rr‚
��
λ

��
‚
��
v
��
‚

//
ÝÝÝÑ

‚
��

@
�� ��
‚
��

‚
��

λ
��

v
��

‚
��

‚
��

v
��

λ
��

‚

//

‚
��
v
��
‚

//

Figure 1.2: �e portrayed rewrite step corresponds to a local interaction in the graph,
but it is mapped to a non-local interaction when graphs are wri�en back in term syntax:
pyyqryzλx.xs Ñ ppλx.xqyqryzλx.xs.

should warn the reader, however, that not every λ-graph is a valid λ-term: rather, λ-graphs
must ful�ll some correctness conditions to be considered valid. Moreover, depending on the
exact representation chosen, other kinds of links besides variable, application, and abstraction
may be needed—speci�cally, weakening links may be needed to represent an abstraction like
λx.y in which the bound variable does not occur in the body. For the details, the interested
reader should refer to Acca�oli’s PhD thesis [2].

�e Linear Substitution Calculus results from the a�empt at representing λ-graphs back
in a more traditional term syntax, using an explicit substitution operator to allow the possi-
bility of shared subterms. Terms of the LSC are thus variables x, y, z, . . ., abstractions λx.t,
applications ts, and explicit substitutions trxzss. However, LSC is not a typical calculus with
explicit substitutions: there are two important traits that set LSC apart.

Distant Interaction. �e �rst important di�erence between LSC and typical calculi with
explicit substitutions is that rewriting rules in LSC operate at a distance. As already mentioned,
terms in the LSC are intended to represent λ-graphs. Consequently, rewriting steps in the LSC
are intended to model rewriting steps in a λ-graph, which correspond to local interactions in
the graph. For example, Figure 1.2 depicts a rewrite step in a λ-graph, in which a variable link
pointing to a subgraph A is replaced by a copy of A. When the same graph is rendered using
term notation, the rewrite step becomes:

pyyqryzλx.xs Ñ ppλx.xqyqryzλx.xs

Note that the a�ected occurrence of y and the explicit substitution ryzλx.xs could, in principle,
lie arbitrarily far away in the term. As a consequence, rewriting steps in the LSC may involve
non-local interactions between distant parts of the term. �e technical tool used by LSC
to formally express rewriting rules at a distance is that of contexts. A context C is a term
with exactly one free occurrence of a distinguished variable called a hole, and wri�en l.
If C is a context and t is a term, then Cxty denotes the term that results from plugging the
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term t into the hole of C. For example, if C “ plyqryzλx.xs then Cxyy “ pyyqryzλx.xs and
Cxλx.xy “ ppλx.xqyqryzλx.xs. Unlike the regular operation of substitution, plugging a term
t into a context C may capture the free variables of t. For example, pλx.lqxxy “ λx.x. In
LSC, sometimes we are interested in plugging a term into a context but avoiding capture.
�is operation is wri�en Cxxtyy, and formally de�ned as Cxxtyy def

“ Ctl :“ tu. For example,
pλx.lqxxxyy “ λz.x. A particular case of a context is one built exclusively from a list of zero
or more explicit substitutions, that is, a context of the form lrx1zt1s . . . rxnztns. �ese are
called substitution contexts and denoted by the le�er L. Given a substitution context L and a
term t, we usually write tL to stand for Lxty.

We are now in condition to present the three rewriting rules of the LSC. Formally, the
rewrite relation pÑq is the least binary relation between terms that contains the three axioms
below and which is closed by arbitrary contexts (i.e. tÑ s implies Cxty Ñ Cxsy):

pdbq pλx.tqL s Ñ trxzssL

plsq Cxxxyyrxzts Ñ Cxxtyyrxzts

pgcq trxzss Ñ t if x R fvptq

�e �rst rewriting rule, called distant beta (db), corresponds to the β-reduction rule of the
λ-calculus. It states that an interaction between a function λx.t and an argument s results in
the creation of an explicit substitution operator rxzss a�ecting the body of the function (t).
�e interaction is distant because in between the function λx.t and the argument s there may
be an arbitrary number of explicit substitutions, represented by the substitution context L.
For instance, the following is a sequence of three db steps:

pλx.λy.λz.xq t s u Ñ pλy.λz.xqrxzts s u

Ñ pλz.xqryzssrxztsu

Ñ xrzzusryzssrxzts

�e second rewriting rule, called linear substitution (ls), states that any variable x bound by
an explicit substitution to t may be replaced by a copy of t. �e expression Cxxxyy on the
le�-hand side of the ls rule represents a term with a (distinguished) free occurrence of the
variable x. For instance, the following is a sequence of three ls steps:

pxxqrxzyysryzzs Ñ pyyxqrxzyysryzzs

Ñ pyyxqrxzyzsryzzs

Ñ pyypyzqqrxzyzsryzzs

�e last rewriting rule, called garbage collection (gc), states that an explicit substitution rxzss
may be erased once the variable x is not referenced anywhere else in the term. �e formal
requirement is that the term be of the form trxzss and x R fvptq. Recall that fvptq stands for
the set of free variables of a term t. Also note that, in a calculus with explicit substitutions,
fvptrxzssq is de�ned as fvptq Y pfvpsqztxuq. For instance, the following is a sequence of three
gc steps:

xryzzrwzzssrzzss Ñ xryzzsrzzss

Ñ xrzzss

Ñ x
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When considered altogether, it is not di�cult to show that the rules db, ls, and gc of the LSC
simulate the β-reduction rule of theλ-calculus. For instance, the β-reduction step pλx.xxqλy.y Ñ
pλy.yqλy.y may be simulated by a db step, followed by two ls steps, plus a �nal gc step:

pλx.xxqλy.y Ñ db pxxqrxzλy.ys

Ñ ls ppλy.yqxqrxzλy.ys

Ñ ls ppλy.yqλy.yqrxzλy.ys

Ñ gc pλy.yqλy.y

As a ma�er of fact, the LSC enjoys all the desired properties for a calculus with explicit sub-
stitutions, including full composition and preservation of strong normalization [8, 10].

Graphical Equivalence. �e second characteristic that sets the LSC apart from typical
calculi with explicit substitutions is the presence of an equivalence relation of graphical equiv-

alence between terms, wri�en t „ s. Graphical equivalence is intended to re�ect equality of
λ-graphs at the level of terms. �e crucial point is that the rendering of a λ-graph as an LSC
term is not a function—in some cases, a λ-graph may correspond to various di�erent terms,
depending on the order in which substitutions are wri�en out. For instance, if we let I “ λx.x,
the λ-graph below may be represented as any of the terms pxrxzIsyqryzIs, pxyqrxzIsryzIs, or
pxyqryzIsrxzIs:
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Graphical equivalence is de�ned with the following three equations:

ptsqrxzus „ trxzuss if x R fvpsq
pλx.tqryzss „ λx.tryzss if x R fvpsq and x ‰ y

trxzssryzus „ tryzusrxzss if x R fvpuq and y R fvpsq

Using these rules we have, for example:

pxrxzIsyqryzIs „ pxyqrxzIsryzIs „ pxyqryzIsrxzIs

Observe that graphical equivalence does not identify ptsqrxzus with trxzussrxzus, i.e. substi-
tutions do not commute with applications in general. �e intuitive reason is that one would
like rewriting in LSC to be well-de�ned modulo graphical equivalence. A necessary condi-
tion for this is that graphical equivalence („) should be a strong bisimulation with respect to
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the rewriting relation (Ñ), that is, if t1 „ t Ñ s then there should exist a term s1 such that
t1 Ñ s1 „ s. If the terms ptsqrxzus and trxzussrxzuswere identi�ed, it would not be clear how
to simulate a step ptsqrxzus Ñ ptsqrxzu1s using a single step trxzussrxzus ?

ÝÑ trxzu1ssrxzu1s.
�e deeper reason is that graphical equivalence intends to capture exactly those permuta-

tions of substitutions that are valid in λ-graphs. In fact, the LSC modulo graphical equivalence
turns out to be isomorphic to the language of λ-graphs for the λ-calculus with sharing. �e set
of terms modulo graphical equivalence is in 1–1 correspondence with λ-graphs, and rewriting
sequences in LSC can be transported functorially. Again, for the low-level details we refer the
reader to Acca�oli’s PhD thesis [2].

1.2 �is Work

�is thesis is concerned with evaluation strategies in the Linear Substitution Calculus. In the
following subsections we summarize our contributions and lay out the structure of this docu-
ment. Generally speaking, the document is split into the main body and a technical appendix.
Some proofs have been omi�ed from the main body; their details can be found in the technical
appendix. In these cases the statement of the theorem includes the symbol ♣ with a reference
to the appendix.

1.2.1 Background

In Chapter 2 (Background), we �x the notation and we recapitulate well-known de�nitions
and theorems from rewriting theory and the λ-calculus that are relevant to our work. �e
experienced reader may want to skip this chapter.

1.2.2 Distilling Abstract Machines

Chapter 3 (Distilling Abstract Machines) is the result of joint work with Beniamino Accat-
toli and Damiano Mazza. In this chapter, we propose the Linear Substitution Calculus as an
“abstract abstract machine”.

To this aim, we study reduction strategies in the LSC and we show that they distill the
essence of various abstract machines. To do this we formally de�ne the notion of distillery.
Roughly speaking, a reduction strategy in the LSC distills an abstract machine if:

• Each state S of the abstract machine can be decoded to a term rrSss of the LSC.

• �ere is a binary relation p”q of structural equivalence between terms, which is a strong
bisimulation.

• Transitions of the abstract machine can be classi�ed in two types: search transitions,
which change the focus of evaluation but are otherwise computationally irrelevant, and
principal transitions, which perform the actual computation, in such a way that:

– If S ù S 1 is a search transition, then rrSss ” rrS 1ss.



36

– If S ù S 1 is a principal transition, then rrSss Ñ” rrS 1ss.

We then show that various reduction strategies in the LSC distill various (variations of) well-
known abstract machines:

Reduction strategy Abstract machine

call-by-name Krivine abstract machine [97]
le�-to-right call-by-value CEK machine [57]
right-to-le� call-by-value ZINC machine [106],
call-by-need Sesto�’s machine [129],
strong call-by-name Crégut’s machine [42],

Moreover, we propose new abstract machines, suggested by the process of distillery, which
are based on �at global environments rather than on nested local environments. In all of these
cases, the process of distillation ensures that the abstract machine correctly implements the
given reduction strategy.

Moreover, in each case, we show that simulating n reduction steps requires Opc ¨ nq tran-
sitions of the machine, where c is a factor proportional to the size of the starting term. �is
justi�es that the LSC—with any of the studied reduction strategies—is a reasonable model of
computation, in the sense that execution can be simulated in a random-access machine with
at most polynomial overhead in time.

1.2.3 Foundations of Strong Call-by-Need

Chapter 4 (Foundations of Strong Call-by-Need) is the result of joint work with �ibaut
Balabonski, Eduardo Bonelli, and Delia Kesner. In this chapter, we turn our a�ention to an
extension of the call-by-need strategy adapted for strong reduction.

�e very de�nition of a strong call-by-need strategy is challenging. �e crux of the ma�er
is that call-by-need evaluation in the strong case is highly context-dependent. For example,
in a term like λx.yryzxts the strong call-by-need strategy should evaluate the term t:

λx.yryzxts Ñ λx.yryzxt1s

because reduction is strong and we seek to obtain the full normal form of the term. In contrast,
in a term like zrzzλx.yryzxtsss the strong call-by-need strategy should perform the following
linear substitution step:

zrzzλx.yryzxtsssÑ pλx.yryzxtsqrzzλx.yryzxtsss

in order to stay faithful to its “by-need” nature. In this chapter:

• �eory of Sharing. We de�ne a theory of strong reduction, the �eory of Shar-
ing (Def. 4.4). �e �eory of Sharing is a (non-deterministic) calculus whose rewrit-
ing rules induce an equational theory that characterizes the operational equivalence of
programs with explicit substitutions, enforcing sharing.

• Strong Call-by-Need Strategy. We de�ne a strategy for strong call-by-need-reduction (Def. 4.13),
including various related notions such as normal forms and evaluation contexts. Strong
call-by-need reduction is a deterministic strategy contained in the �eory of Sharing.
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Its de�nition relies on the notion of evaluation context. Evaluation contexts are param-
eterized by a set ϑ of variables that are “frozen”, i.e. symbolic, and by a binary �ag
indicating whether the evaluation context may be composed with an applicative con-
text in such a way that the result is still an evaluation context.

• Basic Properties of the Strong Call-by-Need Strategy. We prove four basic princi-
ples that our strong call-by-need strategy enjoys, namely that the normal forms of the
strategy are strong β-normal forms, up to unfolding, (Prop. 4.16), that the strategy is
deterministic (Prop. 4.18), that it is a conservative extension of previously known no-
tions of weak call-by-need (�m. 4.23), and that it is correct with respect to β-reduction
(Prop. 4.25), i.e. that if the strategy �nds a normal form then the term has a strong
β-normal form.

• Completeness of the Strong Call-by-Need Strategy. We study the completeness of
our strong call-by-need strategy with respect to β-reduction, i.e. if a λ-term has a strong
β-normal form, then our strong call-by-need strategy also reaches a normal form. We
establish a precise relationship between the normal form in the λ-calculus and the nor-
mal form in our calculus with explicit substitutions (unfolding all of the explicit sub-
stitutions). �e proof of normalization combines a logical argument and a syntactical
argument, extending previous work by Kesner [87]. More speci�cally:

– Typability vs. Normalization. We propose a non-idempotent intersection type
system for the �eory of Sharing (Def. 4.27). �is is a simple adaptation of existing
systems, following the line of work proposed by Kesner [91]. We also show that ty-
pability in this system implies normalization in the �eory of Sharing. (�m. 4.43).

– Completeness of the �eory. We use the type system to argue that the �e-
ory of Sharing is complete with respect to β-reduction (Prop. 4.45), i.e. that β-
normalizing terms are also normalizing in the �eory of Sharing.

– Completeness of the Strategy. Using an abstract factorization result by Accat-
toli [3], we argue that the strong call-by-need strategy is complete with respect to
the �eory of Sharing (Prop. 4.54). �e proof of this fact relies on an exhaustive
case analysis of permutation diagrams.

1.2.4 Strong Call-by-Need for Pattern Matching and Fixed Points

Chapter 5 (Strong Call-by-Need for Pattern Matching and Fixed Points) is the result of
joint work with Eduardo Bonelli and Kareem Mohamed. In this chapter, we extend the results
of the previous chapter to incorporate pa�ern matching and recursion (terms are extended
with constructors, a case construct, and a �xed point operator). Speci�cally:

• Extended �eory of Sharing. Our starting point is Grégoire and Leroy’s extended
λ-calculus (which we recall in Def. 5.3). We generalize the �eory of Sharing for the
extended λ-calculus (Def. 5.7), and we provide a syntactic characterization of its normal
forms (Def. 5.7).
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• Extended Type System. We propose a non-idempotent intersection type system for
the Extended �eory of Sharing. (Def. 5.10). We show that weakly normalizing terms
are typable (�m. 5.13) and that typable terms are weakly normalizing (�m. 5.14). �is
requires de�ning a subtle property on typing judgments (Def. 5.12).

• Extended Strong Call-by-Need Strategy. We propose an extended strong call-by-
need strategy for the Extended �eory of Sharing (Def. 5.17), and we show that the
strategy enjoys good properties as in the previous chapter. Namely, the strategy is
deterministic (Prop. 5.21), it conservatively extends the strong call-by-need strategy of
the previous chapter (Prop. 5.21), and it is correct (Prop. 5.22) and complete (�m. 5.23)
with respect to reduction in the extended λ-calculus.

1.2.5 A Labeled Linear Substitution Calculus

Chapter 6 (A Labeled Linear Substitution Calculus) is the result of joint work with Ed-
uardo Bonelli. In this chapter, we develop a variant of the LSC in which terms are decorated
with labels, following the course set out by Lévy [110] when studying optimal reduction in
the λ-calculus.

We go on by studying the metatheory of the labeled LSC, showing that it has most of the
good properties that one would expect in a calculus with Lévy labels. More precisely:

• A Labeled Linear Substitution Calculus. We motivate some design decisions behind
a calculus with Lévy labels, and we de�ne a variant of the LSC with Lévy labels, the
LLSC (Def. 6.6). Each reduction step in the labeled calculus has a name. We show some
basic syntactical properties of LLSC.

• Residuals and Orthogonality. We show that the LLSC is an orthogonal axiomatic
rewriting system (Prop. 6.32).

• Weak Normalization of Bounded Reduction. We prove that the LLSC is weakly
normalizing if reduction is restricted to contracting steps whose names are labels of
bounded height (Prop. 6.45).

• Strong Normalization of Bounded Reduction (FFD). We strengthen the aforemen-
tioned result, proving that the LLSC is strongly normalizing if reduction is restricted to
contracting steps whose names are labels of bounded height (�m. 6.51). �is means
the LSC enjoys a strong variant of the Finite Developments theorem, known as Finite

Family Developments (FFD).

• Con�uence. We provide two di�erent proofs that the LLSC is con�uent (�m. 6.53).

1.2.6 Applications of the Labeled Linear Substitution Calculus

Chapter 7 (Applications of the Labeled Linear Substitution Calculus) is a continuation
of Chapter 6, and also the result of joint work with Eduardo Bonelli.
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In this chapter, we apply the labeled LSC developed in the previous chapter to derive
further results about the LSC (without labels). One key tool from the previous chapter is the
Finite Family Developments theorem:

• Stability. We show that the LSC without the gc rule enjoys Lévy’s redex stability prop-
erty (Prop. 7.1).

• Deterministic Family Structure. A Deterministic Family Structure (DFS) is an ab-
stract rewriting system that veri�es a set of particular axioms. We show that the LSC
without gc forms a DFS (�m. 7.13).

• Optimal reduction. We obtain an optimal reduction result for the LSC, as an imme-
diate consequence of the fact that the LSC without gc is a DFS, using work of Glauert
and Khasidashvili (which we review in �m. 7.24).

• Standardization. Standardization, generally speaking, refers to a mechanism that con-
verts a reduction sequence into standard form, in such a way that two reduction se-
quences are permutation equivalent if and only if they have the same standard form.

We propose a standardization procedure for Deterministic Family Structures (Prop. 7.39),
inspired on a standardization result by Klop. As a corollary, we obtain a standardization
result for the LSC without gc (Coro. 7.43).

• Normalization. We prove a normalization result for Deterministic Family Structures (Prop. 7.54),
giving su�cient conditions under which a reduction strategy is normalizing. As a corol-
lary, we conclude that, in the LSC without gc the call-by-name strategy (Coro. 7.56) and
a variant of the call-by-need strategy (Coro. 7.59) are both normalizing.

1.2.7 Publications and Work Not Included in �is �esis

�e following publications correspond to results described in this thesis:

• B. Acca�oli, P. Barenbaum, D. Mazza. Distilling Abstract Machines. Proceedings of

the International Conference on Functional Programming (ICFP), ACM SIGPLAN Notices
49(9):363–376, 2014.

• B. Acca�oli, P. Barenbaum, D. Mazza. A Strong Distillery. Asian Symposium on Pro-

gramming Languages and Systems (APLAS), LNCS 9458:1–20, 2015.

• P. Barenbaum, E. Bonelli. Optimality and the Linear Substitution Calculus. Formal

Structures for Computation and Deduction (FSCD), 9:1–9:16, 2017.

• T. Balabonski, P. Barenbaum, E. Bonelli, D. Kesner. Foundations of Strong Call by

Need. Proceedings of the International Conference on Functional Programming (ICFP),
ACM SIGPLAN Notices 20:1–20:29, 2017.
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• P. Barenbaum, E. Bonelli, K. Mohamed. Pattern Matching and Fixed Points: Re-

source Types and Strong Call-By-Need. Principles and Practice of Declarative Pro-

gramming (PPDP), 6:1–6:12, 2018.

�ere is another work in which I was involved during my PhD that is not described in
detail in this manuscript. Jointly with Gonzalo Ciruelos, we used a con�uent calculus based
on a non-idempotent intersection type system to study derivation spaces in the pure (untyped)
λ-calculus. �is was the topic of Gonzalo’s Master �esis and also resulted in a publication:

• P. Barenbaum, G. Ciruelos. Factoring Derivation Spaces via Intersection Types.

Asian Symposium on Programming Languages and Systems (APLAS), 24–44, 2018.



Chapter 2

Background

In this chapter we give an overview of some of the most important notions and results which
our work builds upon. �e presentation does not intend to be original nor exhaustive. �e
intention is rather to provide basic reference material, sketching a few well-known but hope-
fully interesting proofs, and pointing to references when appropriate.

2.1 Abstract Rewriting

Mathematical objects can be wri�en in many di�erent ways. A term or expression is a �nite
object, usually a string or a tree, intended to represent or denote a value. For example, in
a multiplicative group, the expressions “x ¨ x´1” and “1” are expected to denote the same
mathematical object: they have di�erent syntax but the same semantics.

Rewriting arises from the need to decide the equivalence of expressions, that is, to bridge
the gap between syntax and semantics by providing a mechanical procedure that determines
whether two expressions represent the same value. In rewriting theory one frequently starts
by formulating an equational theory, that is, a set of equations that characterize the semantic
equivalence of syntactic expressions. For example, the equational theory E de�ned below
is composed of seven equation schemas, which characterize the equivalence of expressions
representing elements of a free multiplicative group G:

E :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x ¨ 1 ” x @x P G

1 ¨ x ” x @x P G

x ¨ py ¨ zq ” px ¨ yq ¨ z @x, y, z P G

x ¨ x´1 ” 1 @x P G

1´1 ” 1 @x, y P G

px ¨ yq´1 ” y´1 ¨ x´1 @x, y P G

px´1q´1 ” x @x P G

An equational theory provides us with a way to prove that two expressions are equivalent.
For example, one may justify that x´1 ¨x and 1 are equivalent expressions inE with the chain

41
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of equalities:
x´1 ¨ x ” ppx´1 ¨ xq´1q´1

” px ¨ x´1q´1

” 1´1

” 1

However, this proof requires a bit of ingenuity. In general, there may not exist an algorithm
that decides whether two arbitrary expressions are equivalent, in a given equational theory.

�e central idea behind rewriting theory is that equations of the form x ” y may be ori-

ented, that is, turned into rewriting rules of the form xÑ y. A rewriting rule not only expresses
the fact that the expressions on the le�-hand side and the right-hand side are equivalent, but
also endow the theory with computational meaning. Informally, a rewriting rule xÑ ymeans
that any expression of the form given by x should be replaced by an expression of the form
given by y. For example, the equational theory E may be oriented as follows, obtaining a
rewriting system R:

R :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

x ¨ 1 Ñ x @x P G

1 ¨ x Ñ x @x P G

x ¨ py ¨ zq Ñ px ¨ yq ¨ z @x, y, z P G

x ¨ x´1 Ñ 1 @x P G

1´1 Ñ 1 @x, y P G

px ¨ yq´1 Ñ y´1 ¨ x´1 @x, y P G

px´1q´1 Ñ x @x P G

Observe that in general there are exponentially many ways to orient an equational theory,
since each equation x ” y may be oriented as xÑ y or as y Ñ x. Now given any expression
x representing an element of a free group, we may rewrite it by selecting some rule xi Ñ yi
in the rewriting system R and replacing a subexpression of the form xi by a subexpression of
the form yi. Usually, rewriting is performed repeatedly, until there are no more rules to apply,
and one arrives to a normal form.

For example, starting from the expression x ¨ py ¨ py´1 ¨x´1qq we may rewrite it as follows:

x ¨ py ¨ py´1 ¨ x´1qq Ñ x ¨ ppy ¨ y´1q ¨ x´1q

Ñ x ¨ p1 ¨ x´1q

Ñ x ¨ x´1

Ñ 1

A system of rewriting rules is said to be terminating if the procedure of repeatedly rewriting
an expression x0 Ñ x1 Ñ x2 Ñ . . . eventually terminates, arriving to a normal form. It can
be shown that the rewriting system R given above is indeed terminating. On the other hand,
a system of rewriting rules is said to have the unique normal form property if whenever x1

and x2 are equivalent expressions in the original equational theory such that x1 and x2 are
normal forms, then x1 “ x2. �e rewriting system R above does not have the unique normal
form property. For example, we have already proved that x´1 ¨x ” 1 in the equational theory
E, but they are normal forms, i.e. there are no rules in the system R that may be applied to
rewrite the expressions x´1 ¨ x and 1.
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�e foundational theorem of rewriting theory is a simple observation. Suppose that a
system of rewrite rules R is terminating and it has the unique normal form property. �en
the corresponding equational theory E may be decided as follows: to decide if x1 ” x2 holds
in E, repeatedly apply rewriting rules x1 Ñ . . .Ñ x11 until obtaining a normal form x11. �is
procedure always arrives to a normal form because R is terminating. Similarly, repeatedly
apply rewriting rules x2 Ñ . . .Ñ x12 until obtaining a normal form x12. Now since R has the
unique normal form property, the equality x11 ” x12 holds in E if and only if x11 and x12 are
syntactically equal.

In the remainder of this section we give several de�nitions and some results, to make
these ideas more precise and �x notation. We start by observing that there are two di�erent,
but compatible, views of a rewriting system that coexist in the literature, which we call the
“propositional” and the “relevant” view.

De�nition 2.1 (Propositional abstract rewriting system). A propositional abstract rewriting

system is a pair pObj,Ñq where Obj is a set whose elements are called objects, andÑĎ A2 is
a binary relation called the rewriting relation. Given two objects x, y P Obj one writes xÑ y

if px, yq PÑ.

De�nition 2.2 (Relevant abstract rewriting system). A relevant abstract rewriting system is
a 4-uple A “ pObj, Stp, src, tgtq where Obj is a set whose elements are called objects, Stp
is a set whose elements are called steps, and src, tgt : Stp Ñ Obj are functions indicating,
respectively, the source and the target of each step. Given two objects x, y P Obj and a step
R P Stp, we write x R

ÝÑA y or R : xÑA y if srcpRq “ x and tgtpRq “ y. Sometimes we drop
the subscript and write x R

ÝÑ y or R : xÑ y when A is clear from the context.

Remark 2.3. A relevant abstract rewriting system can always be regarded as a propositional
abstract rewriting system by propositional truncation, by declaring the relation xÑ y to hold
if and only if there exists a step R P Stp such that x R

ÝÑ y.

Remark 2.4 (Steps vs. redexes). In relevant abstract rewriting systems that have terms, like
the λ-calculus, a redex of a term t is any reducible subterm of t. More precisely, a redex is
any subterm that is an instance of the le�-hand side of some rewriting rule. For example the
underlined subterm of the term λx.xppλy.yyqzq is a redex, because pλy.yyqz is an instance
of the le�-hand side of the β-reduction rule. Usually, there is an obvious bijection between
the set of steps R starting from a term t and the set of redexes of t. In this situation, we may
speak of steps and redexes interchangeably.

�roughout this thesis we speak of abstract rewriting systems, or rewriting systems for
short, to refer to relevant rewriting systems. However, we liberally alternate between the
propositional point of view, in which rewriting rules are de�ned as mere relations, and the
relevant point of view, in which we care about the witness that justi�es a rewriting step.

De�nition 2.5 (Composition of rewriting relations). From the relevant point of view, two
arbitrary rewriting systems A “ pObj, Stp, src, tgtq and B “ pObj, Stp1, src1, tgt1q, can be
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composed to obtain a rewriting system pA¨Bq “ pObj, Stp2, src2, tgt2qwhose steps are de�ned
by the following bijection Stpˆ Stp1 Ñ Stp2:

pR : xÑA y, S : y ÑB zq ÞÑ R ¨ S : xÑpA¨Bq z

From the propositional point of view, this corresponds to the composition of rewriting relations
Ñ1 andÑ2, de�ned as usual for binary relations:

x pÑ1 ˝ Ñ2q z
def
ðñ pDy. xÑ1 y ^ y Ñ2 zq

De�nition 2.6 (Union of rewriting relations). From the relevant point of view, two arbitrary
rewriting systems A “ pObj, Stp, src, tgtq and B “ pObj, Stp1, src1, tgt1q, can be added to
obtain a rewriting system pA Z Bq “ pObj, Stp2, src2, tgt2q whose steps are de�ned by the
following bijection StpZ Stp1 Ñ Stp2:

R : xÑA y ÞÑ Rleft : xÑAZB y

R : xÑB y ÞÑ Rright : xÑAZB y

From the propositional point of view, this corresponds to the union of rewriting relationsÑ1

andÑ2, de�ned as usual for binary relations:

xpÑ1 Y Ñ2qy
def
ðñ xÑ1 y _ xÑ2 y

De�nition 2.7 (Inverse rewriting relation). From the relevant point of view, a rewriting sys-
temA “ pObj, Stp, src, tgtq has an associated opposite rewriting systemAop “ pObj, Stp1, src1, tgt1q

whose steps are de�ned by the following bijection StpÑ Stp1:

R : xÑA y ÞÑ R´1 : y ÑAop x

From the propositional point of view, this corresponds to the inverse relation of a rewriting
relationÑ, which is wri�enÑ´1 orÐ and de�ned as follows:

xÑ´1 y
def
ðñ y Ñ x for all x, y P A

De�nition 2.8 (Closure of a rewriting relation — propositional point of view). Let A be a
rewriting system, and let P be a predicate about binary relations on the set of objects Obj, i.e.

given a binary relation R Ď Obj ˆ Obj there is a proposition P pRq. From the propositional
point of view, the P -closure of a relation R is the least relation R1 such that R Ď R1 and such
that P pR1q holds. Explicitly:

R1 “
č

tR2 | R Ď R2 ^ P pR2qu

In rewriting, there are various frequent cases of closures, for example:

1. �e transitive closure of a rewriting relation Ñ is wri�en Ñ`. It can be shown that
xÑ` y if and only if xÑ . . .Ñ y in one or more steps.
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2. �e re�exive–transitive closure of a rewriting relation Ñ is wri�en Ñ˚ or�. It can be
shown that xÑ˚ y if and only if xÑ . . .Ñ y in zero or more steps.

3. �e symmetric closure of a rewriting relation Ñ is wri�en Ø. It can be shown that
xØ y if and only if xÑ y or y Ñ x.

4. �e symmetric–re�exive–transitive closure of a rewriting relation Ñ is wri�en Ø˚. It
can be shown that xØ˚ y if and only if xØ . . .Ø y in zero or more steps.

5. In rewriting systems involving some notion of context, a rewriting relation Ñ is con-

textual if xÑ y implies that Cxxy Ñ Cxyy for any context C. Recall that Cxxy represents
the result of plugging the expression x inside the context C. �e contextual closure of
Ñ is sometimes wri�en CxÑy. It can be shown that x CxÑy y if and only if there exists
a context C1 and two objects x1, y1 such that:

x “ C1xx1y y “ C1xy1y x1 Ñ y1

6. In rewriting systems involving some notion of context, a congruence is a binary relation
which is simultaneously an equivalence relation (symmetric, re�exive, and transitive)
and contextual. Sometimes we speak of the congruence generated by a binary relation R

to mean the symmetric–re�exive–transitive–contextual closure of R.

Example 2.9 (Rewriting relations and closure). Let A be the rewriting system whose objects

are sets of natural numbers and there is a step X ÑA Y if and only if X “ Y Y tnu for some

n P NzX . �en:

t1, 2, 3u Ñ t1, 3u

t1, 2, 3u Ñ´1 t1, 2, 3, 4u

t1, 2, 3u Ñ` t1u

X Ñ ∅ if and only if X is a singleton

X Ñ˚ ∅ if and only if X is �nite

X Ñ˚ Y if and only if Y Ď X and XzY is �nite

X Ø˚ Y if and only if XzY and Y zX are �nite

�e various notions of closure of a rewriting relation can also be interpreted from a rele-
vant point of view. For example:

1. A witness of a step in the transitive closure S : x Ñ` y is a non-empty list of steps
S “ rR1, . . . , Rns where x “ x0

R1
ÝÑ x1 . . .

Rn
ÝÝÑ xn “ y.

2. A witness of a step in the re�exive–transitive closure S : xÑ˚ y is a possibly empty list
of steps S “ rR1, . . . , Rns where x “ x0

R1
ÝÑ x1 . . .

Rn
ÝÝÑ xn “ y.

3. A witness of a step in the contextual closure S : x CxÑy y is given by a pair S “ pC1, Rq
where C1 is a context, R : x1 Ñ y1 is a step, and we have that x “ C1xx1y and y “ C1xy1y.

Except for Chapter 6, in which we work with residual theory, we usually take the issue of
relevance lightly.
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De�nition 2.10 (Coinitial and co�nal steps). Two steps R : x1 ÑA y1 S : x2 ÑA y2 are
coinitial if x1 “ x2 and co�nal if y1 “ y2.

An important property that we are usually interested in, when studying a rewriting sys-
tem, is that of (weak and strong) normalization. From the computational point of view, nor-
malization ensures that a procedure de�nes a total function, that is, that the program does not
“hang”. From the logical point of view, normalization entails some forms of consistency.

De�nition 2.11 (Normal forms, weak and strong normalization). LetA be a rewriting system.
�en:

1. An object x is a normal form if there is no step R in A such that srcpRq “ x. We write
NFpAq for the set of normal forms of A.

2. An object x is weakly normalizing (WN) if there exists a normal form y such that xÑ˚ y.

3. An object x is strongly normalizing (SN) or terminating if there is no in�nite sequence
of steps x “ x0 Ñ x1 Ñ x2 Ñ . . ..

4. �e rewriting system A is called WN (resp. SN) if every object x in A is WN (resp. SN).

A strongly normalizing rewriting system is always weakly normalizing, but the converse
does not hold.

Example 2.12 (Weak normalization without strong normalization). �e rewriting system A
whose objects are NYtωu and there are steps nÑ n` 1 and nÑ ω for all n P N. Graphically:

1

��

// 2

��

// 3

ww

// . . .

ω

is weakly normalizing since for every x P N Y tωu we have x Ñ‹ ω which is a normal form.

However, A is not strongly normalizing since 1 Ñ 2 Ñ 3 Ñ . . . is an in�nite sequence of steps.

De�nition 2.13 (Finite branching). Let A “ pObj, Stp, src, tgtq be a rewriting system. An
object x is �nitely branching (from the relevant point of view), abbreviated FB, if the set tR P
Stp | srcpRq “ xu is �nite. A rewriting system is FB if every object is FB.

Remark 2.14. An object x is de�ned to be �nitely branching from the propositional point of
view, abbreviated FBprop, if the set ty P Obj | x Ñ yu is �nite. It is easy to show that the
implication FB ùñ FBprop holds in general. Moreover, in all the rewriting systems in this
thesis, the set of steps tR | R : x Ñ yu is always �nite for any two �xed objects x, y P Obj.
�is means that throughout our work we may always assume that the converse implication
FBprop ùñ FB also holds, so we usually speak of a system being �nitely branching without
specifying in which sense.

In general, even if a rewriting system is strongly normalizing, there may not be a bound
for the length of sequences of steps x1 Ñ x2 Ñ . . .Ñ xn. For instance:
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Example 2.15 (Unbounded terminating rewriting system). Let A be the rewriting system

whose objects are tx0u Y tx
pnq
i | n P N, 1 ď i ď nu, and there are steps:

x0 Ñ x
pnq
1 for all n P N

x
pnq
i Ñ x

pnq
i`1 for all n P N, 1 ď i ď n´ 1

Graphically:

x0

vv }} ��
!! ((x

p1q
1 x

p2q
1

��

x
p3q
1

��

. . . . . .

x
p2q
2 x

p3q
2

��

x
p3q
3

�en A is strongly normalizing but the length of a sequence of steps starting from x0 is not

bounded.

�e following (non-constructive) result for �nitely branching rewriting systems is known
as König’s lemma. It serves as a principle to justify that, in a system which is both strongly
normalizing and �nitely branching, inductive constructions are well de�ned:

Lemma 2.16 (König’s Lemma). Let spanpxq denote the set of objects reachable from x in a

rewriting system A:

spanpxq
def
“ ty | xÑ˚ yu

If A is strongly normalizing and �nitely branching, then spanpxq is �nite for all x.

Proof. We claim that if spanpxq is in�nite for some object x, then there exists an object x1 such
that spanpx1q is in�nite and xÑ x1. Indeed, since A is �nitely branching, there is a �nite set
Y “ ty1, . . . , ynu such that xÑ y if and only y P Y . �en spanpxq “ txu Y spanpy1q Y . . .Y

spanpynq, so spanpyiqmust be in�nite for some yi. It su�ces to take x1 :“ yi to �nish the proof
of the claim.

Now suppose that there is an object x1 such that spanpx1q is in�nite. By repeatedly apply-
ing the claim, we obtain an in�nite sequence of steps x1 Ñ x2 Ñ x3 Ñ . . . such that spanpxiq
is in�nite for all i. �is contradicts that A is strongly normalizing.

A consequence of König’s lemma is that, in a �nitely branching and strongly normalizing
system, there is a bound for the length of sequences of steps going out from an object. We
stress, however, that this does not provide a constructive bound.

Proposition 2.17 (Bound for strong normalization). Let A be a strongly normalizing and

�nitely branching rewriting system. Let x0 be an object of A. �en there exists a bound M P N
for the length of sequences of steps x0 Ñ x1 Ñ . . .Ñ xn starting from x0.
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Proof. By König’s Lemma (Lem. 2.16), the set spanpx0q is �nite, so M “ #spanpx0q is a nat-
ural number. Let x0 Ñ x1 Ñ . . .Ñ xn be any sequence starting on x0. Note that the objects
x0, x1, . . . , xn are all di�erent, for otherwise there is a loop xi Ñ . . . Ñ xi which contra-
dicts the fact that A is strongly normalizing. Moreover, tx0, x1, . . . , xnu Ď spanpx0q since
x0, x1, . . . , xn are all reachable from x0. Hence n ă n ` 1 “ #tx0, . . . , xnu ď #spanpx0q “

M , as required.

De�nition 2.18 (Con�uence). A rewriting system A is said to be:

1. Weakly Church–Rosser (WCR) or locally con�uent if given objects x0, x1, x2 such that
x0 Ñ x1 and x0 Ñ x2 there exists an object x3 such that x1 Ñ

˚ x3 and x2 Ñ
˚ x3.

2. Church–Rosser (CR) or con�uent if given objects x0, x1, x2 such that x0 Ñ
˚ x1 and

x0 Ñ
˚ x2 there exists an object x3 such that x1 Ñ

˚ x3 and x2 Ñ
˚ x3.

A situation in which there are three objects and two steps x1 Ð x0 Ñ x2 is sometimes
called a peak. When we complete a peak by constructing a fourth object and two sequences
of steps as in x1 Ñ

˚ x3 Ð
˚ x2, we say that we close the peak. Peaks are drawn as squares

which we occasionally call tiles. Following the standard convention in rewriting theory, steps
that are universally quanti�ed (given) are drawn with whole lines, whereas steps that are
existentially quanti�ed (proven) are o�en drawn with do�ed lines. Graphically:

x0

��

// x1

����
x2

// // x3

It is immediate to see that if a rewriting system is Church–Rosser, it is also weakly Church–
Rosser. But the converse does not hold, as can be seen in this well-known example:

Example 2.19 (Non-con�uent WCR system). Let A be the rewriting system:

1 2oo
!!
3aa

// 4

�en A is WCR since the peak 1 Ð 2 Ñ 3 can be closed with 1 Ð˚ 3, and similarly the peak

2 Ð 3 Ñ 4 can be closed with 2 Ñ˚ 4. But A is not CR, since the peak 1 Ð 2 Ñ˚ 4 cannot be

closed.

�e following result is due to Max Newman and it is known in the literature as Newman’s

lemma or the diamond lemma. It is a useful tool to show that certain rewriting systems are
con�uent. Its importance lies in the fact that it allows to reduce the proof of con�uence, which
involves a universal quanti�er over any peak of the form y � x� z to the simpler property of
local con�uence, which only involves a universal quanti�er over peaks of the form y Ð xÑ z.
Local con�uence can usually be checked by exhaustive case analysis on all possible peaks,
while doing the same for con�uence is usually impracticable.

Lemma 2.20 (Newman’s lemma). If A is strongly normalizing and weakly Church–Rosser, then

A is con�uent.
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Proof. We say that an object x is ambiguous if it has two normal forms, i.e. x Ñ˚ x1 and
xÑ˚ x2 where x1 ‰ x2 are di�erent normal forms. We prove two claims.

• Claim I: If there are no ambiguous objects in A, then A is CR.
Proof of Claim I. Let x0 Ñ

˚ x1 and x0 Ñ
˚ x2. Since A is SN, let us normalize x1 Ñ

˚ x11
until we obtain a normal form x11, and similarly let us normalize x2 Ñ

˚ x12 until we
obtain a normal form x12. Since x0 is not ambiguous, we have that x11 “ x12. �is shows
that A is CR, proving Claim I.

• Claim II: If x is ambiguous, there is an ambiguous object y such that xÑ y.
Proof of Claim II. Since x is ambiguous, let x Ñ˚ x1 and x Ñ˚ x2 where x1 ‰ x2 are
di�erent normal forms. Note that x ‰ x1 and x ‰ x2, so x Ñ˚ x1 consists of at least
one step, i.e. xÑ y1 Ñ

˚ x1, and similarly xÑ y2 Ñ
˚ x2. Since A is WN, we may close

the peak y1 Ð xÑ y2 to obtain y1 Ñ
˚ y3 Ð

˚ y2 for some object y3. Moreover, since A
is SN, we may normalize y3 Ñ

˚ z3 until we obtain a normal form z3. Graphically:

y1
// //

!! !!

z1

x

>>

  

y3
// // z3

y2
// //

== ==

z2

Now z1, z2, and z3 are normal forms and we know that z1 ‰ z2 so either z3 ‰ z1 or
z3 ‰ z1. If z3 ‰ z1 then y1 turns out to be ambiguous and it su�ces to take y :“ y1. If
z3 ‰ z2 then y2 turns out to be ambiguous and it su�ces to take y :“ y2. �is concludes
the proof of Claim II.

It is now easy to prove Newman’s lemma using the law of excluded middle. If A has no am-
biguous objects, then A is CR by Claim I. If A has an ambiguous object x1 then by repeatedly
applying Claim II we construct a sequence of steps x1 Ñ x2 Ñ x3 Ñ . . . such that each xi is
ambiguous. �is contradicts the fact that A is SN.

�e following result, due to Klop and Nederpelt, is a tool to show that a system is strongly
normalizing. A di�erent proof can be found in [135, �eorem 1.2.3 (iii)]:

De�nition 2.21. A rewriting system A “ pObj, Stp, src, tgtq is increasing (Inc) if there is a
function f : ObjÑ N such that xÑ y implies fpxq ă fpyq for all x, y P Obj.

Lemma 2.22 (Klop–Nederpelt). Let A be increasing, weakly Church–Rosser and weakly nor-

malizing. �en A is strongly normalizing. In short:

Inc^WCR^WN ùñ SN

Proof. Let A “ pObj, Stp, src, tgtq be increasing, WCR and WN. Let f : Obj Ñ N be the
witness that A is increasing, i.e. if xÑ y then fpxq ă fpyq. We prove the following claim:
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• Claim: Let z P Obj be an object in normal form. If x and y are objects such that x� z

and x� y then y � z. Graphically:

x // //

����

z

y

?? ??

Proof of the claim. In general, note that if x1 � x2 then fpx1q ď fpx2q so fpx2q ď

fpx1q P N0 is a natural number. Let z be a �xed normal form. Given a peak y � x� z

we de�ne its weight as:

W py � x� zq
def
“ fpzq ´ fpxq

�e proof proceeds by complete induction on the weight of a peak.

1. Base case, weight 0. �en fpzq ´ fpxq “ 0 so x� z consists of zero steps. �is
means that x “ z, so x is in normal form. Since x � y, we have that also x “ y,
and it is trivial to conclude.

2. Induction, positive weight. �en x � z consists of at least one step, that is,
xÑ x1 � z. We consider two subcases:

– If x� y consists of zero steps. �en trivially y “ x� z.
– If x � y consists of at least one step. �en x Ñ y1 � y. By hypothesis,

A is WCR so we may close the peak y1 Ð xÑ x1 with an object w such that
y1 � w � x1. �e situation is as follows:

x

��

// x1
// //

����

z

y1

����

// // w

y

Note that we may apply the inductive hypothesis on the peak w � x1 � z

since:

W pw � x1 � zq “ fpzq ´ fpx1q

ă fpzq ´ fpxq since xÑ x1 so fpxq ă fpx1q

“ W py � x� zq

So by i.h. we have that w � z. Now observe that we may also apply the
inductive hypothesis on the peak y � y1 � w � z, since:

W py � y1 � w � zq “ fpzq ´ fpy1q

ă fpzq ´ fpxq since xÑ y1 so fpxq ă fpy1q

“ W py � x� zq

So by i.h. we have that y � z, which concludes the proof of the claim.
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�e proof of Klop–Nederpelt’s lemma proceeds as follows: let x be any object. Since A is WN
let x � z be a sequence of steps such that z is in normal form. By contradiction, suppose
that A is not SN. �at is, suppose that x “ x0 Ñ x1 Ñ x2 Ñ . . . is an in�nite sequence of
steps. Note that fpx0q ă fpx1q ă fpx2q ă . . . is a strictly increasing sequence of natural
numbers. By the previous claim, we have that xn � z for all n P N, so fpxnq ă fpzq for all
n P N. �us fpzq is an upper bound for the strictly increasing sequence pfpxnqqnPN, which is
a contradiction.

Recall that a strict partial order ą on a set X is said to be well-founded if there are no
in�nite descending chains x1 ą x2 ą x3 ą . . .. �e three following results are widely known
and useful tools to show that a rewriting system is strongly normalizing:

Lemma 2.23 (Termination by interpretation). Let A “ pObj, Stp, src, tgtq be a rewriting sys-

tem and let ą be a well-founded order on a set X . Suppose that there is a function f : ObjÑ X

such that xÑ y implies fpxq ą fpyq. �en A is strongly normalizing.

Proof. Suppose by contradiction that there is an in�nite sequence x1 Ñ x2 Ñ x3 Ñ . . .. �en
fpx1q ą fpx2q ą fpx3q ą . . ., is an in�nite descending chain.

Lemma 2.24 (Lexicographic termination). Let ą1 and ą2 be strict partial orders on the sets X

and Y respectively. De�ne the lexicographic order ą on the set X ˆ Y as follows:

px, yq ą px1, y1q if px ą1 x
1
q _ px “ x1 ^ y ą2 y

1
q

If ą1 and ą2 are well-founded then ą is well-founded.

Proof. It is routine to check that ą is a strict order. Suppose by contradiction that there is an
in�nite descending chain px1, y1q ą px2, y2q ą px3, y3q ą . . .. Since ą1 is well-founded, the
�rst component must eventually stabilize, that is, there is an n ě 1 such that xn “ xm for all
m ě n. Hence yn ą2 yn`1 ą2 yn`2 ą . . . is an in�nite descending chain.

Remark 2.25. Lem. 2.24 may be generalized for n-uples writing X1 ˆX2 ˆ . . .ˆXn´1 ˆXn

as X1 ˆ pX2 ˆ . . . pXn´1 ˆXnqq.

De�nition 2.26 (Finite multisets). A �nite multiset over a set X is, formally, a function m :

X Ñ N Y t0u such that mpxq is non-zero for a �nite number of elements x P X . We write
rx1, . . . , xns for the multiset m such that mpxq counts the number of occurrences of x in the
sequence x1, . . . , xn. Sometimes we may write tx1, . . . , xnu if it is clear from the context that
we are working with multisets. We say that m Ď n holds if mpxq ď npxq for all x P X .
�e notation m Z n denotes the (additive) union of multisets, i.e. the function such that
pm Z nqpxq “ mpxq ` npxq. �e notation m a n denotes the di�erence of multisets, i.e. the
function such that pm a nqpxq “ mpxq´ npxq where x´ y

def
“ maxt0, x´ yu.

De�nition 2.27 (Multiset order). Letą be a strict partial order on a setX . De�ne the multiset

order ą on the set of �nite multisets of X as the transitive closure of ą1, where:

m ą n if m ‰ n^ @x P X,

pnpxq ą mpxq ùñ Dy P X, y ą x^mpyq ą npyqq
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Lemma 2.28 (Characterization of the multiset order). �e relation m ą n holds if and only if

there exist multisets a, b such that n “ pm a aq Z b, where a Ď m is a non-empty multiset, and

for every x P b there is an element y P a such that y ą x.

Proof. pñq Take a :“ m a n and b :“ n a pm a aq. It is straightforward to check that all
the conditions hold. pðq Let x0 P a be a maximal element of a. We have that x0 R b, for
otherwise there would be an element y P a such that y ą x0. �is means that mpx0q ą npx0q,
so m ‰ n. Moreover, suppose that npxq ą mpxq for some x P X . �en x P b, so there is an
element y P a such that y ą x. Let y0 P a be a maximal element such that y0 ą x. As before,
we have that y0 R b, and this means that mpy0q ą npy0q, as required.

�eorem 2.29 (Multiset termination). Ifą is well-founded then ą is a well-founded strict order.

Proof. We sketch a proof due to Nachum Dershowitz and Zohar Manna; see [17, Section 2.5]
for more details. Let ą be well-founded and suppose that ą is not well-founded. �e proof
proceeds by constructing a tree whose nodes are elements of the extended set X Y tKu. �e
invariant is that in the n-th step we build a tree some of whose leaves may be decorated with
K and the remaining leaves are in 1–1 correspondence with the elements of mn, accounting
for multiplicities. Moreover, each branch of the tree is a decreasing sequence in X .

Let m1 ą m2 ą . . . be an in�nite decreasing sequence of multisets. In the �rst step, the
tree starts with a root with one children per each element of m1. In the pn ` 1q-th step, we
have that mn ą mn`1, so by Lem. 2.28 mn`1 “ pmn a aq Z b, where a Ď mn is a non-empty
multiset, and for every x P b there is an element y P a such that y ą x. For each element
x P a, the node for x is extended with a child decorated with K. For each element x P b, let
y P a be the corresponding element such that y ą x; the node for y is extended with a child
decorated with x. �e resulting tree is in�nite, since each step adds at least one node, but it
is �nitely branching since all multisets are �nite. By König’s Lemma (Lem. 2.16), it must have
an in�nite branch, contradicting the well-foundedness of ą.

2.2 Residual �eory

Consider a con�uent abstract rewriting system A. From the propositional point of view, con-
�uence can be summarized in the inclusion of binary relations p� ˝ �q Ď p� ˝ �q. It
merely means that all peaks can be closed:

���� �� ��

�� �� ����

From the relevant point of view, con�uence means that if ρ : x � y and σ : x � z are
sequences of rewriting steps, there exists an object w and two sequences of rewrite steps
σ1 : y � w and ρ1 : z � w. Graphically:

ρ

����
σ
�� ��

σ1 �� �� ρ1����
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In fact, if a rewriting system is orthogonal, one can give a constructive account of the sequences
σ1 and ρ1, and it can be shown that the con�uence diagram is universal, i.e. a pushout. In par-
ticular, the diagram can be closed in such a way that the sequences ρσ1 and σρ1 are equivalent
in a precise sense. �is relevant view of orthogonal rewriting systems can be a�ributed to
Jean-Jacques Lévy and Gérard Huet [78, 79]. An axiomatic generalization of this theory was
developed by Paul-André Melliès [118]. �is theory relies crucially on the notion of residual,
informally introduced in Sec. 1.1.2. In this section, we recapitulate some de�nitions and results
from axiomatic residual theory that we will use throughout this thesis. �ey are especially
important for Chapter 6.

De�nition 2.30 (Axiomatic rewriting system). An axiomatic rewriting system is a rewriting
system A “ pObj, Stp, src, tgtq provided with a ternary residual relation ´ x´y ´ between
steps such that:

R1 xSy R2 implies srcpR1q “ srcpSq ^ srcpR2q “ tgtpSq for all R1, R2, S P Stp

As customary, sometimes we subscript operations with A when the ambient rewriting system
is not clear from the context, e.g. we may write srcApRq or R xSyA T .

De�nition 2.31 (Residual theory concepts). �e following notions can be de�ned for any
axiomatic rewriting system A “ pObj, Stp, src, tgt,´ x´y ´q:

1. A derivation is a sequence of composable steps R1 . . . Rn. By composable we mean that
tgtpRiq “ srcpRi`1q for all i P t1, . . . , n ´ 1u. �e length of a derivation is wri�en |ρ|.
�e notions of source and target are extended for derivations, so that srcpR1 . . . Rnq “

srcpR1q and tgtpR1 . . . Rnq “ tgtpRnq. �e empty derivation, when n “ 0, is wri�en ε.
�e set of all derivations is wri�en Deriv.

Strictly speaking, an empty derivation is annotated with an object, so that there is one
empty derivation εx for each object x P Obj, such that srcpεxq “ tgtpεxq “ x.1 �e
composition of the derivations ρ and σ is wri�en ρ ¨ σ or just ρ σ, and it is de�ned
whenever tgtpρq “ srcpσq.

2. �e residual relation is generalized when the step in the middle is a derivation. More
precisely if srcpRq “ srcpσq and srcpR1q “ tgtpσq the ternary relation R xσy R1 is
declared to hold if and only if there exist steps R0, . . . , Rn, S1, . . . , Sn such that

• σ “ S1 . . . Sn,
• R “ R0,
• R1 “ Rn, and
• Ri xSi`1y Ri`1 holds for all i P t0, . . . , n´ 1u.

Remark that R xεsrcpRqy R.

3. We write xσy for the binary relation tpR,R1q | R xσy R1u.
1In other words, derivations are morphisms in the free category generated by A, seen as a directed graph.
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4. IfR1 xσy R2 holds, we say thatR2 is a residual ofR1 a�er σ, andR1 is an ancestor ofR2

before σ. If R and σ are coinitial, we write R{σ for the set tR1 | R xσy R1u of residuals
of R a�er σ.

5. If R{σ “ ∅ we say that σ erases R.

6. If #pR{σq ą 1 we say that σ duplicates R.

7. If tgtpσq “ srcpRq and there is no R0 such that R0 xσy R, we say that σ creates R.

8. An axiomatic rewriting system has the autoerasure (AE) property if R{R “ ∅ for all
R P Stp.

9. An axiomatic rewriting system has the �nite residuals (FR) property if the set R{S is
�nite for all coinitial R, S P Stp.

10. An axiomatic rewriting system has the unique ancestor (UA) property if a step has at
most one ancestor, i.e. if R1 xSy R and R2 xSy R then R1 “ R2 for all R1, R2, R, S P

Stp.

11. An axiomatic rewriting system has the acyclicity property if whenever R ‰ S and
R{S “ ∅ then S{R ‰ ∅.

12. A set of coinitial steps is a set M of steps such that if R, S P M then srcpRq “ srcpSq.
�e empty set of coinitial steps is wri�en ∅. Strictly speaking, an empty set of coinitial
steps is annotated with an object, so that there is one empty set of coinitial steps ∅x

for each object x. �e source of a set of coinitial steps is well-de�ned: if M is a non-
empty set of coinitial steps, then srcpMq “ srcpRq for any R P M. If M is empty,
then srcp∅xq “ x. Below, we argue that the target of a set of coinitial steps is also
well-de�ned, and in particular tgtp∅xq “ x.

13. IfM is a set of coinitial steps and srcpMq “ srcpσq, we writeM{σ for the set of coinitial
steps tR1 | R PM and R xσy R1u. Remark that ∅srcpσq{σ “ ∅tgtpσq.

De�nition 2.32 (Development). Let M be a set of coinitial steps in an axiomatic rewriting
system A. A development of M is a possibly in�nite sequence R1R2 . . . Rn . . . such that Ri P

M{R1 . . . Ri´1 for all i P t1, . . . , nu. A development is complete if it is maximal.

De�nition 2.33 (Finite developments property). An axiomatic rewriting system A has the
�nite developments property (FD) if given a �nite set of coinitial steps M, there are no in�nite
developments of M.

Let A be an axiomatic rewriting system, and let M be a �nite set of coinitial steps. Con-
sider the rewriting system DM whose objects are developments ρ of M and there is a step
R : ρ ÑDM ρR if and only if ρR results from extending the development ρ with a step
R PM{ρ. Observe that if A has the �nite developments property then DM is strongly nor-
malizing. Moreover, if A has the �nite residuals property, then DM is �nitely branching. By
Prop. 2.17 this means that given a �nite set of coinitial steps M, there is a bound for the length
of any development of M. �is motivates the following de�nition:
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De�nition 2.34 (Depth of a set of coinitial steps). Let A be an axiomatic rewriting system
with �nite developments and �nite residuals. �en the length of the longest development of
a set of coinitial steps M is called the depth of M.

Remark 2.35 (Decreasing depth). Let A be an axiomatic rewriting system with �nite devel-
opments and �nite residuals. Suppose that M is a set of coinitial steps and R P M. If ρ is
a development of M{R then Rρ is a development of M. �is means that the depth of M
is strictly greater than the depth of M{R. �is property allows one to give arguments and
constructions on sets of coinitial steps by induction on their depth.

Proposition 2.36 (Existence of complete developments). If an axiomatic rewriting system A
veri�es FD then any �nite set of coinitial steps M has a complete development.

Proof. Construct a development R1 . . . Ri . . . by taking some Ri P M{R1 . . . Ri´1 until the
set M{R1 . . . Ri´1 is empty. �is process must terminate for otherwise we would have an
in�nite development, contradicting FD.

De�nition 2.37 (Permutation tile). Let Rσ and Sρ be two (non-empty) derivations in an
axiomatic rewriting system A. �e pair pRσ, Sρq is called a permutation tile if all the following
conditions hold:

1. Rσ and Sρ are coinitial and co�nal,

2. ρ is a complete development of R{S, and σ is a complete development of S{R,

3. xRσy“xSρy are equal as binary relations.

De�nition 2.38 (Semantic orthogonality property). An axiomatic rewriting systemA has the
semantic orthogonality property (SO) if given two coinitial stepsR, S, a complete development
ρ of R{S, and a complete development σ of S{R, then the pair pRσ, Sρq is a permutation tile.

De�nition 2.39 (Orthogonal axiomatic rewriting system). An axiomatic rewriting system
is orthogonal if it has autoerasure (AE), �nite residuals (FR), �nite developments (FD), and
semantic orthogonality (SO).

In the following subsection we study abstract properties of orthogonal axiomatic rewriting
systems.

2.2.1 Properties of Orthogonal Axiomatic Rewriting Systems

�roughout this subsection, we assume that we are working within an orthogonal axiomatic
rewriting system.

De�nition 2.40 (Permutation equivalence). Two coinitial derivations ρ and σ are said to
be permutation equivalent, if ρ ” σ holds, where ” is a binary relation obtained from the
re�exive–symmetric–transitive closure of the following relation ”1:

τ1Rστ2 ”
1 τ1Sρτ2 if pRσ, Sρq is a permutation tile
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Lemma 2.41. If ρ ” σ then:

• For any τ1, τ2, we have τ1ρτ2 ” τ1στ2.

• �e derivations ρ and σ are coinitial and co�nal.

• �e binary relations xρy and xσy are equal.

Proof. All the items are straightforward by induction on the derivation of ρ ” σ.

Proposition 2.42 (Uniqueness of complete developments, modulo permutation equivalence).
Let ρ, σ be complete developments of M in an orthogonal axiomatic rewriting system. �en

ρ ” σ.

Proof. By induction on the depth of M. If M has depth 0, then M “ ∅x, so ρ and σ are
the empty derivation εx and ρ ” σ. If M has strictly positive depth then ρ and σ cannot
be empty, for they would not be complete. So let ρ “ Rρ1 and σ “ Sσ1. By the fact that
complete developments exist (Prop. 2.36), let α be a complete development of S{R, and let β
be a complete development of R{S. By semantic orthogonality, pRα, Sβq is a permutation
tile, so in particular M{Rα “M{Sβ. Consider a complete development τ of M{Rα, which
again exists by Prop. 2.36. �e situation is:

R

��
S

��
ρ1

���� α �� ��
σ1

�� ��β����
τ ����

Now observe that ατ is a complete development of M{R so by i.h. (using Rem. 2.35). we
have that ρ1 ” ατ . Symmetrically, βτ is a complete development of M{S so βτ ” σ1. Using
Lem. 2.41 and the fact that pRα, Sβq is a permutation tile, we conclude that Rρ1 ” Rβτ ”

Sατ ” Sσ1, as required.

�e proposition above (Prop. 2.42) is the cornerstone of the axiomatic residual theory de-
veloped by Lévy, Huet and Melliès. Given any set of coinitial steps M, we know that there
is a complete development of M. Moreover, if ρ, σ are two complete developments of M we
know that they have the same source and the same target. In particular, the target of a set of
coinitial steps, wri�en tgtpMq, may now be de�ned as tgtpρq, and this does not depend on
the choice of the complete development ρ. �is means that M may be regarded as a multi-

step M : x ñ y, where x “ srcpMq and y “ tgtpMq. Moreover, ρ and σ induce the same
residual relation, i.e. R{ρ “ R{σ, so the notation R{M may stand for R{ρ, and this is also
well-de�ned.

Using the properties of existence and uniqueness of complete developments, the following
de�nition shows that for any orthogonal axiomatic rewriting system A, one may construct
an orthogonal axiomatic rewriting system Am whose steps are multisteps of A.

De�nition 2.43 (Multisteps and multiderivations). Let A “ pObj, Stp, src, tgtq be an orthog-
onal axiomatic rewriting system. �en:
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• A multistep M is a �nite, non-empty, set of coinitial steps, that is, there is an object
x P Obj such that for every R PM we have srcpRq “ x.

• IfM is a multistep, we write srcpMq for the source objectx of the multistep, and tgtpMq

for the target y of any complete development ρ : x� y of the set M. Recall that there
is always at least one complete development of a set M (Prop. 2.36), and that complete
developments are unique modulo permutation equivalence (Prop. 2.42), so their targets
always coincide by Lem. 2.41.

• Let Multistep the set of all multisteps starting on all possible objects x P Obj. �en
the 4-uple pObj,Multistep, src, tgtq is an abstract rewriting system, which we call the
abstract rewriting system of multisteps of A, and we denote by Am.

• Sometimes we write M : x ñ y for a step M : x ÑAm y. To avoid confusion with
derivations of A, derivations of Am are sometimes called multiderivations of A. When
working with both derivations and multiderivations, we write D,E, . . . to range over
multiderivations.

• We say that a derivation ρ is a complete development of a multiderivation M1 . . .Mn if
ρ is of the form ρ1 . . . ρn, where for each i, the derivation ρi is a complete development
of the set Mi.

Another consequence of the properties of existence and uniqueness of complete develop-
ments is the following abuse of notation, usually found in the literature, that we will frequently
use.

Convention 2.44. A multistep M (resp. multiderivation D) can be implicitly coerced to a

derivation ρ, by taking ρ to be some complete development of M (resp. D). We assume that for

each multistep M we deterministically choose a complete development BM, which we call the

canonical complete development ofM. Similarly for multiderivations, by se�ing BpM1 . . .Mnq
def
“

BM1 . . . BMn.

In the following lemma, we write M\N for the derivation MpN {Mq, where, as noted
in Convention 2.44, “M” stands for the canonical complete development of the set M, and
“N {M” stands for the canonical complete development of the set N {M “

Ť

tR{M | R P

N u.

Lemma 2.45 (Cube identity for multisteps). Let M and N denote sets of coinitial steps with

the same source. �en M\N ” N \M.

Proof. Let ρ be the canonical complete development of M and let σ be the canonical complete
development of N {M. We claim that ρσ is a complete development of the set MYN , where
Y is the set-theoretical union. Indeed:

• Development. Note that ρ is a development of M ĎMYN and σ is a development
of N {ρ Ď pMYN q{ρ, so ρσ is a development of MYN .



58

• Complete. Suppose that ρσ is not maximal. �en there is a step R P pM Y N q{ρσ
that extends σ. But pMYN q{ρσ “ pM{ρσq Y pN {ρσq “ N {ρσ since ρ is a complete
development of M, which means that M{ρσ “ pM{ρq{σ “ ∅{σ “ ∅. So we have
that R P N {ρσ extends σ, contradicting that σ is a complete development of N {ρ.

Hence the derivation M \ N is a complete development of M Y N . Symmetrically, the
derivation N \M is also a complete development of MYN . By the uniqueness of complete
developments (Prop. 2.42) we obtain that M\N ” N \M as required.

De�nition 2.46 (Residual of a derivation a�er a set). If ρ is a derivation and M is a set of
coinitial steps with the same source as ρ, then ρ{M is a derivation de�ned as follows, by
induction on the length of ρ:

εsrcpMq{M
def
“ εtgtpMq

Rρ{M def
“ pR{Mqpρ{pM{Rqq

Note that M{R is a set of coinitial steps with the same source as ρ so the second equation
typechecks. Note also that, “R{M” stands for the canonical complete development of the
multiset R{M.

Lemma 2.47. Let ρ be a complete development of M. �en ρ{N is a complete development of

M{N .

Proof. By induction on the depth of M. If the depth is 0, then M is empty and it is immediate
to conclude. If the depth ofM is positive, thenM is non-empty and ρ is of the formRρ1 where
R P M and ρ1 is a complete development of M{R. Recall that the depth of M{R is strictly
smaller than the depth of M, as observed in Rem. 2.35, so by inductive hypothesis ρ1{pN {Rq
is a complete development of pM{Rq{pN {Rq. Moreover, the cube identity (Lem. 2.45) ensures
that

pM{Rq{pN {Rq “M{pR \N q “M{pN \Rq “ pM{N q{pR{N q

To conclude, observe that ρ{N “ Rρ1{N “ pR{N qpρ1{pN {Rqq, where “R{N ” stands for the
canonical complete development of the set R{N , which is a subset of M{N , and ρ1{pN {Rq
is a complete development of the set pM{N q{pR{N q. Hence ρ{N is a complete development
of M{N , as required.

De�nition 2.48 (Residual of a derivation a�er a derivation). If ρ and σ are coinitial deriva-
tions, ρ{σ is a derivation de�ned as follows, by induction on the length of ρ:

εsrcpσq{σ
def
“ εtgtpσq

Rρ{σ
def
“ pR{σqpρ{pσ{tRuqq

Note that σ{tRu is the residual of a derivation a�er a set of coinitial steps according to the
previous de�nition (Def. 2.46). Note also that “R{σ” stands for the canonical complete devel-
opment of the multiset R{σ.

Remark 2.49. By autoerasure, we have that ρ{ρ “ ε for any derivation ρ. �is can be formally
proved by induction on ρ.
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Lemma 2.50 (Properties of residuals). �e following hold in any orthogonal axiomatic rewriting

system:

1. ρ{στ “ pρ{σq{τ

2. ρσ{τ “ pρ{τqpσ{pτ{ρqq

Proof. Ge�ing the proof right is a bit delicate. Before doing so, we state and prove some
slightly less general claims:

• Claim I. For all ρ, σ,M we have ρσ{M “ pρ{Mqpσ{pM{ρqq.
Proof of Claim I. By induction on ρ. If ρ is empty it is immediate. If ρ “ Rρ1 then:

Rρ1σ{M “ pR{Mqpρ1σ{pM{Rqq by de�nition
“ pR{Mqpρ1{pM{Rqqpσ{pM{Rρ1qq by i.h.

“ pRρ1{Mqpσ{pM{Rρ1qq by de�nition

• Claim II. Let ρ be a complete development of a set M. �en for any σ, we have that
σ{ρ “ σ{M.
Proof of Claim II. By induction on σ. If σ is empty, it is immediate. If σ “ Sσ1 observe
that Lem. 2.47 ensures that ρ{S is a complete development of M{S:

Sσ1{ρ “ pS{ρqpσ1{pρ{Sqq by de�nition
“ pS{ρqpσ1{pM{Sqq by i.h. using Lem. 2.47
“ pS{Mqpσ1{pM{Sqq since ρ is a complete development of M
“ Sσ1{M by Claim I

• Claim III. If ρ is a complete development of a set M, then ρσ{τ “ pρ{τqpσ{pτ{ρqq.
Proof of Claim III. By induction on ρ. If ρ is empty, it is immediate. Otherwise ρ “ Rρ1

is a complete development of M so ρ1 is a complete development of M{R. �en:
Rρ1σ{τ “ pR{τqpρ1σ{pτ{Rqq by de�nition

“ pR{τqpρ1{pτ{Rqqpσ{ppτ{Rq{ρ1qq by i.h.

“ pRρ1{τqpσ{ppτ{Rq{ρ1qq by de�nition
“ pRρ1{τqpσ{ppτ{Rq{pM{Rqqq by Claim II
“ pRρ1{τqpσ{pτ{Mqq by the cube identity (Lem. 2.45)

since R \M ”M\R “M
“ pRρ1{τqpσ{pτ{Rρ1qq by Claim II

Having established these claims, we are able to prove items 1. and 2. in the statement:
1. Let us prove that ρ{στ “ pρ{σq{τ . By induction on ρ. If ρ is empty, it is immediate. If
ρ “ Rρ1 then:
Rρ1{στ “ pR{στqpρ1{pστ{Rqq by de�nition

“ ppR{σq{τqpρ1{pστ{Rqq by de�nition
“ ppR{σq{τqpρ1{pσ{Rqpτ{pR{σqqq by Claim I
“ ppR{σq{τqppρ1{pσ{Rqq{pτ{pR{σqqq by i.h.

“ pR{σqpρ1{pσ{Rqq{τ by Claim III
since R{σ is a complete development

“ pRρ1{σq{τ by de�nition
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2. Let us prove that ρσ{τ “ pρ{τqpσ{pτ{ρqq. By induction on ρ. If ρ is empty, it is imme-
diate. If ρ “ Rρ1 then:

Rρ1σ{τ “ pR{τqpρ1σ{pτ{Rqq by de�nition
“ pR{τqpρ1{pτ{Rqqpσ{ppτ{Rq{ρ1qq by i.h.

“ pR{τqpρ1{pτ{Rqqpσ{pτ{Rρ1qq by item 1.
“ pRρ1{τqpσ{pτ{Rρ1qq by de�nition

Proposition 2.51 (Orthogonality of multisteps). Let A be an orthogonal axiomatic rewriting

system. �en the abstract rewriting system of multisteps Am
is also an orthogonal axiomatic

rewriting system.

Proof. Given three multisteps:

M : xñ y N : xñ x1 M1 : x1 ñ y1

declare the residual relation M xN yAm M1 to hold in Am whenever the equality M1 “M{N
holds when M, N , and M1 are seen as sets of coinitial steps in A. Note that residuals are
a�ne, that is, given coinitial multisteps M, N the set of residuals tP |M xN yAm Pu is either
empty or consists of exactly one multistep M{N .

Let us check that this de�nition veri�es the axioms of an orthogonal axiomatic rewriting
system:

1. Autoerasure. Note that M{M “ ∅ in A. Since a multistep is de�ned to be a non-empty
set of coinitial steps, there is no multistep N such that M xMyAm N .

2. Finite residuals. Even more strongly, residuals are a�ne.

3. Finite Developments. By the fact that residuals are a�ne, the length of any development
of a set X “ tM1, . . . ,Mnu is bounded by n.

4. Semantic Orthogonality. Let M,N be coinitial multisteps. �en the peak may be closed
as follows:

M +3

N
��

E
����

D
+3 +3

If the set M{N is empty, the multiderivation D is chosen to be the empty multideriva-
tion ε. If the set M{N is non-empty, the multiderivation D is chosen to be the multi-
derivation M{N of length 1. Symmetrically for E.

One can then check that the pair pME,NDq is a permutation tile, which is an imme-
diate consequence of the cube identity for multisteps (Lem. 2.45).
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Lemma 2.52. In an orthogonal axiomatic rewriting system A, let M be a multistep and let

R1 . . . Rn be a complete development of M. �en in the rewriting system of multisteps we have

that M ”Am tR1u . . . tRnu.

Proof. By induction on the depth of M. Recall that M is a multistep so it is non-empty. We
consider two cases:

1. If n “ 1. �en ε is a complete development of M{R1, so M{R1 “ ∅. Moreover,
R1 PM, so tR1u{M “ ∅. �is means that pM, tR1uq is a permutation tile in Am and
we have M ”Am tR1u.

2. If n ą 1. �en R2 . . . Rn is a complete development of M{R1, so M{R1 is non-empty.
Moreover, R1 PM, so tR1u{M “ ∅. �is means that pM, tR1upM{R1qq is a permu-
tation tile in Am, so M ”Am tR1upM{R1q ”Am tR1utR2u . . . tRnu by i.h., relying on
Rem. 2.35.

Proposition 2.53. If A is an orthogonal axiomatic rewriting system, the mappings:

i : DerivA Ñ DerivAm

R1 . . . Rn ÞÑ tR1u . . . tRnu

B : DerivAm Ñ DerivA
M1 . . .Mn ÞÑ BpM1q . . . BpMnq

Induce a bijection pDerivA{ ”Aq » pDerivAm{ ”Amq. Recall that BM denotes the canonical

complete development of M,

Proof. First we prove that i and B are well-de�ned over permutation-equivalence classes.

pÑq We claim that if ρ ”A σ then ipρq ”Am ipσq. Indeed, by induction on the derivation
of ρ ” σ, the interesting case is one-step permutation, i.e. when ρ “ τ1Aβτ2 and
σ “ τ1Bατ2 where pAβ,Bαq is a permutation tile inA, i.e. α is a complete development
of A{B and β is a complete development of B{A. �en by Lem. 2.52 we have ipρq “

ipτ1qfpAqipβqipτ2q ”Am ipτ1qipBqipαqipτ2q “ ipσq. �is mapping de�nes a function
i : DerivA{ ”AÑ DerivAm{ ”Am also noted i.

pÐq We claim that if D ”Am E then BpDq ”A BpEq. Indeed, by induction on the deriva-
tion of D ” E, the interesting case is one-step permutation, i.e. when D “ F1MV F2

and E “ F1NUF2 where pMV,NUq is a permutation tile in Am, i.e. U is a com-
plete development of M{N and V is a complete development of N {M. �en by the
cube identity for multisteps (Lem. 2.45) we have BD “ BpF1qBpMqBpV qBpF2q ”A

BpF1qBpN qBpUqBpF2q “ BE. �is mapping de�nes a function B : DerivAm{ ”AmÑ

DerivA{ ”A also noted B.

To conclude, let us show that they are mutual inverses. One side is immediate, namely
BpipR1 . . . Rnqq “ BptR1u . . . tRnuq “ R1 . . . Rn. For the other side, ipBpM1 . . .Mnqq “

ipρ1 . . . ρnq where ρi is a complete development of Mi for all i. By Lem. 2.52, we have that
ipρ1 . . . ρnq ”Am M1 . . .Mn as required.
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Lemma 2.54. LetA be an orthogonal axiomatic rewriting system. �en ipρ{σq ”Am ipρq{ipσq.

Proof. Let us write ρ as of the form ρ “ R1 . . . Rn. Let us moreover de�ne σi :“ σ{R1 . . . Ri´1

for all 1 ď i ď n. �en:

ipρ{σq “ ipR1 . . . Rn{σq

“ ipBpR1{σ1q . . . BpRn{σnqq

“ ipBpR1{σ1qq . . . ipBpRn{σnqq

”Am pR1{σ1q . . . pRn{σnq by Prop. 2.53
“ tR1u . . . tRnu{ipσq

“ ipρq{ipσq

�eorem 2.55 (Cube identity for derivations). �e following holds in any orthogonal axiomatic

rewriting system A:

ρpσ{ρq ” σpρ{σq

Proof. �e proof of this fact requires working in the rewriting system of multisteps Am, which
is orthogonal by Prop. 2.51. �e sketch of the proof is as follows: let ρ “ R1 . . . Rn and
σ : S1 . . . Sm. Consider them as sequences of multisteps D “ tR1u . . . tRnu and E “

tS1u . . . tSmu. A peak pðñq in the rewriting system of multisteps may be closed with at most
one step on each side pññððq, as a consequence of the cube identity for multisteps (Lem. 2.45).
So the peak formed by D and E may be closed with square tiles (each side of a tile may be a
single multistep or the empty derivation ε):

tS1u
��

tR1u+3 tR2u+3

���� ����

tRnu+3

����

tS2u
��

+3 +3

����

+3 +3

����

+3 +3

����

tSmu
��

+3 +3 +3 +3

����

+3 +3

���� ����+3 +3 +3 +3 +3 +3

�e complete development of the multisteps on one side of the diagram is precisely ρpσ{ρq,
and the complete development of the multisteps on the other side of the diagram is precisely
σpρ{σq. Moreover, the cube identity for multisteps (Lem. 2.45) ensures that the diagram com-
mutes, i.e. that the sides of each tile are permutation equivalent in Am. By Prop. 2.53 this
implies that ρpσ{ρq ” σpρ{σq in A. In Paul-André Melliès’ PhD thesis [118, Chapter 2] the
reader may �nd a more detailed proof.

As a consequence of this theorem we obtain a strong version of con�uence, called algebraic

con�uence by Melliès:

Corollary 2.56 (Algebraic con�uence). Let ρ : x � y and σ : x � z. �en there is an object

w such that σ{ρ : y � w and ρ{τ : z � w.

Proof. Immediate since by �m. 2.55 we have that ρpσ{ρq ” σpρ{σq.
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Another consequence of �m. 2.55 is that the set of derivations in any orthogonal ax-
iomatic rewriting system can be given the higher-order structure of a category with pushouts.
More precisely, one can de�ne a transitive relation between derivations ρ Ď σ, called the pre-

�x order, and the binary operation of join of derivations ρ\ σ which is the least upper bound
of tρ, σu with respect to the order Ď, up to permutation equivalence.

De�nition 2.57 (Pre�x order). Given two coinitial derivations ρ, σ, we say that ρ is a pre�x

of σ, wri�en ρ Ď σ, if and only if ρ{σ “ ε.

Lemma 2.58 (Characterization of the pre�x order). �e following are equivalent:

1. ρ Ď σ,

2. ρpσ{ρq ” σ,

3. ρτ ” σ for some derivation τ .

Proof. p1 ùñ 2q Suppose that ρ Ď σ, i.e. ρ{σ “ ε. �en by �m. 2.55 we have ρpσ{ρq ”
σpρ{σq “ σ. p2 ùñ 3q Immediate by taking τ :“ σ{ρ. p3 ùñ 1q Suppose that ρσ ” ρ.
�en ρ{σ “ ρ{ρτ “ pρ{ρq{τ “ ε by Lem. 2.50.

Lemma 2.59 (Projection equivalence). �e equivalence ρ ” σ holds if and only if ρ Ď σ and

σ Ď ρ.

Proof. pñq Suppose that ρ ” σ. �en ρ{σ “ ρ{ρ “ ε, so indeed ρ Ď σ. Symmetrically, σ Ď ρ.
pðq Suppose that ρ Ď σ and σ Ď ρ, that is to say ρ{σ “ ε and σ{ρ “ ε. �en by �m. 2.55
we have that ρ “ ρpσ{ρq ” σpρ{σq “ σ.

De�nition 2.60 (Join of derivations). If ρ and σ are coinitial derivations, their join, wri�en
ρ\ σ is de�ned as ρ\ σ :“ ρpσ{ρq.

Lemma 2.61 (Properties of \). �e join of derivations has the following properties:

1. ρ\ σ ” σ \ ρ.

2. ρ Ď ρ\ σ and σ Ď ρ\ σ, i.e. ρ\ σ is an upper bound of tρ, σu.

3. pρ\ σq{τ “ pρ{τq \ pσ{τq.

4. If ρ Ď τ and σ Ď τ then ρ \ σ Ď τ , i.e. ρ \ σ is the least upper bound of tρ, σu, up to

permutation equivalence.

Proof. Let us prove each item separately:

1. We have ρ\ σ “ ρpσ{ρq ” σpρ{σq “ σ \ ρ by �m. 2.55.

2. Note that ρ{pρ\ σq “ ρ{ρpσ{ρq “ pρ{ρq{pσ{ρq “ ε by Lem. 2.50 so indeed ρ Ď ρ\ σ.
Moreover, using item 1. we have that σ{pρ\ σq “ σ{pσ \ ρq “ ε.
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3. Note that, using Lem. 2.50 and �m. 2.55:

pρ\ σq{τ “ ρpσ{ρq{τ

“ pρ{τqppσ{ρq{pτ{ρqq

“ pρ{τqpσ{ρpτ{ρqq

“ pρ{τqpσ{τpρ{τqq since ρpτ{ρq ” τpρ{τq

“ pρ{τqppσ{τq{pρ{τqq

“ pρ{τq \ pσ{τq

4. Let ρ{τ “ ε and σ{τ “ ε. �en using item 3. we have that pρ\σq{τ “ pρ{τq\pσ{τq “
ε\ ε “ ε.

Proposition 2.62 (Compatibility with projection for multisteps). Let A be an orthogonal ax-

iomatic rewriting system. If D ”Am E then D{F ”Am E{F .

Proof. It su�ces to show the property when F is a single multistep; the main result then
follows by induction on F . So letD ”Am E and let us show thatD{P ”Am E{P . We proceed
by induction on the derivation of D ”Am E. �e interesting case is one-step permutation, i.e.

when D “ F1MV F2 and E “ F1NUF2 where pMV,NUq is a permutation tile in Am, i.e.

U is a complete development of M{N and V is a complete development of N {M.
�e multiderivations U and V may be empty or they may consist of exactly one multistep.

In any case, for any multistepP we have that xMV {Py“xNU{Py, because given an arbitrary
step R, we have that:

R{pMV {Pq “ R{pM{PqpV {pP{Mqq

“ R{pM{PqppN {Mq{pP{Mqq

“ R{pM{PqppN {Pq{pM{Pqq by the cube identity (Lem. 2.45)
“ R{pN {PqppM{Pq{pN {Pqq by the cube identity (Lem. 2.45)
“ R{pN {PqppM{N q{pP{N qq by the cube identity (Lem. 2.45)
“ R{pN {PqpU{pP{N qq
“ R{pNU{Pq

From this fact, we may conclude that MV {P ” NU{P for any multistep P . �en:

D{P “ F1MV F2{P
“ pF1{PqpMV {pP{F1qqpF2{pP{F1MV qq

” pF1{PqpNU{pP{F1qqpF2{pP{F1MV qq

“ F1NUF2{P
“ E{P

Proposition 2.63 (Compatibility with projection). Let A is an orthogonal axiomatic rewriting

system. If ρ ”A σ then ρ{τ ”A σ{τ .
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Proof. Let ρ ”A σ and let us show that ρ{τ ”A σ{τ . By Prop. 2.53, we know that ipρq ”Am

ipσq, and it su�ces to show that ipρ{τq ”Am ipσ{τq. Indeed:

ipρ{τq ”Am ipρq{ipτq by Lem. 2.54
”Am ipσq{ipτq by compatibility in Am (Prop. 2.62)
”Am ipσ{τq by Lem. 2.54

Corollary 2.64 (Le� cancellation). If ρσ ” ρτ then σ ” τ .

Proof. An immediate consequence of Prop. 2.63, projecting by ρ.

2.3 �e λ-Calculus

Much has been wri�en about the λ-calculus. �e syntax of the (pure, untyped) λ-calculus and
the β-reduction rule have already been informally discussed in Section 1.1. We omit its formal
de�nition, referring the reader to standard reference material on the topic [22, 95, 130, 74].
In particular we omit the formal treatment of the equivalence of terms modulo renaming of
bound variables (α-equivalence). In the following, we do recall a few important concepts.

Convention 2.65 (Barendregt’s free variable convention). During theorems and proofs, we

may always assume that bound variables have been renamed apart from bound variables and

from each other.

2.3.1 Positions and Contexts

Two simple but important notions are those of positions and contexts. Generally speaking, a
position is a string of symbols intended to represent a location in a tree. �e empty string ε
represents the root of the tree. A position p representing a node in the tree may be extended
with an integer i to represent its i-th child. Given two positions p, q we write p ¨ q so stand
for their concatenation. Each term t of the λ-calculus has a set of positions posptq:

De�nition 2.66 (Positions of a λ-term). If t is a λ-term, the set of positions posptq is de�ned
as follows by induction on t:

pospxq
def
“ tεu

posptsq
def
“ tεu Y t1 ¨ p | p P posptqu Y t2 ¨ p | p P pospsqu

pospλx.tq
def
“ tεu Y t1 ¨ p | p P posptqu

For example, the positions ofλx.xy are tε, 1, 11, 12u. Positions are used to perform “surgery”
on terms: if p P posptq is a position then t|p denotes the subterm of t at position p, and trssp
denotes the term obtained by replacing the subterm at position p of t by s. For example,
pλx.xyq|12 “ y and pλx.xyqrxys11 “ λx.xyy. We will freely use the notion of position in
other se�ings, besides the λ-calculus, without always giving an explicit de�nition.

�e notion of position is very closely related with the notion of context. A context is a
term with exactly one occurrence of a free variable l, called a hole.
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De�nition 2.67 (Contexts in the λ-calculus). A context is de�ned by the following abstract
syntax:

C ::“ l | λx.C | C t | t C

Each position p P posptq corresponds to a context trlsp. For example, pλx.xyqrls11 is
the context λx.ly. Contexts may also be used to perform surgery: if C is a context and t
is a term, then Cxty denotes the capturing substitution of l by t in C, so that, for example,
pλx.xlqxxxy “ λx.xpxxq. In this thesis we also write Cxxtyy for the capture-avoiding substi-
tution of l by t in C, so that, for example, pλx.xlqxxxy “ λz.zpxxq. As for positions, we will
freely use the notion of context for other families of terms, besides λ-terms, without always
giving an explicit de�nition.

Contexts are useful to decompose a term by writing it as Cxty, where C is a partially known
term with an unknown subterm l, in which one plugs the subterm t. For example, a term is
of the form Cxxxyy if and only if it has a free occurrence of x. Sometimes it is also useful to
decompose terms using contexts with more than one hole. A context with n holes is a term with
exactly one occurrence of the free variable li for each i P t1, . . . , nu. If C is a context with
n holes, we write Cxt1, . . . , tny for the result of substituting each li for ti in C. For example,
ppλx.xl2ql1qxt, sy “ pλx.xsqt.

2.3.2 Residual �eory for the λ-Calculus

From the propositional point of view, the β-reduction rule of the λ-calculus is a binary relation
between λ-terms:

Cxpλx.tq sy Ñβ Cxttx :“ suy

From the relevant point of view, however, the λ-calculus is an abstract rewriting system whose
objects are λ-terms and whose steps are de�ned as follows:

De�nition 2.68 (Step in the λ-calculus). A step in the λ-calculus is a 4-uple R “ pC, x, t, sq.
�e source of R is Cxpλx.tqsy and its target is Cxttx :“ suy.

For example, there is a step pλx.xxqyz Ñβ yyz, given by the 4-uple plz, x, xx, yq. An
important observation is that a step is not uniquely determined by its source and target. For
example, if I “ λx.x, there are two di�erent steps IpIyqÑβ Iy namelyR “ pl, x, x, Iyq and
S “ pIl, x, x, yq. �is kind of situation is called a syntactic accident by Lévy [109]. In spite of
the possibility of syntactic accidents, we usually do not work formally with 4-uples, since the
step is usually clear from the context, e.g. when we say “the step pλx.xqtÑβ t” we actually
mean “the step pl, x, x, tq”.

�e λ-calculus can be endowed with the structure of an orthogonal axiomatic rewriting
system (as de�ned in Def. 2.39). �ere are many (equivalent) ways to de�ne the notion of
residual in the λ-calculus. One way is by tracking descendants, using positions. Here we
de�ne residuals by means of an auxiliary calculus in which some redexes may be marked.

De�nition 2.69 (Marked λ-calculus). Assume given a denumerable set of marks a, b, c, . . ..
�e set of marked terms is given by:

t ::“ x | λx.t | t t | pλxa.tq t
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�e marked λ-calculus has a single rule, closed by arbitrary contexts, that allows to contract
any marked redex. �e notation ttx :“ su stands for the capture-avoiding substitution of x
by s in t.

pλxa.tqsÑM ttx :“ su

A step in the marked λ-calculus is a 5-uple pC, x, a, t, sq whose source is Cxpλxa.tq sy and its
target is Cxttx :“ suy. �e name of a step R “ pC, x, a, t, sq in the marked λ-calculus is the
mark a. A term is initially marked if it has no subterms of the form pλx.tqs and marks are
pairwise distinct. A marked term t is a variant of an (unmarked) term t1 if t1 is the result
of erasing all marks from t. Similarly, a marked step R “ pC, x, a, t, sq is a variant of an
(unmarked) step R1 “ pC1, x, t1, s1q if C, t, and s are variants of C1,t1, and s1 respectively. If the
marked term t is an initially marked variant of t1 and R1 : t1Ñβ s

1 is an unmarked step, there
is a unique marked stepR : tÑM s such thatR is a variant ofR1, we say thatR is the marked

li� of R1 with respect to t.

For example, pλxa.xqppλyb.yqzq is an initially marked term, but the terms pλxa.xqppλya.yqzq
and pλxa.xqppλy.yqzq are not initially marked. �e marked step

pλxa.xqppλyb.yqzq ÑM ppλy
b.yqzq

is the marked li� of the unmarked step

pλx.xqppλy.yqzq Ñβ ppλy.yqzq

with respect to the marked term pλxa.xqppλyb.yqzq. �e notion of residual in the λ-calculus
may be de�ned using the marked λ-calculus as an auxiliary tool, as follows.

De�nition 2.70 (Residuals in the λ-calculus). Let R : tÑβ s and S : tÑβ u be coinitial steps
in the λ-calculus. �e set of residuals R{S is de�ned as follows:

1. Let t1 be an initially marked variant of t.

2. Let R1 : t1 ÑM s1 and S 1 : t1 ÑM u1 be the marked li�s of R and S respectively.

3. A step T : u Ñβ r is a residual of R a�er S if and only if it has a marked variant
T 1 : u1 ÑM r1 with the same name as R1.

Remark 2.71. �e de�nition of residual does not depend on the choice of the initially marked
variant t1.

Example 2.72. Let ∆ “ λx.xx and I “ λx.x, and let moreover

R : ∆ pI zq Ñβ ∆ z

S : ∆ pI zq Ñβ I z pI zq

R1 : I z pI zq Ñβ z pI zq

R2 : I z pI zq Ñβ I z z

then R{S “ tR1, R2u, as witnessed by the following diagram in the marked λ-calculus:

pλxa.xxq ppλyb.yq zq

R1 ��

S1 // pλyb.yq z ppλyb.yq zq
R11

tt
R12

))
pλxa.xxq z z ppλyb.yq zq pλyb.yq z z
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�eorem 2.73. �e λ-calculus is an orthogonal axiomatic rewriting system.

Proof. �e properties of autoerasure (AE) and �nite residuals (FR) are easy to check. �e
property of �nite developments (FD) of the λ-calculus can be reduced to the property that
the marked λ-calculus is strongly normalizing. To prove SN of the marked λ-calculus, one
may assign a weight mptq P N0 to any marked term t, representing the length of the longest
sequence of steps starting from t:

mpxq
def
“ 0

mpλx.tq
def
“ mptq

mptsq
def
“ mptq `mpsq

mppλxa.tqsq
def
“ 1`mptq `maxt1,mxptqu ¨mpsq

where in turn mxptq represents the maximum potential multiplicity of x along any sequence
starting from t:

mxpyq
def
“

#

1 if x “ y

0 otherwise
mxpλy.tq

def
“ mxptq if x ‰ y

mxptsq
def
“ mxptq `mxpsq

mxppλy
a.tqsq

def
“ 1`mxptq `maxt1,myptqu ¨mxpsq if x ‰ y

It can then be checked that t ÑM s implies mptq ą mpsq, which in turn means that the
marked calculus is SN. �e key fact is that mpttx :“ suq ď mptq `mxptq ¨mpsq holds for all
t, x, s, which can be proved by induction on t.2

�e property of semantic orthogonality (SO) can be reduced to the property that the
marked λ-calculus is weakly Church–Rosser. �e di�cult case is when a step R nests an-
other step S, that is, when the subterm contracted by the step S lies inside the argument of
the application contracted by R. �en the peak may be closed with a diagram of the form:

pλxa.tq Cxpλyb.squy
R //

S
��

ttx :“ Cxpλyb.squyu

����
pλxa.tq Cxsty :“ uuy // ttx :“ Cxsty :“ uuyu

See [22, Lemma 11.2.23] for a detailed proof that the marked λ-calculus is WCR.

2.4 �e Linear Substitution Calculus

�e syntax of the Linear Substitution Calculus (LSC) and its reduction rules have been infor-
mally discussed in Section 1.1. Below we brie�y state these de�nitions.

2�is direct de�nition of a bound for the length of the longest development of a term is due to de Vrijer [53].
See [22, �eorem 11.2.21] for a di�erent proof.
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De�nition 2.74 (Terms and contexts). Terms (t, s, . . .), arbitrary contexts (C, C2, . . .), and sub-
stitution contexts (L, L2, . . .) are de�ned as follows:

t ::“ x | t t | λx.t | trxzts

C ::“ l | C t | t C | λx.C | Crxzts | trxzCs

L ::“ l | Lrxzts

A pure term is a term without explicit substitutions. Recall that if L is a substitution context,
we write tL rather than Lxty for the result of plugging t into the hole of L. �e underlined
occurrences of x in the terms λx.t and trxzss are supposed to be binding occurrences. More
precisely, the set of free variables fvptq of a term t is de�ned as follows:

fvpxq
def
“ txu

fvpt sq
def
“ fvptq Y fvpsq

fvpλx.tq
def
“ fvptqztxu

fvptrxzssq
def
“ pfvptqztxuq Y fvpsq

As in the λ-calculus, terms are considered up to α-equivalence, i.e. renaming of bound vari-
ables.

De�nition 2.75 (Reduction rules). From the propositional point of view, the rewriting relation
between terms pÑLSCq is de�ned as ÑLSC

def
“ Ñ db Y Ñ ls Y Ñ gc , where Ñx is de�ned as

the contextual closure of ÞÑx for each x P tdb, ls, gcu:

pλx.tqL s ÞÑdb trxzssL

Cxxxyyrxzts ÞÑls Cxxtyyrxzts

trxzss ÞÑgc t if x R fvptq

From the relevant point of view, steps in the LSC are given by the disjoint union of db steps,
ls steps, and gc steps where:

• A db step is a 5-uple R “ pC, x, t, L, sq : Cxpλx.tqL sy ÑLSC CxtrxzssLy.

• A ls step is a 4-uple R “ pC1, C2, x, tq : C1xC2xxxyyrxztsy ÑLSC C1xC2xxtyyrxztsy.

• A gc step is a 4-uple R “ pC, t, x, sq : Cxtrxzssy ÑLSC Cxty such that x R fvptq.

A useful notion is that of the anchor of a step. �e anchor of a db step pλx.tqL sÑ trxzssL is
the underlined (binding) occurrence of x. �e anchor of a ls step Cxxxyyrxzts Ñ Cxxtyyrxzts is
the underlined occurrence of x. �e anchor of a gc step trxzss Ñ t is the underlined (binding)
occurrence of x.

De�nition 2.76 (Graphical equivalence). Terms of the LSC are provided with a binary rela-
tion t „ s called graphical equivalence. It is de�ned as the least congruence containing the
three axioms below:

ptsqrxzus „@ trxzuss if x R fvpsq
pλx.tqryzss „λ λx.tryzss if x R fvpsq and x ‰ y

trxzssryzus „com tryzusrxzss if x R fvpuq and y R fvpsq
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Recall that a congruence is an equivalence relation which is closed by arbitrary contexts, i.e.

t „ s implies Cxty „ Cxsy.

In the following, we state a few results that justify that the LSC is a quite well-behaved
explicit substitution calculus, and we sketch the ideas behind their proofs. For their formal
proofs the reader should refer to [8, 2, 5].

Proposition 2.77 (Full Composition). If t, s are terms in the LSC, then trxzss�LSC ttx :“ su.

Proof. Suppose that there are exactly n free occurrences of x in t, and write t “ Cxx, x, . . . , xy

where C is an n-hole context, for n ě 0. �en with a sequence of n ls steps and one gc step
we have:

trxzss “ Cxx, x, . . . , xyrxzss

�LSC Cxs, s, . . . , syrxzss with n ls steps
ÑLSC Cxs, s, . . . , sy with a single gc step
“ ttx :“ su

Corollary 2.78 (Simulation of β-reduction). �e LSC simulates the λ-calculus, that is if tÑβ s

then tÑ`
LSC s.

Proof. A β-reduction step Cxpλx.tq sy Ñ Cxttx :“ suy can be simulated in the LSC as follows:

Cxpλx.tq sy ÑLSC Cxtrxzssy with a db step
�LSC Cxttx :“ suy by Full Composition (Prop. 2.77)

Lemma 2.79 (Unfolding is terminating). �e relationÑls,gc
def
“ Ñ ls Y Ñ gc is SN.

Proof. A bound mptq for the length of the longest sequence of Ñls,gc steps going out from a
term t can be obtained as follows:

mpxq
def
“ 0

mpλx.tq
def
“ mptq

mpt sq
def
“ mptq `mpsq

mptrxzssq
def
“ mptq ` p1`mxptqq ¨ p1`mpsqq

where in turn mxptq represents the maximum potential multiplicity of x along any sequence
ofÑls,gc steps starting from t:

mxpyq
def
“

#

1 if x “ y

0 otherwise
mxpλy.tq

def
“ mxptq

mxpt sq
def
“ mxptq `mxpsq

mxptryzssq
def
“ mxptq ` p1`myptqq ¨mxpsq

It can then be shown that if tÑls,gc s then mptq ą mpsq which entails termination.
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Let us write SNx for the set of strongly normalizing terms for the rewriting relationÑx.

�eorem 2.80 (Preservation of strong normalization). If t is a pure term and t P SNβ then

t P SNLSC.

Proof. We sketch a proof of PSN, without going into all the technical details, which would
require quite a few auxiliary lemmas. A proof of PSN for the structural λ-calculus—a calculus
closely related with the LSC— may be found in [8], and the proof can be easily adapted.

De�ne the unfolding of an LSC term t as the λ-term t˛ that results from performing all
substitutions, that is, theÑls,gc-normal form of t. In a term of the form Cxtrxzssy, we say that
the substitution rxzss under the context C is sterile if x R fvpt˛q. A subterm is unreachable if
it lies inside a sterile substitution, and reachable otherwise. For example, in xryzzsrzzts the
subterm t is unreachable because the underlined substitution xryzzsrzzts is sterile. A step
R : t Ñ s is unreachable if the anchor of R lies inside an unreachable subterm of t, and
reachable otherwise. �e rewriting relation of unreachable reduction t ÑU s is de�ned as the
restriction of t ÑLSC s to unreachable steps. In turn, reachable unfolding t ÑRpls,gcq is the
restriction of tÑls,gc s to reachable steps.

Let X be the set of LSC terms such that t˛ P SNβ and every unreachable subterm of t is
in SNLSC. Observe in particular that if t is pure and t P SNβ , then t˛ “ t P SNβ and t has no
unreachable subterms, so in fact t P X . �e proof of the main statement can then be reduced
to the claim that X Ď SNLSC, which is Claim II below. We also need Claim I as an auxiliary
result.

• Claim I. If t P X , then for any subterm s of t we have that s P X .
Proof of Claim I. Let s be a subterm of t. Note that any unreachable subterm u of s is
also an unreachable subterm in t, so we have that u P SNLSC. We are le� to show that
s˛ P SNβ . We consider two cases:

– Reachable. Suppose that s is reachable. �en s˛ occurs as a subterm of t˛, and
t˛ P SNβ by hypothesis, so s˛ P SNβ .

– Unreachable. Suppose that s is unreachable. �e hypothesis that t P X implies
that s P SNLSC. As a consequence, we have that s˛ P SNβ , since by Simula-
tion (Coro. 2.78) an in�nite sequence

s˛Ñβ u1 Ñβ u2 Ñβ . . .

results in an in�nite sequence

s�ls,gc s
˛
Ñ
`
LSC u1 Ñ

`
LSC u2 Ñ

`
LSC . . .

contradicting s P SNLSC.

• Claim II. If t P X then t P SNLSC.
Proof of Claim II. �e proof proceeds by induction on the size of the term t. Since the
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λ-calculus and the LSC are �nitely branching, by Prop. 2.17 we may de�ne the following
notions of depth:

depthβptq
def
“ maxt|ρ| | ρ : tÑβ su if t P SNβ

depthRpls,gcqptq
def
“ maxt|ρ| | ρ : t�Rpls,gcq su if t is any LSC term

depthUptq
def
“ maxt|ρ| | ρ : t�U su if t is an LSC term whose

unreachable subterms are in SNLSC

Note that depthRpls,gcqptq is well-de�ned becauseÑls,gc is SN (Lem. 2.79) so in particular
ÑRpls,gcq is SN. �e measure of t is wri�en #ptq and de�ned as the triple:

#ptq
def
“ pdepthβpt

˛
q, depthRpls,gcqptq, depthUptqq

It can then be shown that if tÑLSC s then #ptq ą #psq where pąq is the lexicographic
order. We consider three cases:

1. Reachable db step. Suppose that the step is of the form t “ Cxpλx.uqL ry Ñ db

CxurxzrsLy “ s and that it is reachable.
First, we argue that s P X . Note that t˛ Ñβ

` s˛ in at least one step, as can be
checked by induction on t. Since t˛ P SNβ then s˛ P SNβ . Moreover, consider an
unreachable subterm of s, and let us check s P SNLSC. �e unreachable subterms
of s are the same ones as for t, except perhaps for r and its subterms. But r is
smaller in size than t, and by Claim I r P X , so by i.h. we have that r P SNLSC.
Second, let us show that the measure decreases. We have already noted that t˛Ñβ

`

s˛, so depthβpt
˛q ą depthβps

˛q and the �rst component decreases.
2. Reachable ls or gc step. Suppose that the step is of the form t ÑRpls,gcq s and

that it is reachable.
First, let us show that s P X . Observe that t˛ “ s˛ so given that t˛ P SNβ ,
also s˛ P SNβ . Moreover, let us check that the unreachable subterms of s are
in SNLSC. If the step is a gc, it is immediate. If the step is a ls step then t “

C1xC2xxxyyrxzusy Ñls C1xC2xxxyyrxzusy “ s. �e unreachable subterms of s are
the same ones as in t, except perhaps for u and its subterms. But u is smaller in
size than t, and by Claim I u P X , so by i.h. we have that u P SNLSC.
Second, let us show that the measure decreases. Since t ÑRpls,gcq s we have that
depthRpls,gcqptq ą depthRpls,gcqpsq so the second component decreases. Moreover
t˛ “ s˛ so depthβpt

˛q “ depthβps
˛q, i.e. the �rst component does not change.

3. Unreachable step. Suppose that the step is unreachable, i.e. of the form tÑU s.
First, note that s P X since t˛ “ s˛ and the reachable subterms of s are the same
ones as in t.
Second, let us show that the measure decreases. Given that t ÑU s, we have that
depthUptq ą depthUpsq so the third component decreases. Note that t˛ “ s˛ so
depthβpt

˛q “ depthβps
˛q, i.e. the �rst component does not change. Moreover,

depthRpls,gcqptq “ depthRpls,gcqpsq, i.e. the second component does not change.
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Proposition 2.81 (Con�uence). �e LSC is con�uent.

Proof. We do not give a full proof here, but a few pointers:

• A proof of con�uence for the structural λ-calculus—closely related with the LSC—may
be found in [8].

• Con�uence for the LSC is straightforward using interpretation methods [72]. A proof of
a stronger property, meta-con�uence, for the LSC can be found in [52].

• A proof that the LSC is an orthogonal axiomatic rewriting system may be found in [5].
Recall that orthogonal axiomatic rewriting systems enjoy the stronger property of al-
gebraic con�uence (Coro. 2.56).

• In Chapter 6 we will reconstruct a proof that the LSC is an orthogonal axiomatic rewrit-
ing system, using a labeled calculus.



Chapter 3

Distilling Abstract Machines

3.1 Introduction

�e λ-calculus is a �ne model of computation from the point of view of computability—it is
Turing-complete. It is however not so clear whether the λ-calculus is a �ne model of com-
putation from the point of view of computational complexity. By this we mean the amount of
resources that the program must consume to be able to run. �ere are many kinds of computa-
tional resources. In this chapter we are interested exclusively in the time complexity required
to evaluate λ-terms. Time is a most fundamental computational resource, in that other kinds
of resources, such as the amount of space (memory) that a program uses, or the amount of
energy (e.g. ba�ery) that it consumes, can usually be bounded proportionally by the running
time of the program.

As mentioned in the introduction, van Emde Boas’ Invariance �esis stipulates that reason-

able models of sequential computation should simulate each other with polynomial overhead
in time [140]. For example, “traditional” (or “established”) models of computation such as
Turing machines and random-access machines are known to simulate each other with poly-
nomial overhead. Is the λ-calculus a reasonable time cost model of sequential computation,
with respect to the established models? �at is, can a sequence of n consecutive β-reduction
steps t0Ñβ t1 . . .Ñβ tn be simulated in a Turing machine with at most a polynomial number
of steps in n?

As an illustration of why this question is subtle, note that there are families of λ-terms
whose sizes grow exponentially as a function of the number of β-reduction steps. For instance,
recall the following families of terms ptnqnPN and psnqnPN from Section 1.1.2:

t0
def
“ y

tn`1
def
“ pλx.xxqtn

s0
def
“ y

sn`1
def
“ snsn

�ese terms are such that the size of tn is Θpnq and the size of sn is Θp2nq, but tn reduces
to sn in Θpnq steps. Suppose that one represents terms straightforwardly as trees—be it in
a Turing machine or in any other established model of sequential computation. With that
representation, the amount of memory required to simulate n consecutive β-reduction steps,

74
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starting from tn, grows exponentially as a function of n. As a necessary consequence, the
amount of time required to simulate n consecutive β-reduction steps also grows (at least)
exponentially as a function of n.

�e above example shows that it is not possible to simulate β-reduction in polynomial
time as long as terms are represented straightforwardly as trees. �e subtle point is that this
does not forbid that the λ-calculus may turn out to be a reasonable time cost model if one
were to rely on a smarter representation for λ-terms. In summary, regarding the question of
whether the λ-calculus is a reasonable time cost model, answering it positively would require
to conceive a su�ciently smart representation for λ-terms that avoids the exponential blowup
in space. Conversely, answering it negatively would require to prove that simulating it with
polynomial overhead in time is impossible for any conceivable encoding of λ-terms.

A noteworthy contribution to the study of this problem has been the work by Acca�oli
and dal Lago [11], who have shown that le�most-outermost reduction in the λ-calculus is
reasonable, by choosing an appropriate representation for λ-terms that avoids the exponential
blowup. In fact, in order to share subterms, the Linear Substitution Calculus (LSC) is used as
the primary technical tool. �e general question of whether arbitrary β-reduction in the λ-
calculus is a reasonable time cost model is currently open, as of the writing of this thesis.

In this chapter, we tackle the question of whether certain reduction strategies in explicit
substitution calculi are reasonable cost models. For example, in the case of the call-by-name

reduction strategy for the Linear Substitution Calculus (LSC), the question is whether it is pos-
sible to implement the LSC in such a way that n consecutive call-by-name reduction steps can
be simulated—in an established model of sequential computation—with at most a polynomial
number of steps in n. We answer this question positively for four particular reduction strate-
gies: call-by-name, call-by-value, call-by-need, and strong call-by-name (i.e. call-by-name
generalized to allow reduction under abstractions).

To be able to study these questions for a given reduction strategy, one needs to provide
the following elements:

1. A formal de�nition of the reduction strategy itself.

2. An implementation of the reduction strategy.

3. A “distillation”, i.e. a construction showing that the implementation actually imple-
ments reduction according to the given strategy.

All of these elements are grouped in an abstract structure that we call a distillery (see Def. 3.17).
�roughout this chapter we develop a methodology to study distilleries. Besides the particu-
lar results on the time complexity of various evaluation strategies, the methodology itself is
an important take-home point, for the following reasons:

• Distilleries are uniform: abstract machines are consistently seen as implementations of
reduction strategies in a single framework—the λ-calculus extended with explicit sub-
stitutions. �is allows us to understand the working of many existing abstract machines
(e.g. the Krivine Abstract Machine or Landin’s SECD machine) as less ad hoc.
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• Distilleries are modular with respect to various features (e.g. local vs. global environ-
ments, or split vs. merged stacks)—so formulating variants of abstract machines with
di�erent features becomes a relatively mechanical task.

• �is very uniform and modular approach can guide the design of future abstract ma-
chines to implement other reduction strategies. For instance in the conclusion (Sec-
tion 8.1) we discuss an abstract machine for the strong call-by-need reduction strategy
of Chapter 4.

In the remainder of this section, before diving into the speci�c details of each strategy, we
give a description of the general methodology

First, in this chapter, a reduction strategy S is always an abstract rewriting system over
the set Term of terms with explicit substitutions:

t ::“ x | λx.t | t t | trxzts

and a binary reduction relation ÑS Ď Term ˆ Term. In order to rigorously de�ne the re-
lation ÑS, we use evaluation contexts, a technique introduced by Felleisen [55]. �e set of
S-evaluation contexts is a subset of the set of all possible contexts. �e position of the hole
in an S-evaluation context indicates where in a term evaluation should focus next, according
to the strategy S. For instance, the set of call-by-name evaluation contexts is given by the
grammar:

H ::“ l | H t | Hrxzts

Hence the following db step (underlined):

ppλx.xqpyzqqryzpλx.xqzsrzzws Ñ xrxzyzsryzpλx.xqzsrzzws

is a step in the call-by-name strategy, as the redex is below the evaluation context H :“

lryzpλx.xqzsrzzws, whereas the following db step:

ppλx.xqpyzqqryzpλx.xqzsrzzws Ñ ppλx.xqpyzqqryzxrxzzssrzzws

is not a step in the call-by-name strategy, because the context C :“ ppλx.xqpyzqqryzlsrzzws

is not a call-by-name evaluation context.

�e reduction relation ÑS for each strategy S that we study is always de�ned using a
multiplicative (db-like) reduction rule, and an exponential (ls-like) reduction rule. �e names
obey to the fact that db-like rules correspond to multiplicative cut-elimination steps in the
encoding of explicit substitution calculi using Linear Logic proof-nets and, likewise, ls-like
rules correspond to exponential cut-elimination steps. �e de�nition of a reduction strategy
S will follow roughly the following template:

Multiplicative reduction rule (db-like)
Expλx.tqL sy ÑS ExtrxzssLy if E is an S-evaluation context

Exponential reduction rule (ls-like)
E1xE2xxxyyrxztsy ÑS E1xE2xxtyyrxztsy if E1xE2yrxzts is an S-evaluation context
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One obvious di�erence with respect to the LSC is that reduction rules are closed by evaluation

contexts, rather than by arbitrary contexts. Moreover, each strategy may incorporate slight (or
not so slight) variations; for example the call-by-value strategy will require that the argument
of a multiplicative step is already an answer, i.e. a term of the form pλx.tqL.

All the reduction strategies studied in this chapter turn out to be deterministic, i.e. if
t ÑS s1 and t ÑS s2 are steps in a given reduction strategy then s1 “ s2. Moreover, as
mentioned, these strategies always select either a db-like or a ls-like step, and they do not
perform garbage collection (there are no gc-like rules). As a consequence, the answer ob-
tained as the result of evaluating a term may contain unreachable explicit substitutions. �e
decision to ignore the gc-rule in the analysis is justi�ed by the following observations:

1. On one hand, gc steps in the explicit substitution calculi that we study do not interfere
with other kinds of computation steps. More precisely, gc steps can be postponed: for
every reduction sequence t� s there is a term u such that t�dbYls u�gc s.

Formally, the garbage collection rule will be incorporated into an equivalence relation
of structural equivalence between terms, and we will show that structurally equivalent
terms have the same computational behavior.

2. On the other hand, explicit substitution calculi do not allow for cyclic bindings. �at
is, if a term with explicit substitutions is interpreted as a directed graph in which some
subterms are shared, the graph turns out to be acyclic.

�is means that garbage collection of unreachable explicit substitutions may be imple-
mented using the elementary technique known as reference counting [82]. Concretely,
each explicit substitution trxzss may be annotated with an integer n ě 0 that counts
the free occurrences of x in t. �is count must be updated a�er each reduction step,
and the explicit substitution may be reclaimed when the count reaches zero. Moreover,
all the implementations that we propose enjoy the subterm property (see below), which
means that these updates can be done in “constant” time1.

As a consequence, incorporating the gc rule is not interesting from the point of view of
time complexity, and it is le� out of the analysis.

Second, implementations in this chapter are always de�ned using abstract machines. An
abstract machine M is also an abstract rewriting system, over a set State of states, and rules
that de�ne a binary transition relation ùM Ď State ˆ State between states. �e concrete
de�nition of the set State varies from machine to machine, but typically a state is a tuple
consisting of such elements as:

• A code, that is, a term representing the expression that is currently being evaluated.
While in reduction strategies we work implicitly modulo α-equivalence, for machines
we will not do so, as renaming of variables is part of what an abstract machine may have
to explicitly do, and di�erent renaming schemes correspond to di�erent approaches to

1Actually in time proportional to the size of the starting term.
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abstract machines. We use the metavariables t, s, u, r for code, that is, terms without
explicit substitutions and not up to α-equivalence.

• A stack π “ c1 :: . . . :: cn, into which the arguments are pushed.

• An environment e “ rx1zc1s :: . . . :: rxnzcns, which binds variables to their correspond-
ing values.

• A dump D, representing a continuation, and abstracting the lower-level notion of call

stack.

Furthermore, the values c1, . . . , cn found inside stacks and environments are sometimes not
bare terms, but rather closures. A closure is a pair pt, eq of a code t and an enclosing environ-
ment e which should bind all the free variables of t.

All of the abstract machines that we study in this chapter are deterministic. �ey are
reasonable abstractions of the lower-level constructs that one may implement in standard
hardware architectures, such as pointers and stack frames. Moreover, most of the machines
that we will de�ne in this chapter (except for the MAD in Section 3.5.6 and the Merged MAD
in Section 3.5.7) are to be regarded as established models of sequential computation, in the
sense that n transitions of an abstract machine can be simulated by Turing-machines in a
number of steps polynomial in n.2

�ird, a distillation is given by a decoding function rr ¨ ss : State Ñ Term from the set
of states of the machine to the set of terms of the calculus. �e decoding functions usually
take the code t in the state of the abstract machine and they leave it verbatim. �e remaining
components of the state of the abstract machine (stack, environment, etc.) are combined and
decoded into an evaluation context E. �e whole state of the abstract machine is then decoded
as the term Exty.

One then aims for a correctness result, stating, roughly, that the reduction strategy simu-
lates the abstract machine:

if S ùM S 1 then rrSss�S rrS
1
ss (3.1)

Note that this is not a novel idea. In fact, it is well-known that abstract machines can be seen
as implementations of evaluation strategies in calculi of explicit substitutions (see at least
[43, 73, 28, 103, 42]).

However, there is a di�culty that must be overcome in calculi with explicit substitutions at
a distance. At �rst sight, reduction strategies and abstract machines compute in quite di�erent
ways. Some machine transitions, the principal transitions, correspond to computations and
can easily be mapped to either multiplicative or exponential steps. For example, in Krivine’s
abstract machine [97] (KAM), the following principal transition:

term stack environment term stack environment
λx.x py, εq :: ε ryzpz, εqs :: ε ùKAM x ε rxzpy, εqs :: ryzpz, εqs :: ε

2�is is justi�ed by the invariants that the machines enjoy. Using these invariants, it can be seen that the ab-
stract machines can be simulated polynomially by random-access machines, and hence also by Turing machines.
We shall not give detailed proofs of these facts.
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May be easily decoded as a single multiplicative step in the call-by-name reduction strategy:

ppλx.xq yqrxzzs Ñname xrxzysrxzzs

But abstract machines also incorporate search transitions, which have no direct counterpart
as rewriting steps in the calculus. Let us illustrate the di�culty. To evaluate an application,
some machines duplicate the environment, associating a copy of the environment to each of
the two subterms. For example, in the KAM:

term stack environment term stack environment
t s π e ùKAM t ps, eq :: π e

(3.2)

�at is, to evaluate an application t s, one should go on to evaluate the function t, in the stack
extended with the closure ps, eq.

In the traditional approach to explicit substitutions (not “at a distance”), this corresponds
to a rewriting step in the calculus, such as the followingÑ@ rule:

pt sqrxzus Ñ@ trxzus srxzus (3.3)

However, calculi with explicit substitutions at a distance reject these kinds of rules, and as a
consequence the behavior of the machine in (3.2) cannot be simulated by the calculus.

�e work in this chapter stems from the key observation that rules likeÑ@ in (3.3)—despite
not being at a distance—preserve the behavior of the strategyÑS. �e intuitive reason is that
the following diagrams commute. As customary, solid arrows in the diagram are universally
quanti�ed and do�ed arrows are existentially quanti�ed:

pt sqrxzus
@ //

S
��

trxzus srxzus

S
��

r
@

// r1

pt sqrxzus
@ //

S
��

trxzus srxzus

S
��

r
@

// r1

�ese diagrams express the fact thatÑ@ is a strong bisimulation. Recall that:

De�nition 3.1 (Strong bisimulation). Let A “ pA,Ñ1q and B “ pB,Ñ2q be abstract rewrit-
ing systems. A binary relation „ Ď A ˆ B is a strong simulation with respect to pÑ1,Ñ2q if
for any objects a, a1 P A and b P B such that aÑ1 a

1 and a „ b there is an object b1 P B such
that bÑ2 b

1 and a1 „ b1. Graphically:

a

1
��

„ b

2
��

a1 „ b1

If, moreover, the inverse relation p„q´1 def
“ tpb, aq | a „ bu Ď BˆA is also a strong simulation

with respect to pÑ2,Ñ1q, then „ is a strong bisimulation with respect to pÑ1,Ñ2q.
In this chapter, we usually have that A “ B “ pA,Ñq soÑ1“Ñ2“Ñ. In this se�ing, we

simply say that „ is a strong bisimulation with respect toÑ, or just a strong bisimulation ifÑ
is clear from the context.
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In general, for each corresponding pair pS,Mq of a reduction strategy S and an abstract
machine M under study, we de�ne an associated binary equivalence relation ” of structural

equivalence between terms. Structural equivalence includes equations to propagate explicit
substitutions, such as pt sqrxzus ” trxzus srxzus, and it turns out to be a strong bisimulation
with respect to the reduction strategyÑS.

Note that ” being a bisimulation means that the following inclusion between relations
holds:

p”ÑSq Ď pÑS”q

which in turn implies that any sequence of steps:

t0 ÑS” t1 ÑS” t2 . . . ÑS” tn

can always be rearranged as follows (by transitivity of ”):

t0 ÑS t
1
1 ÑS t

1
2 . . . ÑS t

1
n ” tn

�e desired correctness result that we stated in 3.1 is then slightly weakened to allow for
propagations of explicit substitutions in the calculus:

if S ùM S 1 then rrSss�S” rrS
1
ss

�is means that the reduction strategy simulates the abstract machine, up to propagations of
explicit substitutions. Since the reduction strategy and the abstract machine are both deter-
ministic, from such a property we will be able to deduce that the abstract machine simulates
the strategy.

Note also that” being a strong bisimulation captures the idea that two structurally equiv-
alent terms are behaviorally equivalent with respect to the strategy. In particular if t ” s

then the number of steps required to normalize t, according to the strategy S, is the same as
the number of steps required to normalize s according to S. Consequently, calculi at a dis-
tance faithfully represent abstract machines up to propagations of explicit substitutions. �e
search transitions of the abstract machine (such as 3.2) are decoded as structurally equivalent
terms (such as the le� and right-hand sides of 3.3). Search transitions are thus are somehow
forgo�en, while principal transitions are retained and simulated asÑS steps.

Bounding the Time Complexity of Reduction

It is natural to wonder what is lost in forge�ing some of the transitions of the abstract machine.
We show that nothing is lost, at least from a complexity point of view: any time complexity
bound for strategies li�s to the corresponding machines, and vice-versa. More precisely, we
give a polynomial bound for the number of ùM-steps required to simulate a sequence of n
consecutiveÑS-steps starting from an initial pure term t0. �e speci�c details of the argument
depend on the particular abstract machine, but the idea is as follows:

• Multiplicative steps. Each multiplicative step Expλx.tqsy ÑS Extrxzssy, is simulated
in the abstract machine with:
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– A number of search transitions, in order to �nd the underlined redex. �e cost
of each search transition is constant, and we will argue that there are at most |t0|
such transitions.

– A principal transition that usually rearranges the stack and creates a binding rxzss
in the environment. �e cost of such a transition is constant.

• Exponential steps. Each exponential step E1xE2xxxyyrxztsy ÑS E1xE2xtyrxztsy, is sim-
ulated in the abstract machine with:

– A number of search transitions, in order to �nd the underlined variable. As before,
we will argue that there are at most |t0| such transitions, each of constant cost.

– A principal transition that makes a copy of the term t. �e cost of such a transition
is the cost of copying t, which is Op|t|q. A priori the size of t could be arbitrarily
large, so to give a bound for this cost, it is crucial to prove that the abstract ma-
chines verify a number of invariants. One particular invariant, the subterm prop-

erty, states that t is a subterm of the initial term t0, and it allows us to ensure that
the cost of this transition is Op|t0|q.

As a consequence of this analysis, we will obtain bilinear bounds. �at is, the number of
ùM-steps required to simulate a sequence of n consecutiveÑS-steps starting from an initial
term t0 will be bounded by Op|t0| ¨ nq.

Local vs. Global Environments — Explicit Treatment of α-Equivalence

In this chapter we study two kinds of machines: those with many local environments and those
with just one global environment.

�e notion of local environment is de�ned mutually inductively with the notion of clo-

sure:
Local environments e ::“ ε | rxzcs :: e

Closures c ::“ pt, eq

�at is, a local environment maps variables to closures, and closures consist of a code t in an
enclosing local environment e.

In contrast, the global environment is �at, i.e. it maps variables to codes and there is no
nesting:

Global environments E ::“ ε | rxzts :: E

machines with global environments will have a single global closure pt, Eq.
To explicitly treatα-equivalence, we work with particular representatives ofα-equivalence

classes, de�ned via the notion of support. �e support suppp´q of codes, environments, and
closures is de�ned as follows:

• suppptq is the multiset of its bound names (e.g. supppλx.λy.λx.pzxqq “ rx, x, ys).

• supppeq is the multiset of names captured by e (e.g. suppprxzc1sryzc2srxzc3sq “ rx, x, ys),
and similarly for supppEq.
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• suppppt, eqq
def
“ suppptq ` supppeq and suppppt, Eqq

def
“ suppptq ` supppEq.

A code/environment/closureX is well-named if its support supppXq is a set, i.e. a multiset
with no repetitions. Moreover, a closure pt, eq (resp. pt, Eq) is closed if fvptq Ď supppeq (resp.
fvptq Ď supppEq).

3.1.1 Our Work

�is chapter is the result of collaboration with Beniamino Acca�oli and Damiano Mazza, and
it is structured as follows. We highlight in boldface what we consider to be the main contri-
butions:

• In Section 3.2 we present �ve reduction strategies (Def. 3.3) using explicit substitu-
tions at a distance. Speci�cally, the �ve reduction strategies are: (1) weak call-by-name,
(2) weak call-by-value, with le�-to-right evaluation, (3) weak call-by-value, with right-
to-le� evaluation, (4) weak call-by-need, (5) strong call-by-name.

�e �rst four strategies are easy to de�ne by relying on an appropriate notion of evalu-
ation context. �ese strategies are well-known from the literature and we do not claim
originality, although it should be noted that this is the �rst presentation that uses explicit
substitutions at a distance. In particular, the weak call-by-need strategy is quite simple
in contrast with previous formulations [12, 113, 13, 35]—it has two reduction rules, and
the grammar of evaluation contexts consists of a single sort with four straightforward
productions.

Strong call-by-name on the other hand requires more care. Our presentation follows a
previous work by Acca�oli and Dal Lago [11]. In Section 3.2.4 we show that strong call-
by-name, de�ned using evaluation contexts, corresponds to linear le�most-outermost

reduction in the LSC [6, 11]—that is at the same time a re�nement of le�most-outermost
β-reduction and an extension of linear head reduction to normal form.

Moreover, we show that all of these strategies are deterministic (Prop. 3.11).

• In Section 3.3 we de�ne a notion of structural equivalence”S for each reduction strategy
S de�ned in Section 3.2. �e main technical result is that, for each strategy S, it turns
out that structural equivalence ”S is a strong bisimulation with respect to the

strategy S (Prop. 3.14).

• In Section 3.4 we introduce the notion of distillery, an abstract structure used to
relate reduction strategies and abstract machines.

• In Section 3.5 we de�ne abstract machines implementing each of the strategies, and we
prove that all of these abstract machines form distilleries for the corresponding

reduction strategies:
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Strategy Abstract Machine

call-by-name KAM Section 3.5.1
MAM Section 3.5.2

call-by-value CEK Section 3.5.3
Split CEK Section 3.5.4
LAM Section 3.5.5

call-by-need MAD Section 3.5.6
Merged MAD Section 3.5.7
Pointing MAD Section 3.5.8

strong call-by-name Strong MAM Section 3.5.9

• Finally, in Section 3.6 we show that, for each of the abstract machines de�ned in Sec-
tion 3.5, the length of an execution in the machine is bilinearly related with the length
of the reduction sequence starting from the same initial term, in the corresponding re-
duction strategy.

A note on machines for strong reduction. In this chapter, the only abstract machine
for strong reduction that we study—the Strong MAM (Section 3.5.9)—implements strong call-
by-name. Machines for other strong strategies, such as strong call-by-value and strong call-by-

need, are more complex—in fact de�ning the strong reduction strategies is itself a nontrivial
task. Abstract machines for open call-by-value (i.e. allowing the presence of free variables
but disallowing evaluation below abstractions) following the spirit of this chapter have been
studied by Acca�oli and Guerrieri [7]; Grégoire and Leroy [66] also study strong call-by-
value, de�ned by iterating a weak call-by-value strategy. In the following chapter (Chapter 4)
we study a strong call-by-need strategy. In Section 8.1 in the Conclusion (Chapter 8), we
propose an abstract machine for strong call-by-need evaluation, although we do not study its
properties.

3.2 Reduction Strategies

In this section we de�ne �ve deterministic reduction strategies: call-by-name (name), two
variants of call-by-value (valueLR, valueRL), call-by-need (need), and strong call-by-name
(nameS). Moreover, in Section 3.2.5 we prove that all of these strategies are deterministic.

De�nition 3.2 (Root rewriting rules). As mentioned, the set of terms is given as usual for the
LSC (cf. Def. 2.74) by the grammar t ::“ x | λx.t | ts | trxzss, values are given by v ::“ λx.t,
and substitution contexts are given by L ::“ l | Lrxzts. A term of the form vL is called an
answer.

Given a �xed family of evaluation contexts ranged over by E, E1, . . .we de�ne the following
four root rewriting rules—two db-like rules and two ls-like rules:

pλx.tqL s ÞÑdb trxzssL

pλx.tqL vL1 ÞÑdbv trxzvL1sL

Exxxyyrxzss ÞÑls Exsyrxzss

ExxxyyrxzvLs ÞÑlsv ExvyrxzvsL
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In the rules su�xed with a “v”, the argument of the application/substitution is expected to be
an answer. Moreover, we use the notations E

ÞÑls and E
ÞÑlsv to specify the family of contexts

used by the rules, with E being the meta-variable ranging over such contexts.

A reduction strategy is speci�ed by a choice of root rules, i.e. one multiplicative rule
(db or dbv) and one exponential rule (ls or lsv), and a family of evaluation contexts. �e
chosen multiplicative (resp. exponential) rule is generically denoted by ÞÑm (resp. ÞÑe). If E
ranges over a �xed notion of evaluation context, the contextual closures of the root rules are
denoted by Ñm

def
“ ExÞÑmy and Ñe

def
“ ExÞÑey. �e rewriting relation de�ning the reduction

strategy is thenÑ def
“ Ñm Y Ñe.

De�nition 3.3 (�e reduction strategies name, valueLR, valueRL, need, nameS). �e reduction
strategies call-by-name (name), le�-to-right call-by-value (valueLR), right-to-le� call-by-value

(valueRL), call-by-need (need), and strong call-by-name (nameS), are speci�ed by the following
choices of root reduction rules and evaluation contexts:

Strategy Evaluation contexts ÞÑm ÞÑe Ñm Ñe

name H ::“ l | H t | Hrxzts ÞÑdb
H
ÞÑls HxÞÑdby Hx

H
ÞÑlsy

valueLR V ::“ l | V t | vL V | Vrxzts ÞÑdbv
V
ÞÑlsv VxÞÑdbvy Vx

V
ÞÑlsvy

valueRL R ::“ l | R vL | t R | Rrxzts ÞÑdbv
R
ÞÑlsv RxÞÑdbvy Rx

R
ÞÑlsvy

need N ::“ l | N t | Nrxzts | N1xxyrxzNs ÞÑdb
N
ÞÑlsv NxÞÑdby Nx

N
ÞÑlsvy

nameS S ::“ (S contexts, see Def. 3.5) ÞÑdb
S
ÞÑls SxÞÑdby Sx

S
ÞÑlsy

3.2.1 Call-by-Name

�e call-by-name strategy uses the ÞÑdb and ÞÑls root reduction rules, i.e. it never evaluates
arguments. Evaluation contexts H are sometimes called head contexts. Evaluation always
focuses on the le�-hand side of applications, until the head becomes an answer vL. If there
are any arguments remaining, a db-step may be �red. �e following is an example of a call-
by-name reduction; on each step, the contracted redex is underlined:

pλx.x xqppλy.yqpλz.f zqq Ñname pxxqrxzpλy.yq pλz.f zqs

Ñname ppλy.yq pλz.f zqxqrxzpλy.yqpλz.f zqs

Ñname pyryzλz.f zsxqrxzpλy.yqpλz.f zqs

Ñname ppλz.f zqryzλz.f zsxqrxzpλy.yqpλz.f zqs

Ñname pf zqrzzxsryzλz.f zsrxzpλy.yqpλz.f zqs

Observe that call-by-name is a weak reduction strategy, so the result is not a normal form in
the LSC. �is is not only because there are some gc-redexes—there are also ls-redexes (e.g.

in the LSC rules are closed by arbitrary contexts so z may be substituted by x).

3.2.2 Call-by-Value

We work with two variants of call-by-value. Both of them use the ÞÑdbv and ÞÑlsv root reduc-
tion rules, i.e. the arguments must always be evaluated before going on. �e two variants,
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le�-to-right call-by-value and right-to-le� call-by-value di�er on the evaluation contexts. Le�-
to-right call-by-value evaluates the function before evaluating the argument—the production
V ::“ vL V requires that the function is an answer. Right-to-le� call-by-value evaluates the ar-
gument before evaluating the function—the production R ::“ R vL requires that the argument
is an answer. For example, the following is a le�-to-right call-by-value reduction:

pλx.x xqppλy.yqpλz.f zqq ÑvalueLR pλx.x xq yryzλz.f zs

ÑvalueLR pλx.x xq pλz.f zqryzλz.f zs

ÑvalueLR pxxqrxzpλz.f zqryzλz.f zss

ÑvalueLR ppλz.f zqxqrxzλz.f zsryzλz.f zs

ÑvalueLR ppλz.f zq pλz.f zqqrxzλz.f zsryzλz.f zs

ÑvalueLR pf zqrzzλz.f zsrxzλz.f zsryzλz.f zs

while the following is a right-to-le� call-by-value reduction—it di�ers from le�-to-right call-
by-value only in the steps marked with p‹q:

pλx.x xqppλy.yqpλz.f zqq ÑvalueRL pλx.x xq yryzλz.f zs

ÑvalueRL pλx.x xq pλz.f zqryzλz.f zs

ÑvalueRL px xqrxzpλz.f zqryzλz.f zss p‹q

ÑvalueRL px pλz.f zqqrxzλz.f zsryzλz.f zs p‹q

ÑvalueRL ppλz.f zq pλz.f zqqrxzλz.f zsryzλz.f zs

ÑvalueRL pf zqrzzλz.f zsrxzλz.f zsryzλz.f zs

Both variants of call-by-value are also weak reduction strategies.

3.2.3 Call-by-Need

Call-by-need uses the ÞÑdb root reduction rule. �is means that the argument to a function
is not evaluated: the formal parameter becomes directly bound to the unevaluated argument.
�is has the e�ect of delaying evaluation of the argument until it is needed, just as in call-by-
name. However, call-by-need uses the ÞÑlsv root reduction rule, which means that a variable
may only be substituted for a value. As a consequence, only values may ever be copied,
ensuring that the evaluation of the argument is shared.

�e most signi�cant change is in the de�nition of evaluation contexts. �ese are similar
to head contexts in call-by-name, but they include a production N ::“ N1xxyrxzNs. �is pro-
duction means that, when evaluation focuses on a variable and the variable is not an answer
yet, evaluation should proceed in the shared argument, inside the explicit substitution. �e
following is an example of a call-by-need reduction:

pλx.x xqppλy.yqpλz.f zqq Ñneed p x xqrxzpλy.yqpλz.f zqs

Ñneed p x xqrxzyryzλz.f zss

Ñneed pxxqrxzpλz.f zqryzλz.f zss

Ñneed ppλz.f zqxqrxzλz.f zsryzλz.f zs

Ñneed pf zqrzzxsrxzλz.f zsryzλz.f zs
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Note that we underline the redex being contracted. Moreover, a variable inside a box repre-
sents the fact that that the variable is the current focus of evaluation and triggers the eval-
uation of the expression to which it is bound (using the production N ::“ N1xxyrxzNs). Like
call-by-name and call-by-value, call-by-need is also a weak reduction strategy (strong call-by-
need reduction is the topic of Chapters 4 and 5).

3.2.4 Strong Call-by-Name

Strong call-by-name is the only strong reduction strategy that we study in this chapter. To
complete the de�nition of strong call-by-name, we still must give a de�nition for the family
of evaluation contexts (S, S1, . . .). First we need the notion of le� free variables of a context,
i.e. the set of variables occurring free at the le� of the hole:

De�nition 3.4 (Le� Free Variables). �e set lfvpCq of le� free variables of C is de�ned by:

lfvplq
def
“ ∅ lfvptCq

def
“ fvptq Y lfvpCq

lfvpλx.Cq
def
“ lfvpCqztxu lfvpCrxztsq

def
“ lfvpCqztxu

lfvpCtq
def
“ lfvpCq lfvptrxzCsq

def
“ pfvptqztxuq Y lfvpCq

De�nition 3.5 (Strong call-by-name evaluation contexts). A term is neutral if it is ÑdbYls-
normal in the LSC and it is not of the form pλx.tqL. A context C is a strong call-by-name

evaluation context if the judgment “C P S” can be derived using the following inductive rules:

(ax-S)
l P S

C P S C ‰ pλx.C1qL
(@l-S)

C t P S

C P S
(λ-S)

λx.C P S

t is neutral C P S
(@r-S)

t C P S

C P S x R lfvpCq
(ES-S)

Crxzts P S

Note that neutral terms are such that plugging them into a context cannot create a db redex.
Below, Def. 3.9 gives an alternative de�nition for strong call-by-name evaluation contexts and
Lem. 3.10 shows that these de�nitions are indeed equivalent.

�e strong call-by-name strategy uses the db and ls root reduction rules, just as call-by-
name. But the set of strong call-by-name evaluation contexts (S, S1, . . .) generalize the set of
head contexts used in (weak) call-by-name (H, H1, . . .). Indeed, it may be easily checked by
induction on H that any head context is also a strong call-by-name evaluation context.

In contrast with weak call-by-name, strong call-by-name performs evaluation below ab-
stractions (λx.l), as a�ested by rule λ-S , as long as the abstraction is not applied. Moreover,
strong call-by-name performs evaluation on the arguments of applications tl as long as t
is a neutral term. Neutral terms should be thought as terms of the form x t1 . . . tn, sprinkled
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with unreachable explicit substitutions (i.e. terms whose Ñ` gc -normal form is of the form
x t1 . . . tn).

�e following is an example of a reduction in strong call-by-name. Observe that the (weak)
call-by-name reduction is a pre�x of the strong call-by-name reduction. �e �rst properly
strong step is marked with p‹q:

pλx.x xqppλy.yqpλz.λf.f zqq ÑnameS pxxqrxzpλy.yq pλz.λf.f zqs

ÑnameS ppλy.yq pλz.λf.f zqxqrxzpλy.yqpλz.λf.f zqs

ÑnameS pyryzλz.λf.f zsxqrxzpλy.yqpλz.λf.f zqs

ÑnameS ppλz.λf.f zqryzλz.λf.f zsxqrxzpλy.yqpλz.λf.f zqs

ÑnameS pλf.f zqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs

ÑnameS pλf.f xqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs p‹q

ÑnameS pλf.f ppλy.yqpλz.λf.f zqqqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs

ÑnameS pλf.f yryzλz.λf.f zsqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs

ÑnameS pλf.f pλz.λf.f zqryzλz.λf.f zsqrzzxsryzλz.λf.f zsrxzpλy.yqpλz.λf.f zqs

Alternative Characterization of Strong Call-by-Name

Reduction according to the strong call-by-name strategy, can be characterized exactly as linear

le�most-outermost reductionÑLO. To de�neÑLO we need a few previous de�nitions:

De�nition 3.6 (LO order). We write C ăp t if there is a term s such that Cxsy “ t. �is is
called the pre�x relation.

�e outside-in order C ăO C1 between arbitrary contexts C, C1 is de�ned by the following
rules:

1. Root: l ăO C for every context C ‰ l.

2. Contextual closure: if C ăO C1 then C2xCy ăO C2xC1y for any context C2.

Note that ăO can be seen as the pre�x relation ăp on contexts. �e le�-to-right order C ăL C1

is de�ned by:

1. Application: if C ăp t and C1 ăp s then C s ăL t C
1.

2. Substitution: if C ăp t and C1 ăp s then Crxzss ăL trxzC
1s.

3. Contextual closure: if C ăL C1 then C2xCy ăL C2xC1y for any context C2.

Finally, the le�-to-right outside-in order is de�ned by C ăLO C1 if C ăO C1 or C ăL C1.

Two examples of the outside-in order are pλx.lqt ăO pλx.plryzssqqt and trxzls ăO

trxzsCs, and an example of the le�-to-right order is trxzCss ăL trxzusl, where the terms
t, s, u and the context C are arbitrary. �e following lemma guarantees that it is a total order.

Lemma 3.7 (Totality of ăLO). If C ăp t and C1 ăp t then either C ăLO C1 or C1 ăLO C or C “ C1.

Proof. Straightforward by induction on t.
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We identify redexes with the context that focuses on the anchor. Recall from Def. 2.75
that the anchor of a db-step is the contracted application, and the anchor of a ls-step is the
contracted variable. We can now de�ne linear LO reduction, �rst considered in [6], where it is
proved that it is standard and normalizing, and then in [11], extending linear head reduction
[115, 47, 3] to normal form.

De�nition 3.8 (Linear LO ReductionÑLO). Let t be a term. A redex C is the le�most-outermost

(LO for short) redex of t if C ăLO C1 for every other redex C1 of t. We write tÑLO s for a step
contracting the le�most-outermost redex.

We now de�ne LO contexts and prove that the position of a linear LO step is always a LO

context:

De�nition 3.9 (LO Contexts). A context C is LO if:

1. Right Application: whenever C “ C1xt C2y then t is neutral.

2. Le� Application: whenever C “ C1xC2ty then C2 ‰ Lxλx.C3y.

3. Substitution: whenever C “ C1xC2rxzssy then x R lfvpC2q.

Lemma 3.10 (Characterization of LO contexts).

1. Let C be a context. �en C P S if and only if C is LO.

2. Let t Ñ s by reducing a redex under a context C. �en C is a Ñ
LO

step if and only if C is

LO.

Proof. �e �rst item is an immediate induction on C. For the second item, we prove each
direction of the equivalence. (ñ) �ere are three cases:

1. Le� application: if C “ C1xC2ty then clearly C2 ‰ Lxλx.C3y, otherwise C is not the
position of the LO redex.

2. Right Application: let C “ C1xuC2y, and note u is neutral otherwise C is not the position
of the LO redex.

3. Substitution: if C “ C1xC2rxzssy then x R lfvpC2q otherwise there is an exponential
redex of position ăLO C, which would be absurd.

(ð) Let C1 the position of the step in t and suppose that C1 ‰ C. By de�nition C1 ăLO C. We
have two cases:

1. C1 ăO C. �en necessarily C1 identi�es a db-redex and we have C “ C1xLxλx.C2yuy. It
follows that C is not a LO context, because this contradicts the le� application clause.

2. C1 ăL C. �en there is a decomposition C “ C2xuC3y with the hole of C1 falling in u.
By hypothesis u is neutral. �en u “ C0xxy and the ÑLO step is a ls-step substituting
on x from a substitution in C2, i.e. C2 “ C‚xC˝rxztsy for some contexts C‚ and C˝. �en
C “ C‚xC˝xuC3yrxztsy and x P lfvpC˝xuC3yq, which contradicts the substitution clause
in the hypothesis that C is a LO context.
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3.2.5 Determinism

All the reduction strategies studied in this chapter are deterministic. Recall that the anchor

of a multiplicative step is the contracted application, and the anchor of an exponential step is
the contracted variable. �en:

Proposition 3.11 (Determinism — ♣ Prop. A.1). �e �ve reduction strategies of Def. 3.3 are

deterministic. In each case, if E1, E2 are evaluation contexts, r1, r2 are anchors, and E1xr1y “

E2xr2y then E1 “ E2 and r1 “ r2. So there is at most one way to reduce a term.

Proof. See Prop. A.1 in the appendix for the detailed proofs. �e proofs for the call-by-name,
call-by-value, and call-by-need cases are by induction on the structure of the terms, verifying
that there may be at most one redex under an evaluation context. �e proof for the strong call-
by-name case is easily derived from the fact that strong call-by-name reduction is precisely
le�most-outermost reduction (Lem. 3.10).

3.3 Structural Equivalences

Each of the �ve reduction strategies S P tname, valueLR, valueRL, need, nameSu presented so
far comes equipped with a corresponding notion of structural equivalence, denoted by ”S.
Structural equivalence allows manipulating explicit substitutions, moving them around in a
computationally irrelevant way. Technically, this is expressed by the property that structural
equivalence is a strong bisimulation (cf. Def. 3.1).

Certain ways of moving substitutions around are allowed in some strategies and not in
other ones. For instance, the equivalence:

pt sqrxzus ”@ trxzus srxzus

is sound in call-by-name, i.e. the term on the le� and the term on the right are in fact strongly

bisimilar with respect toÑname, whereas it is not sound in call-by-need. �e reason is that call-
by-need evaluates inside some substitutions (those that hereditarily bind a head variable), so
the term on the le� may evaluate u at most once, and the term on the right may evaluate it
twice. For our purposes in this chapter, it su�ces to show that each structural equivalence is a
strong bisimulation. A deeper explanation of why some propagations of explicit substitutions
are unsound may be found in the translation of these strategies into linear logic proof nets:
substitutions may move freely as long as they do not cross the boundaries of boxes.

Each structural equivalence is given by choosing some of the following axioms:
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De�nition 3.12 (Axioms for structural equivalences).

pλx.tqryzss ”λ λx.tryzss if x R fvpsq
pt uqrxzss ”@ trxzssurxzss

pt uqrxzss ”@l trxzssu if x R fvpuq
pt uqrxzss ”@r t urxzss if x R fvptq

trxzssryzus ”com tryzusrxzss if y R fvpsq and x R fvpuq
trxzssryzus ”r¨s trxzsryzuss if y R fvptq

trxzss ”gc t if x R fvptq
trxzss ”dup trysxrxzssryzss

In the ”dup rule, trysx denotes a term obtained from t by renaming some (possibly none) oc-
currences of x as y.

De�nition 3.13 (Structural equivalences). For each strategy S, we select a subset of the struc-
tural equivalence axioms, and a family of contexts, as follows:

Strategy Structural equivalence axioms Family of contexts
name ”@,”com,”r¨s,”gc,”dup H

valueLR ”@,”com,”r¨s,”gc,”dup V

valueRL ”@,”com,”r¨s,”gc,”dup R

need ”@l,”com,”r¨s N

nameS ”λ,”@l,”@r,”com,”r¨s,”gc,”dup C (arbitrary contexts)

�e corresponding structural equivalence”S is de�ned as the re�exive, symmetric, transitive,
and contextual closure of the axioms, under the speci�ed family of contexts.

Note that the structural equivalences for call-by-name and call-by-value use the same ax-
ioms but closed under their respective notions of evaluation context. �e structural equiva-
lence for strong call-by-name is closed under arbitrary contexts. For example:

ppλx.xqyqrxzx1sryzy1s ”valueLR ppλx.xqyqryzy1srxzx1s (by ”com)
”valueLR ppλx.xqryzy1s yryzy1sqrxzx1s (by ”@)
”valueLR ppλx.xq yryzy1sqrxzx1s (by ”gc)

and:
pλx.y yqryzzs ”nameS λx.py yqryzzs (by ”λ)

”nameS λx.py1 y2qry1zzsry2zzs (by ”dup)
”nameS λx.py1ry1zzs y2qry2zzs (by ”@l)
”nameS λx.y1ry1zzs y2ry2zzs (by ”@r)

Let Ñm (resp. Ñe) denote the multiplicative (resp. exponential) reduction relation of any
of the strategies S de�ned in Def. 3.3, and let ”S be the structural equivalence relation of S.
�e key result is the following:

Proposition 3.14 (Structural equivalence is a strong bisimulation — ♣ Prop. A.5). Let x P

tm, eu. If t ”S t
1 Ñx s then there exists s1 such that tÑx s

1 ”S s.



91

Proof. See the appendix. �e proofs are long, by exhaustive case analysis on all the possible
diagrams that can be formed by overlapping an instance of a reduction step and an instance
of an axiom of the structural equivalence (i.e. “critical pairs”).

For instance, in call-by-need, one possible diagram involves an overlap between an expo-
nential (lsv) step at the top, and an instance of the structural equivalence axiom ”@l. Note
that, on the right-hand side, the ”@l axiom must be used many times in order to be able to
close the diagram:

NxxyrxzvLs t NxvyrxzvsL t

pNxxy tqrxzvLs pNxvy tqrxzvsL

”@l ”˚@l

lsv

lsv

An essential property of strong bisimulations is that they can be postponed. In fact, it is
immediate to prove the following for any of the �ve strategies S de�ned in Def. 3.3:

Lemma 3.15 (Postponement of structural equivalence). Let t pÑm Y Ñe Y ”q
˚ s. �en

t pÑm Y Ñeq
˚ ” s and the number of multiplicative and exponential steps in the two reduc-

tion sequences is exactly the same.

In the simulation theorems for machines with a global environment we will also use the
following commutation property between substitutions and evaluation contexts via the struc-
tural equivalence of every evaluation scheme, proved by an easy induction on the actual def-
inition of evaluation contexts.

Lemma 3.16 (Explicit substitutions commute with evaluation contexts, up to”). Let E denote

an evaluation context for a strategy S. If x R fvpEq and E does not bind any of the free variables

of s, then Extyrxzss ”S Extrxzssy.

3.4 Distilleries

�is section presents an abstract, high-level view of the relationship between abstract ma-
chines and explicit substitution calculi, via the following notion:

De�nition 3.17 (Distillery). A distillery D “ pM,S,”, rr ¨ ssq is given by:

1. An abstract machine M, given by:

1.1 A deterministic reduction relation ùM on a set of states State “ tS1, S2, . . .u.

1.2 A distinguished class of states deemed initial, in bijection with closed λ-terms and
from which one obtains the reachable states by applying ùM

˚.

1.3 A partition of the transitions de�ning the relation ùM:

1.3.1 Search transitions, noted ùs.
1.3.2 Principal transitions, in turn partitioned into:
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1.3.2.1 Multiplicative transitions, denoted by ùm.
1.3.2.2 Exponential transitions, denoted by ùe.

2. A deterministic reduction strategy S given by a pair pÑm,Ñeq of rewriting relations on
terms with explicit substitutions.

3. A structural equivalence ” on terms with explicit substitutions, such that ” is a strong
bisimulation with respect toÑm andÑe.

4. A distillation rr ¨ ss, i.e. a decoding function from states to terms, such that, on reachable
states:

4.1 Search: S ùs S
1 implies rrSss ” rrS 1ss.

4.2 Multiplicative: S ùm S
1 implies rrSss Ñm” rrS

1ss.
4.3 Exponential: S ùe S

1 implies rrSss Ñe” rrS
1ss.

Given a distillery, the following simulation result holds abstractly. We write |ρ| for the
number of steps in an execution ρ : S ùM

˚ S 1 of the machine, and |π| for the number of
steps in a derivation π : t Ñ˚

S t
1 of the strategy. Similarly, we write |ρ|m (resp. |π|m), |ρ|e

(resp. |π|e), and |ρ|p (resp. |π|p) for the number of multiplicative, exponential, and principal
steps (i.e. multiplicative or exponential) in an execution of the machine (resp. in a derivation
π : tÑ˚

S t
1 of the strategy). �en:

Proposition 3.18 (Simulation). Let D be a distillery. �en for every execution ρ : S ùM
˚ S 1

there is a derivation π : rrSss Ñ˚” rrS 1ss such that |ρ|m “ |π|m, |ρ|e “ |π|e, and |ρ|p “ |π|.

Proof. By induction on |ρ| and by the properties of the decoding, it follows that there is a
derivation ξ : rrSsspÑ”q˚rrS 1ss such that the number |ρ|p “ |ξ|. �e witness π for the state-
ment is obtained by applying the postponement of strong bisimulations (Lem. 3.15) to ξ.

3.4.1 Re�ective Distilleries

Given a distillery, one would also expect that reduction in the strategy is re�ected in the
machine. �is result in fact requires two additional abstract properties.

De�nition 3.19 (Re�ective distillery). A distillery is re�ective when:

1. Termination: search transitions ùs terminate on reachable states. Hence, by determin-
ism, every state S has a unique search normal form nfspSq.

2. Progress: if S is reachable, nfspSq “ S and rrSss Ñx t with x P tm, eu, then there exists
S 1 such that S ùx S

1.

�en, we may prove the following re�ection of steps in full generality:

Lemma 3.20 (Re�ection). Let D be a re�ective distillery, let S be a reachable state, and let

x P tm, eu. �en, rrSss Ñx t implies that there exists a state S 1 such that nfspSq ùx S
1

and

rrS 1ss ” t.
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In other words, every rewriting step on the calculus can be also performed on the machine,
up to search transitions.

Proof. �e proof is by induction on the number n of transitions leading from S to nfspSq.

• Base case n “ 0: by the progress property, we have S Ñx1 S
1 for some state S 1 and

x1 P tm, eu. By Prop. 3.18, we have rrSss Ñx1 s ” rrS
1ss and we may conclude because

x1 “ x and s “ t by determinism of the calculus (Prop. 3.11).

• Inductive case n ą 0: by hypothesis, we haveS ùs S
2. By �m. 3.18, rrSss ” rrS2ss. �e

hypothesis and the strong bisimulation property (Prop. 3.14) then give us rrS2ss Ñx s ”

t. But the induction hypothesis holds for S2, giving us a state S 1 such that nfspS2qùx

S 1 and rrS 1ss ” s ” t. We may now conclude because nfspSq “ nfspS
2q.

�e preceding lemma can then be easily extended to a reverse simulation result:

Proposition 3.21 (Reverse simulation). Let D be a re�ective distillery and let S be an initial

state. Given a derivation π : rrSss Ñ˚ t there is an execution ρ : S ùM
˚ S 1 such that t ” rrS 1ss

and |ρ|m “ |π|m, |ρ|e “ |π|e, and |ρ|p “ |π|.

Proof. By induction on the length of π, using Prop. 3.20.

3.5 Abstract Machines

In this section we introduce abstract machines and distillations, and we prove that they form
re�ective distilleries with respect to the strategies of Section 3.2. For each machine we prove:
(1) that the decoding is in fact a distillation, and (2) the progress property. For the moment
we assume the termination property, whose proof is delayed to the quantitative study of Sec-
tion 3.6, where we prove stronger results, giving explicit bounds.

3.5.1 Call-by-Name: the KAM

�e Krivine Abstract Machine (KAM), originally introduced by Jean-Louis Krivine [97], is the
�rst machine studied in this chapter. Note however that Krivine’s presentation of the KAM
uses de Bruijn indices, whereas we use variable names.

De�nition 3.22 (Krivine Abstract Machine). A KAM state (S, S 1, S2, . . .) is a pair pc, πq, where
c is a closure and π is a stack of closures:

π ::“ ε | c :: π S ::“ pc, πq

For readability, we use the notation t | e | π for a state pc, πq where c “ pt, eq. �e transitions
of the KAM then are:
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ts | e | π ùs t | e | ps, eq :: π

λx.t | e | c :: π ùm t | rxzcs :: e | π

x | e | π ùe t | e1 | π

where ùe takes place only if e “ e1 :: rxzpt, e1qs :: e2.

A key point of our study is that environments and stacks can be readily understood as con-
texts, through the following decoding, which satis�es the properties stated in the following
lemma:

De�nition 3.23 (KAM decoding).

rrεss
def
“ l rrrxzcs :: ess

def
“ rressxlrxzrrcsssy

rrpt, eqss
def
“ rressxty rrc :: πss

def
“ rrπssxlrrcssy

rrt | e | πss
def
“ rrπssxrressxtyy

Lemma 3.24 (Contextual decoding). Let e be an environment and π be a stack of the KAM.

�enrress is a substitution context, and both rrπss and rrπssxrressy are call-by-name evaluation con-

texts.

Proof. Straightforward by induction on e and π.

Next, we state the dynamic invariants of the machine. Recall that a code/environment/-
closureX is well-named if its support supppXq has no repetitions, i.e. bindings do not shadow
existing names.

Lemma 3.25 (KAM invariants). Let S “ s | e | π be a KAM reachable state whose initial code

t is well-named. �en:

1. Closure: every closure in S is closed.

2. Subterm: any code in S is a literal subterm of t.

3. Name: any closure c inS is well-named and its names are names of t (i.e. supppcq Ď fvptq).

4. Environment Size: the length of any environment in S is bound by |t|.

Proof. It is routine to check that the invariant is preserved, by direct inspection of the machine
transitions.

Abstract Considerations on Concrete Implementations. �e name invariant is the abstract
property that allows to avoid both α-equivalence and name generation in KAM executions.
Note that, by de�nition of well-named closure, there cannot be repetitions in the support
of an environment. �en the length of any environment in any reachable state is bound by
the number of distinct names in the initial code t, i.e. with |t|. �is fact is important, as
the static bound on the size of environments guarantees that ùe and ùs—the transitions
looking-up and copying environments—can be implemented (independently of the chosen



95

concrete representation of terms) in at worst linear time in |t|, so that an execution ρ can be
implemented inOp|ρ| ¨ |t|q. �e same will hold for every machine with local environments. In
fact, we may turn this into a de�nition: an abstract machine is reasonable if its implementation
enjoys the above bilinear bound. In this way, the length of an execution of a reasonable
machine provides an accurate estimate of its implementation cost.

�e previous considerations are based on the name and environment size invariants. �e
closure invariant is used in the progress part of the next theorem, and the subterm invariant
is used in the complexity analysis of Section 3.6, subsuming the termination condition of
re�ective distilleries.

�eorem 3.26 (KAM distillation). pKAM, name,”, rr ¨ ssq is a re�ective distillery.

Proof.

1. Properties of the decoding:

1.1 Search. Let ts | e | π ùs t | e | ps, eq :: π. �en:

rrts | e | πss “ rrπssxrressxtsyy

”˚@ rrπssxrressxtyrressxsyy “ rrt | e | ps, eq :: πss

1.2 Multiplicative. Let λx.t | e | c :: π ùm t | rxzcs :: e | π. �en:

rrλx.t | e | c :: πss “ rrπssxrressxλx.tyrrcssy

Ñm rrπssxrressxtrxzrrcsssyy

“ rrt | rxzcs :: e | πss

�e rewriting step can be applied because by contextual decoding (Lem. 3.24) it
takes place in an evaluation context.

1.3 Exponential. Let x | e1 :: rxzpt, eqs :: e2 | π ùe t | e | π. �en:

rrx | e1 :: rxzpt, eqs :: e2 | πss “ rrπssxrre2ssxrre1ssxxyrxzrressxtysyy

Ñe rrπssxrre
2ssxrre1ssxrressxtyyrxzrressxtysyy

”˚gc rrπssxrressxtyy

“ rrt | e | πss

Note that e2xe1xextyyrxzextysy ”˚gc exty holds because exty is closed by item 1 of
Lem. 3.25, and so all the substitutions around it can be garbage collected.

2. Termination: Given by (forthcoming) �m. 3.72.
Note: future proofs of distillation theorems will omit termination.

3. Progress: Let S “ t | e | π be a commutative normal form such that rrSss Ñ s. If t is

3.1 an application su. �en a ùs transition applies and S is not a commutative nor-
mal form, impossible.

3.2 an abstraction λx.s: if π “ ε then rrSss “ rressxλx.sy, which isÑ-normal, impossi-
ble. Hence, a ùm transition applies.
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3.3 a variable x: by point 1 of Lem. 3.25.1, we must have e “ e1 :: rxzcs :: e2, so a ùe

transition applies.

3.5.2 Call-by-Name with Global Environment: the MAM

�e LSC suggests the design of a simpler version of the KAM, that we call the Milner Abstract

Machine (MAM), that avoids the concept of closure. At the language level, the idea is that,
by repeatedly applying the axioms ”dup and ”@ of the structural equivalence, explicit substi-
tutions can be brought outside. At the machine level, the local environments in the closures
are replaced by just one global environment that closes the code and the stack, as well as the
global environment itself.

Naively turning to a global environment breaks the well-named invariant of the machine.
�is point is addressed using an α-renaming and name generation in the variable (or expo-
nential) transition, i.e. when substitution takes place.

De�nition 3.27 (Milner Abstract Machine). �e MAM employs global environmentsE. Stacks
are lists of codes, i.e. π ::“ ε | t :: π. A state of is a triple S “ pt, π, Eq. �e transitions of the
MAM are:

ts | π |E ùs t | s :: π | E

λx.t | s :: π |E ùm t | π | rxzss :: E

x | π |E ùe t
α
| π | E

where ùe takes place only if E “ E2xE 1rxztsy and tα is a well-named code α-equivalent to
t and such that any bound name in tα is fresh with respect to those in π and E.

De�nition 3.28 (MAM decoding). �e decoding of a MAM state t | π | E is similar to the
decoding of a KAM state, but the stack and the environment context are applied in reverse
order:

rrεss
def
“ l rrrxzts :: Ess

def
“ rrEssxlrxztsy

rrt :: πss
def
“ rrπssxlty rrt | π | Ess

def
“ rrEssxrrπssxtyy

To every MAM state t | π | E we associate the pair prrπssxty, Eq, and call it the global closure

of the state. Note that rrπssxty now is a code, i.e. it does not contain explicit substitutions.

Lemma 3.29 (Contextual decoding). Let E be a global environment and π be a stack of the

MAM. �en rrEss is a substitution context, and both rrπss and rrπssxrrEssy are evaluation contexts.

Proof. Straightforward by induction on E and π.

For the dynamic invariants we need a di�erent notion of closed closure.

De�nition 3.30. Given a global environment E and a code t, we de�ne by mutual induction
two predicates E is closed and pt, Eq is closed as follows:

ε is closed
pt, Eq is closed ùñ rxzts :: E is closed

fvptq Ď supppEq ^ E is closed ùñ pt, Eq is closed
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�e dynamic invariants are:

Lemma 3.31 (MAM invariants). Let S “ s | π | E be a MAM state reached by an execution ρ

of initial well-named code t. �en:

1. Global Closure: the global closure prrπssxty, Eq of S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Names: the global closure of S is well-named;

4. Environment Size: the length of the global environment in S is bound by |ρ|m.

Proof. Straightforward by inspection of the machine transitions.

Abstract Considerations on Concrete Implementations. Note the new environment size in-
variant. �e bound now depends on the length of the execution ρ, not on the size of the initial
term t. If one implements ùe looking for x in E sequentially, then each ùe transition
has cost Op|ρ|mq, and the cost of implementing ρ is easily seen to become quadratic in |ρ|.
�erefore—at �rst sight—the MAM is not a reasonable abstract machine. However, the MAM
is meant to be implemented using a representation of codes pointers for variables, so that
looking for x in E takes constant time. �en the global environment, even if formalized as a
list, should rather be considered as a store.

�e name invariant is what guarantees that variables can indeed be taken as pointers, as
there is no name clash. Note that the cost of a ùe transition is not constant, as the renaming
operation actually makes ùe linear in |t| (by the subterm invariant). So, assuming a pointer-
based representation, ρ can be implemented in timeOp|ρ| ¨ |t|q, as for local machines. In other
words, the MAM is a reasonable abstract machine.

�eorem 3.32 (MAM distillation). pMAM, name,”, rr ¨ ssq is a re�ective distillery. In particular,

on a reachable state S we have:

1. Search: if S ùs S
1
then rrSss “ rrS 1ss;

2. Multiplicative: if S ùm S
1
then rrSss Ñm” rrS

1ss;

3. Exponential: if S ùe S
1
then rrSss Ñe“α rrS

1ss.

Proof. Properties of the decoding (progress is as for the KAM):

1. Search. In contrast to the KAM, ùs gives a true identity:

rrts | π | Ess “ rrEssxrrπssxtsyy “ rrt | s :: π | Ess

2. Multiplicative. Since substitutions and evaluation contexts commute via ” (Lem. 3.16),
ùm maps to:
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rrλx.t | s :: π | Ess “ rrEssxrrπssxpλx.tqsyy Ñm

rrEssxrrπssxtrxzssyy ”Lem.3.16

rrEssxrrπssxtyrxzssy “

rrt | π | rxzss :: Ess

3. Exponential. �e erasure of part of the environment of the KAM is replaced by an explicit
use of α-equivalence:

rrx | π | E :: rxzss :: E 1ss “ rrE 1ssxrrEssxrrπssxxyyrxzssy Ñe

rrE 1ssxrrEssxrrπssxsyyrxzssy “α

rrE 1ssxrrEssxrrπssxsαyyrxzssy “

rrsα | π | E :: rxzss :: E 1ss

3.5.3 Le�-to-Right Call-by-Value: the CEK

In this section we present an adaptation to call-by-value of the KAM, namely Felleisen and
Friedman’s CEK machine [56] (without control operators), implementing le�-to-right call-by-
value.

States of the CEK have the same shape of those of the KAM, i.e. they are given by a closure
plus a stack. �e di�erence is that they use call-by-value stacks, whose elements are labeled
either as arguments or functions, so that the machine knows whether the code currently being
evaluated is a function that must be applied to a yet unevaluated argument on top of the stack
or the argument to the already evaluated function on top of the stack.

De�nition 3.33 (CEK Machine). Stacks are de�ned as follows:

π ::“ ε | fpcq :: π | apcq :: π

A state is a triple S “ pt, e, πq. �e transitions of the CEK are:

ts | e | π ùs1 t | e | aps, eq :: π

v | e | aps, e1q :: π ùs2 s | e1 | fpv, eq :: π

v | e | fpλx.t, e1q :: π ùm t | rxzpv, eqs :: e1 | π

x | e | π ùe t | e1 | π

where ùe takes place only if e “ e2 :: rxzpt, e1qs :: e3.

De�nition 3.34 (CEK decoding). Stacks are decoded as follows:

rrεss
def
“ l

rrfpcq :: πss
def
“ rrπssxrrcssly

rrapcq :: πss
def
“ rrπssxlrrcssy

States of the machine are decoded exactly as for the KAM, i.e. rrt | e | πss
def
“ rrπssxrressxtyy.
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While one can still statically prove that environments decode to substitution contexts, to
prove that rrπss and rrπssxrressy are evaluation contexts we need the dynamic invariants of the
machine.

Lemma 3.35 (CEK invariants). Let S “ s | e | π be a CEK reachable state whose initial code t

is well-named. �en:

1. Closure: every closure in S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Value: any code in e is a value and, for every element of π of the form fps, e1q, s is a value;

4. Contextual Decoding: rrπss and rrπssxrressy are le�-to-right call-by-value evaluation con-

texts;

5. Name: any closure c inS is well-named and its names are names of t (i.e. supppcq Ď fvptq);

6. Environment Size: the length of any environment in S is bound by |t|.

Proof. Straightforward by inspection of the machine transitions.

�eorem 3.36 (CEK distillation). pCEK, valueLR,”, rr¨ssq is a re�ective distillery. In particular,

on a reachable state S we have:

1. Search 1: if S ùs1 S
1
then rrSss ” rrS 1ss;

2. Search 2: if S ùs2 S
1
then rrSss “ rrS 1ss.

3. Multiplicative: if S ùm S
1
then rrSss Ñm rrS

1ss;

4. Exponential: if S ùe S
1
then rrSss Ñe” rrS

1ss;

Proof. Properties of the decoding: in the following cases, evaluation will always takes place
under a context that by Lem. 3.35.4 will be a le�-to-right call-by-value evaluation context,
and similarly structural equivalence will alway be used in a weak context, as it should be.

1. Search 1. We have ts | e | π ùs1 t | e | aps, eq :: π:

rrts | e | πss “ rrπssxrressxtsyy ”˚@

rrπssxrressxtyrressxsyy “ rrt | e | aps, eq :: πss

2. Search 2. We have v | e | aps, e1q :: π ùs2 s | e1 | fpv, eq :: π, and:

rrv | e | aps, e1q :: πss “ rrπssxrressxvyrre1ssxsyy “

rrs | e1 | fpv, eq :: πss

3. Multiplicative. We have v | e | fpλx.t, e1q :: π ùm s | rxzpv, eqs :: e1 | π, and:
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rrv | e | fpλx.t, e1q :: πss “ rrπssxrre1ssxλx.tyrressxvyy Ñm

rrπssxrre1ssxtrxzrressxvysyy “

rrt | rxzpv, eqs :: e1 | πss

4. Exponential. Let e “ e2 :: rxzpt, e1qs :: e3. We have x | e | π ùe t | e1 | π, and:

rrx | e | πss “ πxexxyy “

rrπssxrre3ssxrre2ssxxyrxzrre1ssxtysyy Ñe

rrπssxrre3ssxrre1ssxrre2ssxtyrxztsyyy ”˚gc

rrπssxrre1ssxtyy “ rrt | e1 | πss

We can apply Ñe since by Lem. 3.35.3, t is a value. We also use that by Lem. 3.35.1,
rre1ssxty is a closed term to ensure that rre2ss and rre3ss can be garbage collected.

Progress. Let S “ t | e | π be a commutative normal form such that rrSss Ñ s. If t is

• an application su. �en a ùs1 transition applies and S is not a commutative normal
form, absurd;

• an abstraction v: by hypothesis, π cannot be of the form apcq :: π1. Suppose it is equal
to ε. We would then have rrSss “ rressxvy, which is a call-by-value normal form, because
rress is a substitution context. �is would contradict our hypothesis, so π must be of the
form fps, e1q :: π1. By point 3 of Lem. 3.35, s is an abstraction, hence a ùm transition
applies;

• a variable x: by point 1 of Lem. 3.35, e must be of the form e1 :: rxzcs :: e2, so a ùe

transition applies.

3.5.4 Le�-to-Right Call-by-Value: the Split CEK

For the CEK machine we proved that the stack, that collects both arguments and functions,
decodes to an evaluation context (Lem. 3.35.4). In this section we study another le�-to-right
call-by-value machine, deemed Split CEK (SCEK), which has two stacks: one for arguments
and one for functions. Both decode to evaluation contexts.

Note that the evaluation contexts V for the calculus valueLR:

V ::“ l | Vt | vL V | Vrxzts

have two cases for the application. Essentially, when dealing with Vt the machine puts t in a
stack for arguments (identical to the stack of the KAM), while in the case vL V the machine
puts the closure (corresponding to) vL in a stack for functions, called dump. Actually, together
with the closure it stores the current argument stack.

�us, an entry of the function stack is a pair pc, πq, where c is a closure pv, eq, and the
three components v, e, and π together correspond to the evaluation context rrπssxrressxvlyy.
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Whenever the code is an abstraction v and the argument stack π is non-empty (i.e. π “ c :: π1),
the machine saves the active closure, given by current code v and environment e, and the
remainder of the stack π1 by pushing a new entry ppv, eq, π1q on the dump, and then starts
evaluating the �rst closure c of the stack. In terms of the concrete implementation, each
element of the dump corresponds roughly to a stack frame or activation record.

De�nition 3.37 (SCEK Machine). Stacks are de�ned as in the KAM. �e syntax for dumps is
given by:

D ::“ ε | pc, πq :: D

States are 4-uples pt, e, π,Dq. �e transitions of the SCEK are:

ts | e | π | D ùs1 t | e | ps, eq :: π | D

v | e | pt, e1q :: π | D ùs2 t | e1 | ε | ppv, eq, πq :: D

v | e | ε | ppλx.t, e1q, πq :: D ùm t | rxzpv, eqs :: e1 | π | D

x | e :: rxzpv, e1qs :: e2 | π | D ùe v | e1 | π | D

De�nition 3.38 (SCEK decoding). �e decoding of terms, environments, closures, and stacks
is as for the KAM. Every dump decodes to a context according to:

rrεss
def
“ l rrppv, eq, πq :: Dss

def
“ rrDssxrrπssxrressxvlyyy

�e decoding of states is de�ned as rrt | e | π | Dss def
“ rrDssxrrπssxrressxtyyy.

�e SCEK machine is closely related with Landin’s SECD machine [99], which also incor-
porates a notion of dump. In [48], Danvy studies the SECD machine, and shows that the SECD
implements right-to-le� call-by-value (and not le�-to-right call-by-value as the SCEK). Our
main point here is illustrating that “spli�ing the stack” into an argument stack plus a dump
is a general transformation.

Lemma 3.39 (SCEK invariants). Let S “ s | e | π | D be a SCEK reachable state whose initial

code t is well-named. �en:

1. Closure: every closure in S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Value: the code of any closure in the dump or in any environment in S is a value;

4. Contextual Decoding: rrDss, rrDssxrrπssy, and rrDssxrrπssxrressyy are le�-to-right call-by-

value evaluation contexts.

5. Name: any closure c inS is well-named and its names are names of t (i.e. supppcq Ď fvptq).

6. Environment Size: the length of any environment in S is bound by |t|.

Proof. Straightforward by inspection of the machine transitions.

�eorem 3.40 (SCEK distillation). pSCEK, valueLR,”, rr ¨ ssq is a re�ective distillery. In partic-

ular, on a reachable state S we have:
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1. Search 1: if S ùs1 S
1
then rrSss ” rrS 1ss;

2. Search 2: if S ùs2 S
1
then rrSss ” rrS 1ss;

3. Multiplicative: if S ùm S
1
then rrSss Ñm rrS

1ss;

4. Exponential: if S ùe S
1
then rrSss Ñe” rrS

1ss.

Proof. Properties of the decoding:

1. Search 1. We have t s | e | π | D ùs1 t | e | ps, eq :: π | D, and:

rrt s | e | π | Dss “ rrDssxrrπssxrressxt syyy ”˚@

rrDssxrrπssxrressxty rressxsyyy “

rrt | e | ps, eq :: π | Dss

2. Search 2. We have v | e | pt, e1q :: π | D ùs2 t | e
1 | ε | ppv, eq, πq :: D, and:

rrv | e | pt, e1q :: π | Dss “ rrDssxrrπssxrressxvy rre1ssxtyyy ”˚gc

rrDssxrrπssxrressxvy rressxrre1ssxtyyyy ”˚@

rrDssxrrπssxrressxv rre1ssxtyyyy “

rrt | e1 | ε | ppv, eq, πq :: Dss

3. Multiplicative. We have v | e | ε | ppλx.t, e1q, πq :: D ùm t | rxzpv, eqs :: e1 | π | D,
and:

rrv | e | ε | ppλx.t, e1q, πq :: Dss “

rrDssxrrπssxrre1ssxpλx.tq rressxvyyyy ùm

rrDssxrrπssxrre1ssxtrxzrressxvysyyy “

rrt | rxzpv, eqs :: e1 | π | Dss

4. Exponential. We have x | e1 :: rxzpv, eqs :: e2 | π | D ùe v | e | π | D, and:

rrx | e1 :: rxzpv, eqs :: e2 | π | Dss “

rrDssxrrπssxrre2ssxrre1ssxxyrxzrressxvysyyy ùe

rrDssxrrπssxrre2ssxrressxrre1ssxvyrxzvsyyyy ”˚gc

rrDssxrrπssxrressxvyyy “

rrv | e | π | Dss

We use the fact that rressxvy is closed by Lem. 3.39.1 to ensure that rre1ss, rre2ss, and rxzvs
can be garbage collected.

Progress. Let S “ t | e | π be a commutative normal form such that rrSss Ñ s. If t is

• an application su. �en a ùs1 transition applies and S is not a commutative normal
form, absurd.
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• an abstraction v. �e decoding rrSss “ rrDssxrrπssxrressxvyyy must have a multiplicative
redex, because it must have a redex and v is not a variable. So v is applied to something,
i.e. there must be at least one application node in rrDssxrrπssy. Moreover, the stack π must
be empty, otherwise there would be an administrative ùs2 transition, contradicting
the hypothesis. So D is not empty. Let D “ pps, e1q, π1q :: D1. By point 3 of Lem. 3.39, s
must be a value, and a ùm transition applies.

• a variable x. By point 1 of Lem. 3.39, x must be bound by e, so e “ e1 :: rxzps, e1qs :: e2

and a ùe transition applies.

3.5.5 Right-to-Le� Call-by-Value: the LAM

In this section we present another adaptation to call-by-value of the KAM, a machine deemed
Leroy Abstract Machine (LAM), implementing right-to-le� call-by-value. �e LAM owes its
name to Leroy’s ZINC machine [106], that implements right-to-le� call-by-value evaluation.
We introduce a new name because the ZINC is a quite more sophisticated machine than the
LAM: it has a separate set of instructions to which terms are compiled, it handles arithmetic
expressions, and it avoids needless closure creations in a way that it is not captured by the
LAM. �e LAM can be seen as a minor variation of the CEK; we present it mostly to stress
the modularity of our contextual approach. We omit all the proofs because they are minimal
variations on those for the CEK.

De�nition 3.41 (Leroy Abstract Machine). Stacks and states are like those for the CEK. �e
transitions of the LAM are:

ts | e | π ùs1 s | e | fpt, eq :: π

v | e | fpt, e1q :: π ùs2 t | e1 | apv, eq :: π

λx.t | e | apcq :: π ùm t | rxzcs :: e | π

x | e | π ùe t | e1 | π

where ùe takes place only if e “ e2 :: rxzpt, e1qs :: e3.

Lemma 3.42 (LAM invariants). Let S “ s | e | π be a LAM reachable state whose initial code

t is well-named. �en:

1. Closure: every closure in S is closed;

2. Subterm: any code in S is a literal subterm of t;

3. Value: any code in e is a value and, for every element of π of the form aps, e1q, s is a value;

4. Contexts Decoding: rrπss and rrπssxrressy are right-to-le� call-by-value evaluation contexts;

5. Name: any closure c inS is well-named and its names are names of t (i.e. supppcq Ď fvptq);

6. Environment Size: the length of any environment in S is bound by |t|.
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Proof. Straightforward by inspection of the machine transitions.

�eorem 3.43 (LAM distillation). pLAM, valueRL,”, rr¨ssq is a re�ective distillery. In particular,

on a reachable state S we have:

1. Search 1: if S ùs1 S
1
then rrSss ” rrS 1ss;

2. Search 2: if S ùs2 S
1
then rrSss “ rrS 1ss.

3. Multiplicative: if S ùm S
1
then rrSss Ñm rrS

1ss;

4. Exponential: if S ùe S
1
then rrSss Ñe” rrS

1ss;

Proof. Similar to the CEK distillation (�m. 3.36).

3.5.6 Call-by-Need: the MAD

In this section we introduce a new abstract machine for call-by-need, deemed Milner Abstract

machine by-neeD (MAD). �e MAD arises very naturally as a reformulation of the need strat-
egy (Def. 3.3) in the framework of distilleries. �e motivations behind the introduction of a
new machine are:

1. Simplicity: the MAD is arguably simpler than previous call-by-need machines known
in the literature, in particular its distillation is very natural.

2. Factorizing the Distillation of the Lazy KAM and of the SAM: the study of the MAD will be
followed by two sections showing how to tweak the MAD in order to obtain (simpli�ca-
tions of) two call-by-need machines in the literature, Cregut’s Lazy KAM and Sesto�’s
machine (here called SAM). Expressing the Lazy KAM and the SAM as modi�cations
of the MAD helps understanding their design, their distillation (that would otherwise
look very technical), and their relationship.

�e MAD uses the global environment approach of the MAM to implement memoization
and the dump-like approach of the SCEK to evaluate inside explicit substitutions.

De�nition 3.44 (Milner Abstract Machine by Need). Terms, environments and stacks are
de�ned as for the KAM. Dumps (D) are de�ned by:

D ::“ ε | pE, x, πq :: D

Transitions are given by:

ts | π | D | E ùs1 t | s :: π | D | E

λx.t | s :: π | D | E ùm t | π | D | rxzss :: E

x | π | D |E1 :: rxzts :: E2 ùs2 t | ε | pE1, x, πq :: D | E2

v | ε | pE1, x, πq :: D | E2 ùe vα | π | D |E1 :: rxzvs :: E2



105

De�nition 3.45 (MAD decoding). �e decoding of terms, environments, and stacks is de�ned
as for the MAM. �e decoding of dumps is given by:

rrεss
def
“ l rrpE, x, πq :: Dss

def
“ rrEssxrrDssxrrπssxxyyyrxzls

�e decoding of states is de�ned by rrt | π | D | Ess :“ rrEssxrrDssxrrπssxtyyy.

Note that when the code is a variable, a search transition should take place. �e idea is
that whenever the code is a variable x and the environment has the formE1 :: rxzts :: E2, the
machine should jump to evaluate t, saving the pre�x of the environment E1, the variable x
on which it will substitute the result of evaluating t, and the stack π. �is in fact corresponds
to hereditarily weak head evaluation.

Lemma 3.46 (Contextual Decoding). Let D, π, and E be a dump, a stack, and a global envi-

ronment of the MAD, respectively. �en rrDss, rrDssxrrπssy, rrEssxrrDssy, and rrEssxrrDssxrrπssyy are

call-by-need evaluation contexts.

Proof. Straightforward by induction on D, and respectively on E and π, using the fact that if
N is a call-by-need evaluation context then Nrxzts and Nxl ty are also call-by-need evaluation
contexts.

�e notion of closed closure is de�ned exactly as for the MAM. Given a state S “ t | π |

D | E0 with D “ pE1, x1, π1q :: . . . :: pEn, xn, πnq, its closures are prrπssxty, E0q and, for each
i P t1, . . . , nu:

prrπissxxiy, Ei :: rxizrrπi´1ssxxi´1ys :: . . . :: rx1zrrπssxtys :: E0q

�e dynamic invariants are:

Lemma 3.47 (MAD invariants). Let S “ t | π | D | E0 be a MAD reachable state whose initial

code t is well-named, and such that D “ pE1, x1, π1q :: . . . :: pEn, xn, πnq. �en:

1. Global Closure: the closures of S are closed;

2. Subterm: any code in S is a literal subterm of t;

3. Names: the closures of S are well-named.

For the properties of the decoding function recall that the structural congruence for call-
by-need (”Need) is de�ned as the least equivalence including the axioms ”@l, ”com, and ”r¨s.

�eorem 3.48 (MAD distillation). pMAD, need,”Need, rr ¨ ssq is a re�ective distillery. In partic-

ular, on a reachable state S we have:

1. Search 1: if S ùs1 S
1
then rrSss “ rrS 1ss;

2. Search 2: if S ùs2 S
1
then rrSss “ rrS 1ss;

3. Multiplicative: if S ùm S
1
then rrSss Ñm”Need rrS

1ss;
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4. Exponential: if S ùe S
1
then rrSss Ñe“α rrS

1ss.

Proof.

1. Search 1.

rrt s | π | D | Ess “ rrEssxrrDssxrrπssxt syyy “ rrt | s :: π | D | Ess

2. Search 2:

rrx | π | D | E1 :: rxzts :: E2ss “ rrE2ssxrrE1ssxrrDssxrrπssxxyyyrxztsy

“ rrt | ε | pE1, x, πq :: D | E2ss

3. Multiplicative.

rrλx.t | s :: π | D | Ess “ rrEssxrrDssxrrπssxpλx.tq syyy Ñm

rrEssxrrDssxrrπssxtrxzssyyy ”Need Lem. 3.16

rrEssxrrDssxrrπssxtyyrxzssy “

rrt | π | D | rxzss :: Ess

Note that to apply Lem. 3.16 we use the global closure invariant, as s, being on the stack,
is closed by E and so rrDss does not capture its free variables.

4. Exponential.

rrv | ε | pE1, x, πq :: D | E2ss “ rrE2ssxrrE1ssxrrDssxrrπssxxyyyrxzvsy

Ñe rrE2ssxrrE1ssxrrDssxrrπssxvyyyrxzvsy

“α rrE2ssxrrE1ssxrrDssxrrπssxv
αyyyrxzvsy

“ rrvα | π | D | E1 :: rxzvs :: E2ss

Progress. Let S “ t | π | D | E be a commutative normal form such that rrSss Ñ s. If t is

1. an application su. �en a ùs1 transition applies and S is not a commutative normal
form, impossible;

2. an abstraction v. �e decoding rrSss is of the form rrEssxrrDssxrrπssxvyyy. �e stack π and
the dump D cannot both be empty, since then rrSss “ rrEssxvy would be normal. So
either the stack is empty and a ùe transition applies, or the stack is not empty and a
ùm transition applies;

3. a variable x. By Lem. 3.47.1 it must be bound by E, so a ùs2 transition applies, and S
is not a commutative normal form, impossible.
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Abstract Considerations on Concrete Implementations. Consider transition ùs2 . Note that
the saving of the pre�x E1 in the dump forces to have E implemented as a list, and so to go
through E sequentially. �is fact goes against the intuition that E is a store (rather than a
list), and makes the MAD an unreasonable abstract machine (see the analogous considerations
for the KAM and for the MAM). To solve this point, in the following sections we present the
Pointing MAD, a variant of the MAD (akin to Sesto�’s machine for call-by-need [?]) that
avoids saving E1 in a dump entry, and restoring the store view of the global environment.
�e detour is justi�ed as follows:

1. the Pointing MAD is more involved;

2. for the complexity analysis of distillation it is easier to reason on the MAD;

Note that the issue about concrete implementations is orthogonal to the complexity analysis
of the distillation process.

3.5.7 Call-by-Need: the Merged MAD

Spli�ing the stack of the CEK machine in two we obtained a simpler form of the SECD ma-
chine. In this section we apply to the MAD the reverse transformation. �e result is a ma-
chine, deemed Merged MAD, having only one stack and that can be seen as a simpler version
of Crégut’s lazy KAM [42] (but we are rather inspired by Danvy and Zerny’s presentation in
[49]).

To distinguish the two kinds of objects on the stack we use a marker, as for the CEK and
the LAM. Formally:

De�nition 3.49 (Merged MAD). Terms and environments are de�ned as for the MAM. �e
syntax for stacks is:

π ::“ ε | aptq :: π | hpE, xq :: π

where aptq denotes a term to be used as an argument (as for the CEK) andhpE, x, πq is morally
an entry of the dump of the MAD, where however there is no need to save the current stack.
�e transitions are:

ts | π | E ùs1 t | apsq :: π | E

λx.t | apsq :: π | E ùm t | π | rxzss :: E

x | π |E1 :: rxzts :: E2 ùs2 t |hpE1, xq :: π | E2

v |hpE1, xq :: π | E2 ùe vα | π |E1 :: rxzvs :: E2

De�nition 3.50 (Merged MAD decoding). �e decoding is de�ned as follows

rrεss
def
“ l

rrrxzts :: Ess
def
“ rrEssxlrxztsy

rrhpE, xq :: πss
def
“ rrEssxrrπssxxyyrxzls

rraptq :: πss
def
“ rrπssxlty

rrt | π | Ess
def
“ rrEssxrrπssxtyy
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Lemma 3.51 (Contextual Decoding). Let π and E be a stack and a global environment of the

Merged MAD. �en rrπss and rrEssxrrπssy are call-by-need evaluation contexts.

�e dynamic invariants of the Merged MAD are exactly the same of the MAD, with respect
to an analogous set of closures associated to a state (whose exact de�nition is omi�ed). �e
proof of the following theorem—almost identical to that of the MAD—is omi�ed.

�eorem 3.52 (Merged MAD Distillation). pMerged MAD, need,”Need, rr ¨ ssq is a re�ective

distillery. In particular, on a reachable state S we have:

1. Search 1: if S ùs1 S
1
then rrSss “ rrS 1ss;

2. Search 2: if S ùs2 S
1
then rrSss “ rrS 1ss;

3. Multiplicative: if S ùm S
1
then rrSss Ñm”Need rrS

1ss;

4. Exponential: if S ùe S
1
then rrSss Ñe“α rrS

1ss.

3.5.8 Call-by-Need: the Pointing MAD

In the MAD, the global environment is divided between the environment of the machine and
the entries of the dump. On the one hand, this choice makes the decoding very natural. On the
other hand, one would like to keep the global environment in just one place, to validate the
intuition that it is a store rather than a list, and let the dump only collect variables and stacks.
�is is what we do here, exploiting the fact that variable names can be taken as pointers (see
the abstract considerations in Sec. 3.5.2 and Sec. 3.5.6).

�e new machine can be seen as a simpler version of Sesto�’s Abstract Machine [?], here
called SAM. It uses a new dummy constant l for the substitutions whose variable is in the
dump.

De�nition 3.53 (�e Pointing MAD). Dumps and environments are de�ned as follows:

D ::“ ε | px, πq :: D

E ::“ ε | rxzts :: E | rxzls :: E

Transitions are given by:

ts | π | D | E ùs1 t | s :: π | D | E

λx.t | s :: π | ε | E ùm1 t | π | ε | rxzss :: E

λx.t | s :: π | py, π1q :: D |E1 :: ryzls :: E2 ùm2 t | π | py, π1q :: D |E1 :: ryzls :: rxzss :: E2

x | π | D | E1 :: rxzts :: E2 ùs2 t | ε | px, πq :: D | E1 :: rxzls :: E2

v | ε | px, πq :: D |E1 :: rxzls :: E2 ùe vα | π | D | E1 :: rxzvs :: E2

Note that there are two multiplicative transitions, that are both distilled as multiplicative steps,
depending on the content of the dump. A substitution of the form rxzls is called dumped,
and in such a situation we also say that x is dumped.

Note also that the variables of the entries in D appear in reverse order with respect to the
corresponding substitutions in E. We will show that fact is an invariant, called compatibility.
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De�nition 3.54 (CompatibilityE9D). CompatibilityE9D between environments and dumps
is de�ned by

1. ε9ε;

2. E :: rxzts9D if E9D;

3. E :: rxzls9px, πq :: D if E9D.

Note that in a compatible pair the environment is always at least as long as the dump.

De�nition 3.55 (Pointing MAD decoding). A compatible pair E9D decodes to a context as
follows:

rrpE, εqss
def
“ rrEss

rrpE :: rxzls, px, πq :: Dqss
def
“ rrpE,Dqssxrrπssxxyyrxzls

rrpE :: rxzts, py, πq :: Dqss
def
“ rrpE, py, πq :: Dqssrxzts

�e decoding of a state is de�ned as rrt | π | D | Ess :“ rrpE,Dqssxrrπssxtyy provided that E
and D are compatible.

�e analysis of the Pointing MAD is based on a complex invariant that includes compati-
bility plus a generalization of the global closure invariant. We need an auxiliary de�nition:

De�nition 3.56 (Slice of an environment). Given an environment E, we de�ne its slice E ä

as the sequence of substitutions a�er the rightmost dumped substitution. Formally:

εä :“ ε

pE :: rxztsqä :“ E ä:: rxzts

pE :: rxzlsqä :“ ε

Moreover, if an environment E is of the form E1 :: rxzls :: E2, we de�ne E äx:“ E1 ä::

rxzls :: E2.

�e notion of closed closure with global environment (Sec. 3.5.2) is extended to dummy
constants l as expected.

Lemma 3.57 (Pointing MAD invariants — ♣ Lem. A.13). Let S “ t | E | π | D be a Pointing

MAD reachable state whose initial code t is well-named. �en:

1. Subterm: any code in S is a literal subterm of t;

2. Names: the global closure of S is well-named;

3. Dump-Environment Compatibility:

3.1 prrπssxty, E äq is closed;

3.2 for every pair px, π1q in D, prrπ1ssxxy, E äxq is closed;
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3.3 E9D holds.

4. Contextual Decoding: rrpE,Dqss is a call-by-need evaluation context.

Proof. See Lem. A.13 in the appendix.

�eorem 3.58 (Pointing MAD distillation). pPointing MAD, need,”Need, rr ¨ ssq is a re�ective

distillery. In particular, on a reachable state S we have:

1. Search: if S ùs1 S
1
or S ùs2 S

1
then rrSss “ rrS 1ss;

2. Multiplicative: if S ùm1 S
1
or S ùm2 S

1
then rrSss Ñm”Need rrS

1ss;

3. Exponential: if S ùe S
1
then rrSss Ñe“α rrS

1ss;

Proof. Properties of the decoding:

1. Search 1. We have:

rrt s | π | D | Ess “ rrpE,Dqssxrrπssxt syy “ rrt | s :: π | D | Ess

2. Search 2. Note thatE2 has no dumped substitutions, sinceE1 :: rxzls :: E29px, πq :: D.
�en:

rrx | π | D | E1 :: rxzts :: E2ss “

rrE2ssxrrpE1, Dqssxrrπssxxyyrxztsy “

rrt | ε | px, πq :: D | E1 :: rxzls :: E2ss

3. Multiplicative 1, empty dump.

rrλx.t | s :: π | ε | Ess “ rrEssxrrπssxpλx.tq syy Ñm

rrEssxrrπssxtrxzssyy ”˚@l Lem. 3.16

rrEssxrrπssxtyrxzssy “

rrt | π | ε | rxzss :: Ess

4. Multiplicative 2, non-empty dump.

rrλx.t | s :: π | py, π1q :: D | E1 :: ryzls :: E2ss “

rrE2ssxrrpE1, Dqssxrrπ
1ssxyyyryzrrπssxpλx.tq sysy Ñm

rrE2ssxrrpE1, Dqssxrrπ
1ssxyyyryzrrπssxtrxzssysy ”Need Lem. 3.16

rrE2ssxrrpE1, Dqssxrrπ
1ssxyyyryzrrπssxtysrxzssy “

rrt | π | py, π1q :: D | E1 :: ryzls :: rxzss :: E2ss

5. Exponential.
rrv | ε | px, πq :: D | E1 :: rxzls :: E2ss “

rrE2ssxrrpE1, Dqssxrrπssxxyyrxzvsy Ñe

rrE2ssxrrpE1, Dqssxrrπssxvyyrxzvsy “α

rrE2ssxrrpE1, Dqssxrrπssxv
αyyrxzvsy “

rrvα | π | D | E1 :: rxzvs :: E2ss
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Progress. Let S “ t | π | D | E be a commutative normal form such that rrSss Ñ s. If t is

• an application su. �en a ùs1 transition applies and S is not a commutative normal
form, absurd.

• a variable x. By the machine invariant, x must be bound by E ä. So E “ E1 :: rxzss ::

E2, a ùs2 transition applies, and S is not a commutative normal form, absurd.

• an abstraction v. Two cases:

– �e stack π is empty. �e dump D cannot be empty, since if D “ ε we have that
rrSss “ rressxvy is normal. So D “ px, π1q :: D1. By compatibility, E “ E1 ::

rxzls :: E2 and a ùe transition applies;

– �e stack π is non-empty. If the dump D is empty, the �rst case of ùm applies. If
D “ px, π1q :: D1, by compatibility E “ E1 :: rxzls :: E2 and the second case of
ùm applies.

3.5.9 Strong Call-by-Name: the Strong MAM

�e machine introduced in this section implements strong call-by-name, and may therefore
be seen as a strong version of the MAM.

We know that the MAM performs weak head reduction, whose reduction contexts are
(informally) of the form l t1 . . . tn. �is justi�es the presence of the stack π “ t1 :: . . . :: tn,
which collects the list of arguments. It is immediate to extend the MAM so that it performs
full head reduction, i.e., so that the head redex is reduced even if it is under an abstraction.
Since head contexts are now of the form λx1. . . . λxm.lt1 . . . tn, we simply add a stack of
abstractions Λ “ xm :: . . . :: x1 and augment the machine with the following transition:

Abs Code Stack Env Abs Code Stack Env

Λ λx.t ε E  s2 x :: Λ t ε E
(3.4)

�e other transitions do not a�ect the abstraction stack Λ.
Strong call-by-name reduction is nothing but iterated head reduction. Strong call-by-name

evaluation contexts, which we formally introduced in Def. 3.5, when restricted to the pure
λ-calculus (without explicit substitutions) are either of the form λx1. . . . λxm.l t1 . . . tn as
before, or of the form λx1. . . . λxm.s C t1 . . . tn, where s is a neutral term and C is, inductively,
a strong call-by-name evaluation context. As a consequence strong call-by-name evaluation
contexts may be represented by stacks of triples of the form pΛ, s, πq, where s is a neutral
term. �ese stacks of triples will be called dumps.

�e states of the machine for strong call-by-name reduction are as above but augmented
with a dump and a phaseϕ, indicating whether we are executing head reduction (ó) or whether
we are backtracking to �nd the starting point of the next iteration (ò). Besides the transitions
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of the MAM, which do not touch the dump and are always in the ó phase, and the transi-
tion (3.4) above, we add the following transitions:

Abs Code Stack Env Dump Ph Abs Code Stack Env Dump Ph

Λ x π E D ó  s3 Λ x π E D ò

if Epxq “ K
x :: Λ t ε E D ò  s5 Λ λx.t ε E D ò

ε s ε E pΛ, t, πq :: D ò  s7 Λ ts π E D ò

Λ t s :: π E D ò  s6 ε s ε E pΛ, t, πq :: D ó

where Epxq “ K means that the variable x is unde�ned in the environment E.
In the actual machine that we de�ne next, we merge the dumpD and the abstraction stack

Λ into a structureF that we call a frame, as to reduce the number of machine components. �e
analysis will however somewhat reintroduce the distinction between dump and abstraction
stack. In the sequel, the reader should bear in mind that a state of the Strong MAM intro-
duced below corresponds to a state of the machine just discussed according to the following
correspondence:3

Discussed Machine: Abs Code Stack Env Dump Ph

Λ0 t π E pΛ1, t1, π1q :: ¨ ¨ ¨ :: pΛn, tn, πnq ϕ

Ù

Strong MAM: Frame Code Stack Env Ph

Λ0 :: pt1, π1q :: Λ1 :: ¨ ¨ ¨ :: ptn, πnq :: Λn t π E ϕ

We turn to the formal de�nition of the machine:

De�nition 3.59 (�e Strong MAM). �e sets of stacks, environments, frames, and phases are
de�ned as follows:

Frames F ::“ ε | pt, πq :: F | x :: F Stacks π ::“ ε | t :: π

Environments E ::“ ε | rxzts :: E | Źx :: E | xŸ :: E Phases ϕ ::“ ó | ò

States of the machine are 5-uples pF, t, π, E, ϕq. Transitions are given by:

F | ts | π |E | ó  ós1 F | t | s :: π | E | ó

F |λx.t | s :: π |E | ó ùm F | t | π | rxzss :: E | ó

F |λx.t | ε |E | ó  ós2 x :: F | t | ε | Źx :: E | ó

F | x | π |E | ó ùe F | t
α
| π | E | ó

if Epxq “ t

F | x | π |E | ó  ós3 F | x | π | E | ò

if Epxq “ Ź
x :: F | t | ε |E | ò  òs4 F |λx.t | ε | xŸ :: E | ò

pt, πq :: F | s | ε |E | ò  òs5 F | ts | π | E | ò

F | t | s :: π |E | ò  òs6 pt, πq :: F | s | ε | E | ó

3Modulo the presence of markers of the form xŸ and Źx in the environment, which are needed for book-
keeping purposes and were omi�ed here.
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A few comments on the machine follow.

Scope Markers. �e two transitions to evaluate and backtrack on abstractions,  ós2 and
 òs4 , add markers to delimit subenvironments associated to scopes. �e marker Źx is intro-
duced when the machine starts evaluating under an abstraction λx, while xŸmarks the end of
such a subenvironment. Note that the markers are not inspected by the machine. �ey are in
fact needed only for the analysis, as they structure the frame and the environment of a reach-
able state into weak and trunk parts, allowing a simple decoding towards terms with explicit
substitutions. �e following notions of ordinary frames (F ), weak frames (Fw), and trunk
frames (Ft), and the following notions of well-formed environments (E), weak environments
(Ew), and trunk environments (Et) are used in the analysis of the machine:

De�nition 3.60 (Auxiliary notions of frames and environments).

Ordinary, Weak, and Trunk Frames
F ::“ Fw | Ft | Fw :: Ft

Fw ::“ ε | pt, πq :: F

Ft ::“ ε | x :: F

Well-Formed, Weak, and Trunk Environments
E ::“ Ew | Et | Ew :: Et

Ew ::“ ε | rxzts :: Ew | xŸ :: Ew :: Źx :: E 1w
Et ::“ ε | Źx :: E

Weak and Trunk Frames. A frame F may be uniquely decomposed as F “ Fw :: Ft, where
Fw “ pt1, π1q :: ¨ ¨ ¨ :: ptn, πnq (with n ě 0) is a weak frame, i.e. where there are no abstracted
variables, and Ft is a trunk frame, i.e. not of the form pt, πq :: F 1 —it must either start with a
variable entry or be empty. Note that here “::” denotes the concatenation of frames. We denote
by ΛpF q the set of variables abstracted in F , i.e. the set of x such that F “ F 1 :: x :: F 2.

Weak and Trunk Environments. Similarly to the frame, the environment of a reachable
state has a weak/trunk structure. In contrast to frames, however, not every environment can
be seen this way, but only the well-formed ones. In fact, reachable environments will be
shown to be well-formed as part of the invariant of the machine. A weak environment Ew

does not contain any open scope, i.e. whenever in Ew there is a scope opener marker (Źx)
then one can also �nd the scope closer marker (xŸ), and (globally) the closed scopes of Ew

are well-parenthesized. A trunk environment Et may instead also contain open scopes that
have no closing marker in Et (but not unmatched closing markers xŸ).

Accessing Environments and Meta-level Garbage Collection. Fragments of the form xŸ ::

Ew :: Źx within an environment will essentially be ignored—this is how a simple form of
garbage collection is encapsulated at the meta-level in the decoding. In particular, for a well-
formed environment E we de�ne Epxq as:

εpxq :“ K pyŸ :: Ew :: Źy :: Eqpxq :“ Epxq

prxzts :: Eqpxq :“ t pŹx :: Eqpxq :“ Ź

pryzts :: Eqpxq :“ Epxq pŹy :: Eqpxq :“ Epxq

We write ΛpEq to denote the set of variables bound to Ź by an environment E, i.e. those
variables whose scope is not closed with Ÿ.
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Lemma 3.61 (Weak environments contain only closed scopes). If Ew is a weak environment

then ΛpEwq “ ∅.

Abstract Considerations on Concrete Implementations. Variables are meant to be imple-
mented as memory locations, so that the environment is simply a store, and accessing it takes
constant time on a random-access machine. In particular, both the list structure of environ-
ments and the scope markers are used to de�ne the decoding (i.e. for the analysis), but are
not meant to be part of the actual implementation.

Compatibility. In the Strong MAM, both the frame and the environment record information
about the abstractions in which evaluation is currently taking place. Clearly, such information
has to be coherent, otherwise the decoding of a state becomes impossible. �e following
compatibility predicate captures the correlation between the structure of the frame and that
of the environment.

De�nition 3.62 (Compatibility F9E). Compatibility F9E between frames and environ-
ments is de�ned by

1. Base: ε9ε.

2. Weak extension: pFw :: Ftq9pEw :: Etq if Ft9Et.

3. Abstraction: px :: F q9pŹx :: Eq if F9E.

Lemma 3.63 (Properties of compatibility).

1. Well-Formed Environments: if F and E are compatible then E is well-formed.

2. Factorization: every compatible pair F9E can be wri�en as pFw :: Ftq9pEw :: Etq in

such a way thatFt is of the formFt “ x :: F 1 if and only ifEt is of the formEt “ Źx :: E 1.

3. Open Scopes Match: ΛpF q “ ΛpEq.

4. Compatibility and Weak Structures Commute: for all Fw and Ew, F9E if and only if

pFw :: F q9pEw :: Eq.

Proof. �e �rst three items are by induction on the de�nition of compatible pair. Item 1. is
straightforward. �e base case is immediate for items 2. and 3. Let us check the two inductive
cases:

1. Weak extension:

1.1 Factorization: the decomposition is immediate, and the correspondence about the
�rst variable name follows from the i.h..

1.2 Open Scopes Match: by i.h., ΛpFtq “ ΛpEtq. By Lem. 3.61, ΛpEwq “ ∅, and by
de�nition ΛpFwq “ ∅. �en ΛpF q “ ΛpFwq Y ΛpFtq “ ΛpFtq “ ΛpEtq “

ΛpEwq Y ΛpEtq “ ΛpEq.
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2. Abstraction

2.1 Factorization: by de�nition x :: F and Źx :: E are a trunk frame Ft and a trunk
environment Et, respectively. given that :: is overloaded with composition, and
weak trunk and environments can be empty we have Ft “:: Ft, and similarly
for Et, proving the decomposition property. �e correspondence about the �rst
variable name is evident.

2.2 Open Scopes: Λpx :: F q “ txu Y ΛpF q “i.h. txu Y ΛpEq “ Λpx :: Eq.

Finally, item 4. is a corollary of item 2.
Compatibility and Weak Structures Commute.

1. ñ) By Factorization, F “ F 1w :: Ft and E “ E 1w :: Et. By de�nition of compatibility, if
F9E is derivable then Ft9Et is also derivable. Now Fw :: F 1w and Ew :: E 1w are weak
structures and so by the weak extension rule Fw :: F “ Fw :: F 1w :: Ft9Ew :: E 1w ::

Et “ Ew :: E.

2. ð) By de�nition of compatibility, if Fw :: F “ Fw :: F 1w :: Ft9Ew :: E 1w :: Et “ Ew ::

E is derivable then Ft9Et is also derivable, and F “ F 1w :: Ft9 “ E 1w :: Et “ E by
applying the weak extension rule.

As for the previous abstract machines, we state and prove a set of dynamic invariants that
hold in all reachable states:

Lemma 3.64 (Strong MAM invariants — ♣ Lem. A.14). Let S “ ϕ | F | s | π | E be a state

reachable from an initial term t0. �en:

1. Compatibility: F and E are compatible, i.e. F9E.

2. Normal Form:

2.1 Backtracking Code: if ϕ “ ò, then s is normal, and if π is non-empty, then s is

neutral.

2.2 Frame: if F “ F 1 :: pu, π1q :: F 2, then u is neutral.

3. Backtracking Free Variables:

3.1 Backtracking Code: if ϕ “ ò then fvpsq Ď ΛpF q.

3.2 Pairs in the Frame: if F “ F 1 :: pu, π1q :: F 2 then fvpuq Ď ΛpF 2q.

4. Name:

4.1 Substitutions: if E “ E 1 :: rxzts :: E2 then x is fresh with respect to t and E2.

4.2 Markers: if E “ E 1 :: Źx :: E2 and F “ F 1 :: x :: F 2 then x is fresh with respect

to E2 and F 2, and E 1pyq “ K for any free variable y in F 2.
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4.3 Abstractions: if axt is a subterm of F , s, π, or E then x may occur only in t and in

the closed subenvironment xŸ :: Ew :: Źx of E, if it exists.

5. Closure:

5.1 Environment: if E “ E 1 :: rxzts :: E2 then E2pyq ‰ K for all y P fvptq.

5.2 Code, Stack, and Frame: Epxq ‰ K for any free variable x in s and in any code of π

and F .

Proof. See Section A.1.4 in the appendix.

�e de�nition of the decoding relies on the notion of compatible pair.

De�nition 3.65 (Strong MAM decoding). Let S “ pF, t, π, E, ϕq be a state such that F9E
is a compatible pair. �en S decodes to a state context CS and a term rrSss as follows:

• Weak environments:

rrεss
def
“ l

rrrxzss :: Ewss
def
“ rrEwssxlrxzssy

rrxŸ :: Ew :: Źx :: E 1wss
def
“ rrE 1wss

• Compatible pairs:

rrpε, εqss
def
“ l

rrppFw :: Ftq, pEw :: Etqqss
def
“ rrpFt, EtqssxrrEwssxrrFwssyy

rrppx :: F q, pŹx :: Eqqss
def
“ rrpF,Eqssxλx.ly

• Weak frames:
rrεss

def
“ l

rrps, πq :: Fwss
def
“ rrFwssxrrπssxslyy

• Stacks:
rrεss

def
“ l

rrs :: πss
def
“ rrπssxlsy

• States:
CS

def
“ rrpF,Eqssxrrπssy

rrSss
def
“ CSxty

�e following lemmas sum up the properties of the decoding.

Lemma 3.66 (Closed scopes disappear). Let F9E be a compatible pair. �en rrpF, pxŸ :: Ew ::

Źx :: Eqqss “ rrpF,Eqss.
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Proof. Essentially it follows from rrxŸ :: Ew :: Źx :: Ess “ rrEss. Precisely, by Lem. 3.63 F
and E have, respectively, the forms Fw :: Ft and E 1w :: Et. Now:

rrpF, pxŸ :: Ew :: Źx :: Eqqss “ rrppFw :: Ftq, pxŸ :: Ew :: Źx :: E 1w :: Etqqss

“ rrpFt, EtqssxrrxŸ :: Ew :: Źx :: E 1wssxrrFwssyy

“ rrpFt, EtqssxrrE
1
wssxrrFwssyy

“ rrppFw :: Ftq, pE
1
w :: Etqqss

“ rrpF,Eqss

Lemma 3.67 (LO decoding invariant — ♣ Lem. A.16). Let S “ xϕ | F | s | π | Ey be a

reachable state. �en rrpF,Eqss and CS are LO contexts.

Proof. See Section A.1.5 in the appendix.

Lemma 3.68 (Decoding and structural equivalence ”).

1. Stacks and substitutions commute: if x does not occur free in π then rrπssxtrxzssy ”

rrπssxtyrxzss;

2. Compatible pairs absorb substitutions: if x does not occur free in F then

rrpF,Eqssxtrxzssy ” rrpF, prxzss :: Eqqssxty.

Proof. Straightforward by induction on π and the derivation of F9E.

�eorem 3.69 (Strong MAM distillation). pStrong MAM,Ñ
LO
,”, rr ¨ ssq is a re�ective distillery.

In particular:

1. Search 1, 2, 3, 5, 6: if S  s1,2,3,5,6 S
1
then rrSss “ rrS 1ss.

2. Search 4: if S  s4 S
1
then rrSss ”gc rrS

1ss;

3. Multiplicative: if S ùm S
1
then rrSss Ñdb”nameS rrS

1ss;

4. Exponential: if S ùe S
1
then rrSss Ñls rrS

1ss, duplicating the same subterm.

Proof.

Properties of the decoding: Determinism of the machine follows by the name invariant
(Lem. 3.64), and that of the strategy follows from the totality of the LO order (Lem. 3.7).
We analyze only the interesting cases (ignoring transitions that are decoded to simple
equalities).

– Multiplicative: i.e. S “ pF, λx.t, s :: π,E,óq ùm pF, t, π, rxzss :: E,óq “ S 1.
Note that CS1 “ rrpF,Eqssxrrπssy is LO by the LO decoding invariant (Lem. A.16).
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Moreover by the closure invariant (Lem. 3.64) x does not occur in F nor π, justi-
fying the use of Lem. 3.68 in:

rrpF, λx.t, s :: π,E,óqss “ rrpF,Eqssxrrs :: πssxλx.tyy

“ rrpF,Eqssxrrπssxpλx.tqsyy

Ñdb rrpF,Eqssxrrπssxtrxzssyy

”Lem. 3.68 rrpF,Eqssxrrπssxtyrxzssy

”Lem. 3.68 rrpF, prxzss :: Eqqssxrrπssxtyy

“ rrpF, t, π, rxzss :: E,óqss

– Exponential: S “ pF, x, π, E,óq ùe pF, t
α
, π, E,óq “ S 1 with Epxq “ t. As

before, CS is LO by Lem. A.16. Moreover, Epxq “ t guarantees that E, and thus
CS , have a substitution binding x to t. Finally, CS “ CS1 . �en

rrSss “ CSxxy Ñls CSxt
α
y “ rrS 1ss

– Search 4: S “ px :: F, t, ε, E,òq  òs4 pF, λx.t, ε, xŸ :: E,òq “ S 1. By Lem. 3.64
x :: F9E, and by Lem. 3.63 E “ Ew :: Źx :: E 1. �en

rrppx :: F q, Eqss “ rrppx :: F q, pEw :: Źx :: E 1qqss “ rrppx :: F q, pŹx :: E 1qqssxrrEwssy

Moreover, being in a backtracking phase (ò) and so the backtracking closure in-
variant (Lem. 3.64) and the open scopes matching property (Lem. 3.63) give fvptq ĎLem. 3.64

ΛpF q “Lem. 3.63 ΛpEw :: Źx :: E 1q “Lem. 3.61 ΛpŹx :: E 1q, i.e. rrEwss does not bind
any variable in fvptq. �en rrEwssxty ”

˚
gc t, and

rrpx :: F, t, ε, E,òqss “ rrppx :: F q, Eqssxty

“ rrppx :: F q, pEw :: Źx :: E 1qqssxty

“ rrppx :: F q, pŹx :: E 1qqssxrrEwssxtyy

”˚gc rrppx :: F q, pŹx :: E 1qqssxty

“ rrpF,E 1qssxaxty

“Lem. 3.66 rrpF, pxŸ :: Ew :: Źx :: E 1qqssxλx.ty

“ rrpF, pxŸ :: Eqqssxλx.ty

“ rrpF, λx.t, ε, xŸ :: E,òqss

Progress:

1. the machine cannot get stuck during the evaluation phase: for applications and ab-
stractions it is evident and for variables one among ùe and ós3 always applies,
because of the closure invariant (Lem. 3.64).

2. �nal states have the form pε, t, ε, E,òq, because

2.1 by the previous consideration they are in a backtracking phase,
2.2 if the stack is non-empty then òs6 applies,
2.3 otherwise if the frame is not empty then either òs4 or òs5 applies.
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3. �nal states decode to normal terms: a �nal state S “ pε, t, ε, E,òq decodes to rrSss “
rrEssxtywhich is normal and closed by the normal form invariant and backtracking
free variables invariant (Lem. 3.64).

3.6 Complexity Analysis

In this section we show that the length of an execution ρ : S ùM
˚ S 1 in each of the abstract

machines can be bounded linearly by the length of the distilled derivation rrSss �S” rrS 1ss,
up to a factor |t| proportional to the size of the initial code t.

Recall that principal (i.e. multiplicative and exponential) transitions are decoded as exactly
one step in the reduction strategy, while non-principal (i.e. search) transitions are decoded
as zero steps in the strategy. Hence, in order to obtain a bound for the length of the distilled
derivation it su�ces to bound the number of search steps |ρ|s in an execution ρ in terms of:

1. the number of principal steps |ρ| s,

2. the size |t| of the initial code t.

�e analysis only concerns the machines, but via the distillation theorems it expresses the
length of the machine executions as a linear function of the length of the distilled deriva-
tions in the strategy. For every distillery, we will prove that the relationship is linear in both
parameters, namely |ρ|s P Opp|t| ` 1q ¨ |ρ| sq holds.

De�nition 3.70. Let M be a distilled abstract machine and ρ : S ùM
˚ S 1 be an execution

of initial code t. �e machine M is:

1. Locally linear if whenever S 1 ùk
s S

2 then k P Op|t|q.

2. Globally bilinear if |ρ|s P Opp|t| ` 1q ¨ |ρ| sq.

�e following result ensures that local linearity is a su�cient condition for global bilin-
earity.

Proposition 3.71 (Locally Linear ñ Globally Bilinear). Let M be a locally linear distilled

abstract machine, and ρ an execution of initial code t. �en M is globally bilinear.

Proof. �e execution ρ can be wri�en uniquely asùk1
s ùh1

 s . . .ù
km
s ùhm

 s . By hypothesis
ki “ Op|t|q for every i P t1, . . . ,mu. From m ď |ρ| s follows that |ρ|s “ Op|t| ¨ |ρ| sq. We
conclude with |ρ| “ |ρ| s ` |ρ|s “ |ρ| s `Op|t| ¨ |ρ| sq “ Opp|t| ` 1q ¨ |ρ| sq.

3.6.1 Call-by-name and call-by-value

Call-by-name and call-by-value machines are easily seen to be locally linear, and thus globally
bilinear.
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�eorem 3.72 (Bilinearity for call-by-name and call-by-value). �e distilleries for the KAM,

MAM, CEK, SCEK, and LAM are locally linear, and so also globally bilinear.

Proof.

1. KAM/MAM. Immediate: ùs reduces the size of the code, that is bounded by |t| by the
subterm invariant (Lem. 3.25/Lem. 3.31).

2. CEK. Consider the following measure for states:

#ps | e | πq :“

#

|s| ` |u| if π “ apu, e1q :: π1

|s| otherwise

By direct inspection of the rules, it can be seen that both ùs1 and ùs2 transitions
decrease the value of # for CEK states, and so the relation ùs1 Yùs2 terminates (on
reachable states). Moreover, both |s| and |u| are bounded by |t| by the subterm invariant
(Lem. 3.35), and so k ď 2 ¨ |t| “ Op|t|q.

3. SCEK. As for the CEK, using the corresponding subterm invariant (Lem. 3.39) and the
following measure:

#ps | e | π | Dq :“

#

|s| ` |u| if π “ pu, e1q :: π1

|s| otherwise

4. LAM. As for the CEK, using the corresponding subterm invariant (Lem. 3.42) and the
following measure:

#ps | e | πq :“

#

|s| ` |u| if π “ fpu, e1q :: π1

|s| otherwise

3.6.2 Call-by-need

Call-by-need machines are not locally linear, because a sequence of ùs2 steps can be as long
as the global environmentE, that is not bound by |t| but only by the number |ρ| s of preceding
principal transitions (as for the MAM). Adapting the previous reasoning to this other bound
would only show that globally |ρ|s is quadratic in |ρ| s, not linear. However, being locally
linear is not a necessary condition for global bilinearity. In fact, call-by-need machines are
globally bilinear. �e key observation is that |ρ|s2 is not only locally but also globally bound
by |ρ|p, as the next lemma formalizes.

We treat the MAD. �e reasoning for the Merged/Pointing MAD is analogous. De�ne
|ε| :“ 0 and |pE, x, πq :: D| :“ 1` |D|.

Lemma 3.73. Let S “ t | π | D | E be a MAD state, reached by the execution ρ. �en:
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1. |ρ|s2 “ |ρ|e ` |D|

2. |E| ` |D| ď |ρ|m

3. |ρ|s2 ď |ρ|e ` |ρ|m “ |ρ|p

Proof.

1. Immediate, as ùs2 is the only transition that pushes elements on D and ùe is the
only transition that pops them.

2. �e only rule that produces substitutions is ùm. Note that 1) ùs2 and ùe preserve
the global number of substitutions in a state; 2) E and D are made out of substitutions,
if one considers every entry pE, x, πq of the dump as a substitution on x (and so the
statement follows); 3) the inequality is given by the fact that an entry of the dump
includes an environment (counting for many substitutions).

3. Substitute item 2 in item 1.

�eorem 3.74 (Bilinearity for call-by-need). �e distillery for the MAD is globally bilinear.

Proof. Let ρ be an execution of initial code t. De�ne Ñ s1 :“ùe Yùm Yùs2 and write
|ρ| s1 to stand for the number of its steps in ρ. We estimate ùs:“ùs1 Yùs2 by studying
its components separately. For ùs2 , Lem. 3.73.3 proves |ρ|s2 ď |ρ|p “ Op|ρ|pq. For ùs1 , as
for the KAM, the length of a maximal ùs1 subsequence of ρ is bounded by |t|. �e number of
ùs1 maximal subsequences of ρ is bounded by |ρ| s1 , that by Lem. 3.73.3 is linear inOp|ρ|pq.
�en |ρ|s1 “ Op|t| ¨ |ρ| sq. Summing up,

|ρ|s2 ` |ρ|s1 “ Op|ρ|pq `Op|t| ¨ |ρ| sq “ Opp|t| ` 1q ¨ |ρ| sq

3.6.3 Strong call-by-name

�e complexity analysis of the strong MAM requires a further invariant, bounding the size
of the duplicated subterms. In this subsection, we say that s is a subterm of t if it does so up

to variable names, both free and bound. More precisely: de�ne t´ as t in which all variables
(including those appearing in binders) are replaced by a �xed symbol ˚. �en, we will consider
s to be a subterm of t whenever s´ is a subterm of t´ in the usual sense. �e key property
ensured by this de�nition is that the size |s| of s is bounded by |t|.

Lemma 3.75 (Subterm invariant). Let ρ be an execution from an initial code t. Every code

duplicated along ρ using ùe is a subterm of t.

Proof. Straightforward by inspection of the machine transitions.
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�e following invariant provides a new proof of the subterm property of linear LO reduc-
tion (�rst proved in [11]):

Lemma 3.76 (Subterm Property for ÑLO). Let π be a Ñ
LO

-derivation from an initial term t.

Every term duplicated along π using aÑls is a subterm of t.

Proof. Easy by the subterm invariant (Lem. 3.64) via the case of an exponential transition of
the distillation theorem (�m. 3.69).

Finally, the following theorem ensures that the strong MAM is globally bilinear. Let us
stress that, despite the simplicity of the reasoning, the analysis is subtle as the length of back-
tracking phases can be bound only globally by the previous work done on evaluation phases.

�eorem 3.77 (Bilinearity for strong call-by-name). �e distillery for the strong MAM is glob-

ally bilinear. More precisely, given an execution ρ : S ùM
˚ S 1 from an initial state of code t

then:

1. Search evaluation steps are bilinear: |ρ|ós ď p1` |ρ|eq ¨ |t|.

2. Search evaluation bounds backtracking: |ρ|òs ď 2 ¨ |ρ|ós.

3. Search steps are bilinear: |ρ|s ď 3 ¨ p1` |ρ|eq ¨ |t|.

Proof.

1. We prove a slightly stronger statement, namely |ρ|ós ` |ρ|m ď p1` |ρ|eq ¨ |t|, by means
of the following notion of size for stacks/frames/states:

|ε| :“ 0 |x :: F | :“ |F |

|t :: π| :“ |t| ` |π| |pt, πq :: F | :“ |π| ` |F |

|pF, t, π, E,óq| :“ |F | ` |π| ` |t| |pF, t, π, E,òq| :“ |F | ` |π|

By direct inspection of the rules of the machine it can be checked that:

• Exponentials increase the size: if S ùe S
1 is an exponential transition, then |S 1| ď

|S| ` |t| where |t| is the size of the initial term; this is a consequence of the fact
that exponential steps retrieve a piece of code from the environment, which is a
subterm of the initial term by Lem. 3.75;

• Non-Exponential evaluation transitions decrease the size: if S  a S 1 with a P

tm,ós1,ós2,ós3u then |S 1| ă |S|;

• Backtracking transitions do not change the size: if S  a S
1 with a P tò s4,ò s5,ò

s6u then |S 1| “ |S|.

�en a straightforward induction on |ρ| shows that

|S 1| ď |S| ` |ρ|e ¨ |t| ´ |ρ|ós ´ |ρ|m

i.e. that |ρ|ós ` |ρ|m ď |S| ` |ρ|e ¨ |t| ´ |S 1|.
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Now note that | ¨ | is always non-negative and that since S is initial we have |S| “ |t|.
We can then conclude with

|ρ|ós ` |ρ|m ď |S| ` |ρ|e ¨ |t| ´ |S
1|

ď |S| ` |ρ|e ¨ |t| “ |t| ` |ρ|e ¨ |t| “ p1` |ρ|eq ¨ |t|

2. We have to estimate |ρ|òs “ |ρ|òs4 ` |ρ|òs5 ` |ρ|òs6 . Note that:

2.1 |ρ|òs4 ď |ρ|ós2 , as òs4 pops variables from F , pushed only by òs4 ;

2.2 |ρ|òs5 ď |ρ|òs6 , as òs5 pops pairs pt, πq from F , pushed only by òs6 ;

2.3 |ρ|òs6 ď |ρ|ós3 , as òs6 ends backtracking phases, started only by ós3 .

�en |ρ|òs ď |ρ|ós2 ` 2|ρ|ós3 ď 2|ρ|ós.

3. We have |ρ|s “ |ρ|ós ` |ρ|òs ďP.2“ |ρ|ós ` 2|ρ|ós “P.1 3 ¨ p1` |ρ|eq ¨ |t|.

Finally, every transition but ùe takes a constant time on a RAM. �e renaming in a ùe

step is instead linear in |t|, by the subterm invariant (Lem. 3.75).



Chapter 4

Foundations of Strong Call-by-Need

4.1 Introduction

4.1.1 Call-by-Need for Weak Reduction

Mainstream programming languages evaluate programs using weak reduction, i.e. the body of
a function is not evaluated until the function is applied. Suppose for example that we write a
function de�nition:

f x = 2 * 3 + x

and we evaluate the expression f in a typical programming language like OCaml or Haskell.
�en the multiplication 2 * 3 will not be performed. Rather, the function f itself will be the
�nal answer.

It also makes sense in principle to evaluate the body of a function before applying it. For
instance the program above can be transformed into the presumably equivalent one:

f x = 6 + x

by performing the multiplication 2 * 3. However, in a typical se�ing, the body of a function
in runtime is not represented by a tree-like expression, but by a sequence of machine instruc-
tions, which means that this kind of program transformation corresponds to preprocessing or
compile time optimization, rather than evaluation.

In the λ-calculus, weak reduction is characterized formally by forbidding the congruence
rule ξ:

tÑ t1

ξ
λx.tÑ λx.t1

�is means that a term like λx.pλy.yqx cannot be evaluated further, even though it contains
a redex. When one evaluates a term in the λ-calculus using weak reduction, one does not
obtain, in general, a normal form as a result. �e set of answers is instead the set of weak head

normal forms.

De�nition 4.1 (Weak head normal form). A λ-term is in weak head normal form if it is of
the form λx.t, or of the form x t1 . . . tn.

124



125

�e goal of this chapter is to extend the lazy evaluation mechanism, an evaluation strategy
that implements weak reduction, originally proposed by Wadsworth [145], to the se�ing of
strong reduction. �e (weak) call-by-need strategy is based on the two following principles:

1. Laziness. One should only perform steps that are needed to obtain a WHNF. For exam-
ple, a step like pλx.yq tÑ pλx.yq t1, internal to the argument, is not needed, as one may
simply contract the redex at the root pλx.yq tÑ y to obtain a WHNF.

In this respect, call-by-need is similar to call-by-name in that an argument is only eval-
uated if needed, and it improves the situation over call-by-value (in which an argument
is always evaluated, even if it is not needed).

2. Sharing. �e computational work of evaluating an argument should be shared among
the copies of the argument. For example, let t :“ I I where I “ λx.x is the identity
function, and note that tÑ I . �en a step like pλx.x xq tÑ t t, if implemented naı̈vely
by syntactically copying the term t twice, results in the duplication of the computational
work required to perform the step tÑ I :

pλx.x xq tÑ t t
1
Ñ I tÑ t

2
Ñ I

In contrast, in call-by-need, when the function λx.x x is applied to the argument t, the
two occurrences of x become bound to a single copy of the term t. In this way, as soon
as t is evaluated, both copies of x hold a reference to the same result, and computational
work is not duplicated. �e sharing may be represented, as we do in this thesis, using
the notation of explicit substitutions:

pλx.x xq tÑ px xqrxzts Ñ px xqrxzIs Ñ pI xqrxzIs Ñ xrxzIs Ñ IrxzIs Ñ I

In this respect, call-by-need is similar to call-by-value in that arguments are evaluated
at most once, and it improves the situation over call-by-name (in which an argument
may be evaluated many times, once per each of its copies).

We remark that some authors may make a distinction between lazy evaluation and call-

by-need, the former referring only to the deferral of the evaluation of expressions, and the
la�er incorporating also the notion of sharing. In our work, in accordance with existing lit-
erature (e.g. [12, 113, 13]), we speak of lazy evaluation and (weak) call-by-need as synonyms.

�e weak call-by-need strategy provides various bene�ts over call-by-name and call-by-
value. We brie�y discuss four aspects: e�ciency, expressiveness, ease of reasoning and declar-

ativity.

E�ciency. Call-by-need may represent an exponential improvement in e�ciency, with
respect to call-by-name. For example, consider the family of terms ttn | n P Nu, de�ned
recursively on n by:

t0
def
“ λx.x

tn`1
def
“ pλx.xxq tn
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�en one can see that, in call-by-name, evaluating tn requires a number of steps exponential
in n. More precisely, we have that tn reduces to the identity λx.x in exactly 2n`1 ´ 2 steps.
To see this, proceed inductively. Note that λx.x reduces to λx.x in 0 steps, and:

tn`1 “ pλx.xxq tn Ñ tn tn
2n`1´2 steps, by i.h.

ÝÝÝÝÝÝÝÝÝÝÝÑ pλx.xq tn
Ñ tn

2n`1´2 steps, by i.h.

ÝÝÝÝÝÝÝÝÝÝÝÑ λx.x

So tn`1 reduces to λx.x in exactly 2n`2 ´ 2 steps.
On the other hand, in call-by-need, evaluating tn requires a number of steps linear in n.

More precisely, tn reduces to the identity λx.x in exactly 5n steps1.

tn`1 “ pλx.xxq tn Ñ pxxqrxztns
5n steps, by i.h.

ÝÝÝÝÝÝÝÝÑ pxxqrxzλy.ys

Ñ ppλy.yqxqrxzλy.ys

Ñ yryzxsrxzλy.ys

Ñ yryzλz.zsrxzλy.ys

Ñ λz.z

So tn`1 reduces to λx.x in exactly 5pn` 1q steps.

Expressiveness. Call-by-need allows one to write programs in a style that would not be
possible, or convenient, in a more traditional se�ing with call-by-value. For example, John
Hughes [80] describes an architecture for a game-playing engine implementing the minimax
decision procedure. �e rough idea is that the problem can be modularly decomposed into
two subproblems as follows:

1. A function gametree : Position Ñ Tree Position, representing the potentially
in�nite game tree starting from the given position. �e nodes of the tree are positions
in the game and the edges represent moves.

2. A function minimax : Tree Position Ñ Position, which determines the best
move.

Modularity is achieved thanks to lazy evaluation, which allows the programmer to handle in�-
nite data structures e�ortlessly, without having to explicitly resort to representing suspended
computations as thunks (using constructs such as Scheme’s delay and force).

�ere are many other well-known examples of the possibilities that lazy evaluation may
enable. For example Chris Okasaki [123] shows how to exploit memoization, i.e. sharing, to
implement e�cient immutable data structures.

Ease of reasoning. One bene�t of lazy evaluation is that it allows to reason about pro-
grams equationally. For example, consider the following set of de�nitions:

1In the last step we perform garbage collection implicitly for the sake of clarity. But note that, in the explicit
substitution calculi in this thesis, garbage collection is explicit.
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loop = loop

f x = 1

In a programming language using call-by-need evaluation the equality f loop = 1 holds,
while in a programming language using call-by-value evaluation f loop is non-terminating.
Being able to reason equationally is convenient to prove properties about programs and to
derive programs by applying mechanical transformations to existing programs, which may
be part, for example, of the optimization phase of a compiler.

�e property that one may actually “reason equationally” can be expressed formally as
the completeness property of call-by-need, which states that if a term t is interconvertible
with an answer s, then evaluating t using the call-by-need strategy also leads to an answer.
Completeness for strong call-by-need is the main result of this chapter.

Declarativity. Declarativity is not a binary property of programs, but more of a continu-

ous spectrum, a program being less declarative when it resembles a low-level description of a
procedure that solves a problem, and more declarative when it resembles an abstract speci�-
cation of the problem.

Lazy evaluation allows to write arguably more declarative programs, in the sense that the
order in which expressions are evaluated is not prescribed by the way in which they were
wri�en by the programmer. Rather, expressions are evaluated only when they are actually
required for the computation to proceed. For example, consider a function de�nition like the
following:

f x y = if y == 0

then x

else z

where z = x / y

In a programming language using call-by-value evaluation the expression x / y is evaluated
unconditionally, which leads to an error if y equals 0. Contrast this with call-by-need, in
which the evaluation of x / y is only triggered when the value of the variable z is required.

Formal De�nition of Weak Call-by-Need

Wadsworth �rst proposed call-by-need as an implementation technique for the pureλ-calculus [145]
in the 1970s. Later, Ariola and Felleisen [12], and independently at around the same time in
the 1990s, Maraist, Odersky and Wadler [113], proposed a di�erent way of de�ning call-by-
need evaluation2. �eir approach is based on a calculus whose operational semantics follows
a call-by-need discipline. �is results in the behavior of the source language matching more
closely the behavior of its actual implementation.

Following this approach, we study calculi based on a call-by-need evaluation discipline.
In the following, we recall the de�nition of the weak call-by-need strategy that we use in

2In fact these two independent works are combined in a joint paper [13].
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this chapter (and also in Chapter 3). �e weak call-by-need strategy was originally proposed
in [4], and it is based on the technology of explicit substitutions at a distance, closely related
with the Linear Substitution Calculus.

De�nition 4.2 (�e weak call-by-need strategy). �e sets of terms (T ), values, answers, (full)

contexts, substitution contexts, and weak evaluation contexts are given by the grammars:

Terms t ::“ x | λx.t | t t | trxzts

Values v ::“ λx.t

Answers a ::“ vL

(Full) contexts C ::“ l | λx.C | C t | t C | Crxzts | trxzCs

Substitution contexts L ::“ l | Lrxzts

Weak evaluation contexts E ::“ l | E t | Erxzts | ExxxyyrxzEs

�e weak call-by-need strategy W
ù is given by the following rewriting rules, closed by weak

evaluation contexts:
pλx.tqL s

W
ùdb trxzssL

ExxxyyrxzvLs
W
ùlsv ExxvyyrxzvsL

In this chapter, we use squiggly arrows like “ù” to denote reduction strategies, which are
usually deterministic, in contrast with typical arrows “Ñ”, which represent a (non-deterministic)
orientation of an equational theory.

Example 4.3. �e following is a reduction in weak call-by-need:

pλx.xxqppλy.yqpλz.zqq
W
ù pxxqrxzpλy.yqpλz.zqs
W
ù pxxqrxzyryzλz.zss
W
ù pxxqrxzpλz.zqryzλz.zss
W
ù ppλz.zqxqrxzλz.zsryzλz.zs
W
ù zrzzxsrxzλz.zsryzλz.zs
W
ù zrzzλz.zsrxzλz.zsryzλz.zs
W
ù pλz.zqrzzλz.zsrxzλz.zsryzλz.zs

Observe that the �nal result is an answer, and that the strategy does not incorporate any kind
of garbage collection rule.

4.1.2 Call-by-Need for Strong Reduction

As we have stated, our goal in this chapter is to extend the weak call-by-need strategy to strong

reduction. In contrast with mainstream programming languages, which use weak reduction,
functional programming languages with dependent types —including proof assistants based
on dependent type theory— use strong reduction.

Let us exemplify why a type checker for dependent type theory may need to use strong
reduction. In dependent type theory, types are allowed to depend on terms. For example,
suppose that the type constructor: Vec : N Ñ Type represents the type family of vectors
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of integers, so that, for a given natural number n : N the expression Vec n denotes the type
of vectors of length n. �en one may de�ne a function to append two vectors as follows:

append : (n : N) Ñ (m : N) Ñ Vec n Ñ Vec m Ñ Vec (n + m)

append zero m nil w = w

append (suc n) m (cons x v) w = cons x (append n m v w)

In order to accept this de�nition, the type checker has to verify that the le� and the right-hand
sides of all the equations have the same type. In the case of the �rst equation, its le�-hand side
is of type Vec (0 + n), whereas its right-hand side is of type Vec n. Note that these types
are not syntactically equal, rather they are interconvertible, up to computational reduction
rules. Determining that these types are interconvertible may be achieved by evaluating 0 +

n on one hand and n on the other, and checking whether the same normal form is reached.
�is example is captured by means of a general typing rule called conversion:

Γ $ A A ” B
Conv

Γ $ B

�e judgement A ” B establishes that types A and B are equivalent. Typically, this means
thatA andB are interconvertible, up to computation rules like the β-reduction rule. A simple
decision procedure to determine whether A ” B holds consists in evaluating A and B to
normal form and then comparing their results syntactically. Given that A and B may contain
abstractions and free variables, this procedure must use strong reduction.

In this chapter, our goal is to develop the foundations for a correct and e�cient strong
reduction strategy. �e mechanism to decide A ” B implemented by practical proof assis-
tants, such as the Coq proof assistant, is more complex than the naı̈ve algorithm proposed
above, and it uses a large set of �nely tuned heuristics. In the particular case of Coq—at least
at the moment of writing this thesis—this mechanism has not been de�ned other than in the
actual OCaml source code of Coq, and it has not been proven correct. Even though there is
a signi�cant gap between the complexity of current implementations of proof assistants and
the comparatively minimalistic formalisms studied in this thesis, we are certain that imple-
menters and users could bene�t from a foundational study of strong reduction.

As a general remark, evaluation strategies for strong reduction are not as well studied in
the literature as strategies for weak reduction. One notable exception is the work of Grégoire
and Leroy [66], who have proposed a strong normalization function that consists in iterating
the weak call-by-value strategy on terms possibly containing free variables.

Our starting point is the observation that rather than iterating call-by-value, one should
consider an appropriate notion of call-by-need that computes strong normal forms of open
terms. As a ma�er of fact, we propose a strategy that computes strong normal forms by
following a call-by-need discipline.

De�ning a strong call-by-need strategy, even before a�empting to state or prove any the-
orems, is a non-obvious task. Let us write S

ù for such a strategy. Recall also that, if t is a
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term with explicit substitutions, we write t˛ for the λ-term that results from the unfolding of
all the explicit substitutions in t, so for example:

pxxqrxzyzsryzλx.xs˛ “ pλx.xqzppλx.xqzq

�e following are the main design principles that we have followed in order to arrive at a
satisfactory de�nition of S

ù:

1. Strong reduction. �e strong call-by-need strategy should implement strong reduc-

tion, i.e. if a term t is in S
ù-normal form then, when read back into the λ-calculus by

unfolding all the explicit substitutions, the resulting λ-term t˛ should be a β-normal
form.
Note that this criterion is lax enough that it allows us, for example, to take the terms
pλx.xqryzΩs or λx.yryzxs as two valid encodings of the β-normal form λx.x.

2. Determinism. �e strong call-by-need strategy should be deterministic, that is, if t S
ù

s1 and t S
ù s2 then s1 “ s2.

3. Conservativity. �e strong call-by-need strategy should be conservative with respect
to weak call-by-need. �at is, if t W

ù s then t S
ù s.

4. Correctness. �e strong call-by-need strategy should be correct with respect to β-
equivalence. �is means that if t S

ù s then t˛ “β s˛.

5. Completeness. �e strong call-by-need strategy should be complete with respect to
β-equivalence. �is means that if t “β s in the λ-calculus and s is a β-normal form,
then tp S

ùq˚u and u˛ “ s, i.e. u is an encoding of s modulo unfolding all the explicit
substitutions.

A�er we have given a de�nition of the strong call-by-need strategy, all these principles will
be stated and proved as theorems. In the following subsections we mention two non-trivial
issues that one must confront in order to de�ne a strong call-by-need strategy, the issue of
frozen variables, and the issue of context-dependency.

Frozen Variables

Strong reduction performs evaluation below abstractions, so evaluation has to deal with open
terms, i.e. the term may contain free variables. �ese variables are typically bound some-
where above in the evaluation context. In our presentation, a variable x may be bound by an
abstraction λx.l or by an explicit substitution lrxzts. �e behavior of the evaluator depends
crucially on the nature of these variables.

For example, the evaluator may have to evaluate an application whose head is a variable,
such as x t. If the variable x is bound to an answer, say by an explicit substitution rxzλy.zs,
then evaluation should proceed by substituting x by the answer. In our example, evaluation
proceeds as follows:

px tqrxzλy.zs Ñ ppλy.zq tqrxzλx.zs Ñ zryztsrxzλx.zs
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Note that the term t is not evaluated in this case.
On the other hand, the variable x may be bound by an abstraction that cannot possibly

become applied to an argument. �en, given that evaluation must implement strong reduction
to normal form, the evaluator should go on and evaluate t:

λx.x tÑ λx.x t1 Ñ λx.x t2 Ñ . . .

If a variable x is bound by an abstraction which cannot possibly become applied to an
argument, we say that x is frozen. If a variable x is frozen, a term of the form x t1 . . . tn is
called a structure. Strictly speaking a structure may also contain explicit substitutions—such
as in yryzxs t—. �e precise de�nition of structure is postponed until later in the chapter.
Variables bound to structures are also considered to be, transitively, frozen.

In the following examples the underlined variables are frozen:

λx.λy.y t — �e abstractions cannot become applied.

λx.xpλy.yq — �e abstractions cannot become applied.

λx.pztqrzzyssryzxus — �e variables y and z are bound to structures.

In contrast, in the following examples the underlined variables are not frozen:

pλx.xtqs — �e abstraction can become applied.

pλy.y pλz.zqqpλx.xsq — �e abstraction can, in principle, become applied.

xrxzλy.ys — �e variable x is not bound to a structure.

In order to properly deal with all these situations, in our strong call-by-need strategy the
notion of evaluation context is parameterized with respect to a set ϑ of frozen variables. For
example, the context xl will be considered a ϑ-evaluation context if and only if x is frozen,
i.e. x P ϑ.

Context-Dependency

As mentioned in the previous subsection, strong reduction must perform evaluation below
an abstraction, but only so if it can be certain that the abstraction cannot possibly become
applied to an argument, along any possible reduction. More technically, one could say that
the body of an abstraction should be evaluated only if it has already reached a position in
which it will form part of the Böhm tree of the term.

For example, in the terms λx.t and λy.ypλx.tq we know that the abstraction λx.t is not
going to become applied, so to calculate the normal form of the term we should go on by
“opening” the abstraction and evaluating the body t. On the other hand, in a term like pλx.tqs
the weak call-by-need strategy would perform the db-step pλx.tqs W

ù trxzss so to abide by
the Conservativity principle, the strong call-by-need strategy should do the same thing. In
particular, it should not evaluate the body t yet. Similarly, in the term pxsqrxzλx.ts the weak
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call-by-need strategy performs the substitution step pxsqrxzλx.ts W
ù ppλx.tqsqrxzλx.ts, so

again the strong call-by-need strategy must not evaluate t yet.
To properly deal with the context-dependent nature of strong call-by-need evaluation, we

distinguish a particular subset of the evaluation contexts, the set of inert evaluation contexts.
Intuitively, an evaluation context is inert if it can be plugged inside another evaluation context
in such a way that the composition is still an evaluation context.

For example, the context λx.l is an evaluation context but it is not inert, because plugging
it into the evaluation context l t results in the context pλx.lqt, which is not an evaluation
context. Note that composing the contexts has enabled an interaction, namely it has created
a db-redex, and evaluation should prioritize contracting the newly created db-redex:

ppλx.lqtqxsy “ pλx.sqt
W
ù srxzts

Similarly, the context pλx.yqryzls is an evaluation context, but it is not inert, because plug-
ging it into the evaluation context xrxzls results in the xrxzpλx.yqryzlss which is again not
an evaluation context. As before, composing the contexts has enabled an interaction, creating
an lsv-redex, and evaluation should contract it before going on:

pxrxzpλx.yqryzlssqxsy “ xrxzpλx.yqryzsss
W
ù pλx.yqrxzpλx.yqsryzss

To de�ne the strong call-by-need strategy, we shall restrict the composition of evaluation
contexts so that only inert evaluation contexts can be plugged on the le� of an application
(l t) and inside explicit substitutions (trxzls), so that nor db redexes neither lsv redexes are
created due to the undesired enabling of an interaction.

4.1.3 Our Work

�is chapter is the result of collaboration with �ibaut Balabonski, Eduardo Bonelli, and Delia
Kesner, and it is structured as follows. We highlight in boldface what we consider to be the
main contributions:

• In Section 4.2 we de�ne the strong call-by-need strategy. Speci�cally:

– In Section 4.2.1, we de�ne a theory of strong reduction, the �eory of Sharing (Def. 4.4).

– In Section 4.2.2, we motivate the de�nition of strong call-by-need, and we de�ne a

strategy for strong call-by-need-reduction (Def. 4.4), including various related
notions such as normal forms and evaluation contexts.

– In Section 4.2.3 we prove four basic principles that our strong call-by-need strategy
enjoys, namely that it reaches normal forms (Prop. 4.16), it is deterministic

(Prop. 4.18), it is a conservative extension of Ariola et al.’s notion of weak call-
by-need (�m. 4.23), and it is correct with respect to β-reduction (Prop. 4.25).

• In Section 4.3 we prove that the strong call-by-need strategy is complete with respect
to β-reduction (�m. 4.55). �is means that if a λ-term has a β-normal form, then the
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strong call-by-need strategy always �nds it—modulo unfolding of explicit substitutions.
�e proof of completeness combines a logical argument and a syntactical argument.
�e logical argument relies on an auxiliary type system based on non-idempotent in-
tersection types, and it shows that the �eory of Sharing is complete with respect to
β-reduction. �e syntactical argument shows that the strong call-by-need strategy is
complete with respect to the �eory of Sharing. Speci�cally:

– In Section 4.3.1, we propose a non-idempotent intersection type system called
HW , for the �eory of Sharing (Def. 4.27). �is is a simple adaptation of existing
systems, following the line of work proposed by Kesner [91]. We also show that
typability implies normalization (�m. 4.43), i.e. that terms typable in HW are
weakly normalizing in the �eory of Sharing.

– In Section 4.3.2, we use system HW to argue that the �eory of Sharing is com-

plete (Prop. 4.45) with respect to β-reduction, i.e. that β-normalizing terms are
also normalizing in the �eory of Sharing.

– In Section 4.3.3, we recall an abstract factorization result due to Acca�oli [3]. Us-
ing this abstract result, we then argue that the strong call-by-need strategy is

complete (Prop. 4.54) with respect to the �eory of Sharing. To do so we show
that any reduction sequence in the �eory of Sharing may be factorized as a pre-
�x whose steps are in the strong call-by-need strategy, followed by a su�x whose
steps are garbage, i.e. steps inside unreachable explicit substitutions. �e core of
the proof is an exhaustive (and delicate) case analysis of permutation diagrams.

In the following chapter (Chapter 5), we extend the results of this section to incorporate
pa�ern matching and recursion (with �xed points). In Section 8.1 in the Conclusion (Chap-
ter 8), we propose an abstract machine for strong call-by-need evaluation. �e proof that this
machine implements the strong call-by-need strategy is le� as future work.

4.2 Strong Call-by-Need

In this section we de�ne the strong call-by-need strategy. Actually we begin by de�ning,
in Section 4.2.1, a calculus which we call the �eory of Sharing. By a “calculus” what we
mean is, formally speaking, a rewriting system. �e objects of the �eory of Sharing are the
usual set of terms of the Linear Substitution Calculus (variables, abstractions, applications,
and explicit substitutions), as in Def. 4.2. �e steps of the �eory of Sharing are given by a
non-deterministic rewriting relation Ñsh whose re�exive, symmetric, and transitive closure
gives us an equational theory (the equivalence relation “sh).

In Section 4.2.2 we de�ne the strong call-by-need strategy itself. As already mentioned,
the strategy is parameterized by a set of variables ϑ, which are supposed to be frozen. �is
means that, for each set ϑ, we de�ne a deterministic rewriting relation ϑ

ù which is a subset of
Ñsh. �e strong call-by-need strategy corresponds to the case in which the set ϑ is empty, i.e.

S
ù

def
“

∅
ù. In Section 4.2.3 we study some of its basic properties, namely the four principles

of Strong reduction, Determinism, Conservativity, and Correctness.
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4.2.1 �e �eory of Sharing

�e strong call-by-need strategy S
ù can be seen as part of a bigger picture, the �eory of

Sharing, given by the rewriting relationÑsh that we de�ne in this subsection.
A remark on nomenclature: in previous versions of this work, we spoke of “the Strong

Call-by-Need Calculus” rather than of “the �eory of Sharing”. We believe that the la�er
name is more appropriate, because the relation Ñsh does not enforce “by-need” evaluation;
in fact, it allows to evaluate expressions that are not needed to obtain a result. On the other
hand, the relation Ñsh does enforce sharing; in fact, an expression may not be copied unless
it is already a value. For example, let ∆ :“ pλx.xqy and let ∆1 :“ xrxzys be its contractum.
�en a step like xryz∆s Ñsh xryz∆

1s is allowed in the �eory of Sharing, even though it is
not needed, while a step like xrxz∆s Ñsh ∆ryz∆s is not allowed in the �eory of Sharing,
because it copies ∆, which is not a value.

De�nition 4.4. �e �eory of Sharing λsh is given by the set of terms Tsh as in Def. 4.2, and
the reduction relationÑsh

def
“ Ñdb YÑlsv YÑgc, where for each R P tdb, lsv, gcu,ÑR is

the closure by full contexts of the corresponding rewrite rules below, i.e. ÑR
def
“ CxÞÑRy.

pλx.tqL s ÞÑdb trxzssL

CxxxyyrxzvLs ÞÑlsv CxvyrxzvsL

trxzss ÞÑgc t if x R fvptq

Note that the rulesÑdb andÑgc are exactly theÑdb andÑgc rules of the LSC (cf. Def. 2.75).
On the other hand, the Ñlsv rule of the �eory of Sharing and the Ñls rule of the LSC are
not instances of each other, since for example:

xrxzpλy.zqrzztss ÑR pλy.zqrxzλy.zsrzzts holds for R “ lsv but not for R “ ls

xrxzys ÑR yrxzys holds for R “ ls but not for R “ lsv

Example 4.5. �e following is a reduction in the �eory of Sharing:

pλx.zxxqppλy.yqpλw.wqq Ñsh pλx.zxxqpyryzλw.wsq

Ñsh pzxxqrxzyryzλw.wss

Ñsh pzxxqrxzpλw.wqryzλw.wss

Ñsh pzxpλw.wqqrxzλw.wsryzλw.ws

Ñsh pzxpλw.wqqrxzλw.ws

Ñsh pzpλw.wqpλw.wqqrxzλw.ws

Ñsh zpλw.wqpλw.wq

�e following lemma characterizes the normal forms of the �eory of Sharing. We write
NFpÑshq for the set ofÑsh-normal forms, and SNFpÑshq for the set ofÑsh-normal forms that
are not answers, i.e. t P SNFpÑshq if t P NFpÑshq and t is not of the form vL.

De�nition 4.6 (Normal forms of the �eory of Sharing). �e set of sh-structures (S) and the
set of sh-normal forms (N) are de�ned mutually inductively as follows:

x P S

t P S u P N

tu P S

t P S

t P N

t P N

λx.t P N

t P X u P S x P fvptq

trxzus P X
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In the last rule, the symbol X represents either S or N.

Lemma 4.7 (Characterization of strong normal forms). �e following hold:

• NFpÑshq “ N

• SNFpÑshq “ S

Proof. Given an arbitrary term t P T , one can check that t P NFpÑshq ðñ t P N and that
t P SNFpÑshq ðñ t P S. �e le�-to-right implication is straightforward by induction on t.
�e right-to-le� implication is straightforward by simultaneous induction on the derivation
that t P N and t P S.

4.2.2 �e Strong Call-by-Need Strategy

In this subsection we de�ne a deterministic rewriting relation S
ù representing the strong call-

by-need strategy. Unfortunately, by the nature of the problem that we are confronting, this
rewriting relation does not enjoy straightforward closure properties under di�erent kinds of
contexts. �is is due to the fact that some variables may be frozen, or not frozen, by the
enclosing context. For example, if we let ∆ :“ pλy.yqz and ∆1 :“ yryzzs, then we can note
that:

• ∆
S

ù ∆1 should hold,

• λx.x∆
S

ù λx.x∆1 should hold, because x is frozen under the context λx.l, so λx.xl
is an evaluation context,

• px∆qrxzIs
S

ù px∆1qrxzIs should not hold, because x is not frozen under the context
lrxzIs, so pxlqrxzIs is not an evaluation context.

�is means that a naı̈ve contextual closure rule like “t S
ù s holds if and only if λx.t S

ù λx.s

holds” is not valid. In order to be able to reason inductively, we need to consider an appropriate
generalization of the strategy. In fact, we de�ne a family of deterministic rewriting relations
ϑ

ù parameterized by a set ϑ of variables that are considered frozen. �e strong call-by-need
strategy is then given by S

ù
def
“

∅
ù. For example, with ∆ and ∆1 as above, we have that:

• x∆
ϕ

ù x∆1 holds if x P ϕ,

• x∆
ϕ

ù x∆1 does not hold if x R ϕ.

�ese generalized relations will enjoy appropriate closure properties. For instance, λx.t ϑ
ù

λx.s holds if and only if t ϑYtxuù s holds, freezing the variable x.

Given that our aim is to de�ne a strategy for strong reduction, i.e. reduction to normal
form, the behavior of the relation ϑ

ù will depend on whether certain subterms have already
reached a normal form or not. For example, if we have an application ts, evaluation should
focus on the argument s only if the function t is a strong normal form and not an answer.
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Bearing this in mind, before de�ning the relation ϑ
ù we will start by de�ning, syntacti-

cally, the set of normal forms that it should reach. �is set will also depend on ϑ: for instance
the term xy will be a strong normal form under ϑ if and only if tx, yu Ď ϑ.

Moreover, the set of normal forms of the strategy ϑ
ù does not coincide with the set of

normal forms of the theoryÑsh. By design, our strong call-by-need strategy does not perform
garbage collection, i.e. seen as relations, the intersection ϑ

ù XÑgc is empty, so the inclusion
ϑ

ùĎ Ñdb Y Ñlsv ĎÑsh holds. �is means that for example λx.xryzts will be a normal
form of our strategy.

In the following subsections we de�ne the relations ϑ
ù and the corresponding notion of

normal form under the set of frozen variables ϑ. But, before going on, we need a few auxiliary
de�nitions, and in particular the notion of non-garbage variable.

De�nition 4.8 (Garbage collection operation). �e operation of garbage collection Ógc ptq is
de�ned as follows:

Ógc pxq
def
“ x

Ógc pλx.tq
def
“ λx.Ógc ptq

Ógc ptsq
def
“ Ógc ptqÓgc psq

Ógc ptrxzssq
def
“

"

Ógc ptqrxzÓgc psqs if x P fvpÓgc ptqq
Ógc ptq otherwise

Note that this de�nition also erases explicit substitutions that are not garbage substitutions
stricto sensu. For instance, consider the term xryzzsrzzts. Both substitutions are collected by
Ógc p.q, even if an occurrence of the variable z temporarily appears in the subterm xryzzs.

De�nition 4.9 (Non-garbage variables). �e set of non-garbage variables of a term t is de�ned
as ngvptq def

“ fvpÓgc ptqq. Informally, ngvptq is the set of free variables of t that are not erased
by garbage collection. A free variable is a garbage variable if it is not non-garbage.

Lemma 4.10 (Inductive characterization of non-garbage variables). �e set ngvptq of non-

garbage variables can be characterized by the following inductive equations:

ngvpxq “ txu

ngvpλx.tq “ ngvptqztxu

ngvptsq “ ngvptq Y ngvpsq

ngvptrxzssq “ pngvptqztxuq Y

#

ngvpsq if x P ngvptq

∅ otherwise

Proof. Straightforward by induction on t.

Normal Forms and Structures

�e de�nition of the set of normal forms of the strategy ϑ
ù depends on the key notion of

structure. We summarize the three principles that motivate their de�nition.
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1. Frozen variables de�ne the shape of the structures. If x is frozen, reduction in a
term like x t must take place in t and hence the variable x persists in the reduct. �is
motivates our calling a term such as x t, with t in normal form, a structure. Iterating
this idea, if x is frozen and t1, . . . , tn are in normal form then x t1 . . . tn is a structure
and reduction in a term like x t1 . . . tn tn`1 must take place in tn`1. �e set of normal
forms includes the set of structures as a proper subset.

�is principle leaves the following question open: is yryzxts a structure? �e answer
depends crucially on whether xt should be substituted for y.

2. Structures should not be duplicated. Weak call-by-need only duplicates values, ab-
stractions being the only possible values. In weak reduction the set of values coincides
with the set of weak-head normal forms, since all terms are closed. �is raises the ques-
tion of whether structures, which are weak-head normal forms in the se�ing of strong
reduction, should be substituted too.

�e crucial observation is that, in contrast to abstractions, structures cannot contribute
in any way to creating new redexes. Contrast for example the step:

pxtqrxzλy.ys Ñ ppλy.yqtqrxzλy.ys

in which performing the substitution creates the underlined db redex, with the step:

pxtqrxzyss Ñ pystqrxzyss

in which performing the substitution does not create any new interaction. �is is a
general phenomenon.

Given that structures represent an incomplete computation whose evaluation is blocked
by a head variable, and given that we do not want to duplicate incomplete computations,
we do not substitute structures: structures are not considered values so they cannot be
duplicated. �is means that, if x is frozen and t is a normal form, the term yryzx ts is a
structure.

3. Variables bound to structures are transitively frozen. If a variable x is bound to a
structure, then x is also considered frozen. Indeed, xy is a structure under the context
lrxzzzs where x itself is bound to a structure and thus frozen, but it is not a structure
under the context lrxzIs where x is bound to a value and thus not frozen.

Following these principles, we de�ne the sets of ϑ-normal forms and ϑ-structures:

De�nition 4.11. �e set of normal forms under the set of frozen variables ϑ, also called ϑ-

normal forms (Nϑ), and the set of structures under the set of frozen variables ϑ, also called
ϑ-structures (Sϑ) are de�ned mutually inductively by the following rules:

x P ϑ
n-var

x P Sϑ

t P Sϑ s P Nϑ
n-app

ts P Sϑ

t P Sϑ
nfStruct

t P Nϑ

t P NϑYtxu
nfLam

λx.t P Nϑ
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t P XϑYtxu s P Sϑ x P ngvptq
nfSub

trxzss P Xϑ

t P Xϑ x R ngvptq
nfSubG

trxzss P Xϑ

In the last two rules, the symbol X represents either S or N.

Note that:

1. In the n-app rule, the head of the application must be a structure, so for example xx is an
txu-structure while pλx.xqx is not. Intuitively, every ϑ-structure is headed by a frozen
variable in the set ϑ. For example, both xyy and zrzzx ys are txu-structures headed by
x. Later we will prove this fact more rigorously.

2. In the nfLam rule, the bound variable is frozen in the body, so for example λx.xx is an
∅-normal form because xx is an txu-normal form.

3. �e rules nfSub and nfSubG allow normal terms to contain explicit substitutions rxzts,
which play two very di�erent roles:

3.1 �e nfSub rule allows substitutions to contain a structure, shared among the oc-
currences of x, as in the term λy.pxxqrxzyts. In this rule, the bound variable is
frozen in the body, and the argument of the substitution must be a structure, so
for example pxxqrxzys is an tyu-structure while pxxqrxzλy.ys is not. Moreover, x
should be non-garbage, otherwise we should apply the nfSubG rule.

3.2 �e nfSubG rule allows substitutions to be “garbage substitutions” as in λy.yrxzts.
In this rule, the bound variable should not be non-garbage, and then the argument
of the substitution is allows to be an arbitrary term, so for example xryzzsrzzλw.ws
is an ∅-normal form.

Evaluation Contexts

�e strong call-by-need strategy ϑ
ù is given by two reduction rules, which are, respectively,

instances of the rules Ñdb and Ñlsv of the �eory of Sharing. �ese rules are applied by
focusing on speci�c locations in a term, as speci�ed by evaluation contexts. �e two principles
of reduction are:

1. Perform function application as soon as db-redexes are found.

2. Evaluate and substitute the values to which variables are bound on demand.

Let us see how these principles apply when reducing an application t s. Evaluation should
not focus on the argument s by default, since we do not know yet whether this argument is
actually needed. Hence the �rst step is to reduce t until either it becomes an answer or, on
the contrary, it becomes visible that it will never become an answer:

• If t becomes an answer, i.e. a λ-abstraction possibly a�ected by a substitution context
pλx.t1qL, then we should perform the db-step.
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• If t becomes a term headed by a frozen variable, then it will never become an answer:
it can only diverge or become a structure. For example, if Ω stands for the usual non-
terminating term:

xpIIq becomes a structure, namely x IryzIs

xrxzypIIqspIIq becomes a structure, namely xrxzy IrzzIssIrzzIs

x Ω diverges

In this case both t and s have to be independently evaluated to full normal form. Ac-
cording to our strategy, the evaluation focus should stay in t until it becomes a proper
structure, and then continue evaluating s.

Note that the choice of reducing in t or s depends on whether t is a structure, which in
turn depends on the variables that are frozen at this point. �us, as was the case with normal
terms and structures, the notion of evaluation context depends on a set ϑ of frozen variables.
A context t C is an evaluation context under the set of frozen variables ϑ whenever C is an
evaluation context and t is a structure under the same set of frozen variables ϑ.

Now consider a term of the form trxzss. Following the second principle of reduction, the
evaluation of the term s should be placed on hold until its value is required. Hence reduction
should �rst proceed in t, until x becomes the focused variable in t, i.e. until an evaluation
context reaches an occurrence of x in t. In this case, reduction should focus on s until an
answer is obtained. An important subtlety here is how the notion of focused variable is to be
understood in a strong se�ing. For example, x is the focused variable in λy.xy and, but also in
λy.yx. �e focused variable is also x in the term pzyqrzzx Is. In contrast, x is not the focused
variable in pyxqryzIs, since y is not frozen under lryzIs so, in this particular case, evaluation
should proceed to perform the substitution of I for y. Observe that the focused variable, in
case there is one, is always free.

Finally, in the case of a λ-abstraction, evaluation should proceed to evaluate its body (per-
forming proper strong reduction) only if this abstraction can never become applied to an
argument. As mentioned, before, to implement this condition we distinguish a particular
subset of the evaluation contexts, containing all the evaluation contexts that are not led by
a λ-abstraction, which we call inert evaluation contexts. �ere are two places at which only
inert evaluation contexts can be plugged: on the le� of an application to avoid reduction in
the le� part of a db-redex, and in a substitution to avoid reduction in a value that should be
substituted. �is way we ensure that, whenever an evaluation context focuses inside a λ-
abstraction λx.t, it is guaranteed that this λ-abstraction will never be applied, and thus the
variable x can be remembered as frozen during the evaluation of t.

Following these principles, we de�ne the sets ofϑ-evaluation contexts and inertϑ-evaluation
contexts:

De�nition 4.12. �e sets of evaluation contexts under the set of frozen variables ϑ, also called
ϑ-evaluation contexts (Eϑ) and of inert evaluation contexts under the set of frozen variables ϑ,
also called inert ϑ-evaluation contexts (E˝ϑ) are de�ned mutually inductively by the following
rules:
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EBox
l P E˝ϑ

C P E˝ϑ EAppL
C t P E˝ϑ

t P Sϑ C P Eϑ
EAppRStr

t C P E˝ϑ

C P E˝ϑ e-incl
C P Eϑ

C P EϑYtxu
ELam

λx.C P Eϑ

C P Xϑ t R Sϑ x R ϑ
ESubLNonStr

Crxzts P Xϑ

C P XϑYtxu t P Sϑ
ESubLStr

Crxzts P Xϑ

C1 P Xϑ C2 P E
˝
ϑ ESubsR

C1xxxyyrxzC2s P Xϑ

In the last three rules, the symbol X represents either E or E˝.

Note that:

1. According to the EAppL rule, evaluation may proceed on the head of the application as
long as the focus of evaluation is below an inert context, so for example lppλx.xqyq is
an ∅-evaluation context while pλx.lqppλx.xqyq is not.

2. According to the EAppRStr rule, evaluation may proceed on the argument of the ap-
plication as long as the head is a structure, so for example xxl is an txu-evaluation
context while pλx.xql is not.

3. According to the ELam rule, evaluation may proceed on the body of the abstraction, the
bound variable is frozen in the body, so for example λx.xl is an ∅-evaluation context,
because xl is an txu-evaluation context. Note that in this case the resulting context is
not an inert context.

4. �e rules ESubLNonStr and ESubLStr allow evaluation to proceed on the body of a
substitution, in two di�erent ways:

4.1 �e ESubLNonStr allows evaluation to proceed on the body of a substitution
whose argument is not a structure. �is may be because the argument has not
been fully evaluated yet, e.g. xrxzpλy.yqzs, or because it has been fully evalu-
ated but it is an answer, e.g. xrxzpλy.wqrwzzss. In these cases, the bound variable
is not frozen in the body, so for example lrxzλy.ys is an ∅-evaluation context
but pxlqrxzλy.ys is not an ∅-evaluation context, because in turn xl is not an
∅-evaluation context.

4.2 �e ESubLStr rule allows evaluation to proceed on the body of a substitution
whose argument is a structure, freezing the bound variable, so for example pxpylqqrxzyys
is an tyu-evaluation context because yy is an tyu-structure and xpylq is a tx, yu-
evaluation context.

5. According to the ESubsR rule, evaluation may proceed on the argument of a substi-
tution, as long as the bound variable is the current focus of evaluation in the body.
For example, let ∆ “ pλx.xqpλx.xq. �en in a term like pxyqryz∆srxz∆s the context
pxyqryz∆srxzls is an ∅-evaluation context, because x is the focus of evaluation in xy,
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while pxyqryzlsrxz∆s is not an ∅-evaluation context, because y is not the focus of
evaluation in xy.

Moreover, in this case, evaluation should proceed on the argument of the substitution
as long as the focus of evaluation is below an inert context, so for example xrxzyls is
an tyu-evaluation context while xrxzλy.ls is not an tyu-evaluation context.

Reduction

We are �nally able to de�ne the strong call-by-need strategy as a binary relation ϑ
ù.

De�nition 4.13 (Strong call-by-need reduction). �e strong call-by-need strategy ϑ
ù is

given by the union of the two reduction rules ϑ
ùdb and ϑ

ùlsv below:

Cxpλx.tqL sy
ϑ

ùdb CxtrxzssLy if C P Eϑ
C1xC2xxxyyrxzvLsy

ϑ
ùlsv C1xC2xvyrxzvsLy if C1xC2xlyrxzvLsy P Eϑ

Note that the strong call-by-need strategy ϑ
ù requires that the anchor of the step is below

a ϑ-evaluation context. In the db rule, this means that the contracted application pλx.tqL s

must lie below a context C P Eϑ. In the lsv rule, this means that the contracted variable x,
a�ected by the explicit substitution, must lie below a context C P Eϑ. Moreover, since x must
be bound to an answer, the context C has to be of the form C “ C1xC2xlyrxzvLsy.

Example 4.14. �e following is a reduction in strong call-by-need. In each step we underline

the focus of evaluation, i.e. the pa�ern of the db redex or the variable contracted by the ls redex:

pλx.xxqpλy.zpIzqyq
tzu
ù pxxqrxzλy.zpIzqys
tzu
ù ppλy1.zpIzqy1qxqrxzλy.zpIzqys
tzu
ù pzpIzqy1qry1zxsrxzλy.zpIzqys
tzu
ù pzpwrwzzsqy1qry1zxsrxzλy.zpIzqys
tzu
ù pzpwrwzzsqy1qry1zλy.zpIzqysrxzλy.zpIzqys
tzu
ù pzpwrwzzsqpλy2.zpIzqy2qqry1zλy.zpIzqysrxzλy.zpIzqys
tzu
ù pzpwrwzzsqpλy2.zpwrwzzsqy2qqry1zλy.zpIzqysrxzλy.zpIzqys

4.2.3 Basic Properties of Strong Call-by-Need

In Section 4.1.2 we listed �ve design principles that we followed to de�ne the strong call-by-
need strategy. In each of the subsections of this section, we state and prove the �rst four princi-
ples: Strong reduction (Prop. 4.16), Determinism (Prop. 4.18), Conservativity (�m. 4.23),
and Correctness (Prop. 4.25). �e statement and proof of the ��h principle, Completeness,
is much more complex and we defer it until the next section.
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Strong Reduction

In this subsection, we show that the strong call-by-need strategy reaches normal forms, up to
the unfolding of explicit substitutions. �e following auxiliary lemma characterizes the set of
normal forms of the strategy ϑ

ù.

Lemma 4.15 (Characterization of ϑ-normal forms — ♣ Lem. A.30). �e following sets are

equal:

• �e set of ϑ-normal forms Nϑ (cf. Def. 4.11).

• �e set of normal forms of the strong call-by-need strategy
ϑ

ù.

Proof. See the appendix.

Proposition 4.16 (Strong reduction). If t is a
ϑ

ù-normal term, then its unfolding t˛ is a λ-term

in β-normal form.

Proof. By Lem. 4.15, it su�ces to show that if t P Nϑ then t˛ is a β-normal λ-term. We prove a
stronger property, namely that if t P Nϑ or t P Sϑ then t is a β-normal λ-term and, moreover,
if t P Sϑ then t is a neutral term, i.e. of the form x t1 . . . tn. We proceed by mutual induction
on the derivations that t P Nϑ and t P Sϑ. �e interesting cases are the rules nfSub and
nfSubG. For the rule nfSub, note that the variable is bound to a neutral term, so performing
the substitution does not create a β-step. For the rule nfSubG, note that the variable bound
by the substitution is not a non-garbage variable, so it does not occur free in the unfolding of
the body, and the property holds immediately by i.h..

Determinism

In this subsection we show that the strong call-by-need strategy is deterministic. �e follow-
ing auxiliary lemma states, roughly, that there can be only one redex below an evaluation
context.

Lemma 4.17 (Unique decomposition — ♣ Lem. A.34). If Cxry is a term, we say that r is an

anchor if it is a db-redex or a variable bound to an answer. Let t be a term that can be wri�en as

both C1xr1y and C2xr2y, where C1, C2 P Eϑ are evaluation contexts and r1, r2 are anchors. �en

C1 “ C2 and r1 “ r2.

Proposition 4.18 (Determinism). If t
ϑ

ù s and t
ϑ

ù u then s “ u.

Proof. An immediate consequence of the unique decomposition lemma (Lem. 4.17).

Conservativity

In this subsection we show that the strong call-by-need strategy is conservative over weak
call-by-need. To do so, we relate the strong call-by-need strategy with the weak call-by-need
strategy W

ù (cf. Def. 4.2), as well as to the original notion of weak call-by-need reduction
in [13, 12]. Moreover, we take the opportunity to put in evidence the general scheme followed
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by any reduction sequence of [13] (Lem. 4.21), and we also state a clear relation between these
two mentioned notions of weak call-by-need (Lem. 4.22)

De�nition 4.19 (Ariola et al.’s notion of weak call-by-need). �e syntax of the system in [13,
12] is given by the following sets of terms (t), values (v), answers (a), and evaluation contexts
(E)3:

t ::“ x | λx.t | t t | trxzts

v ::“ λx.t

a ::“ v | arxzts

E ::“ l | E t | E t | ExxxyyrxzEs

�ere are four rewriting rules:

pλx.tq s
r
ÞÑI trxzss

Exxxyyrxzvs
r
ÞÑV Exvyrxzvs

arxzts s
r
ÞÑC pa sqrxzts if x R fvpsq

Exxxyyrxzaryztss
r
ÞÑA Exxxyyrxzasryzts if y R fvpExxxyyq

Reduction is de�ned by ÞÑneed
def
“ ÞÑI Y ÞÑV Y ÞÑC Y ÞÑA, where ÞÑX is the closure by

evaluation contexts of r
ÞÑX, i.e. ÞÑX

def
“ Ex

r
ÞÑXy for each X P tI,V,C,Au.

It turns out that ÞÑneed is deterministic:

Proposition 4.20 (Determinism of ÞÑneed). If t ÞÑneed s then there exists a unique context E

such that t “ Ext1y, s “ Exs1y and t1 ÞÑ s1, where ÞÑ
def
“

r

ÞÑI Y
r

ÞÑV Y
r

ÞÑC Y
r

ÞÑA.

Proof. See [13, Lemma 4.2].

Using this property, one can observe that any reduction sequence in ÞÑneed is organized
into clusters of the form ÞÑ˚

C ÞÑI or ÞÑ˚
A ÞÑV. More precisely:

Lemma 4.21 (Organization of ÞÑneed reduction sequences).

ÞÑ
˚
need “ ppÞÑ

˚
C ÞÑIq Y pÞÑ

˚
A ÞÑVqq

˚
pÞÑ

˚
C Y ÞÑ

˚
Aq

Proof. Straightforward by induction on the number of ÞÑneed steps. �e key observation is
that, a�er �ring a ÞÑC step, only a step in ÞÑC Y ÞÑI may be �red. Similarly, a�er �ring a ÞÑA

step, only only a step in ÞÑA Y ÞÑV may be �red.

On the other hand, the weak call-by-need strategy W
ù given in Def. 4.2 has the same

syntax as Ariola et al.’s system but a di�erent set of rewriting rules. Indeed, recall that it is
de�ned as the union of the two rewrite rules below, closed by evaluation contexts:

pλx.tqL s
W
ùdb trxzssL

ExxxyyrxzvLs
W
ùlsv ExxvyyrxzvsL

3Remark that Ariola et al. use let syntax (letx “ s in t) rather than explicit substitution syntax (trxzss), but
this is only a change of notation.
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�e set of terms de�ned by the grammar Nw
ϑ ::“ vL | Exxxyy for x P ϑ characterizes the set of

normal forms with respect to the weak call-by-need strategy.

It is quite straightforward to deduce that W
ù is included in ÞÑneed, in particular, a db step

(resp. lsv) step translates to a ÞÑ˚
C ÞÑI cluster (resp. ÞÑ˚

A ÞÑV cluster). �ese clusters in fact
characterize W

ù.

Lemma 4.22 (Decomposition of W
ù).

W
ù “ pÞÑ

˚
C ÞÑIq Y pÞÑ

˚
A ÞÑVq

Proof.

(Ď) �e inclusion W
ù Ď pÞÑ˚

C ÞÑIq Y pÞÑ
˚
A ÞÑVq is proved by cases on the kind of redex

contracted.

1. db redex
Expλx.tqL sy ÞÑ˚

C Exppλx.tq sqLy ÞÑI ExtrxzssLy

2. lsv redex

ExE1xxxyyrxzvLsy ÞÑ˚
A ExE1xxxyyrxzvsLy ÞÑV ExE1xxvyyrxzvsLy

(Ě) �e inclusion pÞÑ˚
C ÞÑIq Y pÞÑ

˚
A ÞÑVq Ď

W
ù follows from the remarks stated below and

determinism of ÞÑneed (Prop. 4.20).

t ÞÑI s implies t ÞÑdb s

t ÞÑV s implies t ÞÑlsv s

t ÞÑC s implies Ds1. ps ÞÑ˚
C ÞÑIs

1q ^ pt ÞÑdb s
1q

t ÞÑA s implies Ds1. ps ÞÑ˚
A ÞÑVs

1q ^ pt ÞÑlsv s
1q

�e Conservativity principle states that our strong call-by-need strategy is conservative
with respect to W

ù, i.e. that t W
ù s implies t S

ù s. More precisely, let ϑzWù stand for ϑ
ù z

W
ù.

�en we have:

�eorem 4.23 (Conservativity — ♣ �m. A.50). If t0
ϑ

ù t1
ϑ

ù . . . tn´1
ϑ

ù tn there exists

an 1 ď i ď n such that the three following conditions hold:

1. t0
W
ùt1

W
ù . . . tn´1

W
ùti

2. ti
ϑzW
ù ti`1

ϑzW
ù . . . tn´1

ϑzW
ù tn

3. If i ă n, then tj P N
w
ϑ for all i ď j ď n.

Proof. See the appendix.
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As a corollary of �m. 4.23 and Lem. 4.22, we deduce that our strategy ϑ
ù has Ariola et

al.’s notion of weak call-by-need reduction as a pre�x.

Corollary 4.24. If t p
ϑ

ùq˚ s then there is a term u such that

t ppÞÑ˚
C ÞÑIq Y pÞÑ

˚
A ÞÑVqq

˚ u p
ϑzW
ùq

˚ s

Moreover, if s P Nϑ, then u is a normal form for ÞÑneed up to a �nite number of ÞÑCY ÞÑA steps.

Correctness

To conclude this section, we remark that the strong call-by-need strategy ϑ
ù is correct with

respect to β-reduction:

Proposition 4.25 (Correctness). If t
ϑ

ù s then t˛ “β s
˛
.

Proof. Observe that ϑ
ùdb and ϑ

ùlsv (cf. Def. 4.13) are instances ofÑdb andÑlsv respectively
(cf. Def. 4.4), so if t ϑ

ù s then we have that tÑsh s. Moreover, it is a straightforward exercise
to show that the �eory of SharingÑsh is correct, i.e. that tÑsh s implies t˛ “β s˛.

4.3 Completeness of Strong Call-by-Need

�is section is devoted to the proof of the Completeness principle for our strong call-by-need
strategy. Recall that by completeness we mean completeness with respect to β-reduction, in
the sense that whenever a term t admits a β-normal form s in the λ-calculus, then the strategy
S

ù computes a normal form u, and the normal forms are in a precise correspondence, more
speci�cally u˛ “ s.

A �rst completeness result for weak call-by-need is found in Ariola et al. [13]. �eir proof
makes use of various syntactical tools such as sharing, residual theory and standardization.
A more abstract proof has been developed more recently by Kesner [86]. Kesner shows that
every λ-term that can be reduced to a weak head normal-form is typable in an appropriate
typing system with intersection types, and that every typable term is normalizing in the weak
call-by-need calculus. Here we adopt similar ideas in order to develop a completeness proof
for strong call-by-need.

Suppose that t “β s are interconvertible terms in the λ-calculus, and suppose that s is a β-
normal form. �en by con�uence of the λ-calculus we have a reduction t�β s. Completeness
of the strong call-by-need strategy would mean that there exists a term u such that t ϑ

ù˚ u

and u˛ “ s. To prove this, we decompose the proof of completeness of the strategy in two
parts:

1. Completeness of the �eory of Sharing. First, we prove that the �eory of Sharing
Ñsh is complete with respect to β-reduction. �is entails that there is a term r such that
t�sh r and r˛ “ s.
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2. Factorization of the �eory of Sharing. Second, we prove that any reduction in the
�eory of SharingÑsh may be factorized as a pre�x of external steps (i.e. a sequence of
steps in the strategy ϑ

ù) followed by a su�x of internal steps which preserve unfolding.
�is entails that there is a term u such that t ϑ

ù˚ u and such that u˛ “ r˛ “ s.

�e decomposition is depicted graphically in Figure 4.1.

(a) t

ϑ
����

β // // nfβ

nfϑ ˛

NN
Completeness of strong call-by-need

If t�β s P NFpÑβq then there exists a term u

such that t ϑ
ù˚ u P Nϑ and u˛ “ s, where

ϑ “ fvptq. (See �m. 4.55).

(b) t

sh     

β // // nfβ

nfsh

˛

OO
Completeness of the �eory of Sharing

If t�β s P NFpÑβq then there exists a term u

such that t�sh u P NFpÑshq and u˛ “ s. (See
Prop. 4.45).

(c) t

ϑ
����

sh

## ##
nfϑ ˛

nfsh

Factorization of the �eory of Sharing

If t�sh s P NFpÑshq then there exists a term
u such that t ϑ

ù˚ u P Nϑ and u˛ “ s˛, where
ϑ “ fvptq. (See Prop. 4.54).

Figure 4.1: Decomposition of the proof of Completeness: (a) is implied by (b) and (c)

�e �rst step, i.e. the proof of completeness of the �eory of Sharing, relies on a type sys-
tem called HW , introduced by Kesner and Ventura in [91]. System HW is based on the tech-
nology of non-idempotent intersection types. It extends Gardner–De Carvalho’s system [58, 34]
to include terms with explicit substitutions trxzss, besides pure λ-terms. Our proof of com-
pleteness follows closely Kesner’s proof of completeness for weak call-by-need [86], extending
it to the �eory of Sharing.

�e fundamental property of intersection type systems is that they characterize normal-
ization. In particular, non-idempotent intersection type systems may be formulated in such
a way that they characterize weak normalization, i.e. a term has a normal form if and only if
it is typable in a non-idempotent intersection type system. �e key observation by Kesner is
that the proof of completeness, relating weak normalization in two di�erent calculi (in our
case, reduction in the λ-calculus (Ñβ), and in the �eory of Sharing (Ñsh)), may be simpli�ed
by relating, on one hand, weak normalization in each of the calculi with, on the other hand,
typability in system HW . More precisely, this allows us to decompose completeness of the
�eory of Sharing into two implications:

1. If a term t has a normal form in the λ-calculus, i.e. t P WNpÑβq, then t is typable in HW .
Moreover, the typing judgment Γ $ t : τ veri�es a structural condition, namely it has
no positive occurrences of the empty type.

2. If a term t is typable in HW and the judgment veri�es the same structural condition as
above, then t has a normal form in the �eory of Sharing, i.e. t P WNpÑshq.
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By composing the implications we conclude that if t has aÑβ-normal form in the λ-calculus
then t has aÑsh-normal form in the �eory of Sharing, recovering (most of) the completeness
result.

�e following subsections are organized as follows:

• In Section 4.3.1, we recall the non-idempotent intersection type system HW from [91].
Furthermore, we prove a result relating weak normalization in the �eory of Sharing
with typability in HW .

• In Section 4.3.2, we prove completeness of the �eory of Sharing, as displayed in Fig-
ure 4.1(b). As described above, the proof uses typability in HW as a stepping stone.

• In Section 4.3.2, we prove a factorization result for the �eory of Sharing, as displayed in
Figure 4.1(c). If we write  ϑ

ÝÝÑsh forÑsh z
ϑ

ù, the proof is based on repeatedly swapping
pairs steps of steps t  ϑ

ÝÝÑsh
ϑ

ù s such that they become of the form t
ϑ

ù�shs.

4.3.1 �e Non-Idempotent Intersection Type System HW
In contrast to simple types, intersection types are powerful enough to characterize termina-
tion properties: a λ-term has a head normal form if and only if it is typable in a suitable
intersection type system. �at means, in particular, that a head normalizing term like λx.xx,
which is not typable in the simply typed λ-calculus, is typable in certain type systems with
intersection types.

�is is done by introducing a new type constructor (^), representing type intersection,
together with a corresponding set of typing rules. For instance, in these systems the term
λx.xx can be given the type ppτ Ñ τq ^ τq Ñ τ in such a way that the �rst (resp. second)
occurrence of the variable x is typed with τ Ñ τ (resp. τ ). Typically, intersection is declared
to be commutative (i.e. τ ^ σ ” σ ^ τ ), associative (i.e. pτ ^ σq ^ ρ ” τ ^ pσ ^ ρq) and
idempotent (i.e. τ ^ τ ” τ ).

In non-idempotent intersection type systems [58], intersection is not declared to be idem-
potent, i.e. τ ^ τ ı τ . �ese non-idempotent types allow giving types to terms according
to a resource aware semantics. �e informal idea behind the resource aware semantics is that
a term of type τ1 ^ . . . ^ τn can be understood as a resource that must be used exactly n
times, once with type τi for each 1 ď i ď n. Dually, a term of type pτ1 ^ . . . ^ τnq Ñ ρ

is a function that uses its argument exactly n times, once with type τi for each 1 ď i ď n.
Non-idempotent intersection type systems also provide a simple formal framework to reason
about termination properties: in particular, in these systems correctness results are usually
proved by simple inductive arguments rather than with more intricate arguments typical of
their idempotent counterparts.

From a formal point of view, the result of applying a commutative, associative and non-
idempotent binary operation to a collection of elements can be represented by a multiset of
elements, which provides a very convenient notation to manipulate them. We denote �nite
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multisets with brackets, so that r s denotes the empty multiset and rσ, σ, τ s denotes a multi-
set having two occurrences of the element σ and one occurrence of τ , corresponding to the
intersection type σ ^ σ ^ τ . In this system, we write ` for the (additive) union of multisets
and Ď for multiset inclusion. Below we recall the intersection type system HW from [91].

De�nition 4.26 (Syntax of HW). Given a countable in�nite set B of base types α, β, γ, . . . the
set of types and multisets of types are de�ned mutually inductively by the following grammar:

Types τ, σ, ρ ::“ α |MÑ τ

Multisets of types M ::“ rτisiPI where I is a �nite set

�e empty multiset r s plays the rôle of the universal ω type in [40]. �e types are strict [39,
139], that is, the right-hand sides of function types are never multisets.

A type assignment or typing context, ranged over by Γ,∆, etc., is a function mapping vari-
ables to multiset types. �e domain of Γ is de�ned by dompΓq :“ tx | Γpxq ‰ r su. We assume
that typing contexts have �nite domain.

�e union of typing contexts, wri�en Γ`∆, is the typing context de�ned by pΓ`∆qpxq :“

Γpxq`∆pxq, where the symbol` denotes the additive union of multisets. Note that dompΓ`
∆q “ dompΓq Y domp∆q. We write Γ‘∆ to stand for Γ`∆ whenever dompΓq and domp∆q

are disjoint. We write Γ `iPI ∆i to abbreviate Γ `
ř

iPI ∆i. �e inclusion between typing

contexts, wri�en Γ Ď ∆, is de�ned to hold if for every variable x we have that Γpxq Ď ∆pxq.

For example px : rσs, y : rτ sq ` px : rσs, z : rσsq “ x : rσ, σs, y : rτ s, z : rσs, and
x : rσs Ď x : rσ, σs, y : ρ.

De�nition 4.27 (�e HW type system, [91]). Typing judgments are of the form Γ $ t : τ ,
where Γ is a typing context, t is a term and τ is a type. �e HW-type system is given by the
following rules:

t-var
x:rτ s $ x : τ

Γ $ t : rσisiPI Ñ τ p∆i $ s : σiqiPI
t-app

Γ`iPI ∆i $ t s : τ

Γ‘ px : Mq $ t : τ
t-lam

Γ $ λx.t : MÑ τ

Γ‘ px : rσisiPIq $ t : τ p∆i $ s : σiqiPI
t-sub

Γ`iPI ∆i $ trxzss : τ

Note that the axiom typing rule (t-var) is relevant, in the sense that no extra hypotheses
besides the fact that x has type τ are allowed in the typing context. In proof-theory jargon,
there is no weakening. Moreover, in the rules for application (t-app) and substitution (t-sub),
the typing context of the conclusion is obtained by joining all of the typing contexts in the
premises. In proof-theory jargon, these rules are multiplicative, i.e. there is no contraction

4.
�ese characteristics of the type system are consistent with the resource aware interpretation
of the calculus.

In line with the resource aware interpretation, the typing context Γ in a judgment Γ $ t : τ

can be understood as follows: given a variable x, each element in the multiset Γpxq concerns
4Weakening is the logical rule that allows including unused hypotheses in the context. Contraction is the

logical rule that allows con�ating repeated occurrences of a hypothesis in the context.
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one potential use of this variable in the computation of t. �is informal description helps in
understanding the rules pt-appq and pt-subq, in which several typing judgments are required
in the premises for the term s. Each of typing judgment concerns one of the potential uses of
s in the computation of the whole term. A particular case of the rules pt-appq and pt-subq is
when I “ ∅, i.e. there is no potential use of s: the subterm s occurring in the typed term t s

(resp. trxzss) does not need to be typed.

By restricting the HW-system to λ-terms, so that it only contains the rules pt-varq,
pt-lamq, and pt-appq, we obtain the system presented in [58, 34], which we call here λ-type

system. Following we recall the usual de�nition of type derivation:

De�nition 4.28 (Derivations). A (type) derivation is a �nite tree obtained by applying the
inductive rules of the type system. We write Φ B Γ $ t : τ if Φ is a derivation typing t, i.e.

ending in the type judgment Γ $ t : τ . We write Φ Bλ Γ $ t : τ if, moreover, Φ is a valid
derivation in the λ-type system. A derivation Φ1 is an immediate subderivation of Φ if, seen
as trees, Φ1 is one of the children of Φ. A term t is typable if there is a derivation typing t. �e
size of a type derivation Φ is a natural number sizepΦq denoting the number of nodes of the
tree Φ.

�e following is an example of a type derivation in the system HW .

Example 4.29 (A type derivation inHW). Let Ω denote the non-terminating term pλz.zzqpλz.zzq.

Moreover, let τ “ rσs Ñ σ, where σ is an arbitrary type. Let π be the following derivation:

x : rτ s $ x : rσs Ñ σ
t-var

x : rσs $ x : σ
t-var

x : rτ, σs $ xx : σ
t-app

x : rτ, σs $ λy.xx : r s Ñ σ
t-lam

x : rτ, σs $ pλy.xxqΩ : σ
t-app

�en we have that:

.

.

.

π z : rτ s $ z : τ
t-var

z : rσs $ z : σ
t-var

z : rτ, σs $ ppλy.xxqΩqrxzzs : σ
t-sub

Suppose that a typing judgment of the form Γ $ t : σ is derivable in HW . In contrast
with what happens in more traditional type systems, the free variables of t do not necessarily
appear in the domain of Γ. For example, x : rσs $ pλy.xqz : σ is derivable in HW but
z R dompΓq. However, HW does enjoy the following property. From the logical point of
view, it states that all the assumptions in the typing context are used at least once:

Lemma 4.30 (Relevance). If there is a derivation ΦB Γ $ t : σ then dompΓq Ď fvptq.

Proof. Straightforward by induction on the derivation of the judgment Γ $ t : σ.
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It is also worth noticing that not every typable term reduces to a β-normal form. An
example is the term xp∆∆q, where ∆ “ λy.yy, for which there is a type derivation ending
with x : rr s Ñ αs $ xp∆∆q : α. In order to characterize weak β-normalization by means of
typability we need to restrict the types and the type contexts to those that do not have positive
occurrences of the constant r s. To do so, we introduce the following notion of positive and
negative occurrences of a type.

De�nition 4.31 (Positive and negative occurrences of types). �e set of types that occur
with sign b P t`,´u in a type σ (resp. in a multiset of types M, in a context Γ, and in a
pair of context and type pΓ, σq) is wri�en Obpσq (resp. ObpMq, ObpΓq, and ObpΓ $ σq).
�e set O`pXq is the set of types that occur positively in X and O´pXq is the set of types
that occur negatively inX . We write O˘pXq for either O`pXq or O´pXq and O¯p...q for the
opposite set in a given rule. All of these sets are de�ned mutually inductively by the following
conditions, where T denotes either a type or a multiset of types:

σ P O`
pσq M P O`

pMq

T P O˘
pσiq I ‰ ∅

T P O˘
prσisiPIq

T P O¯
pMq

T P O˘
pMÑ τq

T P O˘
pτq

T P O˘
pMÑ τq

y P dompΓq T P O¯
pΓpyqq

T P O˘
pΓq

T P O˘
pΓq

T P O˘
pΓ $ τq

T P O˘
pτq

T P O˘
pΓ $ τq

Example 4.32 (Positive and negative occurrences). �e following hold:

• r s P O`pr sq

• r s P O´pr s Ñ σq

• r s P O`px : rr s Ñ σsq

• r s P O`px : rr s Ñ σs $ σq

It is an already known fact that the type system HW , restricted to contexts and types in
which there are no positive occurrences of the empty multiset rs, can be used to characterize
weakly normalizing terms of the λ-calculus:

�eorem 4.33 (Characterization of weakly normalizing terms in the λ-calculus). Let t be a

λ-term. �en the following are equivalent:

1. �e term is weakly normalizing, i.e. t P WNpÑβq.

2. �e judgment Γ $ t : τ is derivable in HW and r s R O`pΓ $ τq

Proof. A straightforward adaptation of [96] to the non-idempotent case. See [31] for details.
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Extending Typing to Contexts

As mentioned before, we use system HW as a tool to characterize the set of terms that are
weakly normalizing in the �eory of Sharing, in order to relate them with the set of terms
that are weakly normalizing in the pure λ-calculus. In order to be able to prove this result for
the �eory of Sharing, whose rules operate at a distance, a key technical tool is the extension
of the typing system given in Def. 4.27 with typing rules for substitution contexts.

If L is a substitution context, we write dompLq for the variables bound by L, and fvpLq for
the free variables of L, taking fvplq “ ∅. Moreover, we use the following notion of height:

De�nition 4.34. �e height of a substitution context is de�ned by:

heightplq
def
“ 1 heightpLrxztsq

def
“ heightpLq ` 1

De�nition 4.35 (Extension of HW for substitution contexts). �e type system HW is ex-
tended with typing judgments of the form Γ , LB∆, where Γ and ∆ are typing contexts and
L is a substitution context. �e le�-hand side Γ of a judgment Γ , LB∆ is a typing context
for the (typed) free variables of L, while the right-hand side ∆ is a typing context for the term
which will be plugged into the hole of L. �ere are two typing rules:

∅ , lB∅
Γ‘ x : rσisiPI , LB∆ x R dom∆ pΣk $ t : σkqkPIZJ

Γ`kPIZJ Σk , LrxztsB∆‘ x : rσjsjPJ

In the second rule, the sets of indices I and J are supposed to be disjoint.

Note that in the second type rule the context pΣiqiPI is used to type the copies of t associ-
ated with the free occurrences of x in the list L, while the context pΣjqjPJ is used to type the
copies of t associated with the free occurrences of x in the term which will �ll the hole of L.

Example 4.36. Let π be the following typing derivation for rxzyzs:

∅ , lB∅

.

.

.

y : rrγ1, γ2s Ñ αs, z : rγ1, γ2s $ yz : α

y : rrγ1, γ2s Ñ αs, z : rγ1, γ2s , rxzyzsB x : rαs

�en the following is a typing derivation for rxzyzsryzzs:

.

.

.

π z : rrγ1, γ2s Ñ αs $ z : rγ1, γ2s Ñ α z : rβs $ z : β

z : rrγ1, γ2s Ñ α, β, γ1, γ2s , rxzyzsryzzsB x : rαs, y : rβs

�e following lemma states a few properties that may be easily proved by induction on L.

Lemma 4.37 (Properties of type derivations of substitution contexts).

1. If Γ , LB∆ then dompΓq Ď fvpLq and domp∆q Ď dompLq.
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2. �ere is a derivation ΦtL B Λ $ tL : σ if and only if there are contexts Γ,∆,Π such that

Λ “ Γ`Π, and there are derivations ΦL B Γ , LB∆ and Φt B∆; Π $ t : σ. Moreover,

sizepΦLrtsq “ sizepΦLq ` sizepΦtq ´ 1.

3. If pΦj
L B Γj , L B ∆jqjPJ , then ΦL B `jPJΓj , L B `jPJ∆j . Moreover, sizepΦLq “

`jPJsizepΦ
j
Lq ´ pheightpLq ¨ p|J | ´ 1qq.

�e second item of the lemma allows one to decompose the type derivation of a term tL

into two type derivations, one for the context L and another one for the term t. Reciprocally,
context and term derivations can be combined if their types coincide.

On the other hand, the third item of the lemma states that combining di�erent derivable
typing judgments of the same substitution context by means of multiset union yields a deriv-
able typing judgment. Moreover, their sizes can be related using the notion of height. Observe
that the statement includes the case J “ ∅.

Typability Implies Normalization

Our goal is now to show that terms typable in system HW are weakly normalizing in the
�eory of Sharing. �e key technical result is the property known as weighted subject reduc-

tion. Recall that, in traditional type systems such as the simply typed λ-calculus, the subject

reduction property states that evaluation preserves types. More precisely, if there is a typing
derivation Φ B Γ $ t : τ and a reduction step t Ñ t1 then there is also a typing deriva-
tion Φ1 B Γ $ t1 : τ . �e weighted subject reduction property states that, assuming further
appropriate conditions on the step tÑ t1, one may also ensure that sizepΦq ą sizepΦ1q.

In our case, we will be able to ensure that the size of the derivation decreases as long as
we select a step t Ñ t1 contracting a typed redex. Intuitively, from the point of view of the
resource aware interpretation, a redex is typed if it lies inside a subterm that will be used at
some point in the evaluation of t5. For example, the underlined redex R : fppλx.xqyq Ñ f y

is typed if the type of the function f is, say, rαs Ñ α, whereas the redex R is untyped if the
type of the function f is, say, rs Ñ α.

To de�ne this more precisely, we introduce the notion of typed occurrences of a term (ab-
breviated as T-occurrences). Intuitively, a typed occurrence of t is a position identifying a
subterm that will be used at some point in the evaluation of t. We start by recalling the notion
of position:

De�nition 4.38 (Positions of a term). �e set of positions of a term t, wri�en posptq, is the
set of �nite words over the alphabet t0, 1u, inductively de�ned as follows:

ε P posptq

p P posptq

0p P pospλx.tq

p P posptq

0p P posptsq

p P posptq

1p P pospstq

p P posptq

0p P posptrxzssq

p P posptq

1p P pospsrxztsq

�e set of positions of a context C is de�ned similarly. �e subterm of t (resp. C) at position p
is wri�en t|p (resp. C|p) and de�ned as expected.

5In fact, these intuitions can be formalized; see for example [90].
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For example, given t “ xrzzz1spλy.yq and C “ pλx.lqyz, we have that the sets of positions
are posptq “ tε, 0, 00, 01, 1, 10u and pospCq “ tε, 0, 00, 000, 01, 1u. Moreover, t|1 “ λy.y and
C|000 “ l.

De�nition 4.39 (T-occurrence). Suppose given a derivation Φ B Γ $ t : τ . A position
p P posptq is a T-occurrence of t in Φ if either p “ ε, or p “ ip1 pi “ 0, 1q and p1 P pospt|iq is
a T-occurrence of t|i in some of the immediate subderivations of Φ. A redex occurrence of t
which is a T-occurrence of t in Φ is said to be a redex T-occurrence of t in Φ.

For example, given the following derivation Φ1, we have that ε, 0, 1 and 10 are T-occurrences
of xpyzq in Φ1, while 11 is not a T-occurrence of xpyzq in Φ1.

Φ1 B
x:rrτ, τ s Ñ τ s $ x : rτ, τ s Ñ τ

y:rr s Ñ τ s $ y : r s Ñ τ

y:rr s Ñ τ s $ yz : τ

y:rr s Ñ τ s $ y : r s Ñ τ

y:rr s Ñ τ s $ yz : τ

x:rrτ, τ s Ñ τ s, y:rr s Ñ τ, r s Ñ τ s $ xpyzq : τ

Note that if an occurrence of a variable x is a T-occurrence of t in Φ, then x occurs free in
t. Given ΦBΓ $ t : τ , the no-redex-occurrences predicate Apt,Φq holds if and only if t has no
sh-redex T-occurrences in Φ.

�e following lemma studies the relation between typing derivations and the substitution
of a single occurrence of a variable by a term, namely a typing derivation for Cxxtyy may be
constructed by combining a typing derivation for Cxxxyy and typing derivations for t.

Lemma 4.40 (Partial Substitution). If ΦCxxxyy B x:rσisiPI ; Γ $ Cxxxyy : τ and pΦi
u B ∆i $ u :

σiqiPI then ΦCxxuyyBx:rσisiPIzK ; Γ`kPK ∆k $ Cxxuyy : τ , for someK Ď I where sizepΦCxxuyyq “

sizepΦCxxxyyq `kPK sizepΦk
uq ´ |K|. Moreover, if p P pospCq is the occurrence of the hole in C

and p is a T-occurrence of Cxxxyy in ΦCxxxyy, then K ‰ ∅.

Proof. By induction on the typing derivation ΦCxxxyy.

Using this tool we are able to prove the following key result:

Lemma 4.41 (Weighted Subject Reduction for sh). Let Φ B Γ $ t : τ . If t Ñsh t
1

reduces a

sh-redex T-occurrence of t in Φ, then there exists Φ1 such that Φ1 B Γ $ t1 : τ and sizepΦq ą

sizepΦ1q.

Proof. By induction on the context under which the step t Ñsh t
1 takes place. �e inductive

cases are straightforward by i.h.. �e interesting case is the base case, when the step takes
place at the root. �en we consider three subcases, depending on the kind of redex contracted.

1. db step, i.e. t “ pλx.uqLs Ñdb urx{ssL “ t1. �en the reduction concerns a db-redex
T-occurrence of t in Φ. �en one may show Φ1 B Γ $ t1 : τ and sizepΦq ą sizepΦ1q

by induction on L.
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2. lsv step, i.e. t “ Cxxxyyrx{uLs Ñlsv Cxxuyyrx{usL “ t1. �en the derivation Φ has the
following form, where Γ “ Γ0 `iPI ∆i.

ΦCxxxyy B x : rσisiPI ; Γ0 $ Cxxxyy : σ
`

Φi
uL B∆i $ uL : σi

˘

iPI

Γ0 `iPI ∆i $ Cxxxyyrx{uLs : σ

By Lem. 4.37, for all i P I , there exist Πi
1,Π

i
2,Π

i
3 such that Φi

L B Πi
1 , L B Πi

2, Φi
u B

Πi
2; Πi

3 $ u : σi and ∆i “ Πi
1 ` Πi

3.
From the derivations ΦCxxxyy and pΦi

uqiPI we get, by Lem. 4.40, a derivation ΦCxxuyy B x :

rσisiPIzK ; Γ0 `kPK pΠ
k
2; Πk

3q $ Cxxuyy : σ for some K Ď I . So we can construct the
following derivation ΦCxxuyyrx{us.

ΦCxxuyy

`

Φi
u

˘

iPIzK

Γ0 `kPK pΠ
k
2; Πk

3q `iPIzK pΠ
i
2; Πi

3q $ Cxxuyyrx{us : σ

�e last sequent can be wri�en Γ0 ` p`iPIΠ
i
2;`iPIΠ

i
3q $ Cxxuyyrx{us : σ.

We thus apply Lem. 4.37 to pΦi
LqiPI and we get ΦLB`iPIΠi

1 , LB`iPIΠi
2. We can thus

apply Lem. 4.37 to ΦL and ΦCxxuyyrx{us, obtaining Φ1BΓ0`iPI Π1
1`iPI Πi

3 $ Cxxuyyrx{usL :

σ.
We can then conclude with the �rst statement since Γ0`iPIΠ1

1`iPIΠi
3 “ Γ0`iPI∆i “ Γ

as required. Moreover, for the second one, we assume that the reduction step concerns
a sh-redex T-occurrence of t in Φ. �en,

sizepΦq “ sizepΦCxxxyyq `iPI sizepΦ
i
uLq ` 1

“L. 4.37 sizepΦCxxxyyq `iPI psizepΦ
i
Lq ` sizepΦiuq ´ 1q ` 1

“ sizepΦCxxxyyq `iPI sizepΦ
i
Lq `iPI sizepΦ

i
uq ´ p|I| ´ 1q

“ Z ´ p|I| ´ 1q

and
sizepΦ1q “L. 4.37 sizepΦLq ` sizepΦCxxuyyrx{usq ´ 1

“ sizepΦLq ` sizepΦCxxuyyq `iPIzK sizepΦiuq ` 1´ 1

“ sizepΦLq ` sizepΦCxxuyyq `iPIzK sizepΦiuq

“L. 4.40 sizepΦLq ` sizepΦCxxxyyq `kPK sizepΦkuq ´ |K| `iPIzK sizepΦiuq

“L. 4.37 `iPIsizepΦ
i
Lq ´ rheightpLq ¨ p|I| ´ 1qs ` sizepΦCxxxyyq `iPI sizepΦ

i
uq ´ |K|

“ sizepΦCxxxyyq `iPI sizepΦ
i
Lq `iPI sizepΦ

i
uq ´ rheightpLq ¨ p|I| ´ 1qs ´ |K|

“ Z ´ rheightpLq ¨ p|I| ´ 1qs ´ |K|

We know by Lem. 4.40 that K ‰ ∅. �erefore, |I| ´ 1 ď heightpLq ¨ p|I| ´ 1q so that
Z ´ p|I| ´ 1q ě Z ´ rheightpLq ¨ p|I| ´ 1qs ą Z ´ rheightpLq ¨ p|I| ´ 1qs ´ |K|. We
thus conclude sizepΦq ą sizepΦ1q as required.

3. gc step. Immediate.

We now relate the notions of T-occurrence and sh-normal form, before concluding with
the main result of this subsection.
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Lemma 4.42. Let ΦBΓ $ t : τ such that r s R O`pΓ $ τq. �en Apt,Φq implies t P NFpÑshq.

Proof. Let Φ B Γ $ t : τ such that Apt,Φq. First show the following more general property
by induction on Φ.

1. If r s R O`pΓq, and t is not an answer, then t P S.

2. If r s R O`pΓ $ τq, and t is an answer, then t P N.

Moreover, x P fvptq implies x has some T-occurrence in Φ.
Now, suppose r s R O`pΓ $ τq. �us in particular r s R O`pΓq. If t is not an answer, then

one easily shows that t P S, which gives t P N since S Ď N; If t is an answer, then one easily
shows t P N. We conclude that t P NFpÑshq by Lem. 4.7.

�eorem 4.43 (Typability implies sh-normalization). Let Φ B Γ $ t : τ such that r s R

O`pΓ $ τq. �en t is weakly normalizing in the �eory of Sharing.

Proof. Let Φ B Γ $ t : τ such that r s R O`pΓ $ τq. By Lem. 4.41 and Lem. 4.42 we
can construct a �nite sh-reduction sequence which only reduces sh-redex T-occurrences, i.e.

there exist t0, t1, . . . , tn such that (1) t “ t0 and Φ “ Φ0, (2) Φi B Γ $ ti : τ , (3) ti Ñsh ti`1

reduces a sh-redex T-occurrences of ti in Φi, and (5) Aptn,Φnq holds. �is together with
r s R O`pΓ $ τq gives tn P NFpÑshq by Lem. 4.42. We thus conclude t P WNpÑshq.

4.3.2 Completeness of the �eory of Sharing

In this section we prove Fig. 4.1(b), that is completeness of the �eory of Sharing with respect
to β-reduction in the λ-calculus. Before doing so, we need to state a few basic properties of
unfolding.

Lemma 4.44. Let t, s P T be terms, possibly with explicit substitutions. �en:

1. If tÑsh s, then t˛ �β s
˛
.

2. If t P NFpÑshq, then t˛ P NFpÑβq.

Recall that NFpÑq stands for the set ofÑ-normal forms.

Proof. By induction on t.

Indeed, to illustrate the �rst point we have t “ yryzpλz.zzqpIIqs Ñdb yryzpzzqrzzIIss “

u and t˛ “ pλz.zzqpIIq Ñβ pIIq pIIq “ u˛, and to illustrate the second one we have t “
xryzIrw1zIssrzzIs P NFpÑshq and t˛ “ x P NFpÑβq.

We now conclude with the completeness result for the sh-calculus, cf. Fig. 4.1(b):

Proposition 4.45 (Completeness of the �eory of Sharing). If t �β s P NFpÑβq then there

exists a term u such that t�sh u P NFpshq and u˛ “ s.

Proof. Let t �β nfβ , where nfβ is in β-nf. �en Φ B Γ $ t : τ and r s R O`pΓ $ τq by
�m. 4.33. But then t is weakly sh-normalizing by �m. 4.43, so that t�sh nfsh, where nfsh is
in sh-nf. By Lem. 4.44(1) t˛ �β nf

˛
sh and by Lem. 4.44(2) nf˛sh P NFpÑβq. Since t˛ “ t�β nfβ

and t˛ �β nf
˛
sh, then we conclude nf˛sh “ nfβ becauseÑβ is CR.
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4.3.3 Factorization of the �eory of Sharing

In this section we prove Fig. 4.1(c), that is, factorization of the �eory of Sharing. For this, we
show that Ñsh reduction steps which are not ϑ

ù steps can always be postponed a�er ϑ
ù

reduction steps, that this postponement process terminates, and that, ultimately, all remaining
non- ϑ

ù steps are erasable by gc (and thus erased by the unfolding ˛). More precisely we
proceed in three stages:

t

ϑ

����

shzgc

�� ��

sh

$$ $$
nfϑ

 ϑ // //

gc

:: ::
s

gc // // nfsh

Figure 4.2: Decomposition of Fig. 4.1(c)

1. As a preliminary step, we get gc-steps out of the way: any Ñsh reduction sequence
can be factorized into aÑsh reduction sequence without gc-steps, which we call strict,
followed by a sequence of gc-steps (cf. ). �e relation of strict reduction is wri�en
Ñshzgc.

2. �en we prove a more involved commutation result: Ñsh-reductions without gc-steps
can be factored in two parts (cf. Prop. 4.51):

2.1 a sequence of external Ñsh-steps, which correspond to the strategy ϑ
ù

2.2 a sequence of internal Ñsh-steps, which are not in the strategy ϑ
ù, wri�en  ϑ

ÝÝÑsh.

�e proof relies on an abstract factorization result by Acca�oli [3]. We write  ϑ
ÝÝÑsh in-

stead ofÑsh for such internal steps. Two examples of internal steps are pxxqrxzIs  ϑÝÝÑsh

px IqrxzIs and pI xqrxzI Is  ϑ
ÝÝÑsh pI xqrxzzrzzIss, where we substitute a value for a

variable occurrence that is not focused, or evaluate a substitution whose bound variable
is not focused.

3. Finally, we show that internal steps that remain a�er the ϑ
ù-normal form is reached

only take place inside garbage substitutions, that are removed by the unfolding opera-
tion ˛ (cf. Lem. 4.53).
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Postponement of gc

In this subsection we show the reasonable observation that garbage collection steps can al-
ways be postponed to the end of a reduction sequence. Reduction steps (resp. sequences) that
do not use the gc-rule are called strict and are wri�enÑshzgc (resp.�shzgc).

Lemma 4.46 (Postponement of gc). If t �sh s, then there is u such that t �shzgc u �gc s.

Proof. �e proof is by exhaustive case analysis of the relative positions of a gc step followed
by a non-gc step, similar to other proofs of postponement of gc in the LSC (see for instance
Lem. 6.50).

Observe that the fact that s P NFpÑshq does not imply that u P NFpÑshzgcq in general.
Indeed, if we take t “ xryzΩs and s “ x, then u “ xryzΩs, which is not even normalizing for
Ñshzgc. �e actual relation of postponement of gc with normal forms is stated in Lem. 4.53.

Factorization of Strict Reduction

In this subsection, we show that a sequence of strict reduction steps Ñshzgc can always be
factorized as a sequence of steps in the strategy ( ϑ

ù) followed by steps which are not in
the strategy (  ϑÝÝÑsh). More precisely, we say that t1 reduces in a ϑ-internal step to t2, wri�en
t1

 ϑ
ÝÝÑsh t2, if and only if there is a step in the strict �eory of Sharing that is not a step in

the strong call-by-need strategy, i.e. t1 pÑshzgcz
ϑ

ùq t2. We sometimes call ϑ-internal steps
just internal steps if ϑ is clear from the context. Steps in the strategy ϑ

ù are called ϑ-external

steps (or just external steps).

�e proof of factorization is long and technical. We begin by recalling the de�nition of
square factorization system and an abstract factorization result due to Acca�oli [3]:

De�nition 4.47 (Square factorization system). A square factorization system is given by a set
X and four reduction relations pù‚,ù˝, ÞÑ‚, ÞÑ˝q such that:

1. Termination: ù˝ and ÞÑ˝ are strongly normalizing.

2. Row-swap 1: pù‚ù˝q Ď pù
`
˝ ù

˚
‚q.

3. Row-swap 2: pÞÑ‚ ÞÑ˝q Ď pÞÑ
`
˝ ÞÑ

˚
‚q.

4. Diagonal-swap 1: pÞÑ‚ù˝q Ď pù˝ ÞÑ
˚q.

5. Diagonal-swap 2: pù‚ ÞÑ˝q Ď pÞÑ˝ù
˚q.

with the following notation:

ù
def
“ pù‚ Yù˝q ÞÑ

def
“ pÞÑ‚ Y ÞÑ˝q

Ñ‚
def
“ pù‚ Y ÞÑ‚q Ñ˝

def
“ pù˝ Y ÞÑ˝q

Ñ
def
“ pÑ‚ Y Ñ˝q
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�eorem 4.48 (Abstract factorization, Acca�oli 2012). Let pù‚,ù˝, ÞÑ‚, ÞÑ˝q be a square

factorization system. �enÑ˚Ď pÑ˚
˝Ñ

˚
‚q.

Proof. See [3, �eorem 5.2].

Below we state the two main lemmas, Backward stability by internal steps and Postponement

of internal steps, whose full proofs may be found in the appendix (Section A.2.5). �e following
lemma states that important notions of the strong call-by-need strategy, such as answers,
normal forms, and evaluation contexts, are preserved by expansion via internal steps:

Lemma 4.49 (Backward stability by internal steps — ♣). Let t0
 ϑ
ÝÝÑsh t be a ϑ-internal step.

�en:

1. If t is an answer (resp. a db-redex) then t0 is also an answer (resp. a db-redex).

2. If t is a ϑ-normal form (resp. ϑ-structure) then t0 is also a ϑ-normal form (resp. ϑ-

structure).

3. If t “ Cxxxyy where C is a ϑ-evaluation context (resp. inert ϑ-evaluation context), then

t0 is also of the form C0xxxyy, where C0 is a ϑ-evaluation context (resp. inert ϑ-evaluation

context).

Proof. See Section A.2.5 in the appendix.

�e following key lemma states that an external step can be commuted before an internal
step. In particular, an internal step cannot create an external step (neither by creating a redex
in an external position, nor by turning an internal position into an external one).

Lemma 4.50 (Postponement of internal steps — ♣ Lem. A.73). Let fvpt0q Ď ϑ. If t0
 ϑ
ÝÝÑsh

t1
ϑ

ù t3, then there is a term t2 such that t0
ϑ

ù˚ t2 � ϑ
sh t3, where the reduction from t0 to t2

includes at least one step and the one from t2 to t3 has at most two steps.

Proof. �e proof is by induction on the evaluation context de�ning the external step and then
by case analysis on the position of the internal step relative to this evaluation context. See
Section A.2.5 in the appendix.

Proposition 4.51 (External–internal factorization). Let fvptq Ď ϑ. If t�shzgc r then there is

u such that t
ϑ

ù˚ u� ϑ
sh r.

Proof. �is is a consequence of �m. 4.48 and Lem. 4.50. Indeed, by the construction given
in the proof of Lem. 4.50 one has that p  ϑÝÝÑshdb,

ϑ
ùdb,

 ϑ
ÝÝÑshlsv,

ϑ
ùlsvq forms a square fac-

torization system, taking ϑ
ùdb (resp. ϑ

ùlsv) to be the external db (resp. lsv) reduction, and
 ϑ
ÝÝÑshdb (resp.  ϑÝÝÑshlsv) to be the internal db (resp. lsv) reduction.
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Erasure of Final Internal Steps

�e previous two subsections ensure that anyÑsh reduction sequence can be factored into a
ϑ

ù reduction pre�x followed by internal or gc steps. Here we further show that if the Ñsh

reduction sequence reaches a Ñsh-normal form, then all the internal steps factored out by
Prop. 4.51 can be erased by gc steps.

Lemma 4.52 (Inclusion of normal forms). Let ϑ, t be such that fvptq Ď ϑ. If t P NFpÑshq, then

t P NFp
ϑ

ùq.

Proof. �is is immediate since ϑ
ù ĎÑsh.

Lemma 4.53 (Normal forms modulo internal and gc steps). Let ϑ, t be such that fvptq Ď ϑ.

1. If tÑgc nfϑ with nfϑ P NFp
ϑ

ùq then t P NFp
ϑ

ùq.

2. If t
 ϑ
ÝÝÑsh nfϑ with nfϑ P NFp

ϑ
ùq then t P NFp

ϑ
ùq and there is u such that t�gc u and

nfϑ�gc u.

Diagrammatically, see Fig. 4.2.

Proof. We show that the following conditions are equivalent for any term t such that fvptq Ď
ϑ. �ey imply items (1) and (2) of this lemma: (i) t is a ϑ

ù-normal form, (ii) Ógc ptq is a Ñsh-
normal form, (iii) t ” ϑ s for some s P NFpÑshq, (iv) t ” ϑ s for some s P NFp

ϑ
ùq. Here

” ϑ stands for the least equivalence relation containingÑgcY
 ϑ
ÝÝÑsh.

As an example of this lemma, consider the sequence xryzzrzzIss  ϑÝÝÑsh xryzIrzzIssÑgcx.
All three terms are in NFp

ϑ
ùq: this is straightforward for x, and due to the fact that the

substitution is garbage for the two others. Moreover, although we do not have xryzzrzzIssÑgc

xryzIrzzIss, both terms reduce in one gc-step to the same term x.

�e results in this section can now be assembled to complete the argument outlined in
Fig. 4.2 to prove Fig. 4.1(c):

Proposition 4.54 (Factorization of the �eory of Sharing). Let ϑ “ fvptq. If t �sh s P

NFpÑshq, then there exists a term u P NFp
ϑ

ùq such that t
ϑ

ù˚ u and u˛ “ s˛. (More precisely,

u �gc s).

Proof. Combining postponement of gc (Lem. 4.46), the external–internal factorization result
(Prop. 4.51), and Lem. 4.53.

Finally, we obtain the full completeness theorem of Fig. 4.1(a):

�eorem 4.55 (Completeness of ϑ
ù with respect to β-reduction). Let ϑ “ fvptq. If t�β s P

NFpÑβq then there exists a term u P NFp
ϑ

ùq such that t
ϑ

ù˚ u and u˛ “ s.

Proof. Immediate, combining Prop. 4.45 and Prop. 4.54 as described in Fig. 4.1.



Chapter 5

Strong Call-by-Need for Pattern

Matching and Fixed Points

5.1 Introduction

�is chapter is devoted to generalizing the strong call-by-need strategy of the preceding chap-
ter (Chapter 4) to the Extended λ-Calculus of Grégoire and Leroy [67], and which they call
the “type-erased λ-calculus”. �e extended λ-calculus, denoted λe, extends the lambda calcu-
lus with constants, pa�ern matching and �xed-points.

Here is an example of a term in λe that computes the length of a list encoded with constants
nil and cons:

fix pl. λxs. case xs of pnilñ zeroq ¨ pcons hd tl ñ succ pl tlqqq

�e Extended Lambda Calculus is a subset of Gallina, the speci�cation language of the Coq
proof assistant. Grégoire and Leroy [67] study mechanisms for implementing strong reduc-
tion in λe in order to apply it to check type conversion. �ey propose a notion of strong
reduction for λe on open terms, i.e. terms possibly containing free variables, called symbolic

call-by-value. Symbolic call-by-value iterates call-by-value, accumulating terms for which
computation cannot progress. No notion of sharing is addressed. Indeed, unnecessary com-
putation may be performed. For example, consider the following λe term, where I abbreviates
the identity term λz.z:

case c pI Iq of cxñ d (5.1)

�is term is a case expression that has condition c pI Iq and branch cx ñ d, the pa�ern of
the branch being cx and the target d. Notice that the branch does not make use of x in the
target. However, symbolic call-by-value contracts the redex I I since the argument of c must
be a value before selecting the matching branch.

In this chapter, we propose a strong call-by-need strategy that generalizes the strong call-
by-need strategy of the previous chapter to the se�ing of the extended λ-calculus. Informally:

strong call-by-need (Chapter 4)
λ-calculus ::

extended strong call-by-need (this chapter)
extended λ-calculus ([67])

160
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�e development of the extended strong call-by-need strategy is split into three steps:

�e Extended �eory of Sharing Ñe
sh. �e �rst step in this chapter is introducing the

Extended �eory of Sharing λesh. �is theory generalizes Def. 4.4 to deal with case constructs
and �xed points.

�e Extended Non-Idempotent Intersection Type System HWe
. �e second step

in this chapter is to adapt the non-idempotent intersection type system HW to an extended
non-idempotent intersection type system HWe that characterizes weakly normalizing terms
in the extended theory of sharingÑe

sh.
It turns out that it is relatively easy to extend HW to deal with �xed points. �e challenge

lies in dealing with case constructs. For example, consider the term:

case c of pcñ dq ¨ pdñ Ωq

It will evaluate to d and hence should be typable in the extended non-idempotent intersection
type system HWe. Since Ω does not participate at all in computing d, there is no need for
HWe to account for it. �us our proposed typing rules will only type branches that are
actually used to compute the normal form. �is, however, raises the question of what happens
with case expressions that are “blocked”. For example, in an expression such as:

case c of pdñ dq ¨ peñ eq

all the subexpressions are part of the normal form and hence should be typed. Our proposed
typing rule shall ensure this, thus avoiding typing terms such as:

case c of pdñ dq ¨ peñ Ωq

where, although matching is blocked, have no strong normal form in λe or λesh. Since blocked
case expressions could be applied to arguments, further considerations are required. Consider
the term:

pcase c of dñ dqΩ

It does not have a normal form in λe or λesh and hence should not be typable. To ensure that,
we need the type assigned to this term to provide access to the types of the arguments to
which it is applied, namely Ω, so that constraints on these types may be placed. In other
words, we need to devise HWe such that it gives case c of pd ñ dqΩ a type that includes

that of Ω. �is would enable us to state conditions that do not allow this term to be typed but
do allow a term such as pcase c of dñ dq e to be typed. �is motivates our notions of error

type and error log.
�e above examples were all closed terms. Open terms pose additional problems. Consider

the term:
case x of pcñ dq ¨ peñ Ωq
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Although it does not have a normal form in λesh, it is typable with type d in the typing context
in which x : rcs. Note, moreover, that the empty multiset of types does not occur in the
type of x (in fact, it meets all the requirements of [87]). �e reason it is typable is that Ω is
never accounted: since x is known to have type rcs, only the c ñ d branch is typed. Hence
some restrictions on the types of free variables must be put forward—variables cannot be
assigned any type. In particular, it seems we should not allow constant types such as c to
occur positively in the types of free variables. Indeed, we will require that constant types do
not occur positively in the typing context and negatively in error logs and in the predicate.
Note that constants can occur negatively in the types of variables. �is allows terms such as
x c to be typable.

One �nal consideration is that collecting all the requirements, both on empty multiset
types and type constants, should still allow weakly normalizing terms in λe to be typable in
HWe. We will see that this will indeed be the case.

As a closely related work, we should mention that in his PhD thesis [25], Bernadet pro-
poses a non-idempotent intersection type system for a calculus similar to the extended λ-
calculus, which includes �xed-points and case expressions. However, his goal is to charac-
terize a subset of the strongly normalizing terms, while, in order to prove completeness of the
strong call-by-need strategy, we need to characterize all of the weakly normalizing terms.

�e Extended Strong Call-by-Need Strategy ùe
. As mentioned, reduction in the

theory of sharing may involve reducing redexes that are not needed. By restricting reduction
in Ñe

sh to a subset of the contexts where reduction can take place, we can ensure that only
needed redexes are reduced. We next illustrate, through an example, our call-by-need strategy.
�e strategy will be denoted ùe. Consider the term:

pcase pλy.x yqpI Iq of cñ dq pI cq

It consists of a case expression applied to an argument. �is case expression has a condition

pλy.x yqpI Iq, a branch cñ d with pa�ern c and target d, and is applied to an argument I c.
�e �rst reduction step for this term is the same as for weak call-by-need, namely reducing
the β-redex pλy.x yqpI Iq in the condition of the case. It must be reduced in order to determine
which branch, if any, is to be selected. �is β-redex is turned into px yqryzI Is. �e resulting
term is:

pcase px yqryzI Is of cñ dqpI cq

A weak call-by-need strategy would stop there, since the case expression is stuck. In the
strong case, however, reduction should continue to complete the evaluation of the term until
a strong normal form is reached. Both the body of the explicit substitution I I and also the
argument of the stuck case expression I c are needed to produce the strong normal form.
�us evaluation must continue with these redexes. �at these redexes are indeed selected and,
moreover, which one is selected �rst, depends on an appropriate notion of evaluation context.
Our strategy will include an evaluation context C of the form pcase px yqryzls of cñ dqpI cq

and hence the body of the explicit substitution will be reduced next. Notice that in order for
the focus of computation to be placed in the body of an explicit substitution, its target y
should be needed. In this particular case, it is because x is free but y is needed for computing
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the strong normal form. However, in a term such λx.cryzI Is, the β-redex I I is not needed
for the strong normal form and hence will not be selected by the strategy.

�e remaining computation steps leading to the strong normal form are depicted below.

pcase pλy.x yqpI Iq of cñ dqpI cq

ùe pcase px yqryzI Is of cñ dqpI cq

ùe pcase px yqryzzrzzIss of cñ dqpI cq

ùe pcase px yqryzIrzzIss of cñ dqpI cq

ùe pcase px IqryzIsrzzIs of cñ dqpI cq p˚q

ùe pcase px IqryzIsrzzIs of cñ dqpzrzzcsq

ùe pcase px IqryzIsrzzIs of cñ dqpcrzzcsq

Note that in the fourth step (indicated with an asterisk), y has been replaced by I . As in
weak call-by-need, only answers shall be substituted for variables. Answers are abstractions
under a possibly empty list of explicit substitutions or data structures possibly interspersed
with explicit substitutions. Finally, crucial to de�ning the strong call-by-need strategy will be
identifying variables and case expressions that will persist. �e former are referred to as frozen

variables and are free variables (or those that are bound under abstractions and branches of
case expressions) that we know will never be substituted by an answer. �e la�er are referred
to as error terms and are case expressions that we know will be stuck forever. An example of
the former is x y in px yqryzI Is; an example of the la�er is case px IqryzIsrzzIs of cñ d in
pcase px IqryzIsrzzIs of cñ dqpI cq.

5.1.1 Our Work

�is chapter is the result of collaboration with Eduardo Bonelli and Kareem Mohamed. Gen-
erally speaking, systems in this chapter are an extension of the ones in Chapter 4 to account
for pa�ern matching and �xed points. As a result, there are more syntactic constructs, more
inference rules, and more complex de�nitions, but essentially the proof techniques of the pre-
vious chapter are applied without radical changes. Most proofs have been omi�ed from this
chapter.

�is chapter is structured as follows. We highlight in boldface what we consider to be the
main contributions:

• In Section 5.2, we recall the de�nition of Grégoire and Leroy’s extended λ-calculus
(Def. 5.3), we generalize the �eory of Sharing for the extended λ-calculus (Def. 5.7),
and we provide a syntactic characterization of the normal forms (Def. 5.7).

• In Section 5.3, we propose a non-idempotent intersection type system HWe
for λe

(Def. 5.10), and we show that weakly normalizing terms inλe are typable (�m. 5.13)
and that typable terms are weakly normalizing in λesh (�m. 5.14). More precisely,
both theorems require not only that the term is typable, but also that the typing judg-
ment is “good” in a precise sense (cf. Def. 5.12). �is notion of goodness generalizes the
usual condition that there are no positive occurrences of the empty multiset rs.
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• In Section 5.4, we propose a strong call-by-need strategy ùe
for λe (Def. 5.17),

and we show that the strategy enjoys good properties. Namely, it is deterministic
(Prop. 5.21), it conservatively extends the strong call-by-need strategy of the previous
chapter (Prop. 5.21), it is correct (Prop. 5.22) and it is complete with respect to reduc-

tion in the extended λ-calculus (�m. 5.23).

5.2 Extending the �eory of Sharing

In this section we extend the �eory of Sharing (cf. Def. 4.4) to the extended λ-calculus. In
Section 5.2.1, we begin by recalling the de�nition of the extended λ-calculus of Grégoire and
Leroy [67]. In Section 5.2.2 we give the actual de�nition of the Extended �eory of Sharing
λesh.

5.2.1 �e Extended λ-Calculus

De�nition 5.1 (Syntax of the extended λ-calculus, cf. [67]). Assume given a denumerable
set of variables x, y, z, . . . and constants c, c1, c2, . . .. �e set of terms T e of the extended
λ-calculus are de�ned as follows, mutually inductively with the set of branches (branches of
case-constructs):

Terms t, s, u, . . . ::“ x |λx.t | t s | c | fixpx.tq | case t of b̄

Branches b ::“ cx̄ñ t

Contexts are de�ned as expected.

In addition to the usual terms of the λ-calculus, the calculus has constants, case expressions

and �xed-point expressions. In case t of b̄ we say t is the condition of the case and b̄ are
its branches; b̄ represents a possibly empty sequence of branches. If I “ t1, 2, . . . , nu, we
sometimes write pcix̄i ñ siqiPI for a list of branches pc1x̄1 ñ s1q . . . pcnx̄n ñ snq. Branches
are assumed to be syntactically restricted so that if i ‰ j then pci, |x̄i|q ‰ pcj, |x̄j|q, where
|x̄j| denotes the length of the sequence x̄j . Moreover, the list x̄i of formal parameters in each
branch is assumed to have no repeats.

�e expression fixpx.tq is a �xed-point expression. We o�en write λx̄.t for λx1. . . . λxn.t

if x̄ is the sequence of variables x1 ¨. . .¨xn and similarly ts̄ stands for ts1 . . . sn if s̄ “ s1 ¨. . .¨sn.
Free and bound variables are de�ned as expected. In particular, x is bound by a �xed point
operator fixpx.tq, and all the variables x1, . . . , xn are bound in a branch cx1 . . . xn ñ t.
Remark 5.2. In [67] a family of �xed-point operators fixn, for n a positive integer, is used. �e
index n indicates the expected number of arguments and also the index of the argument that
is used to guard recursion to avoid in�nite unfoldings. �e type system of the Calculus of
Constructions guarantees that the recursive function is applied to strict subterms of the n-th
argument. Although we use the more general �xed-point operator fix in our calculus similar
ideas to “case” can be applied to fixn which “blocks” if given less than n arguments.
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De�nition 5.3 (�e extended λ-calculus, cf. [67]). �e λe-calculus is given by the following
reduction rules over T e, closed by arbitrary contexts. We writeÑe for the resulting reduction
relation.

pλx.tqs ÞÑdb ttx :“ su pβq

fixpx.tq ÞÑfix ttx :“ fixpx.tqu pfixq

case cj t̄ of pcix̄i ñ siqiPI ÞÑcase sjtx̄j :“ t̄u pcaseq

if j P I and |t̄| “ |x̄j|

�e simultaneous capture-avoiding substitution of a list of variables x̄ by a list of terms s̄
of the same length in a term t is wri�en ttx̄ :“ s̄u. A term t matches with a branch cx̄ ñ s

if t “ cs̄ with |s̄| “ |x̄|. A term t matches with a list of branches if it matches with at least
one branch. Given our syntactic formation condition on case-expressions, terms match with
at most one branch. Note that term reduction may become blocked if the condition of a case
does not match any branch (and never will). �e normal forms of λe may be characterized as
follows:

Lemma 5.4 (Normal forms). �e normal forms of λe are characterized by the grammar:

N ::“ λx̄.xN̄ |λx̄.cN̄ |λx̄.pcase N0 of pcix̄i ñ NiqiPIqN̄

where N0 does not match with pcix̄i ñ NiqiPI . Note that the lists x̄ and N̄ may be empty.

Proof. By structural induction on the set of terms.

5.2.2 �e Extended �eory of Sharing

De�nition 5.5 (Syntax of the Extended �eory of Sharing). �e terms of the Extended �eory

of Sharing T e
sh are de�ned as follows, extending the syntax of λe with explicit substitutions:

t, s, u, . . . ::“ x |λx.t | t s | fixpx.tq | c | case t of b̄ | trxzss

Recall that terms without explicit substitutions are called pure terms. A pure term t˛ is ob-
tained from any t P T e

sh by unfolding explicit substitutions, e.g. ppcase z of cñ zqrzzddsq˛ “

case dd of cñ dd.
In order to describe reduction in the Extended �eory of Sharing λesh, we need to introduce

additional syntactic categories that generalize the notions of answer and value in presence of
constructors:

Answers a ::“ vL

Values v ::“ λx.t | Axcy

Applicative contexts A ::“ l | AL t

Substitution contexts L ::“ l | Lrxzts

An answer of the form pλx.tqL is an abstraction answer and one of the form AxcyL is an ap-

plicative answer. An example of the la�er is ppcxqrxzysdqryzss.
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De�nition 5.6 (Extended �eory of Sharing). �e Extended �eory of Sharing λesh consists of
the reduction rules over T e

sh given below, closed by arbitrary contexts. We write Ñe
sh for the

reduction relation.

pλx.tqL s ÞÑdb trxzssL

CxxxyyrxzvLs ÞÑlsv CxvyrxzvsL

trxzss ÞÑgc t if x R fvptq
fixpx.tq ÞÑfix trxzfixpx.tqs

case AxcjyL of pcix̄i ñ siqiPI ÞÑcase sjrx̄jzAsL if |Axly| “ |x̄j| and j P I

�e rules db, lsv, and gc are similar as in the (non-extended) �eory of Sharing (cf. Def. 4.4).
�e rules fix and case are similar to the corresponding rules in λe, but using explicit sub-
stitutions. Note that the condition AxcjyL may have explicit substitutions interspersed. �e
length of an applicative context is de�ned as follows: |l| def

“ 0 and |AL t| def
“ 1 ` |A|. Given

a list of variables x̄ and an applicative context A such that their lengths coincide, we de�ne
the substitution context rx̄zAs as follows: rεzls def

“ l and rx̄, yzAL ts def
“ rx̄zAsLryzts. �e

reduct of ÞÑcase uses this notion to build an appropriate list of explicit substitutions for each
parameter of the branch.

An inductive characterization of theÑe
sh-normal forms is given in the following de�nition.

De�nition 5.7 (Normal forms of λesh). A term t enables a list of branches pcix̄i ñ siqiPI ,
wri�en t ą pcix̄i ñ siqiPI , if the term is of the form t “ AxcjyL, for some A, L, and j P

I such that |A| “ |x̄j|. �e judgment de�ning the set of normal forms (t P N) is de�ned
simultaneously with four other judgments, namely constant normal forms (t P K), structure

normal forms (t P S), error normal forms (t P E), and abstraction normal forms (t P L).

cNfCons
c P K

t P K s P N
cNfApp

t s P K

sNfVar
x P S

t P S s P N
sNfApp

t s P S

t P K Y L Y S t č pcix̄i ñ siqiPI psi P NqiPI
eNfStrt

case t of pcix̄i ñ siqiPI P E

t P E s P N
eNfApp

t s P E

t P E psi P NqiPI
eNfCase

case t of pcix̄i ñ siqiPI P E

t P N
lNfLam

λx.t P L

t P X s P S Y E x P fvptq
nfSub

trxzss P X

t P K
nfCons

t P N

t P S
nfStruct

t P N

t P E
nfError

t P N

t P L
nfLam

t P N

Note that rule eNfStrt captures a blocked case where its condition is not a blocked case
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itself. If the condition of the case is t P L Y S, then we know that it cannot possibly match
any branch. If t P K, we must make sure of this, requiring that t does not enable the branches.

Lemma 5.8 (Characterization of normal forms in λesh). �e following are equivalent:

1. t P N

2. t is inÑe
sh-normal form.

Proof. We omit the detailed proof. To show the implication 1 ùñ 2, one checks that if
t P N Y K Y S Y E Y L then t is in Ñe

sh-normal form, by induction on the derivation of the
corresponding judgment. To show the implication 2 ùñ 1, proceed by induction on t.

5.3 Extending the Type System

In this section we introduces HWe, a non-idempotent intersection type system for the Ex-
tended �eory of Sharing λesh, and we argue that it characterizes normalization.

5.3.1 �e Extended Non-Idempotent Intersection Type System

We assume α, β, γ, . . . to range over a set of type variables. �e set of types is ranged over by
τ, σ, ρ, . . ., and �nite multisets of types are ranged over by M,N ,P , . . .. �e empty multiset
is wri�en rs, and rτ1, . . . , τns stands for the multiset containing each of the types τi with their
corresponding multiplicities. Moreover, M `N stands for the (additive) union of multisets.
For instance ra,bs ` rb, cs “ ra,b,b, cs.

De�nition 5.9 (Syntax of types). �e set of types of HWe is de�ned by the following gram-
mar, mutually recursively with the sets of datatypes, pre-error types, error types, and branch

types:

Types τ ::“ α |MÑ τ | D | E

Datatypes D ::“ c | DM
Pre-Error types G ::“ E τ B̄ | Gτ
Error types E ::“ xGy | E τ

Branch types B ::“ M̄ñ τ

A type τ matches with a branch cx̄ ñ s if it is of the form τ “ cM̄ with |M̄| “ |x̄|. A type
matches with a list of branches if it matches with at least one branch.

�e type α is a type variable, M Ñ τ is a function type, D is a datatype, and E is an
error type. A datatype is either a constant type c or an applied datatype DM. Informally,
cM1 . . .Mn is the type of a constant applied to n arguments, each of which has been assigned
a multiset of types. PreError types are solely introduced for building error types; error types
are used for typing case expressions which will eventually become stuck. A case is stuck
if, intuitively, it can be decided that the condition cannot match any branch. An error type

xE τ pM̄i ñ σiqiPIρ1 . . . ρjy ρj`1 . . . ρk is the type of a case expression such that:



168

1. its condition has type τ and its branches have type M̄i ñ σi;

2. it is stuck;

3. it has been applied to arguments of type ρ1 . . . ρj ;

4. it is expecting arguments of type ρj`1 . . . ρk.

We call E an error type constructor. Typing judgments involve two kinds of contexts:

1. On one hand, typing contexts, ranged over by Γ,∆,Θ, . . . are functions mapping vari-
ables to multisets of types, as in the systemHW of [91], recalled in Chapter 4 (cf. Def. 4.26).

2. On the other hand, error logs, ranged over by Σ,Υ, . . . are sets of error types.

As in Chapter 4, we write Γ`∆ for the sum of typing contexts, and Γ‘∆ for their disjoint
sum. Also, we write x̄ : M̄ for the context ppxiqiPI : pMiqiPIq

def
“

ř

iPIpxi : Miq.

De�nition 5.10 (�e type system HWe). �e typing system HWe is de�ned by means of
the inductive typing rules below. �ese rules de�ne the derivability for four forms of typing

judgments, with the following informal interpretations:

1. Typing (Γ; Σ $ t : τ ) — �e term t has type τ under the context Γ and the error log Σ.

2. Multi-typing (Γ; Σ $ t : M) — �e term t has the types in M under the context Γ

and the error log Σ.

3. Application (τ @ M ñ σ) — A term of type τ may be applied to an argument that
has all the types in M, resulting in a term of type σ.

4. Matching (τ xb̄y Γ; Σ, σ) — �e type τ might be the condition of a case with branches
b̄, which will result in a term of type σ, assuming certain hypotheses Γ and error logs
Σ, or else fail.

�e rules of HWe are:

tVar
x : rτ s; Σ $ x : τ

tCons
∅; Σ $ c : c

Γ, x : M; Σ $ t : τ
tAbs

Γ; Σ $ λx.t : MÑ τ

Γ; Σ $ t : τ τ @ Mñ σ ∆; Σ $ s : M
tApp

Γ`∆; Σ $ ts : σ

Γ, x : M; Σ $ t : τ ∆; Σ $ fixpx.tq : M
tFix

Γ`∆; Σ $ fixpx.tq : τ

Γ; Σ $ t : τ τ xb̄y ∆; Σ, σ
tCase

Γ`∆; Σ $ case t of b̄ : σ

Γ, x : M; Σ $ t : τ ∆; Σ $ s : M
tES

Γ`∆; Σ $ trxzss : τ

pΓi; Σ $ t : τiq1ďiďn pn ě 0q
tMulti

n
ÿ

i“1

Γi; Σ $ t :
n
ÿ

i“1

rτis

tAppFun
MÑ τ @ Mñ τ

tAppData
D @ Mñ DM
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pn ě 1q
tAppErr

xGy τ1 . . . τn @ rτ1s ñ xGτ1y τ2 . . . τn

cjM̄ matches pcix̄i ñ siqiPI Γ, x̄j : M̄; Σ $ sj : σj
tCMatch

cjM̄ xpcix̄i ñ siqiPIy Γ; Σ, σj

τ does not match pcix̄i ñ siqiPI
`

Γi, x̄i : M̄i; Σ $ si : σi
˘

iPI tCMismatch
τ xpcix̄i ñ siqiPIy p

ÿ

iPI

Γiq; ΣY txE τ pM̄i ñ σiqiPIy ρ̄u, xE τ pM̄i ñ σiqiPIy ρ̄

We write π, ξ, . . . for typing derivations and πpΓ; Σ $ t : τq if π is a typing derivation of
the judgment Γ; Σ $ t : τ . �e rules are linear with respect to the typing context in the sense
that each assumption is used exactly once. �e rules are, however, cartesian with respect to
the error log, in the sense that each assumption may be used zero, one, or more times.1 �e
rule tApp allows typing applications of functions of to arguments by means of the application

judgment τ @ Mñ σ. �e application judgment allows that the function be an abstraction,
a data structure, or an error term. �e restriction to a singleton type in the tAppErr rule is
to enforce that the arguments of a stuck case be typable.

�e tFix rule splits the resources so that they are distributed to be used for the outermost
unfolding (Γ) and for the rest of the unfoldings p∆q. �e tCase rule relies on the matching

judgment τ xb̄y ∆; Σ, σ, which checks whether the type of the condition τ matches the list
of branches. If τ matches with a branch, then that branch is typed (cf. tCMatch). On the
other hand, if τ does not match any branch (cf. tCMismatch), then all branches have to be
accounted for by the type system. Moreover, in that case, the type of the case expression
is an error type of the form xE τ pM̄i ñ σiqiPIy ρ̄, which is recorded in the error log. Note
that ρ̄ “ ρ1, . . . , ρk are the types of the arguments to which the stuck case expression will be
allowed to be applied to. Finally, tMulti allows a term to be typed with a multiset type. In
this rule, if n “ 0, then

řn
i“1rτis denotes the empty multiset rs.

5.3.2 Characterization of Weakly Normalizing Terms

In Chapter 4, we related typability in the type system HW with weak normalization in the
λ-calculus (�m. 4.33) and weak normalization in the �eory of Sharing (�m. 4.43). In this
subsection, we state a similar result for the extended system HWe, relating it with weak
normalization in the extended λ-calculus, and weak normalization in the Extended �eory
of Sharing. Recall that, in Chapter 4, the results related the property that a term is weakly
normalizing with the property that it is typable in HW in such a way that the judgment is
“good” in the sense that it has no positive occurrences of the empty multiset rs.

Below we start by de�ning an appropriate notion of “good” judgment for HWe (Def. 5.12).
Roughly speaking, a judgment is good if it has no positive occurrences of rs and no negative
occurrences of constructors. �e reason to reject negative occurrences of constructors is il-
lustrated by a term like case x of pcñ dq ¨ peñ Ωq. �is term is typable with type d if one

1Note that rules are multiplicative for typing contexts and additive for error logs.
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assumes that x : rcs. However, it is not weakly normalizing in λesh. Note that a free variable
of type c corresponds to a negative occurrence of the constructor c (in the typing context).

However forbidding positive occurrences of rs and negative occurrences of constructors
alone does not su�ce. �e reason is the presence of blocked case expressions. Consider
for example the term pcase c of pd ñ dqqΩ. �is term is typable; for example, it may be
assigned the type xE c prds ñ dqrsy. Note that the type of the blocked case includes the types
of arguments to which it is applied—in this case the empty multiset type. Moreover this type
is registered in the error log. �is allows us to extend the constraints that rs does not occur
positively and constructors do not occur negatively to type blocked case expressions.

As a further remark, note that a term such as case x of pc ñ dq ¨ pe ñ dq is in normal
form, so it should be typable. Indeed, it shall be typed it by assigning x an appropriate error

type.

De�nition 5.11 (Positive and negative occurrences of types). �e set of positive (resp. neg-
ative) types occurring in τ , denoted Ppτq (resp. N pτq), is de�ned as follows:

Ppαq def
“ tαu

PpMÑ τq
def
“ N pMq Y Ppτq Y tMÑ τu

Ppcq def
“ tcu

PpDMq
def
“ PpDq Y PpMq Y tDMu

PpE τq def
“ PpEq Y Ppτq Y tE τu

PpxGyq def
“ PpGq Y tGu

PpGτq def
“ PpGq Y Ppτq Y tGτu

PpE τ B̄q def
“ Ppτq Y PpB̄q Y tE τ B̄u

PpM1, . . . ,Mn ñ τq
def
“

Ť

iP1..nN pMiq Y Ppτq Y tM̄ñ τu

PpMq
def
“

Ť

τPM Ppτq Y tMu

PpΓ; Σ $ τq
def
“ N pΓq Y PpΣq Y Ppτq

PpΓq def
“

Ť

pxPdomΓqPpΓpxqq

N pαq def
“ ∅

N pMÑ τq
def
“ PpMq YN pτq

N pcq def
“ ∅

N pDMq
def
“ N pDq YN pMq

N pE τq def
“ N pEq YN pτq

N pxGyq def
“ N pGq

N pGτq def
“ N pGq YN pτq

N pE τ B̄q def
“ N pτq YN pB̄q

N pM1, . . . ,Mn ñ τq
def
“

Ť

iP1..nPpMiq YN pτq
N pMq

def
“

Ť

τPM N pτq
N pΓ; Σ $ τq

def
“ PpΓq YN pΣq YN pτq

N pΓq def
“

Ť

pxPdomΓqN pΓpxqq

Moreover, let X be a type (resp. datatype, pre-error type, error type, branch type, typing con-
text). �en we say that X is covered by an error log Σ, wri�en coveredΣpXq, if for every error
type E such that E is a subformula of X, i.e. it occurs anywhere in the syntactic tree of X, one
has that E P Σ.

De�nition 5.12 (Good types and typing judgements). A type τ is good if c R Ppτq and rs R
N pτq. We say M is good if each τ PM is good. A typing context Γ is good if it can be wri�en
as Γ “ ΓgΓe in such a way that Γgpxq is good for every x P domΓg, and Γepxq is an error type
for every x P domΓe. A typing judgement Γ; Σ $ t : τ is good if all of the following hold:

1. Γ is good;

2. rs R PpΣq and rs R Ppτq;

3. c R N pΣq and c R N pτq for every constructor c;

4. coveredΣpΓq and coveredΣpτq.

Below we state the two main results of this section, which relate typability and normal-
ization. Note that:
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• �m. 5.13 relates normal forms in λe with typability in HWe, extending �m. 4.33 from
the previous chapter (which relates normal forms in the λ-calculus with typability in
HW).

• �m. 5.14 relates normal forms in λesh with typability in HWe, extending �m. 4.43
from the previous chapter (which relates normal forms in the �eory of Sharing with
typability in HW).

�eorem 5.13 (Weakly normalizing terms in λe are typable). Let t be weakly normalizing in

λe. �en there exist a context Γ, an error log Σ, a type τ such that Γ; Σ $ t : τ is derivable and

good.

Proof. We omit the detailed proof. �e proof relies on the two following claims:

Normal forms are typable. Let t be aÑe-normal form. �en there exist a context Γ,
an error log Σ and a type τ such that Γ; Σ $ t : τ is derivable and good.

Subject expansion. If tÑe s and Γ; Σ $ s : τ , then Γ; Σ $ t : τ .

�eorem 5.14 (Typable terms are weakly normalizing in λesh). If Γ; Σ $ t : τ is derivable and

good, then t is weakly normalizing in λesh.

Proof. We omit the detailed proof. �e proof requires adapting the notion of T-occurrence (cf.

Def. 4.39) to HWe and it relies on the following claim:

Weighted subject reduction. Let πpΓ; Σ $ t : τq. If tÑe
sh t

1, then there exists π1 such
that π1pΓ; Σ $ t1 : τq. Moreover, if this step reduces a T-occurrence in π, then either:

1. sizepπq ą sizepπ1q; or

2. sizepπq “ sizepπ1q and fixpπq ą fixpπ1q

where sizepπq denotes the size of the derivation π, seen as a tree, and fixpπq denotes
the number of nodes in the derivation π that are instances of the tFix rule.

5.4 Extending the Strong Call-by-Need Strategy

In this section, we extend the strong call-by-need strategy S
ù for the �eory of Sharing

from Chapter 4, to a strong call-by-need strategy ùe for the Extended �eory of Sharing.
Moreover, we show that the strategy is complete with respect to the extended λ-calculus λe.
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5.4.1 �e Extended Strong Call-by-Need Strategy

Similarly as in the previous chapter, the extended strong call-by-need strategy
ϑ

ùe is a bi-
nary relation over the set of extended terms T e

sh, and it is parameterized over a set ϑ of frozen
variables. Its reduction rules are an instance of the rewriting rules of the Extended �eory
of Sharing (Def. 5.6), with two di�erences: (1) the garbage collection rule is absent, and (2)
reduction is not closed under arbitrary contexts but under evaluation contexts. Exactly as we
did in Section 4.2.2, in order to de�ne the set of evaluation contexts, we start by de�ning (syn-
tactically) the set of normal forms of the strategy, and next we describe evaluation contexts.

De�nition 5.15 (Normal forms of the extended strong call-by-need strategy). �e set of non-

garbage variables of a term t, denoted ngvptq is de�ned as fvpÓgc ptqq where Ógc ptq is the gc-
normal form of t.

For each set of variables ϑ, the sets of constant normal forms (Kϑ), structure normal forms

(Sϑ), error normal forms (Eϑ), abstraction normal forms (Lϑ), and (plain) normal forms (Nϑ) are
de�ned, mutually inductively by the following judgments. In the rules for explicit substitu-
tions, Xϑ stands for any of the sets Kϑ, Sϑ, Eϑ, or Lϑ:

cNfCons
c P Kϑ

t P Kϑ s P Nϑ
cNfApp

t s P Kϑ

x P ϑ
sNfVar

x P Sϑ

t P Sϑ s P Nϑ
sNfApp

t s P Sϑ

t P Kϑ Y Lϑ Y Sϑ t č pcix̄i ñ siqiPI psi P NϑYx̄iqiPI eNfStrt
case t of pcix̄i ñ siqiPI P Eϑ

t P Eϑ s P Nϑ
eNfApp

t s P Eϑ

t P Eϑ psi P NϑYx̄iqiPI eNfCase
case t of pcix̄i ñ siqiPI P Eϑ

t P NϑYtxu
lNfLam

λx.t P Lϑ

t P XϑYtxu s P Sϑ Y Eϑ x P ngvptq
nfSubNG

trxzss P Xϑ

t P Xϑ x R ngvptq
nfSubG

trxzss P Xϑ

t P Kϑ
nfCons

t P Nϑ

t P Sϑ
nfStruct

t P Nϑ

t P Lϑ
nfLam

t P Nϑ

t P Eϑ
nfError

t P Nϑ

�e syntactic de�nition of normal forms given above is similar to the syntactic character-
ization of Ñe

sh-normal forms given in Def. 5.7, except that: (1) the set of frozen variables is
explicitly tracked, (2) rule nfSub is re�ned into rules nfSubNG, and (3) a new rule nfSubG is
added due to the absence of gc in ϑ

ùe.

De�nition 5.16 (Extended evaluation contexts). Judgments de�ning the sets of evaluation
contexts are of the form C P Ehϑ where C is an arbitrary context, ϑ is a set of variables, and
h is a symbol called discriminator of the context. �is symbol may be one of ‘˝’, ‘λ’ or any
constructor c,d, . . . and its role is to discriminate the head constructor in the context. Note
that evaluation context formation rules place requirements on discriminators. An evaluation

context is a context C such that the evaluation context judgement C P Ehϑ is derivable for some
set of variables ϑ and some discriminator h, using the following rules:

eBox
l P E˝ϑ
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C P Ehϑ h ‰ λ
eAppL

C t P Ehϑ

t P Sϑ Y Eϑ C P Ehϑ eAppRStruct
t C P E˝ϑ

t P Kϑ C P Ehϑ eAppRCons
t C P E

hcptq
ϑ

C P Ehϑ t R Sϑ Y Eϑ x R ϑ
eSubsLNonStruct

Crxzts P Ehϑ

C P EhϑYtxu t P Sϑ Y Eϑ
eSubsLStruct

Crxzts P Ehϑ

C1 P E
h
ϑ C2 P E

˝
ϑ eSubsR

C1xxxyyrxzC2s P E
h
ϑ

C P EhϑYtxu eLam
λx.C P Eλϑ

C P Ehϑ h R tciuiPI or h “ cj P tciuiPI and |Cxyy| ‰ |x̄j |
eCase1

case C of pcix̄i ñ siqiPI P E
˝
ϑ

t P Nϑ t č pcix̄i ñ siqiPI tk P NϑYx̄k for all k ă j C P EhϑYx̄i eCase2
case t of pc1x̄1 ñ t1q . . . pcj x̄j ñ Cq . . . pcnx̄n ñ tnq P E

˝
ϑ

�e function hcp´q used in rule eAppRCons is de�ned as follows, by induction on the deriva-
tion that t P Kϑ:

hcpcq
def
“ c hcpt sq

def
“ hcptq hcptrxzssq

def
“ hcptq

Note in particular that hcpAxcyLq “ c. �e notation |Cxyy| used in rule eCase1 counts the
number of arguments in the spine of the term Cxyy, more precisely:

|x|
def
“ 0

|c|
def
“ 0

|λx.t|
def
“ 0

|t s|
def
“ 1` |t|

|fixpx.tq|
def
“ 0

|trxzss|
def
“ |t|

|case t of b̄|
def
“ 0

Rule eBox states that any redex at the root is needed. Rule eApp-L allows reduction to
take place to the le� of an application; in that case C must not be an abstraction. �is is
achieved by requiring that h ‰ λ (cf. eLam and how all rules persist h). In this way, the
discriminator generalizes the distinction between arbitrary and inert evaluation contexts of
Def. 4.12. In particular, in the fragment without pa�ern matching and �xed points, the set of
arbitrary evaluation contexts Eϑ of Chapter 4 corresponds to E˝ϑ Y Eλϑ. Note that the set of
inert contexts is wri�en E˝ϑ in both presentations.

Rule eAppRStruct allows reduction to take place to the right of an application when it
is an argument of a term t that is a structure normal form or an error normal form. �e ‘˝’
in t C P E˝ϑ re�ects that t is not headed by a constant and that t C is not an abstraction. Rule
eAppRCons is similar only that the discriminator is set to the head variable of t via hcptq

and it will be checked when deciding if reduction can take place in the condition of a case
(cf. eCase1). Frozen variables play the same role as in the (unextended) strong call-by-need
strategy of the previous chapter.

�ere is no rule for fixpx.tq since reduction must necessarily take place at the root in
such a term. Regarding case expressions, in order for reduction to take place in the condition
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we must ensure that reduction at the root is not possible (cf. eCase1). �is is achieved by
requiring that the discriminator either is not a constant listed in the branches (h R tciuiPI ) or
that, if it is, then the number of expected arguments by the branch are not met (|Cxyy| ‰ |x̄j|).

For reduction to proceed in a branch j (cf. eCase2), the condition must be in normal form,
each branch i with i P 1..j must be in normal form and the condition must not enable any
branch (t č pcix̄i ñ siqiPI ). Note that the bound variables in branch j, are added to the set of
frozen variables. We now de�ne the strategy itself.

De�nition 5.17 (Extended strong call-by-need strategy). �e ϑ
ùe strategy is de�ned by the

following rules.

pdbq Cxpλx.tqL sy
ϑ

ùe CxtrxzssLy if C P Ehϑ
plsvq C1xC2xxxyyrxzvLsy

ϑ
ùe C1xC2xvyrxzvsLy if C1xC2xlyrxzvLsy P E

h
ϑ

pfixq Cxfixpx.tqy
ϑ

ùe Cxtrxzfixpx.tqsy if C P Ehϑ
pcaseq Cxcase AxcjyL of pcix̄i ñ siqiPIy

ϑ
ùe Cxsjrx̄jzAsLy

if C P Ehϑ with j P I and |Axly| “ |x̄j |

Note that the discriminator h in the conditions of all rules is existentially quanti�ed.

Properties of the Extended Strong Call-by-Need Strategy

�e extended strong call-by-need strategy has the following properties. Contrast them with
the properties studied in the previous chapter (Section 4.2.3, Section 4.3).

Lemma 5.18 (Characterization of normal forms). Let t be any term. �en the following are

equivalent:

1. t is in
ϑ

ùe
-normal form,

2. t P Nϑ.

Proof. We omit the full proof. To show 1 ùñ 2, proceed by induction on t. To show
2 ùñ 1, prove the more general statement that if t P Nϑ Y Kϑ Y Sϑ Y Eϑ Y Lϑ then
t P NFp

ϑ
ùeq, by simultaneous induction on the derivation that t P Nϑ (resp. t P Kϑ, t P Sϑ,

t P Eϑ, t P Lϑ).

Proposition 5.19 (Strong reduction). If t is in
ϑ

ùe
-normal form, then its unfolding t˛ is in

Ñe
-normal form.

Proof. We omit the full proof, which goes by induction on t, using the characterization of
normal forms of Lem. 5.18.

Proposition 5.20 (Determinism). If t
ϑ

ùe s and t
ϑ

ùe u then s “ u.

Proof. We omit the detailed proof. It relies on the following claim:

Unique decomposition. If Cxry is a term, we say that r is an anchor if it is a db-redex,
a fix-redex, a case-redex or a variable bound to an answer. If C1rr1s “ C2rr2s, where
C1, C2 P E

h
ϑ and r1, r2 are anchors, then C1 “ C2 and r1 “ r2.
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Proposition 5.21 (Conservativity). �e extended strong call-by-need strategy is conservative

with respect to the strong call-by-need strategy of Chapter 4, i.e. if t
ϑ

ù s then t
ϑ

ùe s.

Proof. �e key point is that the notion of evaluation context (Def. 4.12) may be related with
the notion of extended evaluation context (Def. 5.16). Indeed, it can be checked by induction
on the derivation that if C P Eϑ then C P Ehϑ for some discriminator h P tλ, .˝u and that if
C P E˝ϑ then C P Ehϑ with h “ ˝.

Proposition 5.22 (Correctness). If t
ϑ

ù s then t˛ �e s˛.

Proof. We omit the detailed proof, which goes by induction on t.

�eorem 5.23 (Completeness). Let ϑ “ fvptq. If t �e s P NFpÑeq, then there exists a term

u P NFp
ϑ

ùeq such that t p
ϑ

ùeq˚ u and u˛ “ s.

Proof. We omit the detailed proof. �e argument follows the same lines as the complete-
ness theorem of the previous chapter (�m. 4.55), in particular relying on the fact that Ñe-
normalization implies typability in HWe (�m. 5.13), the fact that typability in HWe implies
Ñe

sh-normalization (�m. 5.14).



Chapter 6

A Labeled Linear Substitution Calculus

6.1 Introduction

6.1.1 Optimality and Redex Families

Consider the function fpxq “ x` x. In general there may be many possible ways to rewrite
an arithmetic expression in order to calculate its �nal result. If, for instance, one starts from
the expression fp2 ˚ 3q, there are three possible ways to calculate its value: the rewriting
sequences ABC , DEFC , and DGHC in the diagram below.

fp6q

B

��

fp2 ˚ 3q

A
//

D

))

6` p2 ˚ 3q
F

��
p2 ˚ 3q ` p2 ˚ 3q

E
22

G

,,

6` 6 C // 12

p2 ˚ 3q ` 6
H

FF

�e rewriting sequences that start withD, namelyDEFC andDGHC , follow a call-by-name

convention for parameter-passing, and they both require four computation steps. In contrast,
the rewriting sequence at the top, ABC , follows a call-by-value convention for parameter-
passing, and requires only three computation steps. �e sequences that start with D are
more computationally onerous thanABC : the reason is that the stepD duplicates the subex-
pression 2 ˚ 3, which in turn calls for the duplication of the computational work required to
calculate it.

One may wonder if consistently following a call-by-value convention always turns out to
have the lowest computational cost, compared to other evaluation mechanisms. It is not too
di�cult to convince oneself that this is not the case. Consider, as a dual example, the constant
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function gpxq “ 5. �ere are two possible ways to rewrite gp2 ˚ 3q to calculate its �nal result:

gp2 ˚ 3q A //

C
$$

gp6q

B
��
5

�e rewriting sequence AB follows a call-by-value convention, and yet it is clear that it is
not “optimal”, since it performs some unnecessary work: indeed, the �rst step A calculates
the result of the subexpression 2 ˚ 3, which is immediately discarded. In this example, it is
following a call-by-name convention, rather than a call-by-value convention, which realizes
the minimal cost.

�e previous examples motivate some natural questions. Given a programming language,
how can the �nal result of a computation be obtained with minimal computational cost, that
is, in an “optimal” way? In what precise sense one can de�ne an evaluation mechanism to
be optimal? Does an optimal evaluation mechanism always exist? Can it be computed and
e�ciently implemented?

�estions regarding optimal evaluation were �rst studied in the 1970s. Vuillemin studied
the problem of optimal evaluation in the framework of recursive program schemes [143, 144],
proving that, under certain sequentiality conditions, expressions can be optimally evaluated
by using a sharing mechanism. Staples studied optimal evaluation for combinatory logic [132].

A major step forward was taken by Lévy [109, 110] together with Berry [27], who studied
this problem in the context of the λ-calculus. In particular, in his 1978 PhD thesis, Lévy gave
su�cient conditions for an evaluation mechanism to be optimal, in an appropriate sense. For
an evaluation mechanism to be optimal, it su�ces that all the computation steps that belong
to the same redex family (to be de�ned later) are shared by the implementation, i.e. that no
computational work is performed twice. Moreover, only needed steps should be performed,
i.e. the implementation should not engage in super�uous computation. It is worth noting that
these conditions, especially the condition that computation steps in the same redex family are
shared, are quite demanding, and an implementation meeting these requirements was elusive
for some time. A data structure e�ectively implementing the necessary amount of sharing was
�rst proposed by Lamping [98] more than a decade a�er Lévy’s seminal work. Following, we
summarize some of the important results regarding optimal reduction in the context of the
λ-calculus.

According to the standard nomenclature, let us de�ne a strategy in a rewriting system to
be a function S : Term Ñ Term such that t Ñ Sptq for every term t not in normal form.
Given a starting term t, a strategy S induces a rewriting sequence

tÑ Sptq Ñ SpSptqq Ñ . . .

stopping whenever it reaches a normal form, and possibly in�nite. A strategy S can then
be de�ned to be optimal if, given a normalizable term t, the rewriting sequence induced by
S reaches the normal form in a minimal number of steps. It is immediate to observe that,
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in a non-constructive sense, an optimal strategy exists, given that the length of a rewriting
sequence is a natural number, and natural numbers are well-ordered. On the other hand, there
is no hope of exhibiting an optimal strategy explicitly: Barendregt et al. [21] showed that, in
the λ-calculus, no computable strategy is optimal.

�is impossibility result would seem to defeat any a�empt to devise a sensible notion of
optimal reduction. However, one may conceive implementations that do not necessarily rep-
resent terms using a straightforward tree-like representation, but rather in some other form.
For instance, terms may be represented as graphs, with pointers that allow sharing subterms,
as in Wadsworth’s lazy evaluation [145], or even sharing subterm “slices” (i.e. contexts) as in
Lamping’s sharing graphs [98]. An execution step in a sharing implementation can plausibly
be simulated by the simultaneous contraction of many β-redexes, i.e. as a multistep t ñ s.
Until now, we have been considering strategies in the λ-calculus. �is reasoning leads us to
consider strategies in the rewriting system of multisteps ΛM — a single step in ΛM is given
by a multistep in the λ-calculus. Lévy’s optimality result asserts that there are computable
strategies in ΛM that reach the normal form, if it exists, with minimal cost. �e contraction
of a multistep M : tñ s is considered to have unitary cost as long as all the steps in M be-
long to the same redex family. As already anticipated, a strategy can be shown to be optimal,
according to Lévy’s result, if it is a family reduction, i.e. each multistep is a maximal set of
redexes that belong to the same family, and, moreover, each multistep contains at least one
needed step. We now turn our a�ention to the notion of redex family, which plays a central
role in the theory of optimal reductions.

�ree Characterizations of Redex Families

A redex family is, intuitively, a set of computation steps that have a common origin, and whose
calculation should be shared by an optimal implementation. In the λ-calculus, redex families
were �rst de�ned by Lévy by giving three equivalent characterizations: zig-zag, labels, and
extraction. Let us describe each of these characterizations.

Zig-zag. �e �rst characterization of redex families is based on residual theory, and is
abstract enough that it can be adapted to any other rewriting system admi�ing a sensible
notion of residual, such as orthogonal term rewriting systems. Let t0 be a �xed starting term.
A redex with history from t0 (hredex for short) is a derivation ρ starting from t0, followed by
a single step R. Equivalently, an hredex can be thought of as a non-empty derivation ρR,
where ρ : t0 � t1 is the history that has led us to t1, and we are interested in the last step
R : t1 Ñ t2. We say that an hredex σS is a copy of an hredex ρR, wri�en ρR ď σS, if there
exists a derivation τ such that ρτ ” σ, i.e. ρτ and σ are permutation equivalent (cf. Def. 2.40),
and moreover S P R{τ . Graphically:

t0
ρ

����

σ

�� ��
R

��

τ
// //

”

S P R{τ

��
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�e zig-zag relation over redexes with history, wri�en ρR ú σS, is the least equivalence
relation containing ď. A redex family is an equivalence class of the relation ú.

For example, consider the term ∆pFIq where ∆ “ λx.xx, F “ λx.xz, and I “ λx.x. Its
reduction graph is depicted in Figure 6.1. We claim that the hredexes S1R2T3 and R1S3T2 are

∆pFIq
R1

yy

S1

$$
FIpFIq

S2

yy

S3

%%

∆pIzq

R2

rr

T7

""
IzpFIq

T1

zz

S4

%%

FIpIzq
S5

yy

T2

$$

∆z
R3

pp

zpFIq
S6

$$

IzpIzq
T3

yy

T4

%%

FIz
S7

zz
zpIzq

T5

&&

Izz
T6

xx
zz

Figure 6.1: Reduction graph of ∆pFIq, with ∆ “ λx.xx, F “ λx.xz, and I “ λx.x

in the same family, i.e. that S1R2T3 ú R1S3T2. To see this, consider the hredex R1S3S5T3

and note that the following hold:

S1R2T3 ď R1S3S5T3 by taking the empty derivation and noting that S1R2 ” R1S3S5

R1S3T2 ď R1S3S5T3 by noting that T3 P T2{S5

Labels. �e second characterization of redex families is based on an auxiliary labeled
variant of the λ-calculus, furnished with so-called Lévy labels. Consider a denumerable set of
initial labels ranged over by a, b, c, . . .. �e set of labels is de�ned by the following grammar:

α, β, γ, . . . ::“ a | rαs | tαu | αβ

Labels are considered up to associativity of label juxtaposition, i.e. for all labels α, β and
γ the equality pαβqγ “ αpβγq is declared to hold; n-way juxtaposition is usually wri�en
α1α2 . . . αn for n ě 1. �e terms of the labeled λ-calculus are the labeled terms, de�ned by
the grammar:

t, s, u, . . . ::“ xα | λαx.t | @α
pt, sq

Note that labels decorate each and every subterm of a term. An initially labeled term is a
labeled term t such that the labels decorating its subterms are all initial and pairwise distinct;
for instance @apλbx.xc, ydq is initially labeled. �e idea behind labels is that they serve to
trace the full history of a term. Each reduction step R in the labeled λ-calculus propagates
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the labels in such a way as to leave a record that R has been contracted, making apparent
the contribution of R to the ongoing computation. �e operation of adding a label to a term,
wri�en α : t is de�ned by cases:

α : xβ
def
“ xαβ

α : λβx.t
def
“ λαβx.t

α : @βpt, sq
def
“ @αβpt, sq

Capture-avoiding substitution of a term for a variable ttx :“ su is de�ned as usual, except for
the base case:

xαtx :“ su
def
“ α : s

For example, @apxb, xcqtx :“ zdu “ @apzbd, zcdq. Reduction in the labeled λ-calculus is
de�ned as the closure by arbitrary contexts of the following labeled β-rule:

@α
pλβx.t, sq Ñ αrβs : ttx :“ tβu : su (6.1)

It is easy to prove that in general α : pttx :“ suq “ pα : tqtx :“ su, so the parenthesization
of the right-hand side of the labeled β-rule is irrelevant. Each step in the labeled λ-calculus
has a name. �e name of a step like in (6.1) is the label β that decorates the abstraction. Some
of the key properties of redex names are the following:

1. In an initially labeled term, di�erent redexes have di�erent names.

2. If R is an ancestor of R1, then R and R1 have the same name.

3. Whenever a redex R creates a redex S, the name of R is a sublabel of the name of S.

A term t` in the labeled λ-calculus is said to be a variant of a term t in the (unlabeled) λ-
calculus if t results from t` by erasing all the labels. Given a step R : t Ñ s in the λ-calculus
and a labeled variant t` of t, the step R it can be li�ed to a step R` : t` Ñ s` in the labeled
λ-calculus, such that s` is a variant of s. Similarly, given a derivation ρ : t� s and a variant
t` of t, the derivation ρ can be li�ed to a derivation ρ` : t` � s`. Finally, it can be shown that
labels characterize redex families as follows. Let t0 be a starting term, and let ρR and σS be
two hredexes in the λ-calculus, whose source is t0. �en ρR and σS are in the same family if
and only if for an initially labeled variant t`0 of t0 the corresponding li�s ρ`R` and σ`S` verify
that R` and S` have the same name.

Going back to our example of Figure 6.1, let us show that the hredexes S1R2T3 andR1S3T2

are in the same family, this time using the labeled λ-calculus. �at is, let us show that T3 and
T2 are assigned the same name, when starting from the same initially labeled term. Consider
an initially labeled variant of ∆pFIq:

@a

pλbx.@c

pxd, xe

q
l jh n

∆

,@f

pλgy.@h

pyi, zj

q
l jh n

F

, λkw.wl

l jh n

I

qq
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and consider the li�ed derivations S`1R`
2T

`
3 andR`

1S
`
3T

`
3 of the hredexes in question. Note that

the name of T `3 is itguk:

@apλbx.@cpxd, xeq,@fpλgy.@hpyi, zjq, λkw.wlqq

S`1
ÝÑ @apλbx.@cpxd, xeq,@frgshpλitgukw.wl, zjqq

R`2
ÝÑ @arbscp@dtbufrgsh

pλitgukw.wl, zj

q
l jh n

�e redex T `3 .

,@etbufrgshpλitgukw.wl, zjqq

and the name of T `2 is indeed also itguk:

@apλbx.@cpxd, xeq,@fpλgy.@hpyi, zjq, λkw.wlqq

R`1
ÝÑ @arbscp@dtbufpλgy.@hpyi, zjq, λkw.wlq,@etbufpλgy.@hpyi, zjq, λkw.wlqq

S`3
ÝÑ @arbscp@dtbufpλgy.@hpyi, zjq, λkw.wlq,@etbufrgsh

pλitgukw.wl, zj

q
l jh n

�e redex T `2 .

q

Extraction. �e third and last characterization of redex families is based on an algorithmic
procedure that, given an hredex ρR, calculates a canonical representative ρ0R0 of its family.
�e di�culty of de�ning this relation, as noted by Lévy, is that given two hredexes that are in
the same family according to the zig-zag relation, ρR ú σS, they do not necessarily have
a common ancestor, i.e. it is not necessarily the case that there exists an hredex τT such that
τT ď ρR and τT ď σS. In our running example of Figure 6.1, it would seem at �rst sight
that the common ancestor of the hredexes S1R1T2 and R1S3T2 should be the hredex S1T7.
Actually, even though S1T7 ď S1R1T2 holds, it is not the case that S1T7 ď R1S3T2, as this
would imply that S1 Ď R1S3, but S3 is only one of the two copies of S1, i.e. it is not a complete
development of S1{R1.

�e solution proposed by Lévy is to introduce a binary relation pŹq between hredexes for
which a common ancestor property does hold. Let us �rst mention a few auxiliary de�nitions.

1. If R is a redex and σ is a coinitial derivation, then σ is disjoint from R if the source is of
the form Cxt, sy, where C is a two-hole context, the step R takes place inside t, and the
derivation σ takes place inside s.

2. If R is a redex and σ is a coinitial derivation, then σ is internal to the body of R if the
source is of the form Cxpλx.tqsy, the stepR contracts pλx.tqs, and the derivation σ takes
place inside t.

3. If R is a redex and σ is a composable derivation (i.e. Rσ is well-de�ned), then σ is
internal to the i-th copy of the argument of R if the source is of the form Cxpλx.tqsy,
the step R contracts pλx.tqs, and the derivation σ takes place inside the i-th copy of s
(corresponding to the i-th occurrence of x in t).
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�e extraction relation is a binary relation Ź between hredexes, de�ned as the union of the
following four rules:

ρRS Ź1 ρS0 if S P S0{R

ρpR \ σq Ź2 ρσ if σ is not empty and it is disjoint from R

ρpR \ σq Ź3 ρσ if σ is not empty and it is internal to the body of R
ρRσ Źi4 ρσ0 if σ is not empty, it is internal to the i-th copy of R, and σ0{R “ σ ||iR

�e notation σ ||iR stands for the parallelization of σ with respect to R, de�ned as follows by
induction on σ:

ε ||iR
def
“ ε

Tτ ||iR
def
“ pT0{Rqppτ{pT0{RT qq ||i pR{T0qq if T P T0{R

(For more details on the motivation and properties of this de�nition see [110, Def. 4.7] or
[14, Sec. 5.2]). �is algorithmic extraction procedure can be shown to be terminating and
con�uent. Moreover, it characterizes redex families as follows: two hredexes are in the same
family if and only if there exists an hredex τT such that ρR Ź‹ τT and σS Ź‹ τT .

To complete the example of Figure 6.1, let us show that the hredexes S1R2T3 and R1S3T2

belong to the same family, this time using the extraction procedure. Indeed, note that:
S1R2T3 Ź1 S1T7 since T P T0{S

R1S3T2 Ź2
4 S1T7 since S3T2 is internal to the second copy of R1

and S3T2 ||2R1 “ S3S5T3T5 “ S1T7{R1

Finite Family Developments

A remarkable result that can only be stated and proved a�er the notion of redex family has
been introduced is the Finite Family Developments theorem. Recall that the λ-calculus is an
orthogonal axiomatic rewriting system (�m. 2.73), and in particular it enjoys the �nite de-
velopments property (Def. 2.33). It states that, in the λ-calculus, given a starting term t0 and
a set M of redexes of t0, there are no in�nite developments of M. �at is, there are no in�nite
sequences that only contract residuals of redexes in the set M. �e Finite Family Develop-
ments theorem is a strong generalization of this result. Rather than considering a set M of
redexes of t0, it allows us to consider a set F of redex families of t0. In turn, developments of
M are generalized to family developments of F . A family development of F is any reduction
sequence R1 . . . Rn such that, for all i P t1, ..., nu the family of the hredex R1 . . . Ri is in F .
�e Finite Family Developments theorem states that if F is a �nite set of redex families, there
are no in�nite family developments of F .

Below we compare the notions involved in the Finite Developments theorem with the
notions involved in the Finite Family Developments theorem:

Finite Developments Finite Family Developments
redex of t0 redex family of t0

set M of redexes of t0 set of F of redex families of t0
development of M family development of F

all developments of M are �nite all family developments of F are �nite if F is �nite
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In the last entry, note that the Finite Developments theorem does not need to explicitly re-
quire that M is a �nite set, since the λ-calculus is �nitely branching, so this requirement is
automatically met.

For example, consider once again the term ∆pFIq whose reduction graph is depicted in
Figure 6.1. �ere are three redex families in total:

1. the redex family of the hredex ∆pFIq
R1
ÝÑ FIpFIq,

2. the redex family of the hredex ∆pFIq
S1
ÝÑ ∆pIzq,

3. the redex family of the hredex ∆pFIq
S1
ÝÑ ∆pIzq

T7
ÝÑ ∆ z.

Every hredex starting from ∆pFIq is in one of these three families. In Figure 6.1 the names
of the steps have been chosen deliberately so that all hredexes ending in a step Rk belong to
the �rst family, all hredexes ending in a step Sk belong to the second family, and all hredexes
ending in a step Tk belong to the third family. For instance, the hredex:

∆pFIq
R1
ÝÑ FIpFIq

S3
ÝÑ FIpIzq

is in the same redex family as S1. Let us write FamúpρRq for the redex family of the hredex
ρR, that is, for its ú-equivalence class. �en the following are all the possible family devel-
opments, not necessarily maximal, of the set of redex familiesF “ tFamúpR1q, FamúpS1qu:

∆pFIq
R1
ÝÑ FIpFIq

∆pFIq
R1
ÝÑ FIpFIq

S2
ÝÑ IzpFIq

∆pFIq
R1
ÝÑ FIpFIq

S2
ÝÑ IzpFIq

S4
ÝÑ IzpIzq

∆pFIq
R1
ÝÑ FIpFIq

S3
ÝÑ FIpIzq

S5
ÝÑ IzpIzq

∆pFIq
S1
ÝÑ ∆pIzq

∆pFIq
S1
ÝÑ ∆pIzq

R2
ÝÑ IzpIzq

In fact, all the redex families in F have a representative that consists of a single step, which
means that family developments of F are actually ordinary developments.

For a di�erent example, let F “ tFamúpS1q, FamúpS1T7qu. Now there are only two
possible family developments of F :

∆pFIq
S1
ÝÑ ∆pIzq

∆pFIq
S1
ÝÑ ∆pIzq

T7
ÝÑ ∆ z

In this case, S1T7 is not a development of any set of redexes, since the step T7 has been created

by S1, i.e. it has no ancestor.
For a slightly more interesting application of the Finite Family Developments theorem,

consider the well-known non-terminating term Ω where Ω “ pλx.xxqλx.xx. It has a single
redex R:

Ω
R
ÝÑ Ω
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this results in an in�nite number of hredexes. Let us write Rn for the hredex of the form
R . . . R
l jh n

n times

for each n P N:

R1 : Ω
R
ÝÑ Ω

R2 : Ω
R
ÝÑ Ω

R
ÝÑ Ω

R3 : Ω
R
ÝÑ Ω

R
ÝÑ Ω

R
ÝÑ Ω

. . .

It can be checked thatRn andRm belong to the same family if and only if n “ m. �e intuitive
reason is that in a reduction sequence like RR the second step is created by the �rst one, and
has no ancestor. �e in�nite reduction Ω

R
ÝÑ Ω

R
ÝÑ Ω . . . is a family development of the in�nite

set of redex families F “ tFamúpRnq | n P Nu. �e Finite Family Developments theorem
ensures that, given any �nite subset G Ď F , any family development of G must terminate.

Pointers on Optimality �eory

�ere has been much work surrounding the theory of optimal reductions. We have already
mentioned the foundational works of Vuillemin [143, 144] on recursive program schemes,
Staples [132] on combinatory logic, and Lévy [109, 110] together with Berry [27] on the λ-
calculus.

John Lamping was the �rst to propose a data structure (sharing graphs) capable of imple-
menting Lévy’s optimal reduction [98].

Georges Gonthier, Martı́n Abadi, and Jean-Jacques Lévy [63] explained Lamping’s sharing
graphs in terms of Girard’s Geometry of Interaction.

Cosimo Laneve [101] studied optimality in the very general context of interaction systems.
Andrea Asperti and Cosimo Laneve [15] characterized redex families by characterizing

proper paths: paths in the graph-representation of a λ-term that connect an application and
an abstraction forming a virtual redex, i.e. a potential interaction.

John Glauert and Zurab Khasidashvili [61] generalized Lévy’s optimality result in an ax-
iomatic framework (Deterministic Family Structures).

Julia Lawall and Harry Mairson [104, 105] studied the question of what constitutes a cost
model for the λ-calculus, proposed a cost model based on Lévy labels, and proved that Lamp-
ing’s sharing graphs satisfy the proposed cost model.

Stefano Guerrini [69] studied the general theory of sharing graphs, independently of the
calculus to be implemented, using Girard’s Geometry of Interaction.

Andrea Asperti and Harry Mairson showed [16] that, a�er a sequence of n steps of β-
reduction, the number of redexes belonging to a given redex family is not necessarily bounded
by Op2nq, Op22nq or, in general, OpK`pnqq where K`pnq is a tower of ` 2s with an n on top.

Vincent van Oostrom et al. [141, 30] studied the notion of redex family in the context of
higher-order rewriting.

More recently, �ibaut Balabonski studied optimal reduction for a calculus with dynamic
pa�erns [19], and proved that, in the case of weak reduction, i.e. disallowing the contraction
of redexes below lambdas, call-by-need is an optimal evaluation strategy [20].
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In [70], Stefano Guerrini and Marco Solieri show that, in the case of light linear logics,
sharing graphs do not require bookkeeping, and they obtain a bound for the overhead intro-
duced by sharing.

A thorough reference book on optimal reductions is Asperti and Guerrini’s [14].

6.1.2 Our Work

�is chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows.
We highlight in boldface what we consider to be the main contributions:

• In Section 6.2, we motivate some design decisions behind a calculus with Lévy labels,
and we de�ne a variant of the LSC with Lévy labels, the LLSC (Def. 6.6).

• In Section 6.3, we study the properties of the LLSC. In particular:

1. In Section 6.3.1 we study its basic syntactical properties.

2. In Section 6.3.2 we show that the LLSC is an orthogonal axiomatic rewriting

system (Prop. 6.32).

3. In Section 6.3.3 we prove that the LLSC is weakly normalizing for bounded reduc-
tion (Prop. 6.45), i.e. when reduction is restricted to labels of bounded height.

4. In Section 6.3.4 we strengthen this result, proving that the LLSC is strongly nor-

malizing for bounded reduction (�m. 6.51).

5. In Section 6.3.5 we give two proofs that the LLSC is con�uent, building on previous
results.

In the following chapter (Chapter 7), we apply the LLSC to derive results about the LSC
without labels; in particular, optimality, standardization, and normalization results.

6.2 �e LSC with Lévy Labels

6.2.1 What is a Calculus with Lévy Labels?

Our aim is to de�ne a variant of the Linear Substitution Calculus (LSC) with Lévy labels. We
are interested in Lévy labels both for a conceptual reason—gaining understanding of the ways
in which computations can interact, contribute to each other, and be shared—and a practical
one—labels can be a helpful syntactical tool for a�acking further problems. Regarding the
la�er goal, any conceivable notion of labeling would be welcome as long as it aids us in proving
theorems. �e former goal, instead, is much less clearly de�ned, and one may wonder what
abstract properties make a “Lévy labeled” calculus worthy of its name.

�ere does not seem to be a completely satisfactory answer to this question. Let us take
a look at a list of properties that Lévy labels enjoy in the context of the λ-calculus. We will
take these properties as guiding principles for designing a Lévy labeled variant of the LSC.
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Bestiary of Principles of Lévy Labels

1. Li�. Unlabeled reduction sequences may be li�ed to labeled reduction sequences, giving
an arbitrary labeling to the starting term.

For instance, the step
pλx.xqy Ñ y

may be li�ed to a labeled step

@α
pλβx.xγ, yδq Ñ yαrβsγtβuδ

regardless of the choice of the labels α, β, γ, δ.

2. Initial. In an initially labeled term, di�erent redexes have di�erent names.

Indeed, the name of a redex is the label decorating its abstraction and, in an initially
labeled term, labels decorating di�erent nodes are required to be pairwise distinct.

3. Copy. If a hredex ρ1R1 is a copy of the hredex ρR, then ρR and ρ1R1 have the same
name.

For instance, in the permutation diagram of Figure 6.2 the names ofR and SR1 are both
b, and the names of S and RS 1 are both d.

@apλbx.@cpλdy.ye, xfq, zgq
R //

S
��

@arbscpλdy.ye, zftbugq

S1

��
@apλbx.xcrdsetduf, zgq

R1 // zarbscrdsetduftbug

Figure 6.2: Permutation diagram of pλx.Ixqz in the labeled λ-calculus

More strongly, redex names characterize exactly redex families, as de�ned using the
zig-zag relation.

4. Creation. Whenever a redex R creates a redex S, the name of R is a sublabel of the
name of RS.

As an example, observe that this is the case in the following three representative cases
of redex creation. We write α Ď β for the binary relation stating that α is a sublabel of
β:

4.1 Creation case I: IIz
R
ÝÑ Iz

S
ÝÑ z. �en c Ď brcsdtcue:

@a

p@b

pλcx.xd, λey.yf

q, zg

q
R
ÝÑ @a

pλbrcsdtcuey.yf, zg

q
S
ÝÑ zarbrcsdtcuesftbrcsdtcueug

4.2 Creation case II: pλx.Iqyz
R
ÝÑ Iz

S
ÝÑ z. �en c Ď brcsd:

@a

p@b

pλcx.λdw.we, yf

q, zg

q
R
ÝÑ @a

pλbrcsdw.yetcuf, zg

q
S
ÝÑ zarbrcsdsetcuftbrcsdug
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4.3 Creation case III: pλx.xyqI
R
ÝÑ Iy

S
ÝÑ y. �en b Ď dtbuf:

@a

pλbx.@c

pxd, ye

q, λfz.zg

q
R
ÝÑ @arbsc

pλdtbufz.zg, ye

q
S
ÝÑ yarbscrdtbufsgtdtbufue

5. Contribution. �e name of a hredex ρR is a “subname” of the name of σS if and only
if the family of ρR contributes to the family of σS in a semantical sense. �is will be
made more precise later.

6. Con�uence. �e Lévy labeled λ-calculus is con�uent.

For instance, the permutation diagram of Figure 6.2 is a (quite easy) illustration of the
fact that the weak Church-Rosser property holds.

7. Termination. If labeled reduction is restricted to contracting redexes whose names are
among a �nite set of names, the resulting restricted system should be terminating. �is
property entails the Finite Family Developments theorem.

�e intuitive reason for this termination property to hold is the following. Let us say that
a redexR is �rst-generation if it is present on the starting term, and pn`1qth-generation
if the redexes that contribute to creating R are at most nth-generation. An in�nite re-
duction sequence cannot contract only �rst-generation redexes since that would be an
in�nite development, contradicting the Finite Developments theorem. More in general,
it can be seen that an in�nite reduction sequence must contract nth-generation redexes,
for arbitrarily large values of n. By the Contribution principle, newly created redexes
include the names of all the redexes that have contributed to its creation. So, as eval-
uation proceeds, newer generations have larger and larger names. It follows that an
in�nite reduction sequence must involve redexes having an in�nite number of names.

As an illustration of this phenomenon consider the term Ω “ pλx.xxqλx.xx and observe
that the name of R is included in the name of RR, i.e. b Ď dtbuf:

@apλbx.@cpxd, xeq, λfx.@gpxh, xiqq Ñ @arbscpλdtbufx.@gpxh, xiq, λetbufx.@gpxh, xiqq

By appropriately renaming labels, this also shows that the name of RR is included in
the name ofRRR, the name ofRRR is included in the name ofRRRR, and so on. �is
con�rms that the in�nite reduction sequence Ω Ñ Ω Ñ . . . involves an in�nite number
of redex names.

8. Reconstruction. �e reduction history of a term can be reconstructed from its labeling,
modulo permutation equivalence, supposing that we start from an initially labeled term.

For example, given the term xa we know that it must be the starting term: its history
must be empty. Any non-empty reduction yielding a variable x as its �nal result would
have le� a trace. �at is, there would be other labels decorating x, indicating that some
β-redexes were contracted before.
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On the other hand, consider the two possible reductions IpIyq Ñ Iy:

R : IpIyq Ñ Iy contracting the outermost redex

S : IpIyq Ñ Iy contracting the innermost redex

�is is what Lévy calls a syntactic accident: two derivations happen to start and end
on the same terms, but this is accidental. �e Reconstruction property tells us that
the labeled calculus is able to discriminate between computations that start and end on
the same terms by accident and those that do it by necessity, by performing the same
computational work. Carrying on with the example, if we start from an initially labeled
source term, the labeled li�sR` and S` of the stepsR and S yield di�erent labeled target
terms:

@apλbx.xc,@dpλex.xf, ygqq
R` //

S`

��

@arbsctbudpλex.xf, ygq

@apλbx.xc, ydresfteugq

From the labeled target term @arbsctbudpλex.xf, ygqwe can tell that it is the redexRwhich
has been �red, even in the presence of a syntactic accident. Similarly, from the labeled
term @apλbx.xc, ydresfteugq we can deduce its history, and conclude that it must be the
single step derivation S. If we extend these derivations with their relative residuals R1
and S 1, we obtain a permutation diagram ending on the same labeled term:

@apλbx.xc,@dpλex.xf, ygqq
R` //

S`

��

@arbsctbudpλex.xf, ygq

S1`

��
@apλbx.xc, ydresfteugq

R1` // yarbsctbudresfteug

In fact the extended derivations RS 1 and SR1 are permutation equivalent, and from the
labeled target term yarbsctbudresfteug we can deduce that both redexes R and S have been
�red. Remark that the order is irrelevant as we are interested in histories only modulo
permutation equivalence.

9. Paths. Redex names correspond to paths in the graph-representation of the starting
term, connecting two nodes that may take part in an interaction.

For example, let us recall the following labeled reduction:

@a

pλbx.@c

pxd, ye

q, λfz.zg

q
R
ÝÑ @arbsc

pλdtbufz.zg, ye

q
S
ÝÑ yarbscrdtbufsgtdtbufue

�e starting term, seen as a graph, has the following shape. Note that each node has an
incoming edge, and labels on a subterm decorate the corresponding incoming edge. By
convention, nodes corresponding to bound variables are connected back to the binding
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abstraction node:

a ��
@

b

��
f

��
λx
c ��

λz
f ��

@
d

��
e

��

z

x y

�e name of the �rst redex R is b. Note that, naturally, b is an edge connecting an
application node and an abstraction node. �e name of the second redex S is dtbuf. �e
insight of Asperti and Laneve [15] is that, in general, redex names correspond to paths
in the graph of the starting term, connecting an application node and an abstraction
node. In this case, start from the application node at the bo�om. �e path dtbuf can be
read as follows:

- Follow the edge d forwards to x.
- Follow the edge connecting x back to its binder λx.
- Follow the edge b backwards to the application node at the top.
- Follow the edge f forwards to λz.

�e presence of this path indicates the presence of a virtual redex, a potential interaction
between the application node at the bo�om and λz.

In the remainder of this section we will formulate a labeled variant of the LSC. Later, in
Section 6.3 we prove that the labeled variant of the LSC veri�es most of the properties in the
Bestiary. As a means of giving some cohesion to the array of quite disparate properties that we
have just listed, we will show that the labeled LSC without the gc rule forms a Deterministic

Family Structure (DFS). Deterministic Family Structures are an axiomatic framework intro-
duced by Glauert and Khasidashvili [61] to generalize Lévy’s theory of optimal reductions.
Showing that the LSC without gc is a DFS will essentially consist of ensuring that it enjoys
properties 1–7 in the list. We will also discuss reasons that suggest that it is not possible to
de�ne a labeled variant of the full LSC (including the gc rule) that veri�es all the properties
above—or at least not without a fundamentally di�erent approach. We will, nevertheless, deal
with the gc rule to the best of our capabilities, and we will show that many of properties above
can still be veri�ed, including the nontrivial properties of Con�uence and Termination.

In this this thesis we do not deal with the last two properties, Reconstruction and Paths,
and in fact we consider these to be pending open problems. In the case of Reconstruction,
a technical impediment is that we have not been able to de�ne an extraction procedure such
as the one that has been described in Section 6.1.1 for the λ-calculus. In Section 8.2 we will
describe some of the di�culties we have found in our a�empt to de�ne an extraction proce-
dure. In the case of the last property, Paths, we do not foresee any fundamental obstruction
for adapting it to the LSC without gc.
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In any case, we hope that the reader will agree that the labeled LSC we propose deserves
to be regarded as a Lévy labeled LSC.

6.2.2 Residual �eory for the LSC

Recall from Def. 2.75 that the LSC is de�ned as the rewriting relationÑLSC obtained from the
union of the three following rewriting rules, closed under arbitrary contexts.

Distant beta pλx.tqL s ÞÑdb trxzssL

Linear substitution Cxxxyyrxzts ÞÑls Cxxtyyrxzts

Garbage collection trxzss ÞÑgc t if x R fvptq

As a starting point in our quest to de�ne a Lévy labeled variant of the LSC, let us restate the
most basic of the properties we are a�er. We would like the labeled calculus to give a name

to each redex, in such a way that:

• If a redex R1 is a residual of a redex R, then R and R1 have the same name.

• If a redex R creates a redex S, then the name of R is a subname of the name of S.

Let us remark that in making these statements we are already presupposing the existence of
an a priori theory of residuals. For instance, it seems intuitively clear that the ls redex S is
the ancestor of the ls redexes S1, S2, S 11, and S 12 in the reduction graph of Figure 6.3. It seems

xrxzysryzzs
R //

S

��

yrxzysryzzs
S1

vv
S2

((
zrxzysryzzs

S12
((

yrxzzsryzzs

S11
vv

xrxzzsryzzs
R1

// zrxzzsryzzs

Figure 6.3: Reduction graph of xrxzysryzzs

also clear that the ls step R creates the db step S in the following reduction:

xrxzλy.ysz
R
ÝÑ pλy.yqrxzλy.ysz

S
ÝÑ yryzzsrxzλy.ys

However, unlike in most other calculi, in the LSC steps interact at a distance. In fact the three
rewriting rules involve some sort of non-local interaction. �e db rule involves an interaction
between an abstraction and an application that are separated by an arbitrary substitution
context L. �e ls rule involves an interaction between a variable that is bound to a substitution
somewhere else in the term. Finally, the gc rule depends on the non-local condition that the
variable bound by the substitution rxzss does not occur anywhere in the body t. Adapting the
standard techniques that are used to de�ne residuals—e.g. in term rewriting systems—is not
immediate.

Fortunately for us, in [6], Beniamino Acca�oli, Eduardo Bonelli, Delia Kesner, and Carlos
Lombardi already provide a de�nition of residuals for the LSC, and they prove that it gives
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rise to a quite well-behaved residual theory. Let us review the de�nitions and results of their
work that will be relevant to our own.

Before proceeding, it is worth noting that in [6] residuals are de�ned using an auxiliary
variant of the LSC that uses labels. �e use of labels in the labeled calculus of [6] should not be
confused with the Lévy labels that we are a�empting to de�ne. �e purpose of labels in the
labeled calculus of [6] is to provide an ancestor/descendant relation between the subterms
of t and the subterms of s along a single rewriting step t ÑLSC s. Lévy labels are a much
more powerful formalism. In particular, Lévy labels give a name to every redex that is found
along a derivation, including created redexes. To avoid confusion, we will depart from the
nomenclature of Acca�oli et al., and speak of marks, rather than labels, when referring to the
labeled calculus of [6]. �e nomenclature is also consistent with the marked λ-calculus that
we used as an auxiliary tool to de�ne residuals in the λ-calculus (cf. Def. 2.69).

De�nition 6.1 (�e marked LSC). Consider a denumerable set of marks a, b, c, . . .. �e set of
marked terms is given by the following grammar:

t, s, u, . . . ::“ x variable
| xa marked variable
| λx.t abstraction
| λxa.t abstraction with marked variable
| ts application
| trxzss substitution
| trxazss substitution with marked variable

�e notations L for substitution contexts and C for arbitrary contexts are extended to allow
marks. Similarly, the notion of free variables is extended to marked terms as expected, to-
gether with its notion of α-conversion. Marked reduction

a
ÝÑ on marked terms is de�ned as

the contextual closure of the following rewriting rules:

pλxa.tqL s
a
ÞÑdb trxzssL

Cxxxayyrxzts
a
ÞÑls Cxtyrxzts

trxazss
a
ÞÑgc t if x R fvptq

A marked redex is a redex R having a pa�ern of the form pλxa.tqL s, Cxxxayyrxzts, or trxazss,
and a is called the mark of the redex R. Note that a marked step t a

ÝÑ s is decorated with the
mark of the corresponding redex. On the other hand, unmarked reductionÑ on marked terms
is de�ned as the contextual closure of the usual db, ls and gc rules—in this case, the redex
is not marked but marks elsewhere in the term are allowed. �e anchor of a redex (marked
or not) is the variable possibly carrying its mark. If t is a marked term, t˝ is the term that
results from erasing all the marks in t. If t˝ “ s, we say that t is a variant of s. In that case,
we identify redexes of t and redexes of s via the obvious bijection.

De�nition 6.2 (Residuals in the LSC). Let R, S be two coinitial steps in the LSC:

R : tÑ s S : tÑ u
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Consider a marked variant t1 of t having exactly one mark a on the anchor ofS. LetR1 : t1 Ñ s1

be the step corresponding to R via the obvious bijection. �e set of residuals of S a�er R,
wri�en S{R, is the set of steps of the form S 1 : sÑ r for some term r, such that S 1 is marked
with a in the marked variant s1 of s.

For example, the reduction graph of the term xrxzysryzzs (Figure 6.3) can be adapted to
the marked LSC by marking the anchors of the redexes R and S, as below—we write Rpaq to
emphasize that a is the mark of R:

xarxzybsryzzs
Rpaq //

Spbq

��

ybrxzybsryzzs
S1pbq

uu
S2pbq

))
zrxzybsryzzs

S12pbq
))

ybrxzzsryzzs

S11pbq
uu

xarxzzsryzzs
R1paq

// zrxzzsryzzs

Moreover, according to the de�nition of residual:

R{S “ tR1u S{R “ tS1, S2u S1{S2 “ tS
1
1u S2{S1 “ tS

1
1u R{R “ ∅

One should have in mind that, to calculate a set of residuals, for example S1{S2, we should
start from a marked variant of the source term having a single marked redex, which is not
the case for ybrxzybsryzzs in the diagram above. Recall also from Def. 2.31 that the residual
relation can be extended to take the residuals of a step a�er a derivation, de�ning S{ρ by
induction on ρ:

S{ε
def
“ tSu

S{Rρ
def
“ tS2 | DS 1. S 1 P S{R and S2 P S 1{ρu

So in particular, in the diagram above we have:

S{RS1 “ tS
1
2u S{RS2 “ tS

1
1u

For a di�erent example of marked reduction, the following one involves a db step R, a ls
step S, two gc steps T , U , and its residuals:

pλxa.xqrybzts z
Rpaq //

Upbq

��

xrxzzsrybzts

U 1pbq

��

S // zrxzzsrybzts
T //

U2pbq

��

zrybzts

U3pbq

��
pλxa.xq z

R1paq // xrxzzs
S1 // zrxzzs

T 1 // z

Recall from Section 2.2 that a step R creates S if the step S is not the residual of any S0

a�er R. In this case, the db step R creates the ls step S, since x was originally bound by an
abstraction but, a�er the db step, it becomes bound by a substitution, and is now susceptible
of being substituted by z. Similarly, the ls step S creates the gc step T , as it exhausts the
occurrences of x that are bound by the substitution rxzzs, enabling the substitution to be
garbage collected. Perhaps it is also interesting to note also that the newly created redexes S
and T are not marked. In the case of the step T , there is no chance that it could be marked,
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since the garbage collected substitution is created along the way, i.e. it comes from the right-
hand side of a db step.

To conclude with this section, we restate two results that are already known to hold from
[6].

Proposition 6.3. �e LSC forms an orthogonal axiomatic rewriting system.

Proof. Recall from Def. 2.39 that an orthogonal axiomatic rewriting system in the sense of
Melliès must verify four axioms:

1. Autoerasure (AE). �at is, R{R “ ∅ for every redex R.
To prove this axiom, note that if t has a single marked redex Rpaq and the redex R :

tÑ s is �red, then s has no occurrences of a.

2. Finite Residuals (FR). �at is, R{S is �nite for every two coinitial redexes R, S.
�is axiom is immediate since the LSC is �nitely branching, and the set R{S is a set of
coinitial redexes, so it must be �nite.

3. Finite Developments (FD). If M is a set of coinitial redexes, there are no in�nite de-
velopments of M.
�is axiom is Proposition 1 in [6]. It can be proved using the notion of potential multi-

plicity, similarly as in the proof that the λ-calculus veri�es FD (�m. 2.73).

4. Semantic Orthogonality (SO). For any two coinitial redexesR, S there exist complete
developments ρ of R{S and σ of S{R such that ρ and σ are co�nal and, moreover, Rσ
and Sρ induce the same residual relation.
�is axiom is Proposition 2 in [6].

A�er presenting the Lévy labeled LSC, and using it as a tool, we will be able to give alter-
native proofs for FD and SO: termination of the labeled calculus restricted to bounded labels
will be a generalization of FD, and con�uence of the labeled calculus will be a generaliza-
tion of SO. We also remind the reader that, as was discussed in Section 2.2, various results
from [118] are automatically available in any orthogonal axiomatic rewriting system, in par-
ticular multisteps, residuals, permutation equivalence, and algebraic con�uence.

Besides Prop. 6.3, there is a second result from the work by Acca�oli et al. ([6]) that we
should mention before going on, concerning redex creation in the LSC. Here we state an
incomplete form of the result, for the sake of clarity. �e fully-�edged result is stated and
proved in the appendix (Prop. A.77).

Proposition 6.4 (Redex creation in the LSC — ♣ Prop. A.77). Let t1
R
ÝÑ t2

S
ÝÑ t3 be a sequence

of two redexes in the LSC such thatR creates S. �en S is created in exactly one of seven possible

ways. Here we provide only representative examples, see the appendix for the full statement and

proof.
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1. db creates db. For example, pλx.pλy.tqsquÑ pλy.tqrxzssuÑ tryzusrxzss.

2. db creates ls. For example, pλx.xxqtÑ pxxqrxzts Ñ pxtqrxzts.

3. db creates gc. For example, pλx.yqtÑ yrxzts Ñ y.

4. ls creates db upwards. For example, xrxzλy.tssÑ pλy.tqrxzλy.tssÑ tryzssrxzλy.ts.

5. ls creates dbdownwards. For example, pxtqrxzλy.ss Ñ ppλy.sqtqrxzλy.ss Ñ sryztsrxzλy.ss.

6. ls creates gc. For example, pyxqrxzys Ñ pyyqrxzys Ñ yy.

7. gc creates gc. For example, yrxzzsrzzts Ñ yrzzts Ñ y.

Proof. �e proof is by exhaustive case analysis on the three possible kinds of redexes that R
and S might be (db, ls, or gc), and the position of the anchor of S in the term t2.

6.2.3 De�nition of the Labeled LSC Without gc

For expository purposes, we start by giving a de�nition of a Lévy labeled variant of the LSC
without the gc rule, and then discuss how to extend this de�nition to also contemplate the gc
rule.

As a general convention, we use the symbol “`” when naming constructions that corre-
spond to labeled calculi, and the symbol “I” when naming constructions that only make sense
in the calculus without gc. For example, T is the set of terms in the (unlabeled) LSC, T ` is the
set of terms in the (full) labeled LSC, and T `I is the set of terms in labeled LSC without gc1.

De�nition 6.5 (�e Lévy labeled LSC without gc, LLSCI ). Consider a denumerable set of
initial labels I “ ta, b, c, . . .u. We assume the existence of a distinguished initial label ‚ P I .
�e set of labels LI is de�ned by the following grammar:

α, β, γ, . . . ::“ a | αβ | rαs | tαu | dbpαq

Labels are considered up to associativity of juxtaposition, i.e. for every α, β, γ P L we declare
pαβqγ “ αpβγq to hold. Labels that are not of the form αβ are called atomic. �e set of labeled

terms T `I is de�ned by the following grammar:

t, s, . . . ::“ xα | λαx.t | @αpt, sq | trxzss

Observe that there are labels over variables, abstractions, and applications, but not over sub-
stitutions. �e outermost atomic label of a label α, wri�en Ò pαq, is de�ned as follows, by
induction on the number of juxtapositions that take part in the construction of the label α:

Ò pαq
def
“

#

Ò pα1q if α “ α1α2

α if α is atomic

1�e mnemonic for the symbol “I” is that the LSC corresponds to the full λ-calculus, while the LSC without
gc corresponds to Church’s λI-calculus.
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For example Ò prabsacq “ rabs. Similarly, the innermost atomic label of a label α, wri�en
Ó pαq, is de�ned as follows:

Ó pαq
def
“

#

Ó pα2q if α “ α1α2

α if α is atomic

Note that Ò pαq and Ó pαq yield atomic labels, and that they are well-de�ned modulo asso-
ciativity of juxtaposition. �e external label of a term t, wri�en `ptq, is de�ned as the label
decorating its outermost node, ignoring substitutions:

`pxαq “ α `pλαx.tq “ α `p@αpt, sqq “ α `ptrxzssq “ `ptq

�e outermost atomic label of a term t, wri�en Ò ptq is de�ned as Ò p`ptqq. For example:

`ppλabcx.xd

qryzyd

sq “ abc and Ò ppλabcx.xd

qryzyd

sq “ a

�e syntax of contexts is extended to allow labeled terms, namely:

C ::“ l | λαx.C | @αpC, tq | @αpt, Cq | Crxzts | trxzCs

and similarly for substitution contexts. An operation for adding a label to a term, wri�en α : t

is de�ned as follows by induction on t, by skipping substitutions:

α : xβ
def
“ xαβ α : λβx.t

def
“ λαβx.t

α : @βpt, sq
def
“ @αβpt, sq α : ptrxzssq

def
“ pα : tqrxzss

�e Lévy labeled LSC without gc, LLSCI , is de�ned as the rewriting system whose objects
are the labeled terms T `I and with the rewriting relation Ñ`I de�ned as the union of the
following rules, closed under arbitrary contexts:

@αppλβx.tqL, sq ÞÑdb αrdbpβqs : trxztdbpβqu : ssL

Cxxxαyyrxzts ÞÑls Cxxα ‚ : tyyrxzts

Ñ`Idb
def
“ CxÞÑdby Ñ`Ils

def
“ CxÞÑlsy Ñ`I

def
“ Ñ`Idb YÑ`Ils

Regarding the names of steps, the name of a db step like in the rule ÞÑdb is dbpβq, while the
name of a ls step like in the rule ÞÑls is Ó pαq ‚ Ò ptq. Sometimes we write t α

ÝÑ`I s when
tÑ`I s and the name of the contracted redex is α.

In the following paragraphs we will try to understand the reasons motivating the design
of the labeled system we have just de�ned. �e main guiding principles are items 3. and 4. in
the Bestiary of Section 6.2.1:

• Copy: residuals of a redex should have the same name as their ancestor.

• Creation: created redexes should include the name of all the redexes that contribute to
their creation.
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Forward propagation of labels

A term in a rewriting system has redexes, which represent possible interactions between parts
of the term. When a redexR is �red in a Lévy labeled calculus, labels are propagated along the
term according to precise rules. �e informal idea is that labels on the le�-hand side should
propagate in such a way that the name of the redexR ends up “tainting” all those positions on
the right-hand side in which there is a possibility of a new interaction due to the contraction
of R. Let us give an informal account of how, and why, labels propagate in LLSCI .

Suppose �rst that we �re a db redexR. �e name of the db redex in a term like @αppλβx.tqL, sq

is dbpβq. �e informal idea is that β records the history indicating how the abstraction λβx.t
reached a position in the term in which it is able to interact with the application @αp..., sq.
Note that the list of substitutions L does not play any role regarding the interaction of the
abstraction and the application: the substitutions are not able to aid nor interfere.

If we read the rewriting rule ÞÑdb of the LLSCI forwards, we �nd out that the name dbpβq
of the contracted redex R is propagated to two places. First, the label dbpβq is propagated to
mark the root of the term t. �is is because the root of the term t might be an abstraction,
and �ringR exposes the abstraction, leaving it on the root of the term, allowing it to, possibly,
interact with an external application. �is may allow a db creates db creation case, as in item
1. of Prop. 6.4. In order to comply with the Creation principle, the name of the �red db redex
should be a sublabel of the created db redex. �e following example illustrates how the name
of the �red db redex (dbpcq) is indeed a sublabel of the created db redex (brdbpcqsd):

@ap@bpλcx.λdy.xe, zfq, zgq
dbpcq
ÝÝÝÑ`I @appλbrdbpcqsdy.xeqrxzztdbpcqufs, zgq

brdbpcqsd
ÝÝÝÝÝÑ`I xardbpbrdbpcqsdqseryzztdbpbrdbpcqsdqugsrxzzftdbpcqus

On the other hand, the rule ÞÑdb of the LLSCI also propagates the label dbpβq to mark the
argument of the substitution. �is is because the argument s of the substitution might be
replaced for an occurrence of x allowing a db creates ls situation as in item 2. of Prop. 6.4.
As before, we would like to comply with the Creation principle. �e following example
illustrates how the name of the �red db redex (dbpbq) is indeed a sublabel of the created ls

redex (c ‚ tdbpbqu):

@apλbx.xc, ydq
dbpbq
ÝÝÝÑ`I xardbpbqscrxzytdbpbquds

c ‚ tdbpbqu
ÝÝÝÝÝÑ`I yardbpbqsc ‚ tdbpbqud

Note that in LSC the situation is subtler than in other calculi because the interaction between
the variable x and the argument of the substitution is non-local, i.e. at a distance.

Consider now what happens if we �re a ls redex R. �e name of the ls redex in a term
like Cxxxαyyrxzts is of the form Ó pαq ‚ Ò ptq: it consists of two “halves”. �e �rst half (Ó pαq)
represents which copy of x we are contracting. For example, the two ls steps below should
have di�erent names and, indeed, their names are di�erent: a ‚ c and b ‚ c.

pya ‚ cxbqrxzycs

pxaxbqrxzycs

a ‚ c 11

b ‚ c

--
pxayb ‚ cqrxzycs
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�e second half of the name Ò ptq corresponds to the history of the argument t. Informally,
the label Ò ptq indicates how the term t came to be the argument of the substitution rxz . . .s.

By reading the rewriting rule ÞÑls of the LLSCI forwards, it can be seen that the name
Ó pαq ‚ Ò ptq of the ls redex appears on the root of the new copy of the term t. �is is because
the term t might be an abstraction, and �ring the ls redex R makes a copy of the abstraction.
�e new copy of t might possibly interact with an application, allowing a ls creates db

creation case, as in items 4. and 5. of Prop. 6.4. As in the previous cases, we would like to
comply with the Creation principle. �e following example illustrates how the name of the
�red ls redex (b ‚d) is indeed a sublabel of the created db redex (dbpb ‚dq):

p@apxb, ycqqrxzλdz.zes
b ‚ d

ÝÝÑ`I p@apλb ‚ dz.ze, ycqqrxzλdz.zes
dbpb ‚ dq
ÝÝÝÝÝÑ`I zardbpb ‚ dqserzzytdbpb ‚ dqucsrxzλdz.zes

A point that should still be clari�ed is why the two “halves” of a ls redex are atomic labels.
�at is, why the name of a ls redex is Ó pαq ‚ Ò ptq, rather than just α ‚ `ptq. �e reason is that
we must comply with the Copy principle. To justify why we take Ó pαq rather than α for the
�rst half, consider the following example:

xarxzybsryzzcs
a ‚ b //

b ‚ c ��

ya ‚ brxzybsryzzcs

b ‚ c ��
xarxzzb ‚ csryzzcs za ‚ b ‚ crxzybsryzzcs

�e redex at the right-hand side of the diagram is one of the two residuals of the redex at the
le�-hand side, so by the Copy principle they should have the same name. If we were to take
α, rather than Ó pαq, for the �rst half of the name of a ls redex, the name of the redex at the
right-hand side would be a ‚ b ‚ c instead, violating the Copy principle.

To justify why we take Ò ptq rather than `ptq for the second half of the name of a ls-redex,
consider the following (symmetric) example:

xarxzybsryzzcs
b ‚ c //

a ‚ b ��

xarxzzb ‚ csryzzcs

a ‚ b ��
ya ‚ brxzybsryzzcs za ‚ b ‚ crxzzb ‚ csryzzcs

Here the redex at the right-hand side is the (unique) residual of the redex at the le�-hand side,
so by the Copy principle they should have the same name. If we were to take `ptq, rather than
Ò ptq, for the second half of the name of a ls redex, the name of the redex at the right-hand
side would be a ‚ b ‚ c instead, violating the Copy principle.

�e label constructors dbp´q and ‚

An obvious di�erence between Lévy’s labeled λ-calculus and the calculus LLSCI that we have
just proposed is the presence of labels of the form dbpαq and the distinguished label ( ‚ ). �e
presence of these labels is not to be regarded as a fundamental feature of the labeled calculus,
but rather as a technical convenience. Let us motivate their introduction.
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�e idea of labels is that they characterize redex families: two redexes should be assigned
the same name if and only if they belong to the same family. According to the de�nition of
LLSCI , the name of a db redex in a term like @αppλβx.tqL, sq is dbpβq. For example, consider
a situation like the following, corresponding to a ls creates db creation.

p@apxb, ycqqrxzλdz.zes
b ‚ d

ÝÝÑ`I p@apλb ‚ dz.ze, ycqqrxzλdz.zes
dbpb ‚ dq
ÝÝÝÝÝÑ`I zardbpb ‚ dqserzzytdbpb ‚ dqucsrxzλdz.zes

Suppose that we had not introduced the dbp´q constructor, and we had declared that the name
of such a redex is just β. �e name of the db redex above would then be just b ‚d, and it would
coincide with the name of the ls redex that contributed to its creation. �is would contradict
the principle that redexes in di�erent families should have di�erent names. Another reason
to justify that the name of the ls redex should be strictly contained in the created db redex,
is to comply with the Termination principle (item 7. in the Bestiary of Section 6.2.1). Recall
that the Termination principle states that redexes of newer generations should have larger
and larger names.

Regarding the distinguished initial label ( ‚ ), it is simply used as a marker to point out the
places in which two labels have come into contact due to the contraction of a ls redex.

One may wonder if the addition of the constructors dbp´q and ‚ is strictly necessary
to de�ne a Lévy-like labeling for the LSC. It should be possible to formulate a variant of
LLSCI dispensing of both dbp´q and ‚ while essentially preserving all the good properties of
the LLSCI calculus, at the expense of treating redex names slightly more carefully. We have
chosen to explicitly mark the places in which db and ls redexes take place, which simpli�es
the treatment of labels.

�e distinguished label ( ‚ ) and associativity

As we have mentioned in the previous section, the distinguished label p ‚ q is used to point
out the places in which two labels come into contact due to the contraction of a ls redex.
We have chosen to make ‚ an initial label, in such a way that a ‚ b is a list of three labels:
a, ‚ , and b. One may wonder if it would not be more appropriate to regard ‚ as a binary
constructor. To answer this question, consider the following example:

xarxzybsryzzcs
b ‚ c //

a ‚ b ��

xarxzzb ‚ csryzzcs

a ‚ b ��
ya ‚ brxzybsryzzcs

b ‚ c // za ‚ b ‚ crxzybsryzzcs
b ‚ c // za ‚ b ‚ crxzzb ‚ csryzzcs

Let t be the term at the bo�om right of the diagram, i.e. t “ za ‚ b ‚ crxzzb ‚ csryzzcs. Note that,
if we contract y �rst and then x, the label decorating the le�most copy z of t is a ‚ pb ‚ cq. On
the other hand, if we contract x �rst and then the two copies of y, the corresponding label is
pa ‚ bq ‚ c. �e Con�uence principle (item 6. in the Bestiary of Section 6.2.1) requires that
the labeled calculus should be con�uent. �is basically means that the labels a ‚ pb ‚ cq and
pa ‚ bq ‚ c should be considered equal. If we were to regard a ‚ b as a new constructor, we
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would have to work modulo associativity of ‚ , and also the associativity of ‚ with respect
to juxtaposition. �at is, we would have to work modulo the following four equations:

αpβγq “ pαβqγ

αpβ ‚ γq “ pαβq ‚ γ

α ‚ pβγq “ pα ‚ βqγ

α ‚ pβ ‚ γq “ pα ‚ βq ‚ γ

Rather than doing this, we have chosen the arguably simpler route of working only modulo
the �rst equation (associativity of juxtaposition), and regarding ‚ as an initial label.

6.2.4 De�nition of the Labeled LSC – Extension with gc

De�nition 6.6 (�e Lévy labeled LSC with gc, LLSC). Similarly as in Def. 6.5, let I “

ta, b, c, . . .u be a set of initial labels, and assume the existence of two distinguished labels
‚ P I and b P I . �e set of labels L is again de�ned by the following grammar,

α, β, γ, . . . ::“ a | αβ | rαs | tαu | dbpαq

Metavariables Ω,Θ,Ψ, . . . range over �nite sets of initial labels. �e set of labeled terms T ` is
de�ned by the following grammar:

t, s, . . . ::“ xα | λαΩx.t | @αpt, sq | trxzssΩ

�e notions of outermost atomic label Ò pαq of a label α, innermost atomic label Ó pαq of a label
α, external label `ptq of a labeled term t, the operation of adding a label to a term α : t, and the
notions of contexts and substitution contexts are de�ned as in Def. 6.5.

�e Lévy labeled LSC with gc, LLSC, is de�ned as the rewriting system whose objects are
the labeled terms T ` and with the rewriting relationÑ` de�ned as the union of the following
rules, closed by arbitrary contexts.

@αppλβΩx.tqL, sq ÞÑdb αrdbpβqs : trxztdbpβqu : ssΩL

CxxxαyyrxztsΩ ÞÑls Cxxα ‚ : tyyrxztsΩ
trxzssΩ ÞÑgc t if x R fvptq

Ñ` db
def
“ CxÞÑdby Ñ` ls

def
“ CxÞÑlsy Ñ` gc

def
“ CxÞÑgcy Ñ`

def
“ Ñ` db Y Ñ` ls Y Ñ` gc

Regarding the names of steps, the name of a db step like in the rule ÞÑdb is dbpβq, the name of
a ls step like in the rule ÞÑls is Ó pαq ‚ Ò ptq, and the name of a gc step like in the rule ÞÑgc is
the set of labels ta ‚ Ò psq | a P Ωu. As before, we write t α

ÝÑ` s when t Ñ` s and the name of
the contracted redex is α.

Observe that redex names µ, ν, ξ, . . . have three possibly shapes given by the grammar
below, where α stands for an arbitrary label in L, and ω, ω1, etc. stand for atomic labels:

µ ::“ dbpαq
l jh n

name of a db step

| ω ‚ω1
l jh n

name of a ls step

| tω1 ‚ω
1
1, . . . , ωn ‚ω

1
nu

l jh n

name of a gc step, n ě 1
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Usually we regard redex names as belonging to a separate sort, but occasionally we identify
the names of db and ls steps with the corresponding underlying label—e.g. the redex name
dbpaq can also be thought as the label dbpaq.

�e remainder of this subsection is devoted to motivating the de�nition of the labeling
scheme introduced in Def. 6.6. We will also describe some di�culties involving the gc rule.

Motivation of the labeling: sets of labels (Ω) and dummy labels (b)

Compared to the LLSCI (without gc) the LLSC (with gc) incorporates three new elements:

1. Substitutions are decorated with a set of labels Ω.

2. Abstractions are decorated with a set of labels Ω.

3. �ere are gc steps, and the name of a gc step is a set of labels.

Observe that these elements do not interfere with the behavior of db and ls steps, and in
particular it does not a�ect the names of db and ls steps. Let us motivate each of these new
elements. Consider the following example reduction whose �nal step is a gc step:

pxxqrxzys
R
ÝÑls pyxqrxzys

S
ÝÑls pyyqrxzys

T
ÝÑgc yy

In this reduction sequence, the �rst two ls steps R and S contribute to the creation of the gc
step T , which means that, in the labeled calculus, the names of R and S should be sublabels
of the name of T . In fact, the order of the �rst two steps is irrelevant:

pxxqrxzys
S1
ÝÑls pxyqrxzys

R1
ÝÑls pyyqrxzys

T
ÝÑgc yy

�e observation that the order is irrelevant is re�ected in the fact that the name of the gc step
is a set of labels.

Moreover, we note that the labeling scheme of the LLSCI calculus, without gc, is not
su�cient to give an appropriate name to the gc step. �e main problem is that we lose track
of the labels decorating each of the two copies of x, for example in this sequence of labeled
steps in LLSCI :

@apxb, xcqqrxzyds
b ‚ d

ÝÝÑ`Ils @apyb ‚ d, xcqrxzyds
c ‚ d

ÝÝÑ`Ils @apyb ‚ d, yc ‚ dqrxzyds

a hypothetical gc step of the form:

@a

pyb ‚ d, yc ‚ d

qrxzyd

s Ñ` gc @a

pyb ‚ d, yc ‚ d

q

should have a name including the labels b ‚d and c ‚d. But, even though these labels do
appear on the term (in this example), we have no way of knowing what relationship they
have with the explicit substitution rxzyds.
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�e idea is that every substitution trxzssΩ should be decorated with a set of labels Ω,
representing the initial labels that originally decorated each free occurrence of the variables
x in t. For instance, in the LLSC the example above becomes:

@apxb, xcqqrxzydstb,cu
b ‚ d

ÝÝÑ`Ils @apyb ‚ d, xcqrxzydstb,cu
c ‚ d

ÝÝÑ`Ils @apyb ‚ d, yc ‚ dqrxzydstb,cu

and as a consequence, the name of the gc step:

@a

pyb ‚ d, yc ‚ d

qrxzyd

stb,cu Ñ` gc @a

pyb ‚ d, yc ‚ d

q

is, according to Def. 6.6, precisely the set ta ‚ Ò pydq | a P tb, cuu that is, tb ‚d, c ‚du. Note
that this set does not depend on the order in which the labeled variants of the steps R and S
are �red, as can be seen in the diagram:

@apxb, xcqqrxzydstb,cu
b ‚ d //

c ‚ d

��

@apyb ‚ d, xcqqrxzydstb,cu

c ‚ d

��
@apxb, yc ‚ dqqrxzydstb,cu

b ‚ d // @apyb ‚ d, yc ‚ dqqrxzydstb,cu

Later on, we will introduce an invariant characterizing correctly labeled terms. In a correctly
labeled term, given any subterm trxzssΩ and any free occurrences of the form xα in t, we will
have that Ó pαq P Ω.

To justify the presence of the decoration Ω over an abstraction λαΩx.t, note that a substi-
tution trxzssΩ may be created as the result of �ring a db step

@α
ppλβΩx.tqL, sq Ñ` db αrdbpβqs : trxztdbpβqussΩL

and the set Ω should appropriately record the set of initial labels originally decorating the free
occurrences of x in t. �is means that the invariant for correctly labeled terms should request
that, given any subterm λαΩx.t of a correctly labeled term for any free occurrences of the form
xα in t, we will have that Ó pαq P Ω.

�ere is one more issue that we should mention: in a term of the form λαΩx.t or of the form
trxzssΩ, the invariant for correctly labeled terms should not allow Ω to be the empty set. Note
that if we allow Ω to be the empty set, the name of a gc step trxzss∅ Ñ` gc t is the set of labels
ta ‚ Ò ptq | a P ∅u, that is, ∅. �is is objectionable, because it may result in two gc steps that
do not share the same origin but have the same name, for example, the name of the two steps
below is ∅:

trxzyas∅

trxzyas∅ryzz
bs∅

∅ 66

∅ ((
tryzzbs∅

�at is why the invariant for correctly labeled terms will forbid that Ω is empty. In the initial
term, if t has no occurrences of x, we will decorate terms of the form λαΩx.t and of the form
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trxzssΩ with the set of labels Ω “ tbu where b is a distinguished dummy label. With this
invariant, the names of the gc steps are di�erent:

trxzyastbu

trxzyastburyzz
bstbu

tb‚ bu 55

tb‚ au ))
tryzzbstbu

Failure of stability in the LSC with gc

Stability is an abstract property of rewriting systems with residuals, stating that computa-
tional steps are created in an essentially unique way: if any two steps have a common resid-
ual, they must also have a common ancestor. �is means that the presence of a computational
step has a unique cause. �e property of stability in the context of rewriting was originally
studied by Jean-Jacques Lévy [109, 111], and inspired by Gérard Berry’s notion of stability in
denotational semantics [26].

De�nition 6.7 (Stability). An orthogonal axiomatic rewriting system (cf. Def. 2.39) veri-
�es the Stability property if given steps R, S, T1, T2, T3 such that T3 P T1{pS{Rq and T3 P

T2{pR{Sq, there exists a step T0 such that T1 P T0{R and T2 P T0{S. Graphically:

T0

OO

R

��
S

��T1oo

S{R �� �� R{S����

T2 //

T3 ��

It is not di�cult to see that the Stability property fails in the LSC, in presence of the gc

rule.2

Remark 6.8 (Failure of Stability in the LSC). Consider the following diagram:

xryzzsrzzws
R

vv

S

&&
xryzwsrzzws

T
�� S{R ((

xrzzws

∅ T 1

��
xryzws xrzzws

T 1

��

x

x

Note that R is a ls step and S, S{R, T , and T 1 are gc steps. Note also that R{S “ ∅. �en T
and T 1 do not have a common ancestor, which means that the LSC with gc does not have the
Stability property.

2�e Stability property does hold in the LSC without gc, as will be proved in Section 7.2.
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�e failure of Stability means that we cannot hope to ful�ll all the principles of Lévy labels
in the Bestiary of Section 6.2.1. In particular, if the Initial principle holds, we know that the
names of R and S must be di�erent. If the Contribution principle holds, we also know that
the name of T should contain the name of R but not the name of S, while the name of T 1
should contain the name of S but not the name of R. Finally, from the Copy principle we
conclude that the names of T and T 1 must coincide. From this we derive a contradiction.

In the labeled calculus LLSC of Def. 6.6, we have taken the design decision that the redex
creation cases of the form “gc creates gc” (cf. Prop. 6.4) are not to be re�ected in the labels.
For instance, the example of Rem. 6.8 in the labeled calculus LLSC becomes:

xaryzzbstburzzw
cstbu

b ‚ ctt tb‚ bu ))
xaryzzbstburzzw

cstbu

tb ‚ cu �� tb‚ bu **

xarzzwcstbu

∅ tb ‚ cu
��

xaryzzbstbu xarzzwcstbu

tb ‚ cu ��

xa

xa

Observe that the names of T and T 1 are both tb ‚ cu and they include the name of R (b ‚ c) as
a sublabel while, on the other hand, the name of S (tb ‚ bu) is unrelated with the name of T .

6.3 Properties of the LSC with Lévy Labels

�is section is devoted to establishing various properties of the LLSC:

1. In Section 6.3.1 we prove basic properties of labeled reduction, including the invariant
for correctly labeled terms.

2. In Section 6.3.2 we study permutation diagrams in the LLSC. In particular we prove that
the LLSC is an orthogonal axiomatic rewriting system (Prop. 6.32).

3. In Section 6.3.3 we prove that the LLSC is weakly normalizing if the height of redex
names is bounded (Prop. 6.45).

4. In Section 6.3.4 we build upon the previous result, and strengthen it to show that the
LLSC is strongly normalizing if the height of redex names is bounded (�m. 6.51).

5. In Section 6.3.5 we obtain as a corollary of previous results that the LLSC is con�uent
(�m. 6.53).

Among these properties, we prove that the LLSC enjoys most of the desirable traits that
we already listed for a Lévy labeled calculus in the Bestiary of Section 6.2.1. We summarize
the status of each of these properties a�er �nishing this section:

1. �e Li� property is an easy observation. Given any (unlabeled) reduction sequence
ρ : t�LSC s and any labeled variant t1 P T ` of t, there is a labeled variant ρ1 : t1 �` s

1
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of ρ. Moreover, in Lem. 6.23 we prove that all the labeled terms along the reduction ρ1
preserve the invariant of being correctly labeled, provided that t1 is correctly labeled.

2. �e Initial property is proved in Lem. 6.19.

3. �e Copy property is proved in Lem. 6.33.

4. �e Creation property for the calculus without gc is proved in Prop. 6.41. We also show
an example in which this property does not hold for the calculus with gc (Rem. 6.8).

5. �e Contribution property for the calculus without gc is not proved in this section.
We prove it in the next chapter (Prop. 7.12), when we show that the LSC without gc
forms a Deterministic Family Structure (�m. 7.13).

6. In �m. 6.53 we give two alternative proofs of Con�uence.

7. �e Termination property is established in �m. 6.51.

8. As we mentioned, we do not treat the Reconstruction or Paths properties.

6.3.1 Basic Properties

We begin by proving some basic properties of the labeled calculus LLSC as de�ned in Def. 6.6,
including the invariant for correctly labeled terms.

Labels and contexts

Lemma 6.9 (Properties of labels and contexts). Operations on labels and contexts have the

following properties:

1. α : pβ : tq “ pαβq : t

2. If L is a substitution context, then α : ptLq “ pα : tqL.

3. If C is not a substitution context, then α : Cxty “ pα : Cqxty.

4. Ò pα : tq “ Ò pαq

5. Ò pCxxxαyyq “ Ò pCxα ‚ : tyq

6. α : Cxxxβyy is of the form C1xxxβ
1

yy, where Ó pβq “ Ó pβ1q and α : Cxβ ‚ : ty “ C1xβ1 ‚ : ty.

Proof. �e proofs are straightforward. Item 1. and 4. are by induction on t. Items 2., 3., and
5. are by induction on the context. Item 6. is easy by case analysis, depending on whether C
is a substitution context or not, and using items 2. and 3. respectively.

Lemma 6.10 (Adding labels is functorial). If t
µ
ÝÑ` s then pα : tq

µ
ÝÑ` pα : sq.
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Proof. By induction on the context C under which the redex in t is contracted. �e interesting
case is the base case, when C “ l. �en we proceed by case analysis, depending on the kind
of redex contracted.

1. db step.

α : @βppλγΩx.t
1qL, s1q α : βrdbpγqs : t1rxztdbpγqu : s1sΩL

@αβppλγΩx.t
1qL, s1q

dbpγq // αβrdbpγqs : t1rxztdbpγqu : s1sΩL

2. ls step. Using Lem. 6.9, we have:

α : C1xxβyrxzt1sΩ α : C1xβ ‚ : t1yrxzt1sΩ

C2xxβ
1

yrxzt1sΩ
Ópβq ‚ Òpt1q // C2xβ1 ‚ : t1yrxzt1sΩ

3. gc step.

α : t1rxzs1sΩ
ta ‚ Òps1q | aPΩu // α : t1

Lemma 6.11 (Reduction preserves the outermost label). If tÑ` s then Ò ptq “ Ò psq.

Proof. By induction on the context C under which the redex in t is contracted. �e interesting
case is the base case, when C “ l. �en we proceed by case analysis, depending on the kind
of redex contracted.

1. db step. �en:

Ò p@αppλβΩx.t
1qL, s1qq “ Ò pαq

“ Ò pαrdbpβqsq

“ Ò pαrdbpβqs : t1rxztdbpβqu : s1sΩLq by Lem. 6.9

2. ls step. �en Ò pC1xxxαyyq “ Ò pC1xα ‚ : t1yq by Lem. 6.9.

3. gc step. �en Ò pt1rxzs1sΩq “ Ò pt1q.

Initially and correctly labeled terms

Recall that the Initial principle in the Bestiary of properties of Lévy labels given in Sec-
tion 6.2.1 requests that, in an initially labeled term, two di�erent redexes should have di�er-
ent names. As a consequence, if we have an unlabeled term and we want to decorate it with
initial labels, each subterm (except for substitutions) should be decorated with a di�erent ini-
tial label. For example, xx should be initially labeled as @apxb, xcq or @cpxa, xbq rather than
@apxb, xbq or @apxa, xaq.

Moreover, binders in the LLSC, that is, abstractions and explicit substitutions, are deco-
rated with a set of labels Ω. As we have discussed in Section 6.2.4, the set Ω associated to
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a subterm binding a variable x should start being the set of initial labels decorating the free
occurrences of x, or tbu if there are no free occurrences of x. For example, λa

tc,dux.@
bpxc, xdq

and @apxb, xcqryzzdstbu are initially labeled terms.
�e property that a term is initially labeled is very restrictive, and the rewriting relation

pÑ`q of the LLSC does not preserve the invariant that a term is initially labeled. For example,
in the following ls step:

xa

rxzλb

tcuy.y
c

stau Ñ` ls pλ
a ‚ b

tcu y.y
c

qrxzλb

tcuy.y
c

stau

the le�-hand side is initially labeled, while on the right-hand side: (1) there is a subterm
decorated with a label which is not an initial label (a ‚ b), (2) there are two subterms decorated
with the same initial label (the two copies of yc), and (3) the set of labels tau on the explicit
substitution does not correspond to a free occurrence of x.

In this section, we give a precise de�nition of initially labeled terms, and we de�ne the
invariant for correctly labeled terms, in such a way that all initially labeled terms are correctly
labeled, and the rewriting relation pÑLSCq preserves correctly labeled terms.

De�nition 6.12 (Leaf labels). Let t P T `. �e multiset of leaf labels of t, wri�en vlxptq, is the
multiset of atomic labels of the form Ó pαq for each free occurrence of xα in t. Formally:

vlxpxαq
def
“ tÓ pαqu

vlxpyαq
def
“ ∅ if x ‰ y

vlxpλαΩy.tq
def
“ vlxptq if x ‰ y

vlxp@αpt, sqq
def
“ vlxptq Z vlxpsq

vlxptryzssΩq
def
“ vlxptq Z vlxpsq if x ‰ y

We also extend this operation to contexts by de�ning vlxplq
def
“ ∅. Note that vlxpCxtyq “

vlxpCq Z vlxptq if C does not bind x. Occasionally we treat multisets as sets when the multi-
plicity of labels is not relevant.

Lemma 6.13 (Properties of leaf labels). Leaf labels have the following properties:

1. vlxpα : tq “ vlxptq

2. If tÑ` s then vlxptq Ě vlxpsq for any variable x (where “Ě” denotes the inclusion of sets).

Proof. Item 1. is straightforward by induction on t. Item 2. is by induction on t. �e interesting
case is when we have a step:

1. db step. @αppλβΩy.t
1qL, t2q

dbpβq
ÝÝÝÑ` db αrdbpβqs : t1ryztdbpβqu : t2sΩL. �en:

vlxp@αppλβΩy.t
1qL, t2qq “ vlxpt1q Z vlxpt2q Z vlxpLq

“ vlxpαrdbpβqs : t1q Z vlxptdbpβqu : t2q Z vlxpLq by item 1.
“ vlxpαrdbpβqs : t1ryztdbpβqu : t2sΩLq
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2. ls step. Cxxyαyyryzt2sΩ
Ópαq ‚ Òpt2q
ÝÝÝÝÝÝÑ` ls Cxα ‚ : t2yryzt2sΩ. �en:

vlxpCxxyαyyryzt2sΩq “ vlxpCq Z vlxpt2q
“ vlxpCq Z vlxpt2q Z vlxpt2q (set equality)
“ vlxpCq Z vlxpα ‚ : t2q Z vlxpt2q by item. 1
“ vlxpCxα ‚ : t2yryzt2sΩq

3. gc step. t1ryzt2sΩ
ta ‚ Òpt2q | aPΩu
ÝÝÝÝÝÝÝÝÝÑ` gc t1. �en vlxpt1ryzt2sΩq “ vlxpt1q Z vlxpt2q Ě vlxpt1q.

De�nition 6.14 (Initially labeled terms). A term t P T ` is initially labeled, wri�en initptq, if:

1. For every subterm of s, the external label `psq is initial and `psq R t ‚ ,bu.

2. For every pair of subterms s1, s2 at di�erent positions, `ps1q ‰ `ps2q.

3. For every subterm of t that is a binder, i.e. of the form pλa

Ωx.sq, or of the form srxzusΩ,

we have Ω “

#

tbu if vlxpsq “ ∅
vlxpsq otherwise

Remark 6.15. Given an unlabeled term t, there always exists an initially labeled variant t` of
t.

Example 6.16 (Initially labeled terms). �e labeled term pλa

tcu
x.@bpxc, ydqqryzzesteu is an ini-

tially labeled variant of pλx.xyqryzzs.

�e labeled terms λa

tc,dux.@
bpxc, xdq and yarxzzbstbu are initially labeled.

�e labeled terms x ‚ and xb are not initially labeled because the distinguished initial labels

‚ and b cannot decorate subterms.

�e labeled terms @apxb, xbq and @apxb, xaq are not initially labeled because di�erent sub-

terms should have di�erent labels.

�e labeled terms λa

tb,cux.x
b

and yarxzzbstbu are not initially labeled because sets of labels

over binders should coincide with the set of leaf labels of the bound variable.

�e following easy lemma (Lem. 6.18) states that the names of the steps in an initially
labeled term have a very particular shape.

De�nition 6.17 (Initial redex names). A redex name µ is said to be initial according to the
following de�nition by cases:

1. A db redex name is initial if it is of the form dbpaq with a P I .

2. A ls redex name is initial if it is of the form a ‚ b with a, b P I .

3. A gc redex name is initial if it is of the form tb ‚ au.

Lemma 6.18 (Redexes in initially labeled terms are initial). Let t P T `
be initially labeled. Let

µ be the name of some redex in t. �en µ is initial.
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Proof. By cases.

1. db redex. t “ @appλb

Ωx.t
1qL, s1q; name: dbpbq.

2. ls redex. t “ Cxxxayyrxzt1sΩ; name: a ‚ Ò pt1q. Note that Ò pt1q P I given that t1 is an
initially labeled term.

3. gc redex. t “ t1rxzs1sΩ; name: ta ‚ Ò ps1q | a P Ωu. As before, Ò ps1q P I since s1 is an
initially labeled term. Moreover, since a gc step applies, vlxpt1q “ ∅, hence Ω “ tbu.

�e following lemma proves the Initial property from the Bestiary of Section 6.2.1:

Lemma 6.19 (Initial property). Let t P T `
be initially labeled. If R : t

µ
ÝÑ` s and S : t

ν
ÝÑ` u

are di�erent steps, then µ ‰ ν.

Proof. If R is a db step, its name is of the form µ “ dbpaq, where a is the label decorating the
λ. Suppose that ν “ dbpaq. �en S is a db step contracting the same λ, hence R “ S.

If R is a ls step, its name is of the form µ “ a ‚ b, where a is the label decorating the
contracted variable. Suppose that ν “ a ‚ b. �en S is a ls step contracting the same variable,
hence R “ S.

IfR is a gc step, its name is of the form µ “ ta ‚ Ò paq | a P Ωu, where a is the external label
of the term s in the substitution trxzssΩ erased by R. Suppose that ν “ ta ‚ Ò paq | a P Ωu.
�en S is a gc step erasing the same substitution, hence R “ S.

Next we de�ne the notion of correctly labeled terms. To do so, we also de�ne an auxil-
iary predicate that states whether a term is good. Roughly speaking, a term is good if the
distinguished initial label ‚ only appears as a result of applying the Ñ` ls rule, and the dis-
tinguished initial label b only appears decorating the sets Ω of the binders λαΩx.t and trxzssΩ
when x R fvptq.

De�nition 6.20 (Correctly labeled terms). A label α P L is good, wri�en Xpαq if it veri�es
the following inductive de�nition:

a R t ‚ ,bu ùñ Xpaq
Xpαq ^Xpβq ùñ Xpαβq
Xpαq ^Xpβq ùñ Xpα ‚ βq

Xpαq ùñ Xprαsq
Xpαq ùñ Xptαuq
Xpαq ùñ Xpdbpαqq

A set of initial variables Ω is good, wri�enXpΩq, if it is non-empty, it contains no occurrences
of ‚ , and it does not contain occurrences of b unless it is precisely tbu. Formally:

XpΩq
def
ðñ pΩ ‰ ∅q ^ p ‚ R Ωq ^ pb R Ω_ Ω “ tbuq
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A term t P T ` is good, wri�enXptq, if every label and set of labels is good. More precisely:

Xpαq ùñ Xpxαq
Xpαq ^XpΩq ^Xptq ùñ XpλαΩx.tq
Xpαq ^Xptq ^Xpsq ùñ Xp@αpt, sqq

Xptq ^Xpsq ^XpΩq ùñ XptrxzssΩq

We also extend the notion of goodness to contexts, by declaring Xplq to hold. Note that
XpCxtyq holds if and only if XpCq andXptq hold.

A term t P T ` is said to be correctly labeled if and only if all of the following conditions
hold:

1. Good: Xptq holds.

2. Correct abstractions: for any subterm λαΩx.t
1 we have vlxpt1q Ď Ω.

3. Correct substitutions: for any subterm t1rxzs1sΩ we have vlxpt1q Ď Ω.

For points 2, and 3, note that the inclusions are set-theoretical, i.e. we only care about the
underlying set of the multiset vlxptq.

Example 6.21 (Correctly labeled terms). �e labeled term λa ‚ b

trdbpdqs,tdbpequux.x
crdbpdqs

is a correctly

labeled variant of λx.x.

�e labeled terms xa ‚
and yabb

are not correctly labeled because a ‚ and abb are not good.

�e labeled term λa

tbu
x.xbcd

is not correctly labeled because tdu is not a subset of tbu.

�e de�nition of initially and correctly labeled terms is also extended to derivations. A
derivation ρ : t �` s is said to be initially (resp. correctly) labeled if t is initially (resp.
correctly) labeled. By Rem. 6.15, any derivation ρ : t �LSC s in the unlabeled LSC has an
initially labeled variant ρ1 : t1 �` s

1.

Next we show that the notion of correctly labeled terms is indeed invariant by the rewrit-
ing relation pÑ`q.
Remark 6.22 (Initially labeled terms are correctly labeled). Initially labeled terms are correctly
labeled.

Lemma 6.23 (Reduction preserves correctly labeled terms). Let t P T `
be a correctly labeled

term and tÑ` s. �en s is correctly labeled.

Proof. In the proof of this lemma we use the fact that if Xptq and Xpαq then Xpα : tq and
Xpα ‚ : tq, which can be easily proved by induction on t. �e proof proceeds by induction on
t. �e interesting cases are when there is a step at the root of the term:

1. db step. @αppλβΩx.t
1qL, t2q

dbpβq
ÝÝÝÑ` db αrdbpβqs : t1rxztdbpβqu : t2sΩL.

1.1 Good: since the invariant holds for twe have: Xpαq,Xpβq,XpΩq,Xpt1q,Xpt2q, and
XpLqwhich impliesXpαrdbpβqsq,Xptdbpβquq. Moreover,Xpαrdbpβqs : t1rxztdbpβqu :

t2sΩLq.
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1.2 Correct abstractions: immediate by the invariant on t.

1.3 Correct substitutions: for substitution nodes in t1 and t2, it is immediate by the
invariant on t. For substitution nodes in L, it is also immediate by using Lem. 6.13,
since L cannot bind any variable in t2. Finally, for the substitution rxztdbpβqu :

t2sΩ we use the fact that t has correct abstractions and Lem. 6.13 to conclude that
vlxpαrdbpβqs : t1q “ vlxpt1q Ď Ω.

2. ls step. Cxxxαyyrxzt2sΩ
Ópαq ‚ Òpt2q
ÝÝÝÝÝÝÑ` ls Cxα ‚ : t2yrxzt2sα.

2.1 Good: by the invariant on t we have that XpCq, Xpαq, Xpt2q, and XpΩq. So
XpCxα ‚ : t2yrxzt2sΩq.

2.2 Correct abstractions: abstractions internal to t2 or internal to C are correct by the
invariant on t. �e only non-trivial case is that of abstraction nodes in the path to
the hole of C. Let C be of the form C1xλ

β
Θy.C2y. �en vlypC2xxx

αyyq “ vlypC2xα : t2yq

since x ‰ y, and t2 cannot have free occurrences of y. We conclude by the fact
that vlypC2xx

αyq Ď Θ, as the invariant holds for t.

2.3 Correct substitutions: the only non-trivial case is for substitutions lying in the path
to the hole of C. Let C be of the form C1xC2ryzssΘy. �en vlypC2xxx

αyyq “ vlypC2xα :

t2yq. We conclude similarly as in the previous item.

3. gc step. t1rxzt2sΩ
ta ‚ Òpt2q | aPΩu
ÝÝÝÝÝÝÝÝÝÑ` gc t1 with x R fvpt1q. �is case it is immediate by the

fact that the invariant holds for t.

De�nition 6.24 (Initially reachable terms). A term t is said to be initially reachable if there
exists an initially labeled term t0 such that t0 �` t.

Remark 6.25 (Initially reachable terms are correctly labeled). Initially reachable terms are cor-
rectly labeled by the fact that reduction preserves correct labelling (Lem. 6.23).

Labeling morphisms

Sometimes it is useful to rename labels. For example, the following derivation in the LLSC:

pxa xb

qrxzzc

sta,bu
a ‚ c

ÝÝÑ` pz
a ‚ c xb

qrxzzc

sta,bu

May be renamed by mapping the label a to d ‚ e, the label b to d ‚ e, and the label c to f ‚ g,
obtaining:

pxd ‚ e xd ‚ e

qrxzzf ‚ g

stdu
e ‚ f

ÝÝÑ` pz
d ‚ e ‚ f ‚ g xd ‚ e

qrxzzf ‚ g

stdu

Note that the set ta, bu collapses to the set tdu and that the name of the ls redex is not
d ‚ e ‚ f ‚ g but rather e ‚ f. �is mechanism can be formalized with the following notion of
labeling morphism.
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De�nition 6.26 (Labeling morphism). A labeling morphism φ is a function φ : L Ñ L ho-
momorphic on all label constructors, except for initial labels:

φp ‚ q “ ‚ φpbq “ b φpdbpαqq “ dbpφpαqq

φprαsq “ rφpαqs φptαuq “ tφpαqu φpαβq “ φpαqφpβq

If Ω is a set of labels, we write φpΩq to stand for tÓ pφpΩqq | α P Ωu. �e domain of labeling
morphisms is extended so that they may be applied on terms as follows:

φpxαq “ xφpαq φpλαΩx.tq “ λ
φpαq
φpΩqx.φptq

φp@αpt, sqq “ @φpαqpφptq, φpsqq φptrxzssΩq “ φptqrxzφpsqsφpΩq

Labeling morphisms may also be applied on contexts, by declaring that φplq “ l, and on
redex names, as follows:

φpdbpαqq “ dbpφpαqq

φpα ‚ βq “ Ó pφpαqq ‚ Ò pφpβqq

φpta ‚ β | a P Ωuq “ ta ‚ Ò pφpβqq | a P φpΩqu

Remark 6.27. A labeling morphism is uniquely determined by its value on the set of initial
labels I .

Lemma 6.28. If φ is a labeling morphism, the following hold for any label α P L and any term

t P T `
:

1. Ó pφpαqq “ Ó pφpÓ pαqqq

2. Ò pφpαqq “ Ò pφpÒ pαqqq

3. Ò pφptqq “ Ò pφpÒ ptqqq

Proof. Items 1. and 2. are straightforward by induction on α. Item 3. is a consequence of item
2.

Proposition 6.29 (Labeling morphisms are functorial). Let φ be a label morphism. �en for

each step R : t
µ
ÝÑ` s there is a step φpRq : φptq

φpµq
ÝÝÑ` φpsq.

Proof. By induction on the context C under which the redex in t is contracted: �e interesting
case is when there is a step at the root of the term.

1. db step

@αppλβΩx.tqL, sq
dbpβq //

φp´q

��

αrdbpβqs : trxztdbpβqu : ssΩL

φp´q

��
@φpαqppλ

φpβq
φpΩqx.φptqqφpLq, φpsqq

dbpφpβqq // φpαrdbpβqsq : φptqrxzφptdbpβquq : φpsqsφpΩqφpLq
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2. ls step

CxxxαyyrxztsΩ
Ópαq ‚ Òptq //

φp´q
��

Cxα ‚ : tyrxztsΩ

φp´q

��
φpCqxxxφpαqyyrxzφptqsφpΩq

Ópφpαqq ‚ Òpφptqq// φpCqxφpαq ‚ : φptqyrxzφptqsφpΩq

Note thatφpÓ pαq ‚ Ò ptqq “ Ó pφpÓ pαqqq ‚ Ò pφpÒ ptqqq “ Ó pφpαqq ‚ Ò pφptqq by Lem. 6.28.

3. gc step Let x R fvptq and:

trxzssΩ
ta ‚ Òpsq | aPΩu //

φp´q

��

t

φp´q

��
φptqrxzφpsqsφpΩq

ta ‚ Òpφpsqq | aPφpΩqu // φptq

Note that φpta ‚ Ò psq | a P Ωuq “ ta ‚ Ò pφpÒ psqqq | a P Ò pΩqu “ ta ‚ Ò pφpsqq | a P

Ò pΩqu by Lem. 6.28.

As a consequence of the previous proposition, labeling morphisms can be applied on
derivations, se�ing φpR1 . . . Rnq “ φpR1q . . . φpRnq.

6.3.2 Orthogonality

In this section we show that the LLSC is con�uent. Actually, we prove the much stronger prop-
erty that the LLSC forms an orthogonal axiomatic rewriting system in the sense of Melliès, as
de�ned in Def. 2.39.

We begin by showing that the LLSC is weakly Church–Rosser. Recall from Def. 2.18 that
an abstract rewriting system is weakly Church–Rosser if every peak ÐÑ formed by exactly
two steps can be closed with zero or more steps��. In the labeled calculus a stronger result
can be established, which we call strong permutation. It states that every peak µ

ÐÝ
ν
ÝÑ, where µ

and ν are the names of the steps, can be closed with zero or more steps of the same name, that
is ν
ÝÑÝÑÐÝ

µ
ÐÝ.

Proposition 6.30 (Strong permutation — ♣ Prop. A.79). Let R : t
µ
ÝÑ` s and S : t

ν
ÝÑ` u be

steps in the LLSC. �en there exists a term r and two derivations σ : s
ν
ÝÑÝÑ` r and ρ : u

µ
ÝÑÝÑ` r.

Diagrammatically:

t
µ //

ν

��

s

ν
����

u
µ // // r

�e proof is constructive, and:

1. If R is a db step, σ consists of exactly one step.
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2. If R is a ls step, σ may consist of one or two steps.

3. If R is a gc step, σ may consist of zero or one steps.

And symmetrically for S and ρ.

Proof. By exhaustive case analysis. See the appendix for the detailed proof. Below we show
three examples that illustrate some interesting situations:

1. Nested db steps.

@apλb

tcu
x.xc,@dpλe

tfu
y.yf, zgqq

dbpbq //

dbpeq ��

xardbpbqscrxz@tdbpbqudpλe

tfu
y.yf, zgqsc

dbpeq ��
@apλb

tcu
x.xc, ydrdbpeqsfryzztdbpequgstfuq

dbpbq// xardbpbqscrxzytdbpbqudrdbpeqsfryzztdbpequgstfusc

2. Duplication of a ls step by a ls step.

xarxzybstauryzz
cstbu

a ‚ b //

b ‚ c

��

ya ‚ brxzybstauryzz
cstbu

b ‚ c ��
za ‚ b ‚ crxzybstauryzz

cstbu

b ‚ c ��
xarxzzb ‚ cstauryzz

cstbu
a ‚ b // za ‚ b ‚ crxzzb ‚ cstauryzz

cstbu

Note that, if there is duplication, there are exactly two ways to close the diagram, depending
on the order in which the copies of the duplicated steps are contracted.

3. Erasure of a ls step by a gc step.

xarwzybstburyzz
cstbu

tb‚ bu //

b ‚ c ��

xaryzzcstbu

xarwzzb ‚ cstburyzz
cstbu

tb‚ bu// xaryzzcstbu

De�nition 6.31 (Residuals for the LLSC). Recall that the LSC with its usual residual relation
forms an orthogonal axiomatic rewriting system (Prop. 6.3). �e LLSC is provided with a
residual relation by relying on the residual relation of the LSC as follows.

If t P T ` is a labeled term, let us write |t| P T for the term without labels that results from
erasing all labels from t. Similarly, if R : t Ñ` s is a labeled step in the LLSC, let us write
|R| : |t| ÑLSC |s| for the corresponding step in the LSC, via the obvious bijection.

LetR : tÑ` s be a labeled step and consider two labeled steps S1 : tÑ` u and S2 : sÑ` r.
We declare the residual relation S1 xRy S2 to hold in the LLSC if and only if the usual relation
|S1| x|R|y |S2| holds in the LSC.

Proposition 6.32 (Orthogonality). �e LLSC forms an orthogonal axiomatic rewriting system.
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Proof. It can be checked that the LLSC provided with the residual relation of Def. 6.31 forms an
orthogonal axiomatic rewriting system. �e �rst three axioms: Autoerasure, Finite Resid-

uals, and Finite Developments (FD), are immediate consequences of the fact that the LSC
is an orthogonal axiomatic rewriting system. For example, to prove FD, suppose that there
is an in�nite development t1 Ñ` t2 Ñ` . . . of a set of coinitial steps M in the LLSC. �en
|t1| ÑLSC |t2| ÑLSC . . . is an in�nite development of the set t|R| | R P Mu in the LSC,
contradicting the fact that the LSC enjoys the FD property.

�e Semantic Orthogonality (SO) axiom is a consequence of Strong permutation (Prop. 6.30).
Strictly speaking, SO can be checked by exhaustively inspecting all the diagrams constructed
in the proof of Prop. 6.30 and checking that they are indeed permutation tiles (cf. Def. 2.37).

�e following lemma proves the Copy property from the Bestiary of Section 6.2.1, and a
weak form of the converse implication:

Lemma 6.33 (Copy property). Let R1, S, and R2 be steps such that srcpR1q “ srcpSq and

srcpR2q “ tgtpSq. �en:

1. If R1 xSy R2 in the LLSC, then R1 and R2 have the same name.

2. If srcpR1q is initially labeled and R1 and R2 have the same name, then R1 xSy R2.

Proof. Item 1. is an immediate consequence of Strong permutation (Prop. 6.30). Namely, if we
consider the peak formed by S and R1, Prop. 6.30 ensures that the step R2 used to close the
diagram has the same name as R1.

We omit the technical proof of item 2. De�ne the anchor label of a step as follows. Given
a db step named dbpbq, its anchor label is the label decorating the lambda, that is, b. Given a
ls step named a ‚ b, its anchor label is the label decorating the contracted variable, that is, a.
Given a gc step named ta1 ‚ b, . . . , an ‚ bu, its anchor label is the label decorating the erased
substitution, that is, b. Let S : t Ñ` s and recall that t is initially labeled so there is a single
occurrence of the anchor label of R1 in t. Consider three cases, depending on whether the
number of residuals #pR1{Sq is 0, 1, or 2.

0. If R1{S “ ∅ then S is a gc step erasing the contracted substitution. �en S erases the
unique occurrence of the anchor label of R1, that is, the anchor label of R1 does not
appear anywhere in in s, contradicting the fact that R1 and R2 have the same name. So
this case is impossible.

1. IfR1{S “ tR
1
2u then S does not erase or duplicate of the anchor label ofR1. �is means

that there is a unique occurrence of the anchor label of R1 in s, and this implies that
R2 “ R12.

2. If R1{S “ tR21, R22u then S makes exactly two copies of the anchor label of R1, so
there are exactly two occurrences of the anchor label of R1 in s, and this implies that
R2 P tR21, R22u.
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Remark 6.34. �e converse of the Copy property does not hold if the term is not initially
labeled, and even if it is initially reachable. For example, the source of R1 and S below is
initially reachable but not initially labeled, and even though R1 and R2 have the same name,
it is not the case that R1 xSy R2:

pxaxbqrxzycsta,buryzz
dstcu

a ‚ c // pya ‚ cxbqrxzycsta,buryzz
dstcu

Spb ‚ cq//

R1pc ‚ dq ��

pya ‚ cyb ‚ cqrxzycsta,buryzz
dstcu

R2pc ‚ dq ��
pza ‚ c ‚ dxbqrxzycsta,buryzz

dstcu pya ‚ czb ‚ c ‚ dqrxzycsta,buryzz
dstcu

One important corollary of Orthogonality is that labeling is consistent with permutation
equivalence.

Proposition 6.35 (Permutation equivalent derivations yield the same labellings). Let ρ1 and

ρ2 be permutation equivalent derivations, i.e. ρ1 ” ρ2. Let ρ`1 and ρ`2 be labeled variants of ρ1

and ρ2 respectively such that srcpρ`1q “ srcpρ`2q, i.e. they start on the same labeled term. �en

tgtpρ`1q “ tgtpρ`2q, i.e. they end on the same labeled term.

Proof. Recall from Def. 2.40 that ” is the re�exive, symmetric and transitive closure of the
one-step permutation axiom ”1. We proceed by induction on the derivation that ρ1 ” ρ2.
�e re�exivity, symmetry and transitivity cases are immediate. �e only interesting case is
the axiom, i.e. when:

ρ1 “ τ1Rσ τ2 ”
1 τ1 S ρ τ2 “ ρ2

where ρ is a complete development ofR{S and σ is a complete development of S{R. Consider
the labeled variants τ `1 , R`, S`, σ`, ρ`, τ `2 , and τ ``2 of τ1, R, S, σ, ρ, τ2, and τ2 respectively, such
that:

• τ `1 R` σ` τ `2 is a labelled variant of τ1Rσ τ2 whose source is t`,

• τ `1 S` ρ` τ ``2 is a labelled variant of τ1 S ρ τ2 whose source is t`.

�en we know that R` σ` has the same source as S` ρ`, and we claim that they have the same
target. �is is a consequence of the strong permutation property (Prop. 6.30), observing that
every diagram in the proof of Prop. 6.30 is closed with the relative residuals ofR and S. Since
R` σ` and S` ρ` have the same target, then τ `2 “ τ ``2 , so we conclude that ρ`1 and ρ`2 have the
same target, as required.

6.3.3 Weak Normalization for Bounded Reduction

Consider the following in�nite derivation in the LLSC, starting from an initially labeled vari-
ant of the non-terminating term Ω “ pλx.xxqpλx.xxq and li�ing the reduction Ω �LSC

Ω�LSC . . . to the labeled calculus:

@apλb

td,eux.@
cpxd, xeq, λf

th,iux.@
gpxh, xiqq

�` @ardbpbqscpλ
d ‚ atdbpbquf

th,iu x.@gpxh, xiq, λ
e ‚ atdbpbquf

th,iu x.@gpxh, xiqq

�` @ardbpbqscrdbpd ‚ atdbpbqufqsgpλ
h ‚ tdbpd ‚ atdbpbqufque ‚ atdbpbquf

th,iu x.. . ., . . .q

�` . . .
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One can see that the names of the db steps become progressively larger in size. More precisely,
the name of each db step is strictly contained in the name of the following db step, as evidenced
by the underlining:

dbpbq

dbpd ‚ atdbpbqufq

dbph ‚ tdbpd ‚ atdbpbqufque ‚ atdbpbqufq

. . .

�is means that the names of the db steps become not merely larger but also deeper in height,
if labels are seen as trees. Informally speaking, this is because the LLSC is designed to verify
the Creation principle in the Bestiary of properties given in Section 6.2.1. Recall that the
Creation principle states that whenever a step R creates a second step S, the name of R is
a sublabel of the name of S. In this case, each db redex contributes to the creation of the
following one, and as a consequence the name of each db step is a sublabel of the name of the
following one.

In this section we show that if the rewriting relation of the LLSC is restricted so that the
height of the names of steps is bounded, the resulting rewriting relation turns out to be weakly
normalizing. In the following section (Section 6.3.4) we prove that it actually turns out to be
strongly normalizing. Note that the strong normalization result explains and generalizes the
example given above: it means that whenever we have an in�nite labeled reduction sequence
t1 Ñ` t2 Ñ` . . . the names of the steps must be labels whose height cannot be bounded by
any integer.

Below we introduce the auxiliary calculi LLSCP and LLSCPI , which only allow contracting
a stepR if the name ofR veri�es a given predicate P . We also introduce the notion of bounded

predicate.

De�nition 6.36 (�e P -restricted LLSC). Let P be a predicate on redex names. We de�ne
two calculi, LLSCP and LLSCPI . �e set of terms is T ` in both cases. �e reduction relation
ÝÑ` P is de�ned as in the LLSC, restricted to contracting only steps whose names verify the
predicate P . �e reduction relation Ñ` PI is de�ned similarly, but restricted to contracting
db and ls-steps:

t
µ
ÝÑ` P s

def
ðñ t

µ
ÝÑ` s ^ P pµq holds

t
µ
ÝÑ` PI s

def
ðñ pt

µ
ÝÑ` db s _ t

µ
ÝÑ` ls sq ^ P pµq holds

Note that since there are no gc-steps, the name of a step in the LLSCPI can always be under-
stood as a label. We write t ÝÑ` P s if t µ

ÝÑ` P s holds for some redex name µ, and similarly for
ÝÑ` PI .

De�nition 6.37 (Height of labels and redex names). We de�ne the height of a label as follows:

hpaq
def
“ 1

hprαsq “ hptαuq “ hpdbpαqq
def
“ 1` hpαq

hpαβq
def
“ maxthpαq, hpβqu
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Similarly, we de�ne the height of a redex name as follows:

db redex: hpdbpαqq
def
“ 1` hpαq

ls redex: hpα ‚ βq
def
“ maxthpαq, hpβqu where α, β are atomic

gc redex: hpta ‚ β | a P Ωuq
def
“ maxthpa ‚ βq | a P Ωu where β is atomic

Note that in the case of db and ls redexes the height of the redex name coincides with its
height if seen as a label.

De�nition 6.38 (Bounded predicate). A predicate P on redex names is said to be bounded if
and only if there exists a bound H P N such that for every redex name µ, if P pµq holds then
hpµq ă H .

�e result of weak normalization from this section should be seen as a stepping stone
for the stronger result of strong normalization in the next section. In particular, for the time
being, we can dispense of gc steps and work exclusively with the LLSCPI . Our current goal
is then to prove that the rewriting relation µ

ÝÑ` PI is weakly normalizing if P is bounded. �is
is the content of Prop. 6.45 below. We sketch the structure of the proof:

1. In Prop. 6.41, we show that the LLSC without gc veri�es the Creation principle in the
Bestiary of Section 6.2.1.

2. In Lem. 6.43, we show that among the steps from a LLSCPI term, there is at least one
non-duplicating step.

3. In Lem. 6.44, we show that contracting a non-duplicating step has the following e�ect:

3.1 Every other step is preserved (i.e. it has exactly one residual).
3.2 �e created redexes have deeper names than the contracted redex, i.e. the height

of the label increases.

�ese results will allow us to de�ne a measure on terms that always decreases when contract-
ing a non-duplicating redex.

Creation principle

�e following relation of name contribution corresponds to the informal notion that the name
of a redex is “contained” in the name of another redex.

De�nition 6.39 (Name contribution). A redex name µ is said to directly contribute to a redex
name ν, wri�en µ Name

ãÑ1 ν, if one of the three following cases holds:

dbpβq
Name
ãÑ1 dbpα rdbpβqs γq

dbpβq
Name
ãÑ1 α ‚ tdbpβqu where α is any atomic label

Ó pαq ‚ Ò pβq
Name
ãÑ1 dbpα ‚ βq

A redex name µ is said to (indirectly) contribute to a redex name ν, wri�en µ Name
ãÑ ν, if µpName

ãÑ1

q˚ν.



218

Remark 6.40. If µ Name
ãÑ1 ν then hpµq ă hpνq.

Proposition 6.41 (Creation property for the LLSC without gc). Let t
µ
ÝÑ` s

ν
ÝÑ` u be a

sequence of two steps, each of which may be a db step or a ls step but not a gc step. If the �rst

step creates the second one, then µ
Name
ãÑ1 ν.

Proof. Recall that the notion of residual in the LLSC is de�ned in terms of the notion of residual
in the LSC (Def. 6.31), i.e. the residual relation S1 xRy S2 holds for three given labeled steps if
and only if |S1| x|R|y |S2| holds for the underlying unlabeled variants. Recall also that in the
LSC there are seven creation cases (Prop. 6.4), three of which involve gc steps. So it su�ces
to analyze the remaining four creation cases:

1. db creates db. �e situation is:

@γp@δppλβΩx.pλ
ε
Θy.tqL1qL2, sqL3, uq

dbpβq
ÝÝÝÑ` @γppλ

δrdbpβqsε
Θ y.tqL1rxztdbpβqu : ssΩL2L3, uq

So indeed dbpβq
Name
ãÑ1 dbpδrdbpβqsεq.

2. db creates ls. �e situation is

@γ
ppλβΩx.Cxxx

δ
yyqL, tq

dbpβq
ÝÝÝÑ` γrdbpβqs : Cxxxδyyrxztdbpβqu : tsΩL

By Lem. 6.9, γrdbpβqs : Cxxxδyy is of the form C1xxxδ
1

yy with Ó pδq “ Ó pδ1q. Moreover,
by Lem. 6.9, Ò ptdbpβqu : tq “ Ò ptdbpβquq “ tdbpβqu. So we conclude that dbpβq Name

ãÑ1

Ó pδq ‚ tdbpβqu, as required.

3. ls creates db upwards. �e situation is:

@β
pxγL1rxzpλ

δ
Θy.sqL2sΩL3, tq

Ópγq ‚ Òpδq
ÝÝÝÝÝÝÑ` ls @β

ppλγ ‚ δΘ y.sqL2L1rxzpλ
δ
Θy.sqL2sΩL3, tq

So indeed Ó pγq ‚ Ò pδq Name
ãÑ1 dbpγ ‚ δq.

4. ls creates db downwards. Similar to the previous case.

Non-duplicating steps

De�nition 6.42 (Non-duplicating step). Given any axiomatic rewriting system with a notion
of residual, a step R : tÑ s is said to be non-duplicating if any coinitial step S : tÑ u has at
most one residual a�er R, that is, #pS{Rq ď 1.

Lemma 6.43 (Existence of non-duplicating Ñ` PI -steps). Let t P T `
not in Ñ` PI -normal

form. �en t has at least one non-duplicatingÑ` PI -redex.



219

Proof. Since t is not inÑ` PI -normal form, it has at least oneÑ` PI -redex. LetR : tÑ` PI s be
the step whose anchor lies more to the right. Recall that the anchor of a db step is the variable
bound by the λ, and the anchor of a ls step is the variable a�ected by the substitution. Let
S : t Ñ` PI u be any step coinitial to R, and let us check that #pS{Rq ď 1. If R is a db step,
then trivially #pS{Rq ď 1. If R is a ls step, suppose that #pS{Rq ą 1. �en the step R is
of the form C1xC2xxx

αyyrxzrsy Ñ C1xC2xxα ‚ : ryyrxzrsy and the anchor of S must lie inside r.
�is contradicts the fact that R is the step whose anchor lies more to the right.

Lemma 6.44 (E�ect of contracting a non-duplicating step). Let namesPIptq denote the multiset

of names of Ñ` PI -steps of t. Let R : t
α
ÝÑ` PI s be a non-duplicating step. �en there exist

multisets of labels m and n such that:

namesPIptq “ m Z tαu

namesPIpsq “ m Z n

and moreover hpαq ă hpβq for every label β P n. Note that α is the name of the contracted step

and n are the names of the created steps.

Proof. Since α is the name of a step of t, we can write namesPIptq as namesPIptq “ m Z tαu.
SinceR is a non-duplicating step and it is not a gc step, given any step S : tÑ` PI u such that
R ‰ S we have that S has a single residual, that is, S{R is a singleton. Moreover, by the Copy

property (Lem. 6.33), S{R has the same name as S. So we have that namesPIptq “ m Z n,
where n is the multiset of names of the redexes created in this step. Recall that the name of the
contracted redex contributes to the names of the created redexes (Prop. 6.41). �at is, α Name

ãÑ1 β

for every β P n. �is implies, in particular, that hpαq ă hpβq for every β P n.

Weak normalization for bounded reduction without gc

We are now able to prove the main result of this subsection. �e argument for weak normal-
ization relies on the extension of a well-founded ordering pX,ąq to a well-founded ordering
pąq over multisets of elements of X , as described in �m. 2.29.

Proposition 6.45 (Bounded reduction is weakly normalizing). If P is a bounded predicate,

thenÑ` PI is WN.

Proof. Let H P N be a bound for the bounded predicate P . Consider the following measure,
which takes a multiset of labels and yields a multiset of integers, #pmq

def
“ tH´hpαq |α P mu.

�is measure can be extended to work over terms, by declaring #ptq
def
“ #pnamesPIptqq. Note

that #ptq is �nite and its elements are non-negative integers. �e proof relies on the following
claim:

• Claim. If t is not inÑ` PI -normal form, there is a step tÑ` PI s such that #ptq ą #psq.
Proof of the claim. Let t P T ` be a term not in Ñ` PI -normal form. By Lem. 6.43, it has
at least one non-duplicating redexR : tÑ` PI s. By Lem. 6.44, that there exist multisets
m and n such that namesPIptq “ m Z tαu and namesPIpsq “ m Z n, where moreover
hpαq ă hpβq for all β P n. It su�ces to check that #ptq ą #psq.
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We begin by observing that #ptqpH ´ hpαqq ą #psqpH ´ hpαqq. To see this, consider
any label that has the same height as α. It cannot belong to n, since all labels in n have
greater height than α. �en #pnqpH ´ hpαqq “ 0 and we have:

#ptqpH ´ hpαqq “ #pm Z tαuqpH ´ hpαqq

ą #pmqpH ´ hpαqq

“ #pm Z nqpH ´ hpαqq

“ #psqpH ´ hpαqq

�is observation implies, in particular, that #ptq ‰ #psq. Now consider a value x P
Zě0 such that #psqpxq ą #ptqpxq. Since #psqpxq ą 0, there is a label β such that
x “ H ´ hpβq. Clearly hpβq ‰ hpαq, since we have already proved #ptqpH ´ hpαqq ą

#psqpH ´ hpαqq, which would contradict the fact that #ptqpxq ă #psqpxq. �erefore
#ptαuqpxq “ #ptαuqpH ´ βq “ 0.
Moreover, there must be a label β1 P n of the same height as β. By contradiction, suppose
that all labels of the same height as β were in m. �en #pnqpH´βq “ 0, which implies:

#ptqpH ´ hpβqq “ #pm Z tβuqpH ´ hpβqq

“ #pmqpH ´ hpβqq

“ #pm Z nqpH ´ hpβqq

“ #psqpH ´ hpβqq

�is also contradicts the fact that #ptqpxq ă #psqpxq. �en x “ H ´hpβ1qwith β1 P n.
Finally, we want to show that there is a non-negative integer y P Zě0 such that y ą x

and mpyq ą mpxq. Let y :“ H ´ hpαq. In fact, since β1 P n is of greater height than
α, we have y “ H ´ hpαq ą H ´ hpβ1q “ x. Moreover, as we have already observed,
#ptqpyq “ #ptqpH ´hpαqq ą #psqpH ´hpαqq “ #psqpyq. �is concludes the proof of
the claim.

By repeatedly applying the claim, it is immediate to conclude thatÑ` PI is WN.

6.3.4 Strong Normalization for Bounded Reduction

In this section we build upon, and strengthen, the normalization result of Prop. 6.45, by show-
ing that the full LLSC (with gc) is strongly normalizing as long as reduction is restricted so
that the height of redex names is bounded. �e structure of the proof is as follows:

1. First we show thatÑ` PI is increasing (Lem. 6.48). Recall from Def. 2.21 that a rewriting
relation ÑĎ X2 is increasing if there exists a function f : X Ñ N such that x Ñ y

implies fpxq ă fpyq.

2. Using the previous property, we conclude in Lem. 6.49 that Ñ` PI is strongly normal-
izing if P is a bounded predicate.

3. Finally, using a technical lemma to postpone gc steps (Lem. 6.50), we obtain the main
result (�m. 6.51), which states that the reduction relation for the full LLSC is SN, as
long as redex names have bounded height.



221

Strong normalization for bounded reduction without gc

De�nition 6.46 (Measure of a labeled term). We de�ne the size of a label as follows:

}a}
def
“ 1

}rαs} “ }tαu} “ }dbpαq}
def
“ 1` }α}

}αβ}
def
“ }α} ` }β}

Given a labeled term, its measure }t} is de�ned as the sum of the sizes of all its labels:

}xα}
def
“ }α}

}λαΩx.t}
def
“ }α} ` }t}

}@αpt, sq}
def
“ }α} ` }t} ` }s}

}trxzssΩ}
def
“ }t} ` }s}

�e measure of a context }C} is de�ned similarly, by declaring }l} def
“ 0.

Lemma 6.47 (Properties of the measure of a term). �e measure of a labeled term has the

following properties:

1. }Cxty} “ }C} ` }t}

2. }α : t} “ }α} ` }t}

Proof. Both items are straightforward, by induction on C and t respectively.

Lemma 6.48 (Labeled reduction without gc is increasing). If t ÝÑ` PI s then }t} ă }s}.

Proof. By induction on the context C under which the ÝÑ` PI redex in t is contracted. �e
inductive cases are easy by induction. �e interesting case is when there is a step at the root:

1. db step. t “ @αppλβΩx.t
1qL, s1q

dbpβq
ÝÝÝÑ` PI αrdbpβqs : t1rxztdbpβqu : s1sΩL “ s. �en:

}t} “ }α} ` }β} ` }t1} ` }L} ` }s1} by Lem. 6.47
ă }α} ` 2}β} ` }t1} ` }L} ` }s1} ` 4

“ }s} by Lem. 6.47

2. ls step. t “ Cxxxαyyrxzt1sΩ
Ópαq ‚ Òpt1q
ÝÝÝÝÝÝÑ` PI Cxα ‚ : t1yrxzt1sΩ. �en:

}t} “ }C} ` }xα} ` }t1} by Lem. 6.47
“ }C} ` }α} ` }t1}

ă }C} ` }α} ` }t1} ` }t1} ` 1

“ }C} ` }α ‚ } ` }t1} ` }t1}

“ }C} ` }α ‚ : t1} ` }t1} by Lem. 6.47
“ }s}
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Lemma 6.49 (Bounded reduction in the calculus without gc is strongly normalizing). Let P

be a bounded predicate. �en ÝÑ` PI is SN.

Proof. Note that we already know that ÝÑ` PI is weakly Church–Rosser, weakly normalizing,
and increasing:

1. WCR. �is is a consequence of Strong permutation (Prop. 6.30). Recall that in Prop. 6.30
all peaks µ

ÐÝ
ν
ÝÑ are closed with steps with the same name ν

ÝÑÝÑÐÝ
µ
ÐÝ. So if we suppose that

P pµq and P pνq hold for the names of the steps in the peak, the steps closing the diagram
are also related byÑ` PI .

2. WN. �is has been shown in Prop. 6.45.

3. Inc. �is has been shown in Lem. 6.48.

Moreover, Klop-Nederpelt’s Lemma (Lem. 2.22), asserts that WCR ^ WN ^ Inc ùñ SN,
which concludes the proof.

Strong normalization for bounded reduction with gc

In order to extend the strong normalization result to the full calculus, including the gc rule,
we need the following technical lemma that allows to postpone gc steps.

Lemma 6.50 (Postponement of gc in the LLSC-calculus — ♣ Lem. A.80). Let ρ : t�` s be a

reduction sequence. �en there exists a term u and a reduction sequence σ : t�` dbY ls u�` gc s.

Moreover, let #µpρq denote the number of redexes named µ that are contracted along the

reduction sequence ρ. �en:

1. �e number of db and ls redexes is preserved:

#µpρq “ #µpσq if µ is the name of a db or ls redex

2. �e number of gc redexes may increase:

#µpρq ď #µpσq if µ is the name of a gc redex

3. �e reduction σ contracts the same names as ρ:

#µpσq ą 0 ùñ #µpρq ą 0 for any redex name µ

Proof. See the appendix for the full proof.

�e following is the main result of this section:

�eorem 6.51 (Bounded reduction in LLSCP is strongly normalizing). Let P be a bounded

predicate. �en labeled reduction ÝÑ` P is SN.
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Proof. Suppose given an in�nite reduction sequence ρ : t0
µ1
ÝÑ` P t1 . . .

µn
ÝÑ` P tn . . .. We

show how to construct a second in�nite reduction sequence: σ : s0
ν1
ÝÑ` P s1 . . .

νn
ÝÑ` P sn . . .

consisting only of db and ls steps. �is construction contradict the fact that LLSCPI (without
gc) is strongly normalizing for bounded families of labels, as already shown in Lem. 6.49.

First, note that there cannot be an in�nite reduction sequence t ÝÑÝÑ` P . . . consisting
only of gc steps, since ÝÑ` gc is SN (as it strictly decreases the size of the term). To alleviate
notation, given i ď j, let ti

µ
ÝÑÝÑ` tj stand for ti

µi`1
ÝÝÑ` ti`1 . . .

µj
ÝÑ` tj . To construct σ, proceed

by induction on n, with the following invariant. At the n-th step, for n ě 1, we will have
built:

• a reduction sequence s0
ν
ÝÑÝÑ` P sn of length exactly n;

• consisting of only db and ls steps;

• and such that t0 ÝÑÝÑ` dbY ls sn �` gc tkn for some kn ě 0.

We prove the base case and inductive step:

• Base case, n “ 1. By the previous remark, there cannot be an in�nite sequence of gc
steps, so we can choose k1 ą 0 such that t0

µ
ÝÑÝÑ` gc

µk1
ÝÝÑ` dbY ls tk1 . By postponement

(Lem. 6.50) there exists a term s1 such that t0
µk1
ÝÝÑ` dbY ls s1 �` gc tk1 . Take s0 :“ t0 and

ν1 :“ µk1 .

• Induction, “n ùñ n` 1”. We already have t0 ÝÑÝÑ` dbY ls sn �` gc tkn . As before, since
there cannot be an in�nite sequence of gc steps, we can choose kn`1 ą kn such that
sn �` gc tkn �` gc

µkn`1

ÝÝÝÑ` dbY ls tkn`1 . By postponement, there exists a term sn`1 such
that sn

µkn`1

ÝÝÝÑ` dbY ls sn`1 ÝÑÝÑ` gc tkn`1 . Take νn`1 :“ µkn`1
.

Finally, since νn “ µkn , it is clear that P pνnq must hold for all n.

6.3.5 Con�uence

In this section we give two proofs that the LLSC is con�uent. Both proofs are consequences of
previous facts that we have already established. �e �rst proof is based on purely syntactical
methods, while the second one relies on residual theory.

Lemma 6.52 (Bounded reduction in the LLSCP is con�uent). Let P be a bounded predicate.

�en the rewriting relation ÝÑ` P is Church–Rosser.

Proof. By Newman’s Lemma (Lem. 2.20), is su�ces to show that ÝÑ` P is SN (cf. �m. 6.51)
and WCR (cf. Prop. 6.30).

�eorem 6.53 (�e LLSC is con�uent). �e rewriting relationÑ` is Church–Rosser.

Proof.

First proof. If ρ : t �` s and σ : t �` u, de�ne P pµq to hold i� µ is the name of
redex contracted in ρ or σ. Since the number of such labels is �nite, P is bounded and by the
previous result (Lem. 6.52) we conclude.
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Second proof. We have proved that the LLSC is an orthogonal axiomatic rewriting sys-
tem (Prop. 6.32). Moreover, orthogonal axiomatic rewriting systems enjoy algebraic con�u-
ence (Coro. 2.56), which is a strong form of con�uence.



Chapter 7

Applications of the Labeled Linear

Substitution Calculus

7.1 Introduction

In his PhD thesis [109], Jean-Jacques Lévy de�ned a notion of redex family for the λ-calculus,
with the goal of understanding what an optimal implementation of the λ-calculus would look
like. In a straightforward implementation of the λ-calculus, each step in the implementation
corresponds to a single β-step. If the implementation has some non-trivial mechanism of
sharing, however, each step in the implementation may correspond to the simultaneous con-
traction of many β-steps. Lévy proved that if an implementation of the λ-calculus contracts,
in each step, a maximal set of β-steps belonging to the same redex family, in such a way that at
least one β-step is needed, then the implementation is optimal. Later, in [78], Lévy and Gérard
Huet studied standardization and normalization in the se�ing of orthogonal term rewriting
systems. In particular, they showed that if a reduction strategy repeatedly contracts a needed

step, the strategy reaches a result whenever possible, i.e. it is normalizing.
In their work [61], John Glauert and Zurab Khasidashvili generalized the results of opti-

mality and normalization to any abstract rewriting system, provided that it comes equipped
with well-behaved notions of residuals and redex families. �e abstract axiomatic structure
encapsulating all the desired properties is called a Deterministic Family Structure in [61].

In the previous chapter, we have de�ned a Lévy labeled calculus LLSC (Section 6.2) and
we have proved that it enjoys a number of properties (Section 6.3). In this chapter, the Lévy
labeled calculus LLSC is used as a tool to prove properties about the usual, unlabeled, LSC. In
particular, the labeled calculus LLSC is used to show that the unlabeled LSC forms a Deter-
ministic Family Structure, and consequently to obtain optimality, standardization, and nor-
malization results. Most of the results concern the LSC without gc.

7.1.1 Our Work

�is chapter is the result of collaboration with Eduardo Bonelli and it is structured as follows.
We highlight in boldface what we consider to be the main contributions:
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1. In the previous chapter (Rem. 6.8), we have already seen that the LSC with the gc rule
does not enjoy the property known as redex stability. In Section 7.2, using the LLSC
as a tool, we show that, however, the LSC without the gc rule does enjoy redex

stability (Prop. 7.1).

2. In Section 7.3 we recall Glauert and Khasidashvili’s notion of Deterministic Family
Structure (DFS). �en, using the LLSC as a tool, we prove that the LSC without gc

forms a Deterministic Family Structure (�m. 7.13).
When the properties of Deterministic Family Structures are translated into the language
of Lévy labels, the statement that the LSC forms a DFS can essentially be summarized as
the statement that the LLSC veri�es the properties 1–7 in the Bestiary of Chapter 6 Sec-
tion 6.2.1. �e property of Termination for the LLSC corresponds to the property usually
known as Generalized Finite Developments or Finite Family Developments. �e property
of Contribution (Prop. 7.12) is not immediate and relies on Finite Family Developments.

3. In Section 7.4 we recall Lévy’s optimality result for the λ-calculus (�m. 7.17), we also
review Glauert and Khasidashvili’s abstract optimality result (�m. 7.24), and, as a corol-
lary, we derive an optimality result for the LSC without gc.

4. In Section 7.5 we recall the problem of standardization, and we propose a standard-

ization procedure for Deterministic Family Structures (Prop. 7.39), inspired on a
standardization result by Klop. As a corollary, we obtain a standardization result for the
LSC without gc (Coro. 7.43).

5. In Section 7.6 we recall the notion of normalization, and we prove a normalization

result for Deterministic Family Structures (Prop. 7.54), giving su�cient conditions
under which a reduction strategy is normalizing. As a corollary, we conclude that, in the
LSC without gc the call-by-name strategy (Coro. 7.56) and a variant of the call-by-need
strategy (Coro. 7.59) are normalizing.

Moreover, in Section 8.2 in the Conclusion (Chapter 8), we discuss an open problem regard-
ing the de�nition of an extraction procedure for the LSC. We propose an extraction procedure
and we state two unproved conjectures about it.

7.2 Stability

Recall that an orthogonal axiomatic rewriting system is said to verify the Stability prop-
erty (Def. 6.7) if any two steps that have a common residual also have a common ancestor.
Graphically:

T0

OO

R

��
S

��T1oo

S{R �� �� R{S����

T2 //

T3 ��
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In Rem. 6.8 we observed that the LSC with the gc rule does not have the Stability property.
On the other hand:

Proposition 7.1. �e LLSC without gc has the Stability property.

Proof. Let R, S, T1, T2, and T3 be �ve steps such that T3 P T1{pS{Rq X T2{pR{Sq. Consider
an initially labeled variant t`0 of the term at the peak of the diagram, i.e. the source of R and
S. Consider also all the corresponding labeled variants R`, S`, T `1 , T `2 , and T `3 of R, S, T1, T2,
and T3 respectively:

t`0
R`

��
S`

��
t`1

�� S`{R` �� ��

t`2

��R`{S`����
T `1 t`3

��

T `2

T `3

Since T `3 is a residual of both T `1 and T `2 , by the Copy property (Lem. 6.33), we have that T `1 ,
T `2 and T `3 have the same name. We consider two cases, depending on whether T `1 and T `2
have an ancestor in t`0 or not.

1. If T `1 has an ancestor in t`0. �en there is a step T `0 such that T `1 P T `0{R, so T `0 has the
same name as T `1 by the Copy property (Lem. 6.33). Moreover, since T `0 and T `2 have
the same name and t`0 is initially labeled, we have that T `2 P T̂ `0{R using the converse of
the Copy property (Lem. 6.33).

2. If T `2 has an ancestor in t`0. Analogous to the previous case.

3. If T `1 and T `2 do not have an ancestor in t`0. We argue that this case is impossible. Since
T `1 has no ancestor, by de�nition, it is a created redex. By the Creation property
(Prop. 6.41) the name of R` directly contributes to the name of T `1 , so there are three
possibilities:

dbpbq
Name
ãÑ1 dbpardbpbqscq

dbpbq
Name
ãÑ1 a ‚ tdbpbqu

a ‚ b
Name
ãÑ1 dbpa ‚ bq

Note that since a, b, and c are initial labels, the name ofT `1 uniquely determines the name
of R`. Symmetrically, T `2 is created by S`, and the name of S` is uniquely determined
by the name of T `2 .

Finally, since T `1 and T `2 both have the same name, and they uniquely determine the
name of their ancestors, the names of R` and S` must coincide. Moreover t`0 is initially
labeled, so by the Initial property (Lem. 6.19) we have that R` “ S`, and in particular
R “ S, which is a contradiction.
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7.3 Redex Families

In this section we study redex families in the LSC without gc. First, we review the de�nition
of Deterministic Family Structure (DFS), proposed by Glauert and Khasidashvili in [61]. A
Deterministic Family Structure is an abstract rewriting system that veri�es a number of par-
ticular axioms. �ese axioms essentially request that there is a well-behaved notion of redex
family, which allows one to state and prove a generalized version of Lévy’s optimality result
in a framework that abstracts away the low level details of Lévy labels. Second, we prove that
the LSC without gc forms a DFS (�m. 7.13). �is construction relies crucially on the labeled
LSC that we have de�ned in previous sections (Def. 6.6).

We begin by recalling some notation and de�nitions:

• An axiomatic rewriting system has the unique ancestor (UA) property (Def. 2.31) if a
step has at most one ancestor, that is, wheneverR1 xSy R andR2 xSy R thenR1 “ R2.

• An axiomatic rewriting system has the acyclicity property (Def. 2.31) if two steps cannot
erase each other, that is, whenever R ‰ S and R{S “ ∅ then S{R ‰ ∅.

• In an abstract rewriting system, a redex with history or hredex for short (see Section 6.1.1)
is a non-empty derivation. We are usually interested in the last step of the hredex, so
hredexes are typically wri�en as of the form ρR where ρ is a possibly empty derivation
and R is a composable step. �e set of hredexes whose source is an object x is denoted
by Histpxq.

• In an orthogonal axiomatic rewriting system we write ρ ” σ whenever ρ and σ are
permutation equivalent derivations (Def. 2.40).

We also give a formal de�nition of copy:

De�nition 7.2 (Copy relation). Let ρR and σS be coinitial hredexes in any orthogonal ax-
iomatic rewriting system. We say that σS is a copy of ρR, wri�en ρR ď σS if there exists a
derivation τ such that ρτ ” σ and R xτy S. Graphically:

ρ

����
σ
�� ��

R

��
τ
// //

S

��

De�nition 7.3 (Deterministic Family Structure). A Deterministic Residual Structure (DRS) is
an orthogonal axiomatic rewriting system (cf. Def. 2.39) that moreover veri�es the unique
ancestor (UA) and acyclicity properties.

A Deterministic Family Structure (DFS) is a triple xA,», ãÑy, where A is a Deterministic
Residual Structure,» is an equivalence relation between coinitial hredexes whose equivalence
classes are called families, and ãÑ is a binary relation of contribution between coinitial families.
Two families are declared to be coinitial if their representatives are coinitial. �e family of an
hredex ρR is wri�en Fam»pρRq. Moreover, the following axioms hold:



229

1. Initial. If R, S are di�erent coinitial steps, then Fam»pRq ‰ Fam»pSq.

2. Copy. �e inclusion pďq Ď p»q holds.

3. Finite Family Developments (FFD). Any derivation that contracts hredexes of a �-
nite number of families is �nite. More precisely, there cannot be an in�nite derivation
R1R2 . . . Rn . . . such that the set tFam»pR1 . . . Rnq | n P Nu is �nite.

4. Creation. If ρR is an hredex and R creates S, then Fam»pρRq ãÑ Fam»pρRSq.

5. Contribution. Given any two coinitial families φ1, φ2 P Histptq{ », the relation φ1 ãÑ

φ2 holds if and only if for every hredex σS P φ2, there is an hredex ρR P φ1 such that
ρR is a pre�x of σ (i.e. σ “ ρRσ1).

Note that the formal requirements imposed by the de�nition of a DFS correspond to the
informal principles 2–7 in the Bestiary of Chapter 6 Section 6.2.1. While the Bestiary states
these principles using redex names, the notion of DFS states them using the more abstract
notion of family.

�e axioms Initial, Copy, and Creation correspond to the principles 2, 3, and 4, respec-
tively, in the Bestiary. Practically speaking, once one has de�ned an appropriate Lévy labeling
for a calculus, the proof that these axioms are ful�lled should be a technical but direct proof.
�e axioms Finite Family Developments and Contribution correspond to the principles
5 and 7, respectively, in the Bestiary, and their proof is typically non-trivial.

Let us brie�y recapitulate notation. So far we have introduced various axiomatic struc-
tures to deal with rewriting systems abstractly. �e following table summarizes the relation
between these structures, from most general to most restrictive:

Abstract rewriting system (ARS) Def. 2.2 Objects and steps.
Axiomatic rewriting system (AxRS) Def. 2.30 ARS + residuals.
Orthogonal axiomatic rewriting system (OAxRS) Def. 2.39 AxRS + AE` FR` FD` SO.
Deterministic Residual Structure (DRS) Def. 7.3 OAxRS + UA + acyclicity.
Deterministic Family Structure (DFS) Def. 7.3 DRS + redex families.

�e LSC with gc is not a Deterministic Family Structure

We have already shown in Rem. 6.8 that the full LSC (with gc) does not enjoy the Stability
property. A consequence of this fact is that the LSC with gc does not form a Deterministic
Family Structure. To see this it su�ces to prove the following proposition, which can already
be found in Glauert and Khasidashvili’s work [61, Lemma 4.1].

Proposition 7.4. If xA,», ãÑy is a DFS then A has the Stability property.
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Proof. Consider a diagram as in the de�nition of Stability:

T0

OO

R

��
S

��T1oo

S{R �� �� R{S����

T2 //

T3 ��

�at is, we have that R ‰ S, where T3 P T1{pS{Rq and T3 P T2{pR{Sq. Let us show that T1

and T2 have a common ancestor T0. Note that RT1 ď pR \ SqT3 and S T2 ď pR \ SqT3

by de�nition of the copy relation. By the Copy axiom we have that RT1 and S T2 are in the
same family:

RT1 » pR \ SqT3 » S T2

We consider three cases, depending on whether Fam»pRq contributes to Fam»pRT1q, or
Fam»pSq contributes to Fam»pST2q, or none of these happens.

1. If Fam»pRq ãÑ Fam»pRT1q. We argue that this case is impossible. By the Contri-
bution axiom, since Fam»pRq ãÑ Fam»pRT1q and S T2 P Fam»pRT1q, we must have
that S P Fam»pRq. �is means that R » S, which contradicts the Initial axiom, since
R and S are di�erent coinitial steps.

2. If Fam»pSq ãÑ Fam»pST2q. �is case is impossible, by a symmetric argument as in
the �rst case.

3. If  pFam»pRq ãÑ Fam»pRT1qq and  pFam»pSq ãÑ Fam»pST2qq. �en by the con-
trapositive of the Creation axiom, we have that R does not create T1 so it has an
ancestor, i.e. there is a step T0 such that T1 P T0{R. Similarly, T2 has an ancestor before
S, i.e. there is a step T 10 such that T2 P T

1
0{S. Note that T0 and T 10 are both ancestors

of T3, so by the unique ancestor property we have that T0 “ T 10, which concludes the
proof.

�e LSC without gc forms a Deterministic Family Structure

�is section is devoted to proving that the LSC without gc forms a Deterministic Family
Structure. By de�nition, a DFS is a triple xA,», ãÑy where A is a Deterministic Residual
Structure, so we start by showing that it forms a DRS.

Proposition 7.5 (LSC is a DRS). �e LSC with gc forms a Deterministic Residual Structure.

Proof. In [8], the LSC has already been shown to form an orthogonal axiomatic rewriting
system. (We also give a proof of this fact in Prop. 6.3). It remains to be checked that the LSC
has the unique ancestor and acyclicity properties:
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1. Unique ancestor (UA). Let R1 xSy R and R2 xSy R in the LSC. Let R`
1, R

`
2, R

`, S` be
labeled variants of R1, R2, R, S respectively, such that the source of R`

1, R`
2, and S`

coincides and is initially labeled, and such that moreover the residual relations R`
1 xS

`y

R` and R`
2 xS

`y R` hold in the LLSC.

By the Copy property (Lem. 6.33), R`
1 and R` have the same name. Similarly, R`

2 and
R` have the same name, so in fact R`

1 and R`
2 have the same name. �en by Lem. 6.19

R`
1 “ R`

2, so R1 “ R2, as required.

2. Acyclicity. Let R and S be di�erent steps such that R{S “ ∅. Since only gc steps
may erase other steps, S must be a gc step of the form S : Cxtrxzssy ÑLSC Cxty and
the anchor of the redex contracted by R lies inside s, i.e. R is a step of the form R :

Cxtrxzssy ÑLSC Cxtrxzs1sy. �en S{R is the singleton tS 1u where S 1 : Cxtrxzs1sy ÑLSC

Cxty. So in fact S{R ‰ ∅.

To show that the LSC without gc forms a DFS, we need some preliminary lemmas. Recall
that pName

ãÑ q stands for the relation of name contribution de�ned in Def. 6.39.

Lemma 7.6. Let φ be a labeling morphism and let µ and ν be (non-gc) redex names. �en

µ
Name
ãÑ ν implies φpµq

Name
ãÑ φpνq.

Proof. Recall that Name
ãÑ is the transitive closure of Name

ãÑ1 , so it su�ces to check that the property
holds for one step of Name

ãÑ1 . By cases on the rules de�ning the relation Name
ãÑ1 :

1. If µ “ dbpβq
Name
ãÑ1 dbpα rdbpβqs γq “ ν then

φpµq “ dbpφpβqq
Name
ãÑ1 dbpφpαq rdbpφpβqqsφpγqq “ φpνq

2. If µ “ dbpβq
Name
ãÑ1 α ‚ tdbpβqu “ ν where α is an atomic label, then

φpµq “ dbpφpβqq
Name
ãÑ1 Ó pφpαqq ‚ tdbpφpβqqu “ φpνq

3. If µ “ β ‚ γ
Name
ãÑ1 dbpαβ ‚ γδq “ ν where β and γ are atomic labels then

φpµq “ Ó pφpβqq ‚ Ò pφpγqq
Name
ãÑ1 dbpφpαqφpβq ‚φpγqφpδqq “ φpνq

�e LSC without gc will be shown to form a DFS with the following notions of redex
family and contribution.

De�nition 7.7 (Redex families in the LSC without gc). Let ρR and σS be coinitial hredexes in
the LSC without gc. Let ρ`R` and σ`S` be initially labeled variants of ρR and σS respectively,
starting on the same initially labeled term. Let µ be the name of R` and let ν be the name of
S`. �en:
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• Family relation. We de�ne ρR Fam
» σS to hold if and only if µ “ ν.

• Contribution relation. We de�ne ρR Fam
ãÑ σS to hold if and only if µ Name

ãÑ ν.

Example 7.8 (Redex families and contribution). In the following diagram:

ppλx.xq yqryzzs R //

T1
��

xrxzysryzzs S //

T2
��

yrxzysryzzs

ppλx.xq zqryzzs xrxzzsryzzs

We have that T1
Fam
» RT2 and that R

Fam
ãÑ RS. �is can be justi�ed starting from an initially

labeled variant of ppλx.xq yqryzzs and noting that the names of T1 and RT2 are both d ‚ e, and

that the name of R contributes to the name of RS, that is, dbpbq
Name
ãÑ c ‚ tdbpbqu:

@apλbx.xc, ydqryzzes
dbpbq //

d ‚ e

��

xardbpbqscrxzytdbpbqudsryzzes
c ‚ tdbpbqu //

d ‚ e

��

yardbpbqsc ‚ tdbpbqudrxzytdbpbqudsryzzes

@apλbx.xc, zd ‚ eqryzzes xardbpbqscrxzztdbpbqud ‚ esryzzes

Proposition 7.9 (Redex families are well-de�ned). �e relations p
Fam
» q and p

Fam
ãÑq are well-

de�ned, in the sense that they do not depend on the choice of the initial labeling.

Proof. Let ρR and σS be coinitial hredexes in the LSC without gc. Let ρ`1R`
1 and σ`1S`1 be

initially labeled variants of ρR and σS starting on the same initially labeled term t`1, and
let ρ`2R`

2 and σ`2S`2 be initially labeled variants of ρR and σS starting on a possibly di�erent
initially labeled term t`2. Let µ1, ν1, µ2, ν2 be the names ofR`

1, S
`
1, R

`
2, S

`
2 respectively. To show

that pFam» q and pFamãÑq are well-de�ned it su�ces to prove that:

1. pµ1 “ ν1q ðñ pµ2 “ ν2q

2. pµ1
Name
ãÑ ν1q ðñ pµ2

Name
ãÑ ν2q

In both cases, to prove the equivalence it su�ces to show the implication in one direction,
since the other one is symmetric.

Note that each subterm of t`1 is labeled with a di�erent initial label, so there is a label-
ing morphism φ : L Ñ L such that φpt`1q “ t`2. Since labeling morphisms are functorial
(Prop. 6.29) we have that φpρ`1R`

1q “ ρ`2R
`
2 and similarly φpσ`1S`1q “ σ`2S

`
2. �is means that

φpµ1q “ φpR`
1q “ R`

2 “ µ2 and φpν1q “ φpS`1q “ S`2 “ ν2.
Now, if µ1 “ ν1 then µ2 “ φpµ1q “ φpν1q “ ν2, which proves that pFam» q is well-de�ned.
On the other hand, if µ1

Name
ãÑ ν1 then using Lem. 7.6 we have that µ2 “ φpµ1q

Name
ãÑ φpν1q “

ν2, which proves that pFamãÑq is well-de�ned.

It is immediate to check that the family relation pFam» q is an equivalence relation. �is
reduces to the fact that equality of redex names is in turn an equivalence relation. As in
the abstract de�nition of a DFS, equivalence classes of Fam

» are called families, and Fam»pρRq
stands for the family of ρR.
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De�nition 7.10 (Family contribution relation). Given two coinitial families φ1, φ2, we say
that φ1 contributes to φ2, and write φ1

Fam
ãÑ φ2 if and only if given ρR P φ1 and σS P φ2 the

condition ρR Fam
ãÑ σS holds.

Note that, by abuse of notation, we write Fam
ãÑ both for the contribution relation between

hredexes and for the contribution relation between families.

Proposition 7.11 (Contribution is well-de�ned). �e contribution relation
Fam
ãÑ between families

is well-de�ned, in the sense that it does not depend on the choice of representative.

Proof. Let t be a term and let φ, φ1 P Histptq{
Fam
» be two families. Let us show that the

condition φ Fam
ãÑ φ1 does not depend upon the choice of the representative of the equivalence

classes of φ and φ1. Indeed, let ρ1R1, ρ2R2 P φ, and let σ1S1, σ2S2 P φ
1. Let us show that

ρ1R1
Fam
ãÑ σ1S1 if and only if ρ2R2

Fam
ãÑ σ2S2.

Let t` be an initially labelled variant of the source term t, and consider labelled variants
ρ`1R

`
1, ρ`2R`

2, σ`1S`1, and σ`2S`2 of ρ1R1, ρ2R2, σ1S1, and σ2S2 respectively. Moreover, let µ1, µ2,
ν1, and ν2 be the names of R`

1, R`
2, S`1, and S`2 respectively.

�en, by de�nition of being in the same family, ρ1R1
Fam
» ρ2R2 means that µ1 “ µ2.

Similarly, σ1S1
Fam
» σ2S2 means that ν1 “ ν2. �en:

ρ1R1
Fam
ãÑ σ1S1

if and only if µ1
Name
ãÑ ν1 by de�nition of Fam

ãÑ

if and only if µ2
Name
ãÑ ν2 since µ1 “ µ2 and ν1 “ ν2

if and only if ρ2R2
Fam
ãÑ σ2S2 by de�nition of Fam

ãÑ

Hence Fam
ãÑ is well de�ned on the set of families.

In the following proposition we state and prove the Contribution axiom for the LSC
without gc. �e proof relies on various quite technical lemmas whose statement and proof
can be found in Section A.4.1 of the appendix.

Proposition 7.12 (Contribution axiom for the LSC without gc). Let φ1, φ2 P Histptq{
Fam
» be

coinitial families in the LSC without gc. �en the following propositions are logically equivalent:

1. Syntactic contribution. φ1
Fam
ãÑ φ2.

2. Semantic contribution. For every hredex σS P φ2, there is an hredex ρR P φ1 such that

ρR is a pre�x of σ.

Proof. Let us show each direction of the implication. We refer to the implication p1 ùñ 2q

as correctness and to the implication p2 ùñ 1q as completeness.

pñq Correctness. Let σS P φ2 be an hredex. Consider an initially labelled variant t`0 of
t, and the labelled variant σ`S` of σS whose source is t`0. Let t`1 “ tgtpσ`q “ srcpS`q.
Moreover, let τT P φ1, and consider the labelled variant τ `T ` of τT whose source is t`0.

Let ν be the name of S`, and let µ be the name of T `. Since φ1
Fam
ãÑ φ2 we have, by

de�nition, that µ Name
ãÑ ν. It can be seen that names contributing to a step must occur in
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the source (by Lem. A.83 in Section A.4.1 of the appendix). �is means that there must
exist a label α decorating a subterm of t`1 such that µ is a sublabel of α. By Lem. A.94
(in Section A.4.1 of the appendix), this entails that there must exist a step in σ` whose
name is µ. �is means that σ` “ ρ`R`υ` where the name of R` is µ, hence ρR Fam

» τT

and so σ “ ρRυ where ρR P φ1, as wanted.

pðq Completeness. Let us show that φ1
Fam
ãÑ φ2. Let σS P φ2 be an hredex. Consider an

initially labelled variant t`0 of t, and consider the labelled variant σ`S` whose source is
t`0. Let ν be the name of S`. Let P be the predicate on redex names such that P pµq
holds if and only if µ Name

ãÑ ν. Observe that P is a bounded predicate, since by Rem. 6.40
we have that hpµq ă hpνq for every µ such that P pµq holds. Hence labeled reduction
in the calculus restricted to P is strongly normalizing (�m. 6.51). Consider a maximal
derivation ρ` starting from t`0 and contracting redexes whose names verify the predicate
P ; then ρ` must be �nite as we have just argued. Since the LLSC is an orthogonal
axiomatic rewriting system (Prop. 6.32), by algebraic con�uence (Coro. 2.56) we may
close the diagram formed by ρ` and σ` with labelled variants of the relative projections
ρ{σ and σ{ρ. �e situation is:

t`0

ρ`

����

σ` // //

pρ{σq`

����

S` //

pσ{ρq`
// //

Note that, by de�nition of the residual relation, any step contracted along ρ{σ must be
the residual of some step in ρ. Moreover, we know that residuals of redexes have the
same name as their ancestor (Lem. 6.33), so given any step T ` that is contracted along
pρ{σq` its name ξ is also the name of a step T `0 that is contracted along ρ`. Hence ξ must
verify the predicate P , which means that ξ Name

ãÑ ν. In particular ξ ‰ ν, since the relation
Name
ãÑ is a strict partial order. �en by Lem. A.95 (in Section A.4.1 of the appendix) there

is a residual S1 P S{pρ{σq and the name of its corresponding labelled variant S`1 is also
ν.

We need an auxiliary claim:

Claim: the names of the redexes contracted along pσ{ρq` do not contribute to ν.
Proof of the claim. By contradiction, suppose that pσ{ρq` is of the form τ `1T

`τ `2 where
the name of T ` is ξ and it contributes to ν, that is ξ Name

ãÑ ν. Without loss of generality,
let T ` be the �rst such step. �en the names of the redexes contracted along τ `1 do not
contribute to ξ, because if τ `1 contracts a redex T 1` whose name is ξ1 Name

ãÑ ξ, then by
transitivity of Name

ãÑ we have ξ1 Name
ãÑ ν, contradicting the hypothesis that T is the �rst

redex with that property. By Lem. A.96 (in Section A.4.1 of the appendix) this means
that T ` must have an ancestor T `0 , that is a step T0 such that T P T0{pσ{ρq and such that
the name of T `0 is also ξ. �us we obtain a derivation ρ`T `0 where the name of T0 veri�es
P . �is contradicts the hypothesis that ρ` was a maximal derivation contracting only
redexes that verify P , which concludes the proof of the claim.
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Now since redexes contracted along pσ{ρq` do not contribute to the name of S`1, we may
again apply Lem. A.96 and obtain that there exists an ancestor S`2, i.e. a step S2 such
that S1 P S2{pσ{ρq and such that the name of S`2 is also ν. �e situation is as follows:

t`0

ρ`

����

σ` // //

pρ{σq`

����

S` //

pσ{ρq`
// //

S`2
��

S`1

��

To conclude the proof, note that ρS2
Fam
» σS sinceS`2 andS` have the same name, namely

ν. So ρS2 P φ2 since σS P φ2. By hypothesis, this implies that there exists an hredex
ρ1R P φ1 such that ρ can be wri�en as of the form ρ1Rρ2. Consider the labelled variant
ρ`1R

` of ρ1R whose source is t`0. �e stepR` is one of the redexes in ρ`. By construction,
the names of all the steps contracted along ρ` verify the predicate P . In particular, if
we let µ stand for the name of R`, we have that P pµq holds, i.e. that µ Name

ãÑ ν. �is, by
de�nition, means that ρ1R

Fam
ãÑ ρS2, and this in turn means that φ1

Fam
ãÑ φ2, as required.

Finally, we are able to prove the main theorem of this section.

�eorem 7.13 (�e LSC without gc is a DFS). �e triple pA, Fam» , FamãÑq forms a Deterministic

Family Structure, where A is the DRS constructed in Prop. 7.5,

Fam
» is the “same family” rela-

tion between coinitial hredexes (Def. 7.7) and
Fam
ãÑ is the contribution relation between families

(Def. 7.10).

Proof. Let us check each of the axioms:

1. Initial. Let R and S be di�erent coinitial steps. �en we claim that R Fam
» S does not

hold. Indeed, let t` be an initially labelled variant of the source of R and S, and let
R` and S` be their respective labelled variants. �en Lem. 6.19 ensures that, since R`

and S` are di�erent coinitial steps whose source is an initially labelled term, they must
have di�erent names. We conclude that R P Fam»pRq but R R Fam»pSq, which entails
Fam»pRq ‰ Fam»pSq.

2. Copy. Let ρR ď σS, and let us show that ρR Fam
» σS. By de�nition of ď, there exists a

derivation τ such that S P R{τ and ρτ ” σ.

ρ

����
σ
�� ��

R

��
τ
// //

S

��

Let t be the source of the derivations ρ and σ, let t` be an initially labelled variant of
the term t, and let ρ`, σ`, τ `, R`, S`, S`` denote labelled variants of ρ, σ, τ , R, S, and S
respectively, in such a way that:
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• ρ`τ `S` is a labelled variant of ρτS whose source is t`,

• ρ`R` is a labelled variant of ρR whose source is t`,

• σ`S`` is a labelled variant of σS whose source is t`.

To see that ρR Fam
» σS. it su�ces to check that R` and S`` have the same name. Recall

that coinitial labelled variants of permutation equivalent derivations must be co�nal
(Prop. 6.35). �is implies that tgtpρ`τ `q “ tgtpσ`q, so S` “ S``. Moreover, residuals of
redexes have the same name (Lem. 6.33), and S P R{τ so the names of R` and S` “ S``

coincide, as required.

3. Finite family developments. Let ρ be a potentially in�nite derivation that contracts
redexes in a �nite number of families. Let t` be an initially labelled variant of the source
of ρ, and let ρ` be a labelled variant of ρ starting from t`. Let P be the predicate on redex
names such thatP pµq holds if and only if µ is one of the names of the redexes contracted
along ρ`. �en P is bounded, since only a �nite number of families are contracted by
ρ`, so by �m. 6.51 ρ` must be �nite. Hence ρ is also �nite.

4. Creation. Let ρR be an hredex such thatR createsS, and let us check that Fam»pρRq
Fam
ãÑ

Fam»pρRSq. By de�nition, it su�ces to check that ρR Fam
ãÑ ρRS.

Consider an initially labelled variant t` of the source of ρ, and labelled variants ρ`, R`,
and S` of ρ, R, and S respectively, such that ρ`R` S` is a labelled variant of ρRS whose
source is t`. Let µ be the name ofR` and let ν be the name of S`. By applying Prop. 6.41,
we conclude that µ Name

ãÑ1 ν, as required.

5. Contribution. �is has been shown in Prop. 7.12.

7.4 Optimal Reduction

In previous sections we have endowed the LSC with a notion of Lévy labels (Def. 6.6) and
we have used this notion of labeling to de�ne a notion of redex family for the LSC without
gc (Def. 7.7): two redexes are in the same family if the labeling scheme gives them the same
name. We have also shown that this notion of family is well-behaved, in the sense that the
LSC without gc forms a Deterministic Family Structure (�m. 7.13).

In this section: �rst, we state Lévy’s optimality theorem in the se�ing of the λ-calculus.
�is is not strictly necessary for our purposes but it hopefully clari�es the rest of the exposi-
tion. Second, we state and prove a generalization of Lévy’s optimality theorem for an arbitrary
Deterministic Family Structure, due to Glauert and Khasidashvili. Finally, using the fact that
the LSC without gc forms a Deterministic Family Structure, we obtain an optimality theorem
for the LSC without gc, meaning that certain kinds of reductions are optimal. To this purpose,
we study the notion of normal forms up to gc.
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Optimality in the λ-calculus

To state Lévy’s optimality result more precisely, we need to introduce a few de�nitions. Re-
call the notions of multistep and multiderivation from Def. 2.43, and also recall from Conven-
tion 2.44 that if M is a multistep we may write just M to stand for its canonical complete
development, which is known to exist and to be unique modulo permutation equivalence.
�e de�nitions and results in this subsection can be traced back to Lévy’s work and are nicely
exposed in Asperti and Guerrini’s book [14].

De�nition 7.14 (Family reduction). Let pA,», ãÑq be a DFS. A family reduction is a multi-
derivation M1 . . .Mn in A such that for each i P t1, . . . , nu all the steps in Mi belong to the
same family. More precisely, for all i P t1, . . . , nu and for any two steps R, S PMi we have
that M1 . . .Mi´1R » M1 . . .Mi´1S. Moreover, a family reduction is complete if each Mi

is a maximal set of steps that have srcpMiq as their source and belong to the same family.

�e motivation behind Lévy’s de�nition of complete family reduction is that an optimal
implementation should never duplicate work. Rather it should share the computational work
of contracting all the copies of a redex. Performing one computational step in an optimal
implementation should correspond to contracting all and only the redexes in some family.

Example 7.15 (Family reductions). Consider the following diagram in the LSC without gc:

pxxqrxzysryzzs R //

S
��

pyxqrxzysryzzs

S1

��

pzyqrxzysryzzs

pxyqrxzysryzzs R1 // pyyqrxzysryzzs

T1
66

T2 //

T3

((

pyzqrxzysryzzs

pyyqrxzzsryzzs

�e multiderivation tR, Su (consisting of a sequence of exactly one multistep) is not a family

reduction, because R and S are not in the same family, while tRutS 1u and tSutR1u are both

complete family reductions. �e multiderivation tRutS 1utT1, T2u is a family reduction, but it is

not complete because the set tT1, T2u is not a maximal set of coinitial steps in the same family.

�e multiderivation tRutS 1utT1, T2, T3u is a complete family reduction.

Starting from a term t, we are interested in �nding the optimal, i.e. the shortest family
reduction.

De�nition 7.16 (Optimal reduction). Let x P A be an object in a DFS. A family reduction
starting on x and reaching the normal form of x is optimal if its length is minimum among all
the family reductions reaching the normal form of x.

By requiring that a multiderivation is a complete family reduction, one guarantees that no
computational work is ever duplicated. Still, a complete family reduction may not be optimal,
because it may perform unnecessary computational work. For example, in the λ-calculus,
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given the diagram:
pλx.yq pIzq

S1

��

R // pλx.yq z

S2ww
y

the multiderivation tRutS2u is a complete family reduction that reaches the normal form.
However, it is not optimal, since tS1u is a shorter complete family reduction reaching the
normal form.

To formally de�ne what it means for a multiderivation to perform only necessary com-
putational work, Lévy de�nes a step R : t Ñ s to be needed if every coinitial derivation
σ : t� u that reaches the normal form of t contracts at least one residual of R. A family re-
duction M1 . . .Mn is needed if every multistep Mi contains at least one needed step. Lévy’s
optimality result asserts that:

�eorem 7.17 (Optimality — Lévy, 1978). In the λ-calculus, any needed, complete family re-

duction reaching a normal form is optimal.

Proof. A particular case of �m. 7.24 in the next subsection.

Optimality in Deterministic Family Structures

In [61], Glauert and Khasidashvili propose a generalization of Lévy’s optimality result. �is
result generalizes �m. 7.17 along two dimensions. First, the result does not only apply to the
λ-calculus, but in general to any Deterministic Family Structure, of which the λ-calculus is a
particular case. Second, the result does not only apply to reductions reaching a normal form,
but in general to reductions reaching an answer, where the notion of answer is an additional
parameter of the generalized optimality theorem. �e notion of answer is speci�ed by a set of
terms which may vary in di�erent se�ings. For example in the λ-calculus one may consider
any of the following sets as the set of answers:

tt P T | Es P T . tÑ su (normal forms)
tλx.t | x P V , t P T u (abstractions)

tλx1 . . . xn.y t1 . . . tm | n,m ě 0, x1, . . . , xn, y P V , t1, . . . , tm P T u (head normal forms)
tλx.t | x P V , t P T u Y txt1 . . . tn | n ě 0, x P V , t1, . . . , tn P T u (weak head normal forms)

where V is the set of variables and T the set of all terms. �e set of answers is denoted
by X . �e de�nitions and results in this subsection can be traced back to Lévy’s work and
correspond to Glauert and Khasidashvili’s generalization to arbitrary DFSs [61, 14].

De�nition 7.18 (X -needed). Let A be an orthogonal axiomatic rewriting system and let X be
a set of objects. A step R : xÑ y is X -needed if every derivation σ : x� z P X contracts at
least one residual of R. A multistep M is X -needed if it contains at least one X -needed step.
A multiderivation M1 . . .Mn is X -needed if the multistep Mi is X -needed for all i P 1..n.

For technical reasons, the set of answers may not be an arbitrary set. It must be a stable
set:
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De�nition 7.19 (Stable set). A set X of objects is stable if:

1. X is closed under parallel moves, i.e. for any x R X , any ρ : x � y P X , and any
reduction σ : x� z which does not contain objects in X , the target of ρ{σ is in X .

2. X is closed under unneeded expansion, i.e. for any R : x Ñ y such that x R X and
y P X , the step R is X -needed.

Example 7.20 (Abstractions are stable in the λ-calculus). In the λ-calculus, the set of abstrac-

tions tλx.t | t P T u is stable. It is easy to see that NFβ is closed under parallel moves, because if

ρ : t� λx.s and σ : t� u then σ{ρ : λx.s� λx.r. To see that NFβ is closed under unneeded

expansion, consider a step R : t Ñ λx.s such that t is not an abstraction. �en t must be of the

form pλx.t1q t2. Any derivation σ : pλx.t1q t2 � λy.umust contract the residual ofR, otherwise

all steps are internal to t1 and t2, and the target is still an application.

De�nition 7.21 (X -optimal reduction). Let x P A be an object in a DFS and let X be a stable
set on A. A family reduction D : x� y P X is X -optimal if its length is minimum among all
the family reductions of the form x� y P X (where x is �xed and y varies).

Let FAMpDq denote the set of families of a multiderivation. More precisely:

FAMpM1 . . .Mnq
def
“ tFam»pM1 . . .Mi´1Rq | 1 ď i ď n, R PMiu

�en we can prove the following auxiliary result.

Lemma 7.22. Let X be a stable set of terms in a DFS. If D : x � y P X is a family reduction,

then #FAMpDq ď |D|.

Proof. Let D “ M1 . . .Mn. By de�nition, each family φ P FAMpDq can be wri�en as φ “
Fam»pM1 . . .Mi´1Rq for some i P t1, . . . , nu and someR PMi. Consider the map I giving,
for each family, the minimum such index:

I : FAMpDq Ñ t1, . . . , nu

φ ÞÑ minti P t1, . . . , nu | DR PMi. φ “ Fam»pM1 . . .Mi´1Rqu

To show that #FAMpDq ď |D|, it su�ces to show that I is injective. Indeed, if Ipφq “
Ipφ1q “ i, then there are two stepsR, S PMi such that φ “ Fam»pM1 . . .Mi´1Rq and φ1 “
Fam»pM1 . . .Mi´1Sq. But D is a family reduction, so M1 . . .Mi´1R » M1 . . .Mi´1S.
�erefore φ “ φ1.

Lemma 7.23. Let X be a stable set of terms in a DFS. IfD : x� y P X is a X -needed complete

family reduction, then |D| “ #FAMpDq.

Proof. In Lem. 7.22 we have seen that |D| ě #FAMpDq for any family reduction, so we are
le� to show that |D| ď #FAMpDq. Let D “ M1 . . .Mn. Since D is X -needed, for each
i P t1, . . . , nu the set Mi contains an X -needed stepRi. It su�ces to show that the following
map Φ is injective.

Φ : t1, . . . , nu Ñ FAMpDq
i ÞÑ Fam»pM1 . . .Mi´1Riq
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Indeed, suppose that Φpiq “ Φpjq for some 1 ď i, j ď n with i ‰ j. Without loss of
generality, let i ă j, and suppose moreover that the pair pi, jq is chosen so that j is the least
possible index, i.e. there is no other pair pi1, j1q such that Φpi1q “ Φpj1q and i1 ă j1 ă j. We
argue that this case is impossible. Let us writeDi for the multiderivation M1 . . .Mi, for each
0 ď i ď n. Since Φpiq “ Φpjq we have that Ri and Rj are in the same family, more precisely,
Di´1Ri » Dj´1Rj . We consider two cases, depending on whether step Rj has an ancestor
before the derivation Mi . . .Mj´1:

1. If Rj has an ancestor. �at is, there is a step R1j such that R1j xMi . . .Mj´1y Rj .
By the Copy axiom, R1j and Rj must be in the same family, more precisely, Di´1R

1
j »

Dj´1Rj . �en by transitivity of the family relation, Di´1R
1
j » Di´1Ri. Since D is

a complete family reduction, Mi is a maximal set of steps in the same family, so we
obtain that R1j P Mi. But then by Autoerasure R1j{Mi . . .Mj´1 must be empty. �is
contradicts the fact that Rj P R

1
j{Mi . . .Mj´1.

2. If Rj has no ancestor. �at is, there is no step R1j such that R1j xMi . . .Mj´1y Rj .
In particular, the range ti, . . . , j ´ 1u cannot be empty. Let q P ti, . . . , j ´ 1u be such
that there is an ancestor R1j xMq`1 . . .Mj´1y Rj but there is no ancestor R2j xMqy

R1j . Moreover by Creation there must be a step in Mq that contributes to R1j , and
since all the steps in Mq are in the same family, this means that Fam»pDq´1Rqq ãÑ

Fam»pDqR
1
jq. �e situation is:

M1...Mi´1 // //

Ri
��

Mi...Mq´1 // //

Rq
��

Mq // //

R1j
��

Mq`1...Mj´1// //

Rj
��

Mj ...Mn // //

Note that Fam»pDq´1Rqq ãÑ Fam»pDqR
1
jq “ Fam»pDi´1Riq, so by the completeness

part of the Contribution axiom, there must exist a step in the history ofRi in the same
family as Rq contributing to Ri. �at is, there is an index p P t1, . . . , i ´ 1u such that
Fam»pDq´1Rqq “ Fam»pDp´1Rpq ãÑ Fam»pDi´1Riq. To conclude, observe that pp, qq
is a pair of indices such that Φppq “ Φpqq and p ă q ă j. �is contradicts the request
that j is the least possible index with such condition.

�e following generalization of Lévy’s optimality theorem (�m. 7.17) is due to Glauert
and Khasidashvili ([61, �eorem 5.2]).

�eorem 7.24 (Generalized optimality — Glauert and Khasidashvili, 1996). Let X be a stable

set of terms in a DFS. �en any X -needed complete family reduction D : x � y P X is X -

optimal.

Proof. Let D “M1 . . .Mm : x� y P X be an X -needed complete family reduction and let
E “ N1 . . .Nn : x � z P X be any family reduction to X . First we argue that FAMpDq Ď
FAMpEq. Let φ P FAMpDq be a family. By de�nition, φ “ Fam»pM1 . . .Mi´1Riq for some
i P t1, . . . ,mu and some Ri PMi. Moreover, since D is X -needed, for each 1 ď i ď m, the
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set Mi contains an X -needed redex Si. Consider the derivation E{M1 . . .Mi´1. Note that
its target is an object z1 which coincides with the target of M1 . . .Mi´1{E : z � z1. Since
z P X and X is a stable set, hence closed under parallel moves, we have that z1 P X as well.
So for each i P t1, . . . ,mu the situation is:

x

E
����

M1...Mi´1 // //

E{M1...Mi´1
����

Si //

z
M1...Mi´1{E

// // z1

Moreover, Si is X -needed, so a residual of Si is contracted somewhere alongE{M1 . . .Mi´1.
By the Copy axiom, this means that E contracts a redex in the same family as Si, that is,
the multiderivation E, seen as a derivation, can be wri�en, for each i P t1, . . . ,mu, as of
the form E “ ρiTiσi, where M1 . . .Mi´1Ri » M1 . . .Mi´1Si » ρiTi. So we have that
φ “ Fam»pρiTiq P FAMpEq. �is proves our claim that FAMpDq Ď FAMpEq. To conclude
the proof of this theorem, observe that:

|D| “ #FAMpDq by Lem. 7.23 since D is an X -needed complete family reduction
ď #FAMpEq since FAMpDq Ď FAMpEq as we have just claimed
ď |E| by Lem. 7.22 since E is a family reduction

Example 7.25 (Optimal reduction in the λ-calculus). Let ∆ be any term such that ∆ Ñ ∆1

and consider the following diagram:

pλx.xxq ppλx.yq∆q T //
R

ss
S

))

pλx.xxq ppλx.yq∆1q

pλx.yq∆ ppλx.yq∆q
S1

tt
S2

++

pλx.xxq y

R1mm

y ppλx.yq∆q
S12

**

pλx.yq∆ y
S11

ssy y

�en the family reductions tRutS1, S2u and tSutR1u are both optimal reductions to normal form.

�e family reductions tRutS1utS
1
2u and tRutS2utS

1
1u are not complete. Any family reduction

starting with tT u . . . is not needed, because the step T is not needed to obtain a normal form.

Optimality in the LSC without gc

Combining the fact that the LSC without gc is a Deterministic Family Structure (�m. 7.13)
with the generalized optimality theorem for DFSs (�m. 7.24), one obtains an optimality result
for the LSC. However, the generalized optimality theorem depends on the choice of a stable
set X that captures the notion of answer that one is interested in.

One may be interested in the set of answers given by the normal forms of the LSC without
gc, that is, in the set:

NFdb,ls
def
“ tt P T | Es P T . tÑdb,ls su
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It is easy to show that NFdb,ls is a stable set. But the notion of NFdb,ls-optimality that one
obtains in that case is not very interesting, for two reasons. One reason is that in the LSC
without gc there is no erasure, which means that every step is always NFdb,ls-needed. Another
reason is that in the LSC without gc one is not really interested in obtaining the normal form
of a term. For example let Ω “ pλx.xxqλx.xx and consider the following derivation:

pλx.λy.xq zΩ Ñ db pλy.xqrxzzsΩ

Ñ db xryzΩsrxzzs

Ñ ls zryzΩsrxzzs

Ñ db zryzpxxqrxzλx.xxssrxzzs

Ñ . . .

In this example, reduction goes on forever without reaching a normal form, evaluating the
term inside the substitution ryz...s, even though this substitution is never used. One is actually
interested in the set of normal forms up to garbage collection of unused substitutions. �is is
the notion of reachable normal form de�ned below.

De�nition 7.26 (Reachable normal forms). Let nfgcptq denote the gc-normal form of a given
term t. �e set RNF of reachable normal forms is the set of terms:

RNF def
“ tt P T | nfgcptq P NFdb,lsu

�e following proposition justi�es that �m. 7.24 may be applied to the notion of RNF-
optimal reductions.

Proposition 7.27 (�e set RNF is stable — ♣ Prop. A.112).

Proof. �e proof is technical and can be found in Section A.4.2 of the appendix. It requires to
introduce the notion of reachable step, which is, intuitively, a step not erased by any sequence
of gc steps. �e proof also relies on the notion of nesting introduced by Acca�oli et al. in [6].

Example 7.28 (Optimal RNF-reduction in the LSC without gc). Let ∆ be any term such that

∆ Ñ ∆1
and consider the following diagram, in which the terms in RNF have been underlined:

xrxzpλy.zq∆s
R

ss
S

**

T // xrxzpλy.zq∆1s

ppλy.zq∆qrxzpλy.zq∆s
S1

tt
S2

++

xrxzyrzz∆ss

R1ll

yrzz∆srxzpλy.zq∆s

S12
**

ppλy.zq∆qrxzzryz∆ss

S11tt
yrzz∆srxzyrzz∆ss

�en the family reductions tRutS1, S2u and tSutR1u are RNF-optimal by �m. 7.24. Any family

reduction starting with tT u . . . is not RNF-needed, because T is not needed to reach a term in

RNF.
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Note that the family reduction tRutS1u reaches a term in RNF in the least possible number

of multisteps, but it is not complete because tS1u is not maximal, so �m. 7.24 does not ensure

that it is RNF-optimal.

7.5 Standardization

In a very general sense, the problem of standardization consists in �nding, for each derivation
ρ : x � y an equivalent derivation ρ1 : x1 � y1 that is standard. �ere are two keywords
involved here, equivalent and standard, worthy of a short discussion.

In principle, one may be interested in various di�erent notions of equivalence between
derivations. For example, in their original standardization result [46], one could say that
Curry and Feys were interested in the equivalence relation „ that equates two derivations
whenever they are coinitial and co�nal. �at is, given ρ : x � y and ρ1 : x1 Ñ y1 one has
ρ „ ρ1 if and only if px, yq “ px1, y1q.

Later, Lévy noted that the notion of equivalence that Curry and Feys were really a�er was
the relation of permutation equivalence. Recall from Lem. 2.41 that if any two derivations are
permutation equivalent then they are coinitial and co�nal, so permutation equivalence is a
�ner equivalence relation than „. In fact, Lévy remarked that in the λ-calculus there exist
derivations that are coinitial and co�nal but which are not permutation equivalent, such as in
the “syntactic accident” I pI xq Ñ I x.

One may also be interested in other notions of equivalence between derivations. For exam-
ple, Laneve [102] studies distributive permutation equivalence which allows swapping adjacent
steps as long as this does not cause duplication nor erasure.

�e word standardization is most commonly used in the literature to refer to standardiza-
tion with respect to the equivalence relation of permutation equivalence.

Given a �xed notion of equivalence „ between derivations, one may sometimes prove a
standardization result, involving a class of derivations S, whose elements are called standard

derivations. A standardization result states that one may �nd, for each derivation ρ, an equiv-
alent standard derivation ρ1 P S. A stronger standardization result would moreover ensure
that for each derivation ρ there is a unique equivalent derivation ρ1 P S, that is, that the set of
equivalence classes modulo „ is in 1–1 correspondence with the set S. Moreover, the stan-
dardization result is usually proved constructively, by giving a procedure that yields, for every
derivation ρ the standard representative ρ1 of its „-equivalence class.

In this section we de�ne a standardization procedure for Deterministic Family Structures,
by requesting some additional axioms. �e proof that the standardization procedure termi-
nates relies on the Finite Family Developments property. As a corollary, we obtain a stan-
dardization theorem for the LSC without gc.

Many abstract standardization results have been studied before. �e result we present
here is an adaptation of Klop’s parallel standardization theorem ([135, Proposition 8.5.19]) to
the framework of Deterministic Family Structures.
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Note that in [5, �eorem 3, �eorem 4], Acca�oli, Bonelli, Lombardi, and Kesner have
already proposed a standardization procedure for the LSC. Our procedure di�ers from theirs
in in the following aspects:

1. Our procedure relies on the Finite Family Developments theorem, while [5] relies on the
fact that the LSC enjoys a number of axioms proposed by Melliès in [118, Chapter 4].

2. Our standardization procedure is inspired by Klop’s [135, Section 8.5.2], and it is based
on selection, resembling selection sort, while [5] is based on permutation of anti–standard
pairs, resembling bubble sort.

3. Our procedure does not deal with the gc rule, while [5] does.

4. Our procedure imposes a �xed order for redexes in such a way that the standard reduc-
tion is syntactically unique, while [5] considers standard forms modulo permutation
of disjoint redexes, in such a way that the standard reduction is unique up to square

equivalence.

Standardization in Deterministic Family Structures

In this subsection we prove a standardization result for Deterministic Family Structures that
verify some additional constraints. �e main result of this subsection is the standardization
result for DFSs (Prop. 7.39). We begin by proving a simple technical result.

Proposition 7.29 (Projection does not create families). Let A be a DFS, let φ : t � t1 be a

derivation in A, and let ρ and σ be coinitial derivations in A starting from t1. �en the set of

families of redexes contracted along ρ{σ is contained in the set of families of redexes contracted

along ρ, relatively to the history φ. More precisely, if ρ{σ can be wri�en as τ1Tτ2 then ρ can be

wri�en as υ1Uυ2 such that Fam»pφυ1Uq “ Fam»pφστ1T q.

Proof. By induction on the length of ρ. �e base case is trivial. If ρ “ Rρ1 we have that
ρ{σ “ pR{σqpρ1{pσ{Rqq by de�nition. Let ρ{σ be wri�en as τ1Tτ2. We consider two subcases,
depending on whether τ1 is a proper pre�x of R{σ or not:

1. If τ1 is a proper pre�x of R{σ. �en R{σ “ τ1Tτ
1
2 and τ2 “ τ 12pρ

1{pσ{Rqq. Note that
T P pR{σq{τ1 so R xστ1y T . �en by taking υ1 :“ ε, U :“ R and υ2 :“ ρ1 we have that
Fam»pφRq “ Fam»pφστ1T q since T is a copy of R, and as a consequence of the Copy
axiom.

2. If τ1 is not a proper pre�x of R{σ. �en ρ1{pσ{Rq “ τ 11Tτ2 and τ1 “ pR{σqτ
1
1. By i.h. on

the derivation ρ1 (using φR as the new history), we conclude that ρ1 can be wri�en as
υ11Uυ2 in such a way that:

Fam»pφRυ11Uq “ Fam»pφRpσ{Rqτ 11T q
“ Fam»pφσpR{σqτ 11T q by the Copy axiom,

since φRpσ{Rqτ 11T ď φσpR{σqτ 11T

since φRpσ{Rqτ 11 ” φσpR{σqτ 11

Hence by taking υ1 :“ Rυ11 we conclude.
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To prove the standardization result, let us state a few further auxiliary de�nitions, in-
cluding the crucial notion of uniform multi-selection strategy. Recall that in an orthogonal
axiomatic rewriting system, the le�ers M,N , . . . range over multisteps, D,E, . . . range over
multiderivations, and Multistep stands for the set of multisteps.

De�nition 7.30 (Belonging). In an orthogonal axiomatic rewriting systemA, a stepR belongs

to a derivation ρ, wri�en R Ÿ ρ, if and only if ρ can be wri�en as of the form ρ “ ρ1R
1ρ2

where R1 P R{ρ1. A multistep M belongs to a derivation ρ, wri�en M Ÿ ρ, if and only if
R Ÿ ρ for all R PM.

De�nition 7.31 (Multi-selection strategy). In an orthogonal axiomatic rewriting system A, a
multi-selection strategy is a function M that maps every non-empty derivation ρ to a coinitial
multistep M P Multistep such that M Ÿ ρ and M{ρ “ ∅.

De�nition 7.32 (Uniform multi-selection strategy). A multi-selection strategy M is uniform

if ρ ” σ implies Mpρq “Mpσq for any non-empty ρ, σ.

Example 7.33. In the λ-calculus, consider the trivial multi-selection strategy MTriv that always

selects the �rst step of a given derivation. More precisely, let MTrivpRρq
def
“ tRu. �en MTriv is a

multi-selection strategy because for every non-empty derivation Rρ we have that R Ÿ Rρ and

that R{Rρ “ ∅.

However, MTriv is not uniform. For example, if RS 1 ” SR1, such as in the following diagram,

we have that MTrivpRS
1q “ tRu ‰ tSu “MTrivpSR

1q.

pλx.pλy.zqx xq t R //

S ��

pλy.zq t t

S1 ��
pλx.z xq t R1 // z t

In the remainder of this subsection, we show that any uniform multi-selection strategy M
induces, for a given derivation ρ, a permutation equivalent derivation ρ˚. �is gives us a stan-
dardization result, parametric onM. �e set of standard derivations is the set tρ˚ | ρ is a derivationu.
Moreover, we show that the induced derivation ρ˚ is unique, up to permutation equivalence.

De�nition 7.34 (Induced multiderivation). In an orthogonal axiomatic rewriting system, let
M be a multi-selection strategy and let ρ be any derivation. �e sequence induced by M on ρ,
wri�en M‹pρq, is a possibly in�nite sequence of multisteps, de�ned by the following recursive
equations:

M‹
pρq

def
“

#

ε if ρ “ ε

Mpρq ¨M‹pρ{Mpρqq otherwise

If recursion terminates, the sequence is �nite and we call it the multiderivation induced by M
on ρ.
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In an arbitrary rewriting system, this recursive de�nition may not terminate. �e follow-
ing lemma provides su�cient conditions for M‹pρq to be well-de�ned. Namely, in a Deter-
ministic Family Structure, the recursive de�nition of M‹pρq is well-founded, as a consequence
of Finite Family Developments.

Lemma 7.35. Let M is a multi-selection strategy in a DFS. If ρ is any (�nite) derivation, then

M‹pρq is �nite.

Proof. Let ρ be a �nite derivation, let D “ M‹pρq be the multiderivation induced by M on ρ,
and let F be the set of redex families that are contracted along ρ, more precisely:

F def
“ tFam»pρ1Rq | Dρ2. ρ “ ρ1Rρ2u

Claim. Write D as a possibly in�nite sequence of multisteps D “ M1 . . .Mn . . .. Suppose
that σ “ σ1 . . . σn is any complete development of a pre�x M1 . . .Mn of D, where each σi
is a complete development of Mi. �en the set of families of the redexes contracted along σ
is contained in F .
Proof of the claim. Let σ “ σ1 . . . σn and let σi “ Si1 . . . S

i
mi

for each 1 ď i ď n. An arbitrary
step of σ is one of the steps Sij with 1 ď i ď n and 1 ď j ď mi. It su�ces to show that the fam-
ily of each Sij is inF . More precisely, we aim to show that Fam»pσ1 . . . σi´1S

i
1 . . . S

i
j´1S

i
jq P F

holds for every i, j.
Let 1 ď i ď n and 1 ď j ď mi be arbitrary indices. Note that Sij is a redex in σi and σi is a

complete development of Mi, so Sij has an ancestor S‹ xSi1 . . . Sij´1y S
i
j with S‹ PMi. �is

means thatSij is a copy ofS‹, hence they are in the same family, i.e. Fam»pσ1 . . . σi´1S
i
1 . . . S

i
jq “

Fam»pσ1 . . . σi´1S
‹q. Moreover, by construction, Mi “ Mpρ{M1 . . .Mi´1q. Since M is a

multi-selection strategy, we have that S‹ Ÿ ρ{M1 . . .Mi´1. �is means that ρ{M1 . . .Mi´1

can be wri�en as ρ1S
‹‹ρ2 where S‹ xρ1y S

‹‹. �is means that S‹‹ is a copy of S‹, hence they
are in the same family: Fam»pσ1 . . . σi´1S

‹q “ Fam»pσ1 . . . σi´1ρ1S
‹‹q. Moreover, since pro-

jection does not create families in a DFS (Prop. 7.29) and ρ{M1 . . .Mi´1 “ ρ{σ1 . . . σi´1 “

ρ1S
‹‹ρ2 we have that Fam»pσ1 . . . σi´1ρ1S

‹‹q P F . Collecting all the facts we have al-
ready established above, we have that Fam»pσ1 . . . σi´1S

i
1 . . . S

i
jq “ Fam»pσ1 . . . σi´1S

‹q “

Fam»pσ1 . . . σi´1ρ1S
‹‹q P F , which concludes the proof of the claim.

To conclude the proof of the lemma, note that the set F is �nite since ρ is �nite. By FFD,
this implies that there cannot be in�nite derivations contracting redexes whose family is in
F . �erefore D must be �nite.

By de�nition, a uniform multi-selection strategy M, when given two permutation equiva-
lent derivations, always selects the same multistep. It, in fact, yields the same multiderivation.

Lemma 7.36. Let M be a uniform multi-selection strategy in a DFS, and let ρ, σ be �nite deriva-

tions. If ρ ” σ then M‹pρq “M‹pσq.

Proof. By Lem. 7.35, we know that M‹pρq must be �nite. We proceed by induction on the
length of M‹pρq:

1. Empty, M‹pρq “ ε. �en ρ “ ε, so σ “ ε and we have M‹pρq “ ε “M‹pσq.
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2. Non-empty. �en ρ is non-empty, so σ must be also non-empty, and we have that
M‹pρq “ MpρqM‹pρ{Mpρqq and M‹pσq “ MpσqM‹pσ{Mpσqq. First, since ρ ” σ and
M is a uniform selection strategy, we have Mpρq “ Mpσq. Moreover, the tail of M‹pρq

is of the form M‹pρ{Mpρqq, and it is strictly shorter than M‹pρq. So we can apply the
i.h. on the tails of M‹pρq and M‹pσq. �e i.h. states:

ρ{Mpρq ” σ{Mpσq ùñ M‹
pρ{Mpρqq “M‹

pσ{Mpσqq

To conclude, we are le� to show that ρ{Mpρq ” σ{Mpσq holds. �is is an immediate
consequence of the fact that ρ ” σ, since the projections of permutation equivalent
derivations are again equivalent (Prop. 2.63).

Lemma 7.37. Let M be a multi-selection strategy in a DFS, and ρ a �nite derivation. �en

ρ ” BM‹pρq.

Proof. By Lem. 7.35, we have that M‹pρq must be �nite. We proceed by induction on the
length of the multiderivation M‹pρq.

1. Empty, M‹pρq “ ε. �en ρ “ ε, so ρ “ Bε “ BM‹pρq.

2. Non-empty. LetM “Mpρq be the �rst multistep selected by the strategy. �enM‹pρq “

MM‹pρ{Mq. To show that ρ ” BM‹pρq, by Lem. 2.59, it su�ces for us to check that
they are projection equivalent, i.e. that ρ Ď BM‹pρq Ď ρ.

(Ď) Let us check that ρ{BM‹pρq “ ε.

ρ{BM‹pρq

“ ρ{BpMM‹pρ{Mqq

“ ρ{pBMq pBM‹pρ{Mqq

“ pρ{BMq{BM‹pρ{Mq since α{βγ “ pα{βq{γ
“ ε since by i.h. ρ{M ” BM‹pρ{Mq

(Ě) Since M is a multi-selection strategy, we have that M{ρ “ ∅. Let us check that
BM‹pρq{ρ “ ε.

pBM‹pρqq{ρ

“ pBpMM‹pρ{Mqqq{ρ

“ pBMq pBM‹pρ{Mqq{ρ

“ ppBMq{ρq ppBM‹pρ{Mqq{pρ{BMqq since αβ{γ “ pα{βqpγ{pβ{αqq
“ pBM‹pρ{Mqq{pρ{BMq since M{ρ “ ∅, so pBMq{ρ “ ε

“ pBM‹pρ{Mqq{pρ{Mq since ρ{M stands for ρ{BM
“ ε since by i.h. ρ{M ” BM‹pρ{Mq
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De�nition 7.38 (Standard multiderivation). A multiderivationD is M-standard if M‹pBDq “

D.

Proposition 7.39 (Standardization for DFSs). Let M be a uniform multi-selection strategy in

a DFS. For any �nite derivation ρ there exists a unique multiderivation D such that ρ ” BD and

D is M-standard. Namely, D “M‹pρq.

Proof. We prove the result in two parts:

1. Existence. First note that ρ ” BM‹pρq by Lem. 7.37. To see that M‹pρq is M-standard,
apply Lem. 7.36 on the fact that BM‹pρq ” ρ to conclude that M‹pBM‹pρqq “M‹pρq, as
required.

2. Uniqueness. Suppose that there is a multiderivation E such that ρ ” BE and E is M-
standard. We claim thatE “M‹pρq. By applying Lem. 7.36 on the fact that BE ” ρ, we
obtain that M‹pBEq “ M‹pρq. Finally, since E is M-standard, E “ M‹pBEq “ M‹pρq

and we conclude.

Example 7.40 (Standardization in the λ-calculus). In the λ-calculus, letMLe�pρq :“ tRuwhere

R is the le�most step such that R{ρ “ ∅, and let MParpρq :“ tR | R{ρ “ ∅u. It can be checked

that MLe� and MPar are uniform multi-selection strategies. Moreover, let ∆ Ñ ∆1
and let ρ be

the derivation:

ρ : pλx.yxxq ppλx.zq∆q Ñ pλx.yxxq ppλx.zq∆1
q Ñ pλx.yxxq z Ñ yzz

�en the (le�most) standard form of ρ is:

M‹
Le�pρq : pλx.yxxq ppλx.zq∆q Ñ yppλx.zq∆qppλx.zq∆q Ñ yzppλx.zq∆q Ñ yzz

�e parallel standard form of ρ consists of a single multistep:

M‹
Parpρq : pλx.yxxq ppλx.zq∆q ñ yzz

Standardization in the LSC without gc

In this subsection we apply the previous standardization result (Prop. 7.39) to the LSC without
gc.

De�nition 7.41 (Arbitrary selector). Let Outptq denote the set of steps whose source is a term
t in the LSC without gc, and let ăt be an arbitrary strict partial order on Outptq. We write ă
for the function that, for each term t P T , yields a partial order ăt Ď Outptq ˆ Outptq.

�e arbitrary selector on ă is wri�en Mă and de�ned as the following function, taking a
non-empty derivation and returning a �nite set of coinitial steps:

Măpρq
def
“ tR | R{ρ “ ∅ and R is minimalu

By minimal we mean that there is no step R1 such that R1{ρ “ ∅ and R1 ăsrcpρq R.
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Note thatMăpρq is a non-empty �nite set. To see this, note that the setX “ tR |R{ρ “ ∅u
is non-empty, becauseR{ρ “ ∅ ifR is taken to be the �rst step of the derivation ρ. Moreover,
the set X is �nite, because the LSC is �nitely branching. Hence X must have at least one
minimal element. Moreover:

Lemma 7.42. Mă is a uniform multi-selection strategy.

Proof. Let us check that Mă is a multi-selection strategy and that it is uniform:

1. Mă is a multi-selection strategy. Let ρ be a non-empty reduction sequence. Recall that
a function M is a selection strategy if Mpρq is a non-empty multistep M coinitial to ρ
such that M{ρ “ ∅ and M Ÿ ρ.
In our case, we have constructed Măpρq to be a non-empty multistep coinitial to ρ

(Def. 7.41). Moreover, also by construction, any step R P Măpρq veri�es R{ρ “ ∅, so
indeed Măpρq{ρ “ ∅. Moreover, in the LSC without gc there is no erasure, so all steps
are essential. �at is, if R{ρ “ ∅ then R Ÿ ρ. Hence we have that Măpρq Ÿ ρ, as
required.

2. Mă is uniform. Let ρ ” σ, and let us check thatMăpρq “Măpσq. It su�ces to show that
the set Aρ “ tR | R{ρ “ ∅u coincides with the set Aσ “ tR | R{σ “ ∅u, since Măpρq

is the subset of the minimal elements of Aρ and Măpσq is the subset of the minimal
elements of Aσ.
Note that:

R P Aρ ðñ R{ρ “ ∅
ðñ R{σ “ ∅ since ρ ” σ

ðñ R P Aσ

So Aρ “ Aσ, as wanted.

Corollary 7.43 (Standardization by arbitrary selection for the LSC without gc). Let Mă be

the arbitrary selector on ă. For each �nite sequence ρ in the LSC without gc, there is a unique

multiderivation D such that ρ ” BD and D is Mă-standard. Moreover, if the ordering function

ă is computable, then D is computable from ρ, namely D “M‹
ăpρq.

Proof. �is is a consequence of the standardization result for DFSs (Prop. 7.39) and the fact
that Mă is a uniform multi-selection strategy (Lem. 7.42). Moreover, it is clear by de�nition
that M‹

ă is computable if the ordering function ă is computable.

Example 7.44 (Standardization in the LSC without gc). In the LSC without gc, let ρ : xrxzts Ñ

xrxzt1s Ñ t1rxzt1s Ñ t2rxzt1s, where tÑ t1 Ñ t2.

1. If ă1
is the trivial partial order in which every step is incomparable, i.e. R ă1

t S never

holds, then M‹
ă1pρq : xrxzts ñ t1rxzt1s Ñ t2rxzt1s. �e �rst step is a proper multistep.

2. Let ă2
be the total le�-to-right order, de�ned so that R ă2

t S holds whenever R is to the

le� of S. �en M‹
ă2pρq : xrxzts Ñ trxzts Ñ t1rxzts Ñ t1rxzt1s Ñ t2rxzt1s.
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3. Let ă3
be the total right-to-le� order, de�ned so that R ă3

t S holds if R is to the right of

S. �en M‹
ă3pρq “ ρ : xrxzts Ñ xrxzt1s Ñ t1rxzt1s Ñ t2rxzt1s.

7.6 Normalization of Strategies

A reduction strategy is, informally speaking, a restriction on the computational steps that may
be performed in a rewriting system. For example, in the λ-calculus, head reduction is the
restriction of the β-reduction rule that only allows to contract head redexes, this is, redexes
that lie below a context of the form λx1 . . . xn.lu1 . . . um. More precisely, head reduction is
de�ned by the following rewriting rule:

λx1 . . . xn.pλy.tqs u1 . . . um Ñhead λx1 . . . xn.tty :“ suu1 . . . um

For instance, underlining the contracted redex, the following is a sequence of head reduction
steps:

λx.pλy.yqppλy.xqΩq Ñhead λx.pλy.xqΩ Ñhead λx.x

While the following is not a sequence of head reduction steps, because the �rst step does not
contract a head redex:

λx.pλy.yqppλy.xqΩq Ñ λx.pλy.yqxÑhead λx.x

It can be shown that a term has at most one head redex. A term without a head redex is
called a head normal form. It is well-known that, by repeatedly contracting the head redex,
one reaches a head normal form if possible. More precisely, one has the following result:

Proposition 7.45 (Head reduction is head normalizing in the λ-calculus). Suppose that t has

a head normal form, that is, there exists a head normal form s such that t Ø˚
β s. �en there is

no in�nite head reduction tÑhead t1 Ñhead t2 . . ..

Proof. See [130, Corollary 1.5.12 (i)].

Observe that a term, such as Ω “ pλx.xxqpλx.xxq, may not have a head normal form, in
which case it is impossible for any strategy to reach a head normal form.

As evidenced in the title of the statement, the result given in Prop. 7.45 is known as the
fact that head reduction is head normalizing. In general, if X is a set of answers, a strategy is
said to be X -normalizing if repeatedly contracting a step according to the strategy leads to a
term in the set X , whenever possible.

In this section, we give su�cient conditions under which reduction strategies are X -
normalizing in Deterministic Family Structures. �e proof of normalization relies on the
Finite Family Developments property. As a consequence, we conclude that two speci�c
strategies, call-by-name and linear call-by-need, are normalizing in the LSC without gc.

Many normalization results have been studied before. In particular, we should mention
that Glauert and Khasidashvili prove a Relative Normalization result [61, �eorem 4.1] for
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Deterministic Family Structures, which ensures that any reduction contracting X -needed
steps (cf. Def. 7.18) reaches a term in X if possible. �e normalization result for DFSs that
we state and prove below is a particular case, i.e. it is a weaker result than Glauert and Khasi-
dashvili’s Relative Normalization. �e advantage is that our weaker result only requires to
check a number of local syntactic conditions on rewriting diagrams in order to ensure that a
strategy is X -normalizing.

Normalization in Deterministic Family Structures

In this subsection we prove a normalization result for Deterministic Family Structures. �e
main result of this subsection is Prop. 7.54, in which we give su�cient conditions for a strategy
to be X -normalizing. We begin by giving formal de�nitions of all the required notions.

De�nition 7.46 (Sub-ARS). A sub-ARS of an ARS A “ pObj, Stp, src, tgtq is an ARS B “

pObj1, Stp1, src1, tgt1q such that Obj1 Ď Obj, Stp1 Ď Stp, and moreover the functions src1, tgt1
are the restrictions of src, tgt to Stp1. A sub-ARS B is closed if the set NFpBq is closed by
reduction, i.e. if xÑA y and x P NFpBq then y P NFpBq.

De�nition 7.47 (Strategy). A strategy in an ARS A “ pObj, Stp, src, tgtq is a sub-ARS B “
pObj1, Stp1, src1, tgt1q having the same objects, i.e. Obj “ Obj1, and the same normal forms, i.e.

NFpAq “ NFpBq.

Remark 7.48. Any sub-ARS B can be extended to a strategy SB by adjoining the steps going
out from normal forms, i.e. by se�ing StppSBq :“ StppBq Y tR P StppAq | srcpRq P NFpBqu.
Note in particular that if B is already a strategy then SB “ B.

Example 7.49. In the λ-calculus, the notion of head reduction Ñhead is not strictly speaking a

strategy, because the set of β-normal forms does not coincide with the set of head normal forms.

Head reduction can be extended to a strategy Shead in such a way that an arbitrary β-step

R : tÑβ s is in the strategy Shead wheneverR contracts a head redex or, alternatively, t is a head

normal form.

De�nition 7.50 (X -normalizing strategy). Let X be a superset of the normal forms of A. A
strategy S is said to be X -normalizing if for every object x such that there exists a reduction
x�A y P X , every maximal reduction from x in the strategy S contains an object in X .

�e following notion of residual-invariance is the key notion to give a su�cient condition
for a strategy to be X -normalizing.

De�nition 7.51 (Residual-invariance). Let A be an axiomatic rewriting system (including the
notion of residual). A sub-ARS B of A is residual-invariant if for any steps R and S such that
R P B and S ‰ R, there exists a step R1 P S such that R1 P R{S.

Example 7.52. In the λ-calculus, the le�most outermost strategy SLO is the strategy that only

allows contracting the le�most outermost step, i.e. the step contracting the redex whose λ is more

to the le�. It is easy to check that SLO is residual-invariant, because the residual of a le�most

outermost step is again le�most outermost.

�e following is a straightforward lemma regarding residual-invariance.
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Lemma 7.53 (Steps of residual-invariant sub-ARSs are preserved in DFSs). Let F “ pA,»
, ãÑq be a DFS and suppose that B is a residual-invariant sub-ARS of A. Let ρR be a redex with

history such that R is in B, and let σ be any �nite reduction coinitial to R. Let us also suppose

that σ does not contract redexes in the family of ρR. More precisely, let us suppose that whenever

σ can be wri�en as σ1Sσ2 then ρR ­» ρσ1S. �en R has a residual R1 P R{σ in B.

Proof. By induction on σ. If σ is empty it is immediate. If σ “ T τ , we know that ρR ­» ρT by
hypothesis, so in particular R ‰ T . Since B is residual-invariant this means that there exists
a step R1 P B such that R xT y R1. Moreover, by the Copy axiom ρR » ρTR1. By i.h. on the
derivation τ and the redex with history ρTR1 we conclude that there is a step R2 P B such
that R1 xτy R2. So R xTτy R2 and we are done.

We turn to the main result of this subsection.

Proposition 7.54 (Normalization for DFSs). Let B be a closed residual-invariant sub-ARS in a

Deterministic Family Structure. �en the corresponding strategy SB is NFpBq-normalizing.

Proof. Let ρ1 be a derivation x �A y P NFpBq and consider a maximal derivation σ starting
from x in the strategy SB. We must show that σ contains a term in NFpBq. Let F be the set
of families of all the redexes contracted along ρ1. �e set F is �nite, so by the FFD axiom, the
derivation ρ1 can be extended to a complete family development ρ1ρ2 of F .

By contradiction, suppose that the reduction sequence σ has no terms in NFpBq. �en
σ is contained in the sub-ARS B, and it is in�nite. By the FFD axiom, σ cannot be a family
development of F , so there must be at least one redex whose family is not in F . Let S be
the �rst such step, i.e. let us write σ as σ1Sσ2 where σ1 is a family development of F and
Fam»pσq R F . �e situation is as follows, closing the square with the derivations ρ1ρ2{σ1

and σ1{ρ1ρ2:
ρ1 // //

σ1 ����

ρ2 // //
σ1{ρ1ρ2 “ τ����

ρ1ρ2{σ1

// //

S ��

σ2 ����

First we claim that the derivation τ “ σ1{ρ1ρ2 is actually empty. Indeed, by the Copy axiom
the families of all the redexes contracted along σ1{ρ1ρ2 are contained in the families of all the
redexes contracted along σ1. In particular, ρ1ρ2τ is a family development of F . If τ were not
empty, it would mean that τ “ Tτ 1, where Fam»pρ1ρ2T q P F . �is contradict the fact that
ρ1ρ2 is a complete family development, as it can be extended with T , so T is indeed empty.
�is means that the diagram is as follows:

ρ1 // //
σ1 ����

ρ2 // //

ρ1ρ2{σ1

44 44

S ��

σ2 ����
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By the Copy axiom, we know that the families of all the redexes contracted along ρ1ρ2{σ1 are
contained in the families of all the redexes contracted along ρ1ρ2. In particular, σ1pρ1ρ2{σ1q

is a family development of F .
By Lem. 7.53, we obtain that there must exist a step S 1 P B such that S xρ1ρ2{σ1y S

1. To
be able to apply Lem. 7.53 note that:

• S is a step in the sub-ARS B;

• by hypothesis, the sub-ARS B is residual-invariant;

• the derivation ρ1ρ2{σ1 does not contract redexes in the family of σ1S since Fam»pσ1Sq R

F while σ1pρ1ρ2{σ1q is a family development of F .

So the situation is:
ρ1 // //

σ1 ����

ρ2 // //

S1��ρ1ρ2{σ1

44 44

S ��

σ2 ����

Finally, recall that tgtpρ1q P NFpBq, and that, by hypothesis, B is closed residual-invariant,
which means that the set NFpBq is closed by reduction. So tgtpρ2q P NFpBq, contradicting the
fact that there is an outgoing step S 1 in the sub-ARS B. We conclude that σ must be have a
term in NFpBq, as required.

Normalization in the LSC without gc

In the following subsections, we give the de�nition of two strategies in the LSC without gc,
and we prove that they are normalizing.

First, we study head linear reduction, also known as call-by-name, in the LSC without gc.
As we see in Chapter 3, this strategy is in close correspondence with evaluation of λ-terms in
the Krivine Abstract Machine. Moreover, this strategy is closely related with Vincent Danos
and Laurent Regnier’s notion of head linear reduction in the λ-calculus [47].

Second, we de�ne a new strategy that we baptize needed linear reduction. Needed linear
reduction is very similar to the (weak) call-by-need strategy that we study in Chapters 3 and 4,
with the slight di�erence that the linear substitution rule that we study here is of the form
given in (7.1) below, rather than of the form given in (7.2) below.

CxxyrxzvLs Ñ CxvLyrxzvLs (7.1)

CxxyrxzvLs Ñ CxvyrxzvsL (7.2)

�e advantage of the weak call-by-need strategy, as given in (7.2), is that it only copies the
subterm v, sharing the substitution context L. Moreover, (7.2) corresponds more closely with
Ariola et al.’s established notion of call-by-need [12, 113]. Unfortunately, the weak call-by-
need is not a sub-ARS of the LSC, so it would not be possible to apply our results directly
to the variant of weak call-by-need given by (7.2) without redoing some of the work that we
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have done in previous sections. For example, one should prove that an adapted variant of the
LSC with the sharing linear substitution rule also forms a Deterministic Family Structure. We
leave this task as future work, restricting our a�ention to the variant of call-by-need given by
(7.1) only.

Normalization of head linear reduction

In this subsection, we recall the de�nition of head linear reduction (call-by-name), and we
prove that it is normalizing.

De�nition 7.55 (Head linear reduction and head linear normal forms). Head linear reduction
is the sub-ARS HL of the LSC without gc that selects the (unique) db or ls step whose anchor
is currently below a weak head context. Weak head contexts are de�ned by the grammar:

H ::“ l | H t | Hrxzts

�e set of head linear normal forms HLNF is de�ned as the set of terms generated by the
grammar:

A ::“ pλx.tqL

| Hxxxyy where H does not bind x

Terms of the form pλx.tqL are called answers, and terms of the form Hxxxyy are called head

structures (or just structures if clear from the context). �e variable x is called the head variable

of a structure Hxxxyy.

Corollary 7.56 (Head linear reduction is HLNF-normalizing — ♣ Coro. A.113). �e strategy

SHL associated to the sub-ARS HL is HLNF-normalizing.

Proof. A consequence of the previous proposition (Prop. 7.54), using the fact that the LSC
without gc is a DFS (�m. 7.13). It su�ces to show that HL is a closed residual-invariant
sub-ARS of the LSC without gc, and that NFpHLq “ HLNF. See the appendix for the proof of
these facts.

Example 7.57. �e following is a head linear reduction reaching a term in HLNF.

pλx.xxqppλy.yqpλz.zqq Ñ pxxqrxzpλy.yqpλz.zqs

Ñ ppλy.yqpλz.zqxqrxzpλy.yqpλz.zqs

Ñ pyryzλz.zsxqrxzpλy.yqpλz.zqs

Ñ ppλz.zqryzλz.zsxqrxzpλy.yqpλz.zqs

Ñ zrzzxsryzλz.zsrxzpλy.yqpλz.zqs

Ñ xrzzxsryzλz.zsrxzpλy.yqpλz.zqs

Ñ ppλy.yqpλz.zqqrzzxsryzλz.zsrxzpλy.yqpλz.zqs

Ñ yryzλz.zsrzzxsryzλz.zsrxzpλy.yqpλz.zqs

Ñ pλz.zqryzλz.zsrzzxsryzλz.zsrxzpλy.yqpλz.zqs
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Normalization of needed linear reduction

In this subsection, we de�ne a variant of call-by-need we call needed linear reduction, and we
prove that it is normalizing.

De�nition 7.58 (Needed linear reduction and needed linear normal forms). Needed linear
reduction is the sub-ARS NL of the LSC without gc de�ned as follows. Needed evaluation
contexts are de�ned by the grammar

N ::“ l | N t | Nrxzts | NxxxyyrxzNs

�e reduction ruleÑNL is the union of the usual db rule, and the lsnl rule

NxxxyyrxzvLs ÞÑ lsnl NxvLyrxzvLs

both rewriting rules are closed by need contexts.
�e set of needed linear normal forms NLNF is de�ned by the grammar A ::“ pλx.tqL |

Nxxxyy. Terms of the form pλx.tqL are called answers, and Nxxxyy are called structures. In struc-
tures, N does not bind x, the la�er called its needed variable.

Corollary 7.59 (Needed linear reduction isNLNF-normalizing —♣Coro. A.115). �e strategy

SNL associated to the sub-ARS NL is NLNF-normalizing.

Proof. A consequence of the previous proposition (Prop. 7.54), using the fact that the LSC
without gc is a DFS (�m. 7.13). It su�ces to show that NL is a closed residual-invariant
sub-ARS of the LSC without gc, and that NFpNLq “ NLNF. See the appendix for the proof of
these facts.

Example 7.60. �e following is a needed linear reduction reaching a term in NLNF.

pλx.xxqppλy.yqpλz.zqq Ñ pxxqrxzpλy.yqpλz.zqs

Ñ pxxqrxzyryzλz.zss

Ñ pxxqrxzpλz.zqryzλz.zss

Ñ ppλz.zqxqrxzλz.zsryzλz.zs

Ñ zrzzxsrxzλz.zsryzλz.zs

Ñ zrzzλz.zsrxzλz.zsryzλz.zs

Ñ pλz.zqrzzλz.zsrxzλz.zsryzλz.zs
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Conclusion

In this thesis we have used calculi with explicit substitutions at a distance, and in particular
the Linear Substitution Calculus, to study evaluation strategies. �ree main topics have been
addressed:

1. We have showed that some of these evaluation strategies—call-by-name, call-by-value,
call-by-need, and strong call-by-name—distill the behaviour of abstract machines, and
that they are reasonable in terms of time complexity. �is methodology has allowed us to
revisit some abstract machines known from the literature (such as the Krivine abstract
machine or Leroy’s ZINC machine), as well as to conceive new abstract machines.

2. We have extended the call-by-need evaluation strategy to a strong se�ing. Our main
result is the completeness of strong call-by-need, which relies on a recent technique by
Kesner, based on using non-idempotent intersection type systems to characterize weak
normalization.

3. We have studied the theory of redex families in the LSC. For this, we have proposed
a labeled variant of the LSC, following Lévy’s work on the λ-calculus. �is theory
provides us with results about the optimal evaluation strategy, and also gives us new
proofs of standardization in the LSC, and normalization of the call-by-need strategy.

In the following sections we describe two concrete topics for future work.

8.1 An Abstract Machine for Strong Call-by-Need Reduc-

tion

In Chapter 3, we de�ned abstract machines for evaluation according to the call-by-name,
call-by-value, call-by-need, and strong call-by-name strategies. Moreover, in Chapter 4, we
de�ned a strong call-by-need strategy. It is only natural to wonder what an abstract machine
for evaluation according to this strong call-by-need strategy would look like.

In this section, we propose an abstract machine for strong call-by-need evaluation.

256
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De�nition 8.1 (An abstract machine for strong call-by-need evaluation). Abstract machine
states are quadruples x π | ϕ t | E y comprising: a stack π, a phase ϕ, a term t, and an
environment E. Terms are usual terms of the LSC. �e phase is a boolean �ag which may be
either ò or ó. �e stack represents the current evaluation context, in a way reminiscent of
zippers [77]. Phases, stacks and environments are de�ned by the following grammars:

ϕ ::“ ò Going up (normal form found)
| ó Evaluation phase

π ::“ ε Empty stack (focus at toplevel)
| aptq : π Argument (focus on the le� of an application)
| dptq : π Data structure (focus on the right of an application)
| hpE1, xq : π Heap (focus on the right of a substitution)
| λpxq : π Lambda (focus under an abstraction)

E ::“ ε Empty environment
| E : rx ÞÑ ts Mapping
| E : rrx ÞÑ tss Frozen mapping
| E : λpxq Scope delimiter

�e transition rules of the abstract machine are given below:

π | ó trxzss | E ù π | ó t | rx ÞÑ ssE D-Migration
π | ó ts | E ù πapsq | ó t | E D-Application

πapsq | ó λx.t | E ù π | ó t | rx ÞÑ ssE Beta
π | ó λx.t | E ù πλpxq | ó t | λpxqE D-Strong

if π does not end with ap.q, or hp., .q

π | ó x | E1rx ÞÑ ssE2 ù πhpE1, xq | ó s | E2 Lookup
π | ó x | E1rrx ÞÑ sssE2 ù π | ò x | E1rrx ÞÑ sssE2 Frozen lookup

πhpE1, xq | ó v | E2 ù π | ó v1 | E1rx ÞÑ vsE2 LSV
π | ó y | E ù π | ò y | E Up

if y has no mapping in E

πapsq | ò t | E ù πdptq | ó s | E U-Argument
πhpE1, xq | ò t | E2 ù π | ò x | E1rrx ÞÑ tssE2 U-Update

πdptq | ò s | E ù π | ò ts | E U-Application
πλpxq | ò t | ry ÞÑ ssE ù πλpxq | ò tryzss | E U-Migration
πλpxq | ò t | λpxqE ù π | ò λx.t | E U-Strong

Example 8.2. �e following is an execution in the strong call-by-need abstract machine. In each

step we underline the focus of evaluation, i.e. the pa�ern of the db redex or the variable contracted
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by the ls redex:

ε |ó pλx.xxqpλy.zpIzqyq | ε

D-Application ù apλy.zpIzqyq |ó λx.xx | ε

Beta ù ε |ó xx | rx ÞÑ λy.zpIzqys

D-Application ù apxq |ó x | rx ÞÑ λy.zpIzqys

Lookup ù hpε, xq |ó λy.zpIzqy | ε

LSV ù ε |ó λy.zpIzqy | rx ÞÑ λy.zpIzqys

D-Strong ù λpyq |ó zpIzqy | λpyqrx ÞÑ λy.zpIzqys

D-Application ù λpyq apyq |ó zpIzq | λpyqrx ÞÑ λy.zpIzqys

D-Application ù λpyq apyq apIzq |ó z | λpyqrx ÞÑ λy.zpIzqys

Up ù λpyq apyq apIzq |ò z | λpyqrx ÞÑ λy.zpIzqys

U-Argument ù λpyq apyq dpzq |ó Iz | λpyqrx ÞÑ λy.zpIzqys

D-Application ù λpyq apyq dpzq apzq |ó I | λpyqrx ÞÑ λy.zpIzqys

Beta ù λpyq apyq dpzq |ó w | rw ÞÑ zs λpyqrx ÞÑ λy.zpIzqys

Lookup ù λpyq apyq dpzq hpε, wq|ó z | λpyqrx ÞÑ λy.zpIzqys

Up ù λpyq apyq dpzq hpε, wq|ò z | λpyqrx ÞÑ λy.zpIzqys

U-Update ù λpyq apyq dpzq |ò w | rrw ÞÑ zss λpyqrx ÞÑ λy.zpIzqys

U-Application ù λpyq apyq |ò zw | rrw ÞÑ zss λpyqrx ÞÑ λy.zpIzqys

U-Argument ù λpyq dpzwq |ó y | rrw ÞÑ zss λpyqrx ÞÑ λy.zpIzqys

Up ù λpyq dpzwq |ò y | rrw ÞÑ zss λpyqrx ÞÑ λy.zpIzqys

U-Application ù λpyq |ò zwy | rrw ÞÑ zss λpyqrx ÞÑ λy.zpIzqys

U-Migration ù λpyq |ò pzwyqrwzzs | λpyqrx ÞÑ λy.zpIzqys

U-Strong ù ε |ò λy.pzwyqrwzzs | rx ÞÑ λy.zpIzqys

We omit a proposal for the decoding of machine states as terms. Proposing an appropriate
notion of strong bisimulation ” between terms in order to show that this machine simulates
the strong call-by-need strategy is le� as future work. �e question of whether the strong
call-by-need strategy can be implemented reasonably is open at the moment of writing this
thesis.

8.2 Di�culties De�ning an Extraction Procedure

As we detailed in Section 6.1.1, Lévy characterized redex families in the λ-calculus in three
ways: (1) by means of the zig-zag equivalence relation whose equivalence classes are the redex
families; (2) by means of an auxiliary calculus with labels, in such a way that two redexes with
history are in the same family if and only if they have the same name; and (3) by means of
an extraction procedure, in such a way that two redexes with history are in the same family if
and only if the extraction procedure yields the same canonical representative.

In this section we mention a currently unsolved problem that we have found while at-
tempting to characterize redex families in the LSC. In particular, we propose an extraction
procedure but we leave the question of whether it has all the desired properties as an open
problem.

To clarify the discussion, let us consider three equivalence relations between redexes with
history in the LSC without gc:

• Zig-zag family equivalence (»Z), de�ned as the re�exive–symmetric–transitive clo-
sure of the copy relation ď de�ned in Def. 7.2.
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• Labeling family equivalence (»L), de�ned to hold for two redexes with history if
an initially labeled variant gives them the same name. Note that this is precisely the
relation Fam

» de�ned in Def. 7.7.

• Extraction family equivalence (»E), that we will a�empt to de�ne below, de�ned to
hold for two redexes with history if they have the same canonical representative.

�e question is now whether these relations all characterize the same notion of redex
family. We have already seen that the LSC without gc veri�es the Copy axiom (�m. 7.13),
which means that pρR ď σSq ùñ pρR »L σSq. From this fact, by induction on the
derivation that ρR »Z σS, one can easily prove that zig-zag equivalence is contained in
labeling equivalence, that is, pρR »Z σSq ùñ pρR »L σSq.

�e converse implication pρR »L σSq ùñ pρR »Z σSq is non-trivial. In the λ-
calculus, the proof of this fact that we are familiar with relies on the de�nition of an extraction
procedure (see [14, Section 6.2.3]).

For the extraction procedure that we will propose below, it will be easy to prove that ex-
traction equivalence is contained in zig-zag equivalence, i.e. the implication pρR »E σSq ùñ

pρR »Z σSq. �e picture, at the time of writing this thesis, is currently:

ρR »Z σS

��
?rrρR »E σS

.6

ρR »L σS

?

kk
?

[[ (8.1)

Proposal of an extraction procedure

Before proposing the extraction procedure, we introduce some auxiliary notions.

De�nition 8.3 (Non-duplication). We write ρ # S if ρ does not duplicate S, i.e. #pS{ρq “ 1.
We say that ρ does not duplicate σ, wri�en ρ # σ, according to the following inductive
de�nition:

ρ # ε

ρ # S ρ{S # σ

ρ # Sσ

Remark 8.4. If ρ # σ then σ{ρ has the same length as σ.

De�nition 8.5 (Internal derivation). A stepR is internal to a context C, wri�en C ă R, when-
ever the source of R is of the form Cxty and, moreover:

• If R is a db redex, the position of the hole of C is a pre�x of the position of the pa�ern
of the db redex.

• If R is a ls redex, the position of the hole of C is a pre�x of the position of the variable
contracted by the ls redex.
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Moreover, a derivation ρ is internal to a context C, according to the following inductive de�-
nition:

C ă ε

C ă R C ă ρ

C ă Rρ

IfR is a ls redex and σ is a composable derivation, i.e. tgtpRq “ srcpσq, the derivation σ is said
to be internal to the subject (resp. argument) ofR, wri�enR ăsbj σ (resp. R ăarg σ) whenever
the redex R is of the form C1xC2xxxyyrxztsy Ñ C1xC2xtyrxztsy and C1xC2xlyrxztsy ă σ (resp.
C1xC2xtyrxzlsy ă σ).

Example 8.6 (Internal derivations). For example, consider the following diagram:

pzyqrxzyysryzzs
T1 // pzzqrxzyysryzzs

pyyqrxzyysryzzs

S1
44

S2

**
pyyqrxzzysryzzs

T2 // pyyqrxzzzsryzzs

xrxzzysryzzs
T

**
xrxzyysryzzs

R

OO

S
44

T 1

**

xrxzzzsryzzs

xrxzyzsryzzs

S1
44

�en lrxzyysryzzs ă S1T1 so R ăsbj S1T1, and pyyqrxzlsryzzs ă S2T2 so R ăarg S2T2.

Note that if R ăi Si for i P tsbj, argu, then Si has an ancestor S0, that is Si P S0{R.
Moreover, S0{R consists of exactly two redexes, namely Ssbj and Sarg such that Si is internal
to i. Also note that S0 does not duplicate R. �is can be justi�ed by the following diagram:

C1xC2xxxyyrxztsy
R //

S0

��

C1xC2xtyrxztsy

Ssbj

��

Sarg

��

De�nition 8.7 (Retraction). If R ăi Si for i P tsbj, argu, we write Si� R for the (unique)
ancestor of Si, corresponding to S0 in the diagram above. We call pSi � Rq the retract of Si
before R.

�e notion of retract is also extended for derivations. If R ăi σ for i P tsbj, argu, the
retract of σ before R, wri�en σ� R, is de�ned inductively as follows:

ε� R
def
“ ε

Sσ� R
def
“ S0 pσ{pS0{RSq� R{S0q where S0 “ S � R

�e retraction is well de�ned asR{S0 is a single redex, since, as we have already discussed,
S0 does not duplicate R. To see that the inductive de�nition is in fact well-de�ned, it can be
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checked thatR{S0 ăi σ{pS0{RSq and, moreover, that the length of σ{pS0{RSq coincides with
the length of σ, so recursion is well-founded. �e following diagram illustrates the situation:

R //

S0

��

S

��
S0{R
����

R{S0

//

σ{pS0{RSq

����

S0{RS
oo

σ

����

Example 8.8 (Retraction). In the situation of Ex. 8.6, we have that pS1T1 � Rq “ pS2T2 �
Rq “ ST .

Finally, we may de�ne an extraction procedure.

De�nition 8.9 (Extraction procedure). Extraction is a rewriting system whose objects are
redexes with history. Rewriting steps are given by the two following rules:

ρRpσ{Rq Ź ρσ if σ ‰ ε and R # σ

ρRσ Ź ρpσ� Rq if σ ‰ ε and R ăi σ for some i P tsbj, argu

Example 8.10. In the situation of Ex. 8.6, we have thatRS1 Ź S,RS2 Ź S,RS1T1 Ź ST Ź T 1,

and RS2T2 Ź ST Ź T 1.

It is not hard to show that Ź is strongly normalizing. Indeed, one can show that if ρ Ź σ,
then the length of σ is strictly lesser than the length of ρ. Moreover, one may de�ne extraction

family equivalence by declaring the relation ρR »E σS to hold if and only if ρR pŹ Y Ź´1q˚

σS. With this de�nition, it is not hard to show that pρS »E σSq ùñ pρS »Z σSq.
On the other hand, the two following problems seem to be non-trivial, and we leave them

as unsolved conjectures.

Conjecture 8.11. �e extraction procedure Ź is con�uent.

Conjecture 8.12. �e extraction procedure Ź characterizes redex families. More precisely, the

implication pρS »L σSq ùñ pρS »E σSq holds, closing the circle of implications of (8.1).
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Technical appendix

A.1 Proofs of Chapter 3 – Distilling Abstract Machines

A.1.1 Determinism — proof of Prop. 3.11

Proposition A.1 (Full proof of Prop. 3.11—Determinism). �e �ve reduction strategies of Def. 3.3

are deterministic. In each case, if R1, R2 are evaluation contexts, r1, r2 are anchors (i.e. an appli-

cation that may be contracted by a multiplicative step or a variable that may be contracted by

an exponential step), and R1xr1y “ R2xr2y then R1 “ R2 and r1 “ r2. So there is at most one way

to reduce a term.

We prove each case separately.

Call-by-Name

Let t “ H1xr1y “ H2xr2y. By induction on the structure of t. Cases:

• Variable or an abstraction. Vacuously true, because there is no redex.

• Application. Let t “ su. Suppose that one of the two evaluation contexts, for instance
H1, is equal to l. �en, we must have s “ λx.s1, but in that case it is easy to see that the
result holds, because H2 cannot have its hole to the right of an application (in u) or under
an abstraction (in s1). We may then assume that none of H1, H2 is equal to l. In that
case, we must have H1 “ H11u and H2 “ H12u, and we conclude by induction hypothesis.

• Substitution. Let t “ srxzus. �is case is entirely analogous to the previous one.

Le�-to-Right Call-by-Value

We prove the following statement, of which the determinism of the reduction is a conse-
quence.

Lemma A.2. Let t be a term. �en t has at most one subterm s that veri�es both (i) and (ii):

(i) Either s is a variable x, or s is an application LxvyL1xv1y, for v, v1 being values.

262
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(ii) s is under a le�-to-right call-by-value evaluation context, i.e. t “ Rxsy.

From the statement it follows that there is at most oneÑ-redex in t, i.e.Ñ is deterministic.

Proof. by induction on the structure of t:

• t is a variable. �ere is only one subterm, under the empty evaluation context.

• t is an abstraction. �ere are no subterms that verify both (i) and (ii), since the only
possible evaluation context is the empty one.

• t is an application u r. �ere are three possible situations:

– �e le� subterm u is not of the form Lxvy. �en s cannot be at the root, i.e. s ‰

t. Since ul is not an evaluation context, s must be internal to lr, which is an
evaluation context. We conclude by i.h..

– �e le� subterm u is of the form Lxvy with v a value, but the right subterm r is not.
�en s cannot be a subterm of u, and also s ‰ t. Hence, if there is a subterm s as
in the statement, it must be internal to the evaluation context ul. We conclude
by i.h..

– Both subterms have that form, i.e. u “ Lxvy and r “ L1xv1y with v and v1 values.
�e only subterm that veri�es both (i) and (ii) is s “ t.

• t is a substitution urxzrs. Any occurrence of smust be internal to u (because urxzls is
not an evaluation context). We conclude by i.h. that there is at most one such occurrence.

Right-to-Le� Call-by-Value

Exactly as in the case for le�-to-right call-by-value, we prove the following property, from
which determinism of the reduction follows.

Lemma A.3. Let t be a term. �en t has at most one subterm s that veri�es both (i) and (ii):

(i) s is either a variable x or an application LxvyL1xv1y, where v and v1 are values.

(ii) s is under a right-to-le� call-by-value evaluation context, i.e. t “ Rxsy.

As a corollary, any term t has at most oneÑ-redex.

Proof. By induction on the structure of t:

• Variable or abstraction. Immediate.

• Application. If t “ u r, there are three cases:

– �e right subterm r is not of the form L1xv1y. �en s cannot be at the root. Since l r

is not an evaluation context, s must be internal to r and we conclude by i.h..
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– �e right subterm r is of the form L1xv1y but the le� subterm u is not. Again s cannot
be at the root. Moreover, r has no applications or variables under an evaluation
context. �erefore s must be internal to u and we conclude by i.h..

– Both subterms have that form, i.e. u “ Lxvy and r “ L1xv1y. We �rst note that
u and r have no applications or variables under an evaluation context. �e only
possibility that remains is that s is at the root, i.e. s “ t.

• Substitution. If t “ urxzrs is a substitution, s must be internal to u (because urxzls
is not an evaluation context), and we conclude by i.h..

Call-by-Need

We �rst need an auxiliary result:

Lemma A.4. Let t “ Nxxxyy for an evaluation context N. �en:

1. for every substitution context L and abstraction v, one has t ‰ Lxvy;

2. for every evaluation context R1 and variable y, one has that t “ R1xyy implies R1 “ N and

y “ x;

3. t is a call-by-need normal form.

Proof. In all items we use a structural induction on N. For item 1:

• N “ l: obvious.

• N “ N1s: obvious.

• N “ N1ryzus: suppose that L “ L1ryzus (for otherwise the result is obvious); then we
apply the induction hypothesis to N1 to obtain N1xxy ‰ L1xvy.

• N “ N1xyyryzN2s: suppose that L “ L1ryzN2xxys (for otherwise the result is obvious);
then we apply the induction hypothesis to N1 to obtain N1xyy ‰ L1xvy.

For item 2:

• N “ l: obvious.

• N “ N1s: we must necessarily have R1 “ R11s and we conclude by induction hypothesis.

• N “ N1rzzss: in principle, there are two cases. First, we may have R1 “ R11rzzss, which
allows us to conclude immediately by induction hypothesis, as above. �e second pos-
sibility would be R1 “ R11xzyrzzR

1
2s, with R12xyy “ s, but this is actually impossible. In

fact, it would imply N1xxy “ R11xzy, which by induction hypothesis would give us z “ x,
contradicting the hypothesis x P fvptq.



265

• N “ N1xzyrzzN2s: by symmetry with the above case, the only possibility is R1 “ N1xzyrzzR
1
2s,

which allows us to conclude immediately by induction hypothesis.

For item 3, let r be a redex (i.e., a term matching the le� hand side of ÞÑdb or ÞÑlslsv) and
let R1 be an evaluation context. We will show by structural induction on N that t ‰ R1xry. We
will do this by considering, in each inductive case, all the possible shapes of R1.

• N “ l: obvious.

• N “ N1s: the result is obvious unless R1 “ l or R1 “ R11s. In the la�er case, we conclude
by induction hypothesis (on N1). In the former case, since r is a redex, we are forced to
have r “ Lxvys1 for some abstraction v, substitution context L and term s1. Now, even
supposing s1 “ s, we are still allowed to conclude because N1xxy ‰ Lxvy by item 1.

• N “ N1ryzss: the result is obvious unless:

– R1 “ l: this time, the fact that r is a redex forces r “ R11xyyryzss. Even if we admit
that s “ Lxvy, we may still conclude because x ‰ y (by the hypothesis x P fvptq),
hence N1xxy ‰ R11xyy by item 2.

– R1 “ R11ryzss: immediate by induction hypothesis on N1.

– R1 “ R11xyyryzR
1
2s: even if R12xry “ s, we may still conclude because, again, x ‰ y

implies N1xxy ‰ R11xyy by item 2.

• N “ N1xyyryzN2s: again, the result is obvious unless:

– R1 “ l: the fact that r is a redex implies r “ R11xyyryzLxvys. Even assuming
R11 “ N1, we may still conclude because N2xxy ‰ Lxvy by item 1.

– R1 “ R11ryzN2xxys: since y P fvpN1xyyq, we conclude because the induction hy-
pothesis gives us N1xyy ‰ R11xry.

– R1 “ N1xyyryzR
1
2s: we conclude at once by applying the induction hypothesis to N2.

Now, the proof of Prop. 3.11 is by structural induction on t :“ N1xr1y “ N2xr2y. Cases:

• Variable or abstraction. Impossible, since variables and abstractions are both call-by-
need normal.

• Application, i.e. t “ su. �is case is treated exactly as in the corresponding case of
the proof of Prop. 3.11.

• Substitution, i.e. t “ srxzus. Cases:

– Both contexts have their holes in s or u. It follows from the i.h..
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– One of the contexts—say N1—is empty, i.e. s “ N3xxy, u “ Lxvy, and r1 “ N3xxyrxzLxvys.
�is case is impossible. Indeed, 1) the hole of N2 cannot be in Lxvy, because it is
call-by-need normal, and 2) it cannot be inside N3xxy because by Lemma A.4.3 Rxxy
is call-by-need normal.

– One of the contexts—say N1—has its hole in u and the other one has its hole in s, i.e.
N1 “ N3xxyrxzN4s and N2 “ N5rxzus. �is case is impossible, because by Lemma
A.4.3 N3xxy is call-by-need normal.

Strong Call-by-Name

Let S1xr1y “ S2xr2y where S1, S2 are strong call-by-name evaluation contexts, i.e. S1, S2 P S .
Consider the steps contracting these redexes, S1xr1y ÑLO s1 and S2xr2y ÑLO s2. By Lem. 3.10,
these are le�most-outermost steps. Since there is only one le�most-outermost redex, we have
that S1 “ S2 and r1 “ r2, as required.

A.1.2 Structural equivalence is a strong bisimulation — proof of Prop. 3.11

Proposition A.5 (Full proof of Prop. 3.14—Structural equivalence is a strong bisimulation).
Let x P tm, eu. If t ”S t

1ÑxSs then there exists s1 such that tÑxSs
1 ”S s.

We prove it for each strategy separately in the following sections:

1. Call-by-Name (name): Section A.1.2,

2. Le�-to-Right Call-by-Value (valueLR): Section A.1.2,

3. Call-by-Need (need): Section A.1.2,

4. Strong Call-by-Name (nameS): Section A.1.2

�e proof for Right-to-Le� Call-by-Value (valueRL) is obtained as minimal variation of the
proof for Le�-to-Right Call-by-Value (valueLR), and therefore it is omi�ed.

Call-by-Name (name)

Before proving the main result, we need two auxiliary lemmas, proved by straightforward
inductions on H:

Lemma A.6. Let t be a term, H be a call-by-name evaluation context not capturing any variable

in fvptq, and x R fvpRxyyq. �en Rxtrxzssy ” Rxtyrxzss.

Lemma A.7. �e equivalence relation ” as de�ned for call-by-name preserves the shape of

Rxxy. More precisely, if Rxxy ” t, with x not captured by H, then t is of the form R1xxy, with x

not captured by R1.

Now we turn to the proof of the proposition itself. LetWV be the symmetric closure of the
union of the axioms de�ning ” for call-by-name, that is of ”gc Y ”dup Y ”@ Y ”com Y ”r¨s.
Note that ” is the re�exive–transitive closure ofWV. �e proof is in two parts:
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(I) Prove the property holds forWV, i.e. if t Ña s and t WV u, there exists r such that
uÑa r and s ” r.

(II) Prove the property holds for ” (i.e. for many steps ofWV) by resorting to (I).

�e proof of (II) is immediate by induction on the number of WV steps. �e proof of (I)
goes by induction on the rewriting step Ñ (that, since Ñ is closed by evaluation contexts,
becomes a proof by induction on the evaluation context H). In principle, we should always
consider the two directions of WV. Most of the time, however, one direction is obtained by
simply reading the diagram of the other direction bo�om-up, instead than top-down; these
cases are simply omi�ed, we distinguish the two directions only when it is relevant.

1. Base case 1: multiplicative root step t “ Lxλx.t1ys1 ÞÑdb Lxt
1rxzs1sy “ s.

If theWV step is internal to s1 or internal to one of the substitutions in L, the pa�ern of
theWV redex does not overlap with the ÞÑdb step, and the proof is immediate, the two
steps commute. Otherwise, we consider every possible case forWV:

1.1 Garbage Collection ”gc. �e garbage collected substitution must be one of the
substitutions in L, i.e. L must be of the form L1xL2ryzu1sy. Let pL :“ L1xL2y. �en:

Lxλx.t1ys1

pLxλx.t1ys1 pLxt1rxzs1sy

Lxt1rxzs1sy
db

”gc ”gc

db

1.2 Duplication ”dup. �e duplicated substitution must be one of the substitutions in
L, i.e. L must be of the form L1xL2ryzu1sy. �en:

L1xL2xλx.t1yryzu1sys1

t2 t3

t1
db

”dup ”dup
db

where

t1 :“ L1xL2xt1rxzs1syryzu1sy,

t2 :“ L1x pL2xλx.t1yqrzsy ryzu
1
srzzu1s ys1,

t3 :“ L1x pL2xt1rxzs1syqrzsy ryzu
1
srzzu1s y.

1.3 Commutation with application ”@. Here ”@ can only be applied in one direction.
�e diagram is:
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Lxλy.t1yrxzq1ss1rxzq1s

t4 t2

t1

db

”@

db

“α t3

t5 t6

”dup

”˚com
”r¨s

where

t1 :“ pLxλy.t1ys1qrxzq1s,

t2 :“ pLxt1ryzs1syqrxzq1s,

t3 :“ pLxt1ryzs1tx{yusyqrxzq1sryzq1s,

t4 :“ Lxt1ryzs1rxzq1ssyrxzq1s,

t5 :“ pLxt1ryzs1tx{yuryzq1ssyqrxzq1s,

t6 :“ pLxt1ryzs1tx{yusryzq1syqrxzq1s.

1.4 Commutation of independent substitutions ”com. �e substitutions that are com-
muted by the”com rule must be both in L, i.e. Lmust be of the form L1xL2ryzu1srzzr1sy

with z R fvpu1q. Let pL “ L1xL2rzzr1sryzu1sy. �en:

Lxλx.t1ys1

pLxλx.t1ys1 pLxt1rxzs1sy

Lxt1rxzs1sy
db

”com ”com

db

1.5 Composition of substitutions”r¨s. �e substitutions that appear in the le�-hand side
of the”r¨s rule must both be in L, i.e. L must be of the form L1xL2ryzu1srzzr1sywith
z R fvpL2xλx.t1yq. Let pL “ L1xL2ryzu1rzzr1ssy. Exactly as in the previous case:

Lxλx.t1ys1

pLxλx.t1ys1 pLxt1rxzs1sy

Lxt1rxzs1sy
db

”r¨s ”r¨s
db

2. Base case 2: exponential root step t “ R1xxyrxzt1s ÞÑls R1xt1yrxzt1s “ s. If theWV
step is internal to t1, the proof is immediate, since there is no overlap with the pa�ern of
the ÞÑls redex. Similarly, if theWV step is internal to Rxxy, the proof is straightforward
by resorting to Lem. A.7.

Now we proceed by case analysis on theWV step:

2.1 Garbage collection ”gc. Note that ”gc cannot remove rxzt1s, because by hypoth-
esis x does occur in its scope. If the removed substitution belongs to R1, i.e. R1 “

H2xH3ryzs1sy. Let pR1 :“ H2xH3y. �en:
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R1xxyrxzt1s

pR1xxyrxzt1s pR1xt1yrxzt1s

R1xt1yrxzt1s
ls

”gc ”gc

ls

If ”gc adds a substitution as topmost constructor the diagram is analogous.
2.2 Duplication ”dup. Two sub-cases:

2.2.1 �e equivalence ”dup acts on a substitution internal to R1. �is case goes as for
Garbage collection.

2.2.2 �e equivalence ”dup acts on rxzt1s. �ere are two further sub-cases:
• �e substituted occurrence is renamed by ”dup:

R1xxyrxzt1s

R1
rysx
xyyrxzt1sryzt1s t1

R1xt1yrxzt1s
ls

”gc ”gc

ls

where t1 :“ R1
rysx
xt1yrxzt1sryzt1s and R1

rysx
is the context obtained from R1

by renaming some (possibly none) occurrences of x as y.
• �e substituted occurrence is not renamed by ”dup. Essentially as in the

previous case:

R1xxyrxzt1s

R1
rysx
xxyrxzt1sryzt1s t1

R1xt1yrxzt1s
ls

”dup ”dup

ls

where t1 :“ R1
rysx
xt1yrxzt1sryzt1s.

2.3 Commutation with application ”@. Two sub-cases:
2.3.1 �e equivalence ”@ acts on a substitution internal to R1. �is case goes as for

Garbage collection.
2.3.2 �e equivalence ”@ acts on rxzt1s. It must be the case that R1 is of the form

H2s1. �en:
pH2xxys1qrxzt1s

t2 t3

t1
ls

”@ ”@
ls

where

t1 :“ pH2xt1ys1qrxzt1s,

t2 :“ H2xxyrxzt1ss1rxzt1s,

t3 :“ H2xt1yrxzt1ss1rxzt1s.

2.4 Commutation of independent substitutions ”com. Two sub-cases:
2.4.1 �e equivalence ”com acts on two substitutions internal to R1. �is case goes as

for Garbage collection.
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2.4.2 �e equivalence ”com acts on rxzt1s. It must be the case that R1 is of the form
H2. �en:

H2xxyryzs1srxzt1s

H2xxyrxzt1sryzs1s H2xt1yrxzt1sryzs1s

H2xt1yryzs1srxzt1s
ls

”com ”com
ls

2.5 Composition of substitutions ”r¨s. Two sub-cases:

2.5.1 �e equivalence ”r¨s acts on two substitutions internal to R1. �is case goes as
for Garbage collection.

2.5.2 �e equivalence”r¨s acts on rxzt1s. Note that the equivalence”r¨s cannot be ap-
plied from le� to right to rxzt1s, because R1xxymust be of the form H2xxyryzs1s

with x R fvpH2xxyq, which is clearly not possible. It can be applied from right
to le�. �e diagram is:

R1xxyrxzt1ryzsss

t4 t2

t1

ls

”@

ls

t5 t3

t6 t7

”dup

”com

“α

” by Lem. A.6

”r¨s

where

t1 :“ R1xxyrxzt1sryzss,

t2 :“ R1xt1yrxzt1sryzss,

t3 :“ R1xt1ty{zuyrxzt1srzzssryzss,

t4 :“ R1xt1ryzssyrxzt1ryzsss,

t5 :“ R1xt1yryzssrxzt1ryzsss,

t6 :“ R1xt1yryzssrxzt1sryzss,

t7 :“ R1xt1ty{zuyrzzssrxzt1sryzss.

3. Inductive case 1: le� of an application H “ R1q. �e situation is:

t “ t1q Ña s
1q “ s

for terms t1, s1 such that either t1 Ñm s
1 or t1 Ñe s

1. Two sub-cases:

3.1 �e tWV u step is internal to t1. �e proof simply uses the i.h. applied to the (strictly
smaller) evaluation context of the step t1 Ña s

1.

3.2 �e t WV u step involves the topmost application. �eWV step can only be a com-
mutation with the root application. Moreover, for t1q to match with the right-hand



271

side of the ”@ rule, t1 must have the form u1rxzr1s and q the form q1rxzr1s, so that
theWV is:

u “ pu1q1qrxzr1s ”@ u1rxzr1sq1rxzr1s “ t

�ree sub-cases:

3.2.1 �e rewriting step is internal to u1. �en the two steps trivially commute. Let
a P tdb, lsu:

u1rxzr1sq1rxzr1s

pu1q1qrxzr1s pu2q1qrxzr1s

u2rxzr1sq1rxzr1s
a

”@ ”@
a

3.2.2 db-step not internal to u1. Exactly as the multiplicative root case 1.3 (read in
the other direction).

3.3 ls-step not internal to u1. Not possible: the topmost constructor is an application,
consequently anyÑe has to take place in u1.

4. Inductive case 2: le� of a substitution H “ R1rxzqs. �e situation is:

t “ t1rxzqs Ñ s1rxzqs “ s

with t1 “ R1xt2y. If theWV step is internal to R1xt1y, the proof we conclude using the i.h..
Otherwise:

4.1 Garbage Collection ”gc. If the garbage collected substitution is rxzqs then:

t1rxzqs

t1 s1

s1rxzqs

”gc ”gc

If the substitution is introduced out of the blue, i.e. t1rxzqs ”gc t
1rxzqsryzq1s or

t1rxzqs ”gc t
1ryzq1srxzqs the diagram is analogous.

4.2 Duplication ”dup. If the duplicated substitution is rxzqs then:

t1rxzqs

t1
rysx
rxzqsryzqs s1

rysx
rxzqs

s1rxzqs

”dup ”dup

If duplication is applied in the other direction, i.e. t1 “ t2ryzqs and

t1rxzqs “ t2ryzqsrxzqs ”dup t
2
ty{xurxzqs “ t1rxzqs

the interesting case is when t2 “ H2xyy and the step is exponential:

H2xyyryzqsrxzqs

H2xxyty{xurxzqs H2xqyty{xurxzqs

H2xqyryzqsrxzqs
ls

”dup ”dup
ls
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If t1 is H2xxy it is an already treated base case and if t1 has another form the rewriting
step does not interact with the duplication, and so they simply commute.

4.3 Commutation with application ”@. �en t1 “ t2s2. �ree sub-cases:

4.3.1 �eÑ step is internal to t2. �en:
pt2s2qrxzqs

t2rxzqss2rxzqs t3rxzqss2rxzqs

pt3s2qrxzqs

”@ ”@

4.3.2 �e Ñ step is a multiplicative step. If t2 “ Lxλy.t3y then it goes like the
diagram of the multiplicative root case 1.3 (read in the other direction).

4.3.3 �eÑ step is an exponential step. �en it must be rxzqs that substitutes on the
head variable, but this case has already been treated as a base case (case 2.3).

4.4 Commutation of independent substitutions ”com. It must be t1 “ t2ryzq1s with x R
fvpq1q, so that t2ryzq1srxzqs ”com t

2rxzqsryzq1s. �ree sub-cases:

4.4.1 Reduction takes place in t2. �en reduction and the equivalence simply com-
mute, as in case 4.3.1.

4.4.2 Exponential steps involving rxzqs. �is is an already treated base case (case
2.4.2).

4.4.3 Exponential step involving ryzq1s. �is case is solved reading bo�om-up the
diagram of case 2.4.2.

4.5 Composition of substitutions ”r¨s. It must be t1 “ t2ryzq1s with x R fvpt2q, so that
t2ryzq1srxzqs ”r¨s t

2rxzqryzq1ss. �ree sub-cases:

4.5.1 Reduction takes place in t2. �en reduction and the equivalence simply com-
mute, as in case 4.3.1.

4.5.2 Exponential steps involving rxzqs. �is case is solved reading bo�om-up the
diagram of case 2.5.2.

4.5.3 Exponential step involving ryzq1s. Impossible, because by hypothesisx R fvpt2q.

Le�-to-Right Call-by-Value (valueLR)

We follow the structure of the proof in for call-by-name.
Before proving the main result, we need the following auxiliary lemmas, proved by straight-

forward inductions on the contexts. Lem. A.8.2 is the adaptation of Lem. A.7 already stated
for call-by-name:

Lemma A.8. �e equivalence relation ” preserves the “shapes” of Lxvy and Rxxy. Formally:

1. If Lxvy ” t, then t is of the form L1xv1y.

2. If Rxxy ” t, with x not bound by V, then t is of the form R1xxy, with x not bound by R1.

Lemma A.9. Lxtrxzssy ” LxtrxzLxsysy
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Proof. By induction on L. �e base case is trivial. For L “ L1lryzus, by i.h. we have:

L1xtrxzssyryzus ” L1xtrxzL1xsysyryzus

Let pL1xsyqrzsy be the result of replacing all occurrences of y by z in L1xsy. �en:

L1xtrxzL1xsysyryzus

”dup L1xtrxzpL1xsyqrzsy syryzusrzzus

”˚com L1xtrxzpL1xsyqrzsy srzzusyryzus

”r¨s L1xtrxzpL1xsyqrzsy rzzussyryzus

“α L1xtrxzL1xsyryzussyryzus

Now we prove the strong bisimulation property, by induction on the derivation of the
reduction step.

1. Base case 1: multiplicative root step t “ Lxλx.t1yL1xvy ÞÑdblsv s “ Lxt1rxzL1xvysy.

�e nontrivial cases are when theWV step overlaps the pa�ern of the dbv-redex. Note
that by Lem. A.8.1, if theWV is internal to L1xvy, the proof is direct, since the dbv-redex
is preserved. More precisely, if L1xvyWV L2xv1y, we have:

Lxλx.t1y L1xvy Lxt1rxzL1xvysy

Lxλx.t1y L2xv1y Lxt1rxzL2xv1ysy

WV WV

dbv

dbv

Consider the remaining possibilities forWV:

1.1 Garbage collection”gc. �e garbage collected substitution must be in L, i.e. L must
be of the form L1xL2ryzL

2xv1ysy with y R fvpL2xλx.t
1yq. Let pL :“ L1xL2y. �en:

Lxλx.t1y L1xvy Lxt1rxzL1xvysy

pLxλx.t1y L1xvy pLxt1rxzL1xvysy

”gc ”gc

dbv

dbv

1.2 Duplication ”dup. �e duplicated substitution must be in L, i.e. L must be of the
form L1xL2ryzs

1sy. Let pL :“ L1xlryzs
1srzzs1sy. �en:

Lxλx.t1y L1xvy Lxt1rxzL1xvysy

pLxpL2xλx.t
1yqrzsyy L

1xvy t1

”dup ”dup

dbv

dbv

where t1 :“ pLxpL2xt
1rxzL1xvysyqrzsyy.
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1.3 Commutation with application”@. �e axiom can be applied only in one direction
and there must be the same explicit substitution ryzqs as topmost constructor of
each of the two sides of the application. �e diagram is:

Lxλx.t1yrxzqs L1xvyryzqs t1

pLxλx.t1y L1xvyqryzqs t2

”@ ”

dbv

dbv

where

t1 :“ Lxt1rxzL1xvyryzqssyrxzqs,

t2 :“ Lxt1rxzL1xvysyryzqs.

To prove the equivalence on the right, let L1xvyrzsx denote the result of replacing
all occurrences of x by a fresh variable z in L1xvy. �e equivalence holds because:

Lxt2ryzL1xvysyrxzqs

”dup Lxt2ryzL1xvyrzsxsyrxzqsrzzqs

”˚com Lxt2ryzL1xvyrzsxsrzzqsyrxzqs

”r¨s Lxt2ryzL1xvyrzsxrzzqssyrxzqs

“α Lxt2ryzL1xvyrxzqssyrxzqs

1.4 Commutation of independent substitutions ”com. �e commutation of substitutions
must be in L, i.e. L must be of the form L1xL2ryzs

1srzzu1sy with z R fvps1q. Let
pL :“ L1xL2rzzu

1sryzs1sy. �en:

Lxλx.t1y L1xvy Lxt1rxzL1xvysy

pLxλx.t1y L1xvy pLxt1rxzL1xvysy

”com ”com

dbv

dbv

1.5 Composition of substitutions ”r¨s. �e composition of substitutions must be in L,
i.e. L must be of the form L1xL2ryzs

1srzzu1sy with z R fvpL2xλx.t
1yq. Let pL :“

L1xL2ryzs
1rzzu1ssy. As in the previous case:

Lxλx.t1y L1xvy Lxt1rxzL1xvysy

pLxλx.t1y L1xvy pLxt1rxzL1xvysy

”r¨s ”r¨s

dbv

dbv

2. Base case 2: exponential root step t “ RxxyrxzLxvys ÞÑlslsv s “ LxRxvyrxzvsy.

Consider �rst the case when theWV-redex is internal to Rxxy. By Lem. A.8. we know
WV preserves the shape of Rxxy, i.e. RxxyWV pVxxy. �en:

RxxyrxzLxvys LxRxvyrxzvsy

pVxxyrxzLxvys LxpVxvyrxzvsy

WV ”

lsv

lsv
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If theWV-redex is internal to one of the substitutions in L, the proof is straightforward.
Note that theWV-redex has always a substitution at the root. �e remaining possibilities
are such that substitution is in L, or that it is precisely rxzLxvys. Axiom by axiom:

2.1 Garbage collection ”gc. If the garbage collected substitution is in L, let pL be L

without such substitution. �en:

RxxyrxzLxvys LxRxvyrxzvsy

RxxyrxzpLxvys pLxRxvyrxzvsy

”gc ”gc

lsv

lsv

�e garbage collected substitution cannot be rxzLxvys, since this would imply x R
fvpRxxyq, which is a contradiction.

2.2 Duplication ”dup. If the duplicated substitution is in L, then L is of the form
L1xL2ryzt

1sy. Let pL “ L1xryzt
1srzzt1sy. �en:

RxxyrxzLxvys LxRxvyrxzvsy

t1 t2

”dup ”dup

lsv

lsv

where

t1 :“ RxxyrxzpLxL2rzsyxvrzsyyys,

t2 :“ pLxL2rzsyxRxvrzsyyrxzvrzsy syy.

If the duplicated substitution is rxzLxvys, there are two possibilities, depending on
whether the occurrence of x substituted by the ÞÑlslsv step is replaced by the fresh
variable y, or le� untouched. If it is not replaced:

RxxyrxzLxvys LxRxvyrxzvsy

t2

t3t4

”dup

”dup

” (Lem. A.9)

lsv

lsv

where

t2 :“ LxpRxvyqrysxrxzvsryzvsy,

t3 :“ LxpRxvyqrysxrxzvsryzLxvysy,

t4 :“ pRxxyqrysxrxzLxvysryzLxvys.

If the occurrence of x substituted by the ÞÑlslsv step is replaced by the fresh vari-
able y, the situation is essentially analogous.
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2.3 Commutation with application ”@. �e only possibility is that the substitution
rxzLxvys is commuted with the outermost application in Rxxy. Two cases:

2.3.1 �e substitution acts on the le� of the application, i.e. V “ R1t1.

pR1xxy t1qrxzLxvys t1

t2

t3 t4

”@

”˚@

”˚
r¨s

lsv

lsv

where

t1 :“ LxpR1xvy t1qrxzvsy,

t2 :“ LxR1xvyrxzvsyLxt1rxzvsy,

t3 :“ R1xxyrxzLxvyst1rxzLxvys,

t4 :“ LxR1xvyrxzvsyt1rxzLxvys.

2.3.2 �e substitution acts on the right of the application, i.e. V “ L1xv1yR1. Similar to
the previous case:

pL1xv1y R1xxyqrxzLxvys t1

t2

t3 t4

”@

”˚@

”˚
r¨s

lsv

lsv

where

t1 :“ LxpL1xv1y R1xvyqrxzvsy,

t2 :“ LxL1xv1yrxzvsyLxR1xvyrxzvsy,

t3 :“ L1xv1yrxzLxvysR1xxyrxzLxvys,

t4 :“ L1xv1yrxzLxvysLxR1xvyrxzvsy.

2.4 Commutation of independent substitutions”com. If the commuted substitutions both
belong to L, let pL be the result of commuting them, and the situation is exactly as
for Garbage collection.
�e remaining possibility is that V “ R1ryzt1s and rxzLxvys commutes with ryzt1s
(which implies x R fvpt1q). �en:

R1xxyryzt1srxzLxvys LxR1xvyryzt1srxzvsy

R1xxyrxzLxvysryzt1s LxR1xvyrxzvsyryzt1s

”com ”˚com

lsv

lsv
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2.5 Composition of substitutions ”r¨s. If the composed substitutions both belong to L,
let pL be the result of composing them, and the situation is exactly as for Garbage
collection.
�e remaining possibility is that rxzLxvys is the outermost substitution composed
by ”r¨s. �is is not possible if the rule is applied from le� to right, since it would
imply that Rxxy “ R1xxyryzt1s with x R R1xxy, which is a contradiction.
Finally, if the ”r¨s rule is applied from right to le�, L is of the form L1ryzt1s and:

RxxyrxzL1xvyryzt1ss L1xRxvyrxzvsyryzt1s

RxxyrxzL1xvysryzt1s L1xRxxyrxzvsyryzt1s

”r¨s “

lsv

lsv

3. Inductive case 1: le� of an application V “ R1q. �e situation is:

t “ R1xt1y q Ñ R1xs1y q “ s

If theWV step is internal to R1xt1y, the result follows by i.h.. �e proof is also direct if
WV is internal to q. �e nontrivial case is when theWV step overlaps R1xt1y and q. �ere
are two possibilities. �e �rst is trivial: ”gc is used to introduce a substitution out of
the blue, but this case clearly commutes with reduction.

�e second is that the application is commuted with a substitution via the ”@ rule
(applied from right to le�). �ere are two cases:

3.1 �e substitution comes from t1. �at is, R1 “ l and t1 has a substitution at its root.
�en t1 must be a ÞÑlslsv-redex t1 “ V2xxyrxzLxvys. Moreover q “ q1rxzLxvys. We
have:

V2xxyrxzLxvys q1rxzLxvys t1

t2 t3

”@ ”

lsv

lsv

where

t1 :“ LxV2xvyrxzvsy q1rxzLxvys,

t2 :“ pV2xxy q1qrxzLxvys,

t3 :“ LxpV2xvy q1qrxzvsy.

For the equivalence on the right note that:

LxV2xvyrxzvsy q1rxzLxvys

”˚
r¨s

LxV2xvyrxzvsy Lxq1rxzvsy

”˚@ LxV2xvyrxzvs q1rxzvsy

”@ LxpV2xvy q1qrxzvsy
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3.2 �e substitution comes from R1. �at is: R1 “ V2rxzu1s. Moreover, q “ q1rxzu1s. �e
proof is then straightforward:

V2xt1yrxzu1s q1rxzu1s t1

t2 t3

”@ ”@

where

t1 :“ V2xs1yrxzu1s q1rxzu1s,

t2 :“ pV2xt1y q1qrxzu1s,

t3 :“ pV2xs1y q1qrxzu1s.

4. Inductive case 2: right of an application V “ LxvyR1. �e situation is:

t “ Lxvy R1xt1y Ñ Lxvy R1xs1y “ s

Reasoning as in the previous case (le� of an application), if the WV step is internal to
R1xt1y, the result follows by i.h., and if it is internal to Lxvy, it is straightforward to close
the diagram by resorting to the fact that ” preserves the shape of Lxvy (Lem. A.8).

�e remaining possibility is that theWV step overlaps both Lxvy and R1xt1y. As in the
previous case, this can only be possible if ”gc introduces a substitution out of the blue,
which is a trivial case, or because of a Commutation with application rule (”@, from
right to le�). �is again leaves two possibilities:

4.1 �e substitution comes from t1. �at is, R1 “ l and t1 is a ÞÑlslsv-redex t1 “

V2xyyryzL1xv1ys. Moreover, L “ L2ryzL1xv1ys. �en:

L2xvyryzL1xv1ys V2xyyryzL1xv1ys t1

t2 t3

”@ ”

lsv

lsv

where

t1 :“ L2xvyryzL1xv1ys L1xV2xv1yryzv1sy,

t2 :“ pL2xvy V2xyyqryzL1xv1ys,

t3 :“ L1xpL2xvy V2xv1yqryzv1sy.

Exactly as in the previous case, for the equivalence on the right consider:

L2xvyryzL1xv1ys L1xV2xv1yryzv1sy

”˚
r¨s

L1xL2xvyryzv1sy L1xV2xv1yryzv1sy

”˚@ L1xL2xvyryzv1s V2xv1yryzv1sy

”@ L1xpL2xvy V2xv1yqryzv1sy
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4.2 �e substitution comes from R1. �at is, R1 “ V2rxzu1s. Moreover, L “ L1rxzu1s. �is
case is then straightforward:

L1xvyrxzu1s V2xt1yrxzu1s L1xvyrxzu1s V2xs1yrxzu1s

pL1xvy V2xt1yqrxzu1s pL1xvy V2xs1yqrxzu1s

”@ ”@

5. Inductive case 3: le� of a substitution V “ R1rxzqs. �e situation is:

t “ R1xt1yrxzqs Ñ R1xs1yrxzqs “ s

If theWV step is internal to R1xt1y, the result follows by i.h.. If it is internal to q, the steps
are orthogonal, which makes the diagram trivial. If the equivalence ”gc introduces a
substitution out of the blue the steps trivially commute.

�e remaining possibility is that the substitution rxzqs is involved in theWV redex. By
case analysis on the kind of the step ”b:

5.1 Garbage collection ”gc. We know x R fvpR1xt1yq and therefore also x R fvpR1xs1yq.
We get:

R1xt1yrxzqs R1xs1yrxzqs

R1xt1y R1xs1y

”gc ”gc

5.2 Duplication ”dup. �e important fact is that if R1xt1y Ñ R1xs1y and R1xt1yrysx de-
notes the result of renaming some (arbitrary) occurrences of x by y in R1xt1y, then
R1xt1yrysx Ñ R1xs1yrysx , where R1xs1yrysx denotes the result of renaming some occur-
rences of x by y in R1xs1y. By this we conclude:

R1xt1yrxzqs R1xs1yrxzqs

pR1xt1yqrysxrxzqsryzqs pR1xs1yqrysxrxzqsryzqs

”dup ”dup

5.3 Commutation with application ”@. R1xt1y must be an application. �is allows for
three possibilities:

5.3.1 �e application comes from t1. �at is, R1 “ l and t1 is a ÞÑdblsv-redex t1 “
Lxλy.t2y L1xvy. �e diagram is exactly as for the multiplicative base case 1.3
(read bo�om-up).

5.3.2 �e application comes from R1, le� case. �at is, R1 “ V2 u1. �is case is direct:

pV2xt1yu1qrxzqs t1

t2 t3

”@ ”@
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where

t1 :“ pV2xs1yu1qrxzqs,

t2 :“ V2xt1yrxzqsu1rxzqs,

t3 :“ V2xs1yrxzqsu1rxzqs.

5.3.3 �e application comes from R1, right case. �at is, R1 “ Lxvy V2. Analogous to
the previous case.

5.4 Commutation of independent substitutions ”com. Since R1xt1y must have a substitu-
tion at the root, there are two possibilities:

5.4.1 �e substitution comes from t1. �at is, R1 “ l and t1 is a ÞÑlslsv-redex t1 “
V2xyyryzLxvys, with x R fvpLxvyq. �en:

V2xyyryzLxvysrxzqs LxV2xvyryzvsyrxzqs

V2xyyrxzqsryzLxvys LxV2xvyrxzqsryzvsy

”com ”˚com

lsv

lsv

5.4.2 �e substitution comes from R1. �at is, R1 “ V2ryzu1s with x R fvpu1q. �is
case is direct:

V2xt1yryzu1srxzqs V2xs1yryzu1srxzqs

V2xt1yrxzqsryzu1s V2xs1yrxzqsryzu1s

”com ”com

lsv

lsv

5.5 Composition of substitutions ”r¨s. As in the previous case, there are two possibili-
ties:

5.5.1 �e substitution comes from t1. �at is, R1 “ l and t1 is a ÞÑlslsv-redex t1 “
V2xyyryzLxvys, with x R fvpV2xyyq. �en:

V2xyyryzLxvysrxzqs LxV2xvyryzvsyrxzqs

V2xyyryzLxvyrxzqss LxV2xvyryzvsyrxzqs

”r¨s “

lsv

lsv

5.5.2 �e substitution comes from R1. �at is, R1 “ V2ryzu1s with x R fvpV2xt1yq. �e
proof for this case is direct:

V2xt1yryzu1srxzqs V2xs1yryzu1srxzqs

V2xt1yryzu1rxzqss V2xs1yryzu1rxzqss

”r¨s ”r¨s
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Call-by-Need (need)

We follow the structure of the previous proofs of strong bisimulation, in particular the proof
is by induction on the derivation of the reduction step. Remember that for call-by-need the
de�nition of the structural equivalence is given only by axioms ”@l, ”com, and ”r¨s.

We need two preliminary lemmas, proved by straightforward inductions on N:

Lemma A.10. Let t be a term, N be a call-by-need evaluation context not capturing any variable

in fvptq, and x R fvpRxyyq. �en Rxtrxzssy ”Need Rxtyrxzss.

Lemma A.11. �e equivalence relation ”Need preserves the shape of Rxxy. More precisely, if

Rxxy ”Need t, with x not captured by N, then t is of the form R1xxy, with x not captured by R1.

1. Base case 1: multiplicative root step t “ Lxλx.t1yq ÞÑdb s “ Lxt1rxzqsy. Every
application of ” inside q or inside one of the substitutions in L trivially commutes with
the step. �e interesting cases are those where structural equivalence has a critical pair
with the step:

1.1 Commutation with le� of an application ”@l. If L “ L1ryzrs then

L1xλx.t1yryzrsq L1xt1rxzqsyryzrs

pL1xλx.t1yqqryzrs L1xt1rxzqsyryzrs

”@l “

db

db

1.2 Commutation of independent substitutions ”com. �e substitutions that are com-
muted by the”com rule must be both in L, i.e. Lmust be of the form L1xL2ryzu1srzzr1sy

with z R fvpu1q. Let pL “ L1xL2rzzr1sryzu1sy. �en:

Lxλx.t1ys1

pLxλx.t1ys1 pLxt1rxzs1sy

Lxt1rxzs1sy
db

”com ”com

db

1.3 Composition of substitutions”r¨s. �e substitutions that appear in the le�-hand side
of the”r¨s rule must both be in L, i.e. L must be of the form L1xL2ryzu1srzzr1sywith
z R fvpL2xλx.t1yq. Let pL “ L1xL2ryzu1rzzr1ssy. Exactly as in the previous case:

Lxλx.t1ys1

pLxλx.t1ys1 pLxt1rxzs1sy

Lxt1rxzs1sy
db

”r¨s ”r¨s
db

2. Base case 2: exponential root step t “ RxxyrxzLxvys ÞÑlslsv s “ LxRxvyrxzvsy.

Consider �rst the case when theWV-redex is internal to Rxxy. By Lem. A.11 we know
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WV preserves the shape of Rxxy, i.e. RxxyWV pNxxy. �en:

RxxyrxzLxvys LxRxvyrxzvsy

pNxxyrxzLxvys LxpNxvyrxzvsy

WV ”

lsv

lsv

If theWV-redex is internal to one of the substitutions in L, the proof is straightforward.
Note that theWV-redex has always a substitution at the root. �e remaining possibilities
are that such substitution is in L, or that it is precisely rxzLxvys. Axiom by axiom:

2.1 Commutation with the le� of an application ”@l. �e only possibility is that the
substitution rxzLxvys is commuted with the outermost application in Rxxy, i.e. N “

R1t1. �e diagram is:

pR1xxy t1qrxzLxvys LxpR1xvy t1qrxzvsy

R1xxyrxzLxvyst1 LxR1xvyrxzvsy t1
”@l ”˚@l

lsv

lsv

2.2 Commutation of independent substitutions ”com. Two sub-cases:
2.2.1 �e commuted substitutions both belong to L. Let pL be the result of commuting

them, and the diagram is:

RxxyrxzLxvys LxRxvyrxzvsy

RxxyrxzpLxvys pLxRxvyrxzvsy

”com ”com

lsv

lsv

2.2.2 One of the commuted substitutions is rxzLxvys. �en N “ R1ryzt1s and rxzLxvys
commutes with ryzt1s (which implies x R fvpt1q). �en:

R1xxyryzt1srxzLxvys LxR1xvyryzt1srxzvsy

R1xxyrxzLxvysryzt1s LxR1xvyrxzvsyryzt1s

”com ”˚com

lsv

lsv

2.3 Composition of substitutions ”r¨s. Two sub-cases:
2.3.1 �e composed substitutions both belong to L. Analogous to case 2.2.1.
2.3.2 One of the composed subtitutions is rxzLxvys. �is is not possible if the rule is

applied from le� to right, since it would imply that Rxxy “ R1xxyryzt1s with
x R R1xxy, which is a contradiction.
Finally, if the”r¨s rule is applied from right to le�, L is of the form L1ryzt1s and:

RxxyrxzL1xvyryzt1ss L1xRxvyrxzvsyryzt1s

RxxyrxzL1xvysryzt1s L1xRxxyrxzvsyryzt1s

”r¨s “

lsv

lsv
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3. Inductive case 1: le� of an application N “ R1q. �e situation is:

t “ R1xt1y q Ñ R1xs1y q “ s

If theWV step is internal to R1xt1y, the result follows by i.h.. �e proof is also direct if
WV is internal to q. �e nontrivial cases are those whereWV overlaps R1xt1y and q. �e
only possible case is that a substitution commutes with the topmost application via”@l

(applied from right to le�). �ere are two cases:

3.1 �e substitution comes from t1. �at is, R1 “ l and t1 has a substitution at its root.
�en t1 must be a ÞÑlslsv-redex t1 “ N2xxyrxzLxvys. We have:

N2xxyrxzLxvys q LxN2xvyrxzvsy q

pN2xxy qqrxzLxvys LxpN2xvy qqrxzvsy

”@l ”˚@l

lsv

lsv

3.2 �e substitution comes from R1. �at is: R1 “ N2rxzu1s. �e proof is then straight-
forward:

N2xt1yrxzu1s q N2xs1yrxzu1s q

pN2xt1y qqrxzu1s pN2xs1y qqrxzu1s

”@l ”@l

4. Inductive case 2: le� of a substitution N “ R1rxzqs. �e situation is:

t “ R1xt1yrxzqs Ñ R1xs1yrxzqs “ s

If theWV step is internal to R1xt1y, the result follows by i.h.. If it is internal to q, the steps
are orthogonal, which makes the diagram trivial. �e remaining possibility is that the
substitution rxzqs is involved in theWV redex. By case analysis on the kind of the step
”b:

4.1 Commutation with the le� of an application ”@l. R1xt1y must be an application.
Two possibilities:

4.1.1 �e application comes from t1. �at is, R1 “ l and t1 is a ÞÑdb-redex t1 “
Lxλy.t2y r. �is is exactly as the base case 1.1 (read bo�om-up).

4.1.2 �e application comes from R1, i.e. R1 “ N2 u1. �is is exactly as the inductive
case 3.2 (read bo�om-up).

4.2 Commutation of independent substitutions ”com. Since R1xt1y must have a substitu-
tion at the root, there are two possibilities:

4.2.1 �e substitution comes from t1. �at is, R1 “ l and t1 is a ÞÑlslsv-redex t1 “
N2xyyryzLxvys, with x R fvpLxvyq. �is case is exactly as the base exponential
case 2.2.2 (read bo�om-up).
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4.2.2 �e substitution comes from R1. �at is, R1 “ N2ryzu1s with x R fvpu1q. �e
diagram is:

N2xt1yryzu1srxzqs N2xs1yryzu1srxzqs

N2xt1yrxzqsryzu1s N2xs1yrxzqsryzu1s

”com ”com

lsv

lsv

4.3 Composition of substitutions ”r¨s. As in the previous case, there are two possibili-
ties:

4.3.1 �e substitution comes from t1. �at is, R1 “ l and t1 is a ÞÑlslsv-redex t1 “
N2xyyryzLxvys, with x R fvpN2xyyq. �is case is exactly as the base exponential
case 2.3.2 (read bo�om-up).

4.3.2 �e substitution comes from R1. �at is, R1 “ N2ryzu1s with x R fvpN2xt1yq. �e
diagram is:

N2xt1yryzu1srxzqs N2xs1yryzu1srxzqs

N2xt1yryzu1rxzqss N2xs1yryzu1rxzqss

”r¨s ”r¨s

5. Inductive case 3: inside a hereditary head substitution N “ R1xxyrxzN2s. �e situ-
ation is:

t “ R1xxyrxzN2xqys Ñ R1xxyrxzN2xq1ys “ s

IfWV is internal to R1xxy the two steps clearly commutes. IfWV is internal to N2xqy we
conclude using the i.h.. �e remaining cases are when WV overlaps with the topmost
constructor. Axiom by axiom:

5.1 Commutation with the le� of an application ”@l. It must be that R1xxy “ N4xxyr

with x R fvprq. �en the two steps simply commute:

pN4xxyrqrxzN2xqys pN4xxyrqrxzN2xq1ys

N4xxyrxzN2xqysr N4xxyrxzN2xq1ysr

”@l ”@l

5.2 Commutation of independent substitutions”com. It must be that R1xxy “ N4xxyryzrs

with x R fvprq. �en the two steps simply commute:

N4xxyryzrsrxzN2xqys t1

t2 t3

”@l ”@l

where

t1 :“ N4xxyryzrsrxzN2xq1ys,

t2 :“ N4xxyrxzN2xqysryzrs,

t3 :“ N4xxyrxzN2xq1ysryzrs.
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5.3 Composition of substitutions ”r¨s. �ere are various sub-cases
5.3.1 rxzN2xqys enters in a substitution. It must be that R1xxy “ N1xyyryzN2xxyswith

x R fvpN1xyyq. �en the diagram is:

N1xyyryzN2xxysrxzN
2xqys t1

t2 t3

”r¨s ”r¨s

t1 :“ N1xyyryzN2xxysrxzN
2
xq1ys,

t2 :“ N1xyyryzN2xxyrxzN
2
xqyss,

t3 :“ N1xyyryzN2xxyrxzN
2
xq1yss.

5.3.2 a substitution pops out of rxzN2xqys. Two sub-cases:
5.3.2.1 �e substitution comes from N2. �en N2xqy “ N4xqyryzrs. �e diagram is:

R1xxyrxzN4xqyryzrss t1

t2 t3

”r¨s ”r¨s

where

t1 :“ R1xxyrxzN4xq1yryzrss, (A.1)
t2 :“ R1xxyrxzN4xqysryzrs, (A.2)
t3 :“ R1xxyrxzN4xq1ysryzrs. (A.3)

5.3.2.2 �e substitution comes from q. �en N2 “ l and q is a ÞÑlslsv-redex t1 “
N4xyyryzLxvys and the diagram is:

R1xxyrxzN4xyyryzLxvyss t1

t2 t3

”r¨s ”˚
r¨s

lsv

lsv

where

t1 :“ R1xxyrxzLxN4xvyryzvsys, (A.4)
t2 :“ R1xxyrxzN4xyysryzLxvys, (A.5)
t3 :“ LxR1xxyrxzN4xvysryzvsy. (A.6)

Strong Call-by-Name (nameS)

We need the following auxiliary lemma:

Lemma A.12. If C is a LO context and C does not bind any of the variables in fvpsq, then

Cxtrxzssy ” Cxtyrxzss.
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Proof. Recall that a context C is LO if and only if C P S (Lem. 3.10). �e property is then
proved by induction on the derivation that C P S .

Now we turn to the proof of bisimulation itself. As in the previous proofs of bisimulation,
we proceed by induction on the derivation of the reduction step:

1. Base case 1: multiplicative root step, t “ Lxλx.t1ys1 ÞÑdb Lxt
1rxzs1sy. If theWV step

is internal to t1, internal to s1, or internal to the argument of one of the substitutions in
L, then the pa�ern of theWV redex does not overlap with the ÞÑdb step, and the proof
is immediate, as the two steps commute. Otherwise, we consider every possible case of
WV:

1.1 Garbage collection, ”gc. �e garbage collected substitution must be one of the
substitutions in L, i.e. L must be of the form L1xL2ryzu1sy. �en:

L1xL2xλx.t1yryzzsys1 L1xL2xt1rxzs1syryzzsy

L1xL2xλx.t1yys1 L1xL2xt1rxzs1syy

”gc ”gc

db

db

1.2 Commutation of independent substitutions, ”com. �e substitutions that are com-
muted must be both in L, i.e. L must be of the form L1xL2ryzu1srzzr1sy. �en:

L1xL2xλx.t1yryzu1srzzr1sys1 L1xL2xt1rxzs1syryzu1srzzr1sy

L1xL2xλx.t1yrzzr1sryzu1sys1 L1xL2xt1rxzs1syrzzr1sryzu1sy

”com ”com

db

db

1.3 Composition of substitutions, ”r¨s. �e substitutions that are composed must be
both in L, i.e. L must be of the form L1xL2ryzu1srzzr1sy. �en:

L1xL2xλx.t1yryzu1srzzr1sys1 L1xL2xt1rxzs1syryzu1srzzr1sy

L1xL2xλx.t1yryzu1rzzr1ssys1 L1xL2xt1rxzs1syryzu1rzzr1ssy

”r¨s ”r¨s

db

db

1.4 Duplication, ”dup. �e duplicated substitution must be one of the substitutions in
L, i.e. L must be of the form L1xL2ryzu1sy. �en:

L1xL2xλx.t1yryzu1sys1 L1xL2xt1rxzs1syryzu1sy

L1xpL2xλx.t1yqrzsy ryzu
1srzzu1sys1 L1xpL2xt1rxzs1syqrzsy ryzu

1srzzu1sy

”dup ”dup

db

db

1.5 Commutation with abstraction, ”λ. �e commuted substitution must be the inner-
most substitution in L, i.e. L must be of the form L1xryzu1sy, and:

L1xpλx.t1qryzu1sys1 L1xt1rxzs1sryzu1sy

L1xλx.t1ryzu1sys1 L1xt1ryzu1srxzs1sy

”λ ”com

ls

ls
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Note that the diagram can be also read from the bo�om-up for a reverse application
of the”λ rule. In order to be able to apply”com, note that x R fvpu1q by application
of the ”λ rule, and that y R fvps1q by the bound variable convention.

1.6 Le� commutation with application, ”@l. �e only possibility is that the outermost
substitution of L commutes with the application taking part in theÑdb step. �at
is, L must be of the form L1ryzu1s and:

L1xλx.t1yryzu1ss1 L1xt1rxzs1syryzu1ss1

pL1xλx.t1y s1qryzu1s L1xt1rxzs1syryzu1s

”@l “

db

db

1.7 Right commutation with application, ”@r. Note that every ”@r (and ”@r
´1) re-

dex in pλx.t1qL s1 must be internal to either t1, s1, or the argument of one of the
substitutions in L. We have already argued that in these cases the steps commute.

2. Base case 2: exponential root step, t “ Cxxyrxzt1s ÞÑls Cxt1yrxzt1s.
If the substitution that is contracted by the exponential step does not take part in the
pa�ern of theWV step, it is immediate to check that the property holds. More precisely,
suppose that Cxxyrxzt1sWV C1xxyrxzt2s, where C1 and t2 result respectively from C and
t by a single step ofWV. Note that we have that either C WV C1 and t1 “ t2 or vice-versa.
�en:

Cxxyrxzt1s Cxt1yrxzt1s

C1xxyrxzt2s C1xt2yrxzt2s

WV WV˚

ls

ls

Note that when commutation a�ects t1 (i.e. if we are in the case in which C “ C1 and
t1 WV t2), then the right-hand side of the diagram must be closed by twoWV steps: one
for each copy of t1.
So we may assume that the substitution that is contracted by the exponential step does
take part in the pa�ern of theWV step. We consider every possible case ofWV.

2.1 Garbage collection, ”gc. �e garbage collected substitution cannot erase the con-
tracted occurrence of x, since C is a LO context, and it cannot go inside substitu-
tions. Two subcases, depending on the position of the hole of C with respect to
the node of the garbage collected substitution:

2.1.1 If the hole of C lies inside the body of the garbage collected substitution, i.e.

C “ C1xC2ryzs1sy with y R fvpC2xxyq, then:

C1xC2xxyryzs1syrxzt1s C1xC2xt1yryzs1syrxzt1s

C1xC2xxyyrxzt1s C1xC2xt1yyrxzt1s

”gc ”gc

ls

ls

Note that y R fvpC2xt1yq since we may assume that y R fvpt1q by the bound
variable convention.
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2.1.2 Otherwise, the hole of C must be disjoint from the node of the garbage col-
lected substitution, i.e. there must be a two-hole context C1 such that:

C “ C1xl, s1ryzu1sy

where y R fvps1q. �en:

C1xx, s1ryzu1syrxzt1s C1xt1, s1ryzu1syrxzt1s

C1xx, s1yrxzt1s C1xt1, s1yrxzt1s

”gc ”gc

ls

ls

2.2 Commutation of independent substitutions, ”com. Note that the contracted occur-
rence of x cannot be inside the argument of any of the commuted substitutions,
since C is a LO context and it cannot go inside substitutions. Since the contracted
substitution is commuted, we have that C must be of the form C1ryzs1s and the
situation is:

C1xxyryzs1srxzt1s C1xt1yryzs1srxzt1s

C1xxyrxzt1sryzs1s C1xt1yrxzt1sryzs1s

”com ”com

ls

ls

2.3 Composition of substitutions, ”r¨s. Note that the contracted occurrence of x cannot
be inside the argument of any of the two substitutions that take part in the ”r¨s
step, since C is a LO context and it cannot go inside substitutions. We know that
the contracted substitution takes part in the ”r¨s step. We consider two subcases,
depending on whether the ”r¨s rule is applied from le� to right or from right to
le�, since the situation is not symmetrical.

2.3.1 If the”r¨s step is applied from le� to right, then C must be of the form C1ryzs1s

with x R fvpC1xxyq. �is is a contradiction, so this case is not actually possible.
2.3.2 If the”r¨s step is applied from right to le�, then t1 must be of the form t2ryzs1s

and:
Cxxyrxzt2ryzs1ss Cxt2ryzs1syrxzt2ryzs1ss

Cxxyrxzt2sryzs1s Cxt2yrxzt2sryzs1s
”r¨s ”

ls

ls

To close the right-hand side of the diagram, we are le� to show that:

Cxt2ryzs1syrxzt2ryzs1ss ” Cxt2yrxzt2sryzs1s

First note that C is a LO context, and that, by the bound variable convention,
C does not bind any of the variables in fvps1q. By resorting to Lemma A.12,
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this allows us to commute the substitution that:

Cxt2ryzs1syrxzt2ryzs1ss
” Cxt2yryzs1srxzt2ryzs1ss by Lemma A.12
”r¨s Cxt2yryzs1srxzt2sryzs1s
“ Cxt2yryzs1srxzt2ty{zusrzzs1s renaming y to z
”com Cxt2yrxzt2ty{zusryzs1srzzs1s
”dup Cxt2yrxzt2sryzs1s

2.4 Duplication, ”dup. Note that the contracted occurrence of x cannot be inside the
argument of any of the two substitutions that take part in the ”dup step, since
C is a LO context and it cannot go inside substitutions. We consider two cases,
depending on whether ”dup is applied from le� to right or from right to le�:

2.4.1 From le� to right: the contracted occurrence of x is either renamed to y or le�
untouched as x. Let z denote x or y, correspondingly. In both cases we have:

Cxxyrxzt1s Cxt1yrxzt1s

Crysxxzyrxzt1sryzt1s Crysxxt1yrxzt1sryzt1s
”dup ”dup

ls

ls

2.4.2 From right to le�: then C is of the form C1rxsy ryzt
1s, where C1 has no occur-

rences of x, and:

C1rxsyxxyryzt
1srxzt1s C1rxsyxt

1yryzt1srxzt1s

C1xyyryzt1s C1xt1yryzt1s

”dup ”dup

ls

ls

2.5 Commutation with abstraction, ”λ. �en C is of the form λy.C1 and:

pλy.C1xxyqrxzt1s pλy.C1xt1yqrxzt1s

λy.C1xxyrxzt1s λy.C1xt1yrxzt1s

”λ ”λ

ls

ls

2.6 Le� commutation with application, ”@l. �en C is of the form C s1 and:

pCxxy s1qrxzt1s pCxt1y s1qrxzt1s

Cxxyrxzt1s s1 Cxt1yrxzt1s s1
”@l ”@l

ls

ls

2.7 Right commutation with application, ”@r. �en C is of the form s1 C and:

ps1 Cxxyqrxzt1s ps1 Cxt1yqrxzt1s

s1 Cxxyrxzt1s s1 Cxt1yrxzt1s
”@r ”@r

ls

ls
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3. Inductive case 1: inside an abstraction. Suppose that t “ λx.t1 Ñ λx.s1 “ s. We
consider two subcases, depending on whether theWV step is internal to the body of the
abstraction, or involves the outermost abstraction:

3.1 If the application of theWV step is internal to t1, we have by i.h.:

t1 s1

u1 r1
” ”

so is immediate to conclude that:

λx.t1 λx.s1

λx.u1 λx.r1
” ”

3.2 If the outermost abstraction takes part in theWV step, then a ”λ step must have
been applied, so t1 must be of the form t2ryzs1s. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

3.2.1 If the reduction step t2ryzs1s Ñ u1 is an exponential, and the commuted sub-
stitution ryzs1s is the one contracted by the exponential step, then the situa-
tion is exactly like in case 2.5 (Commutation with abstraction for exponential
steps), by reading the diagram from the bo�om up.

3.2.2 Otherwise, note that there cannot be a multiplicative step at the root, and that
the step cannot be internal to s1, as LO contexts do not go inside substitutions.
�erefore the reduction step must be internal to t2 and the situation is:

λx.t2ryzs1s λx.s2ryzs1s

pλx.t2qryzs1s pλx.s2qryzs1s

”λ ”λ

4. Inductive case 2: le� of an application. Suppose that t “ t1 q Ñ s1 q “ s. If
the application of the WV step is internal to t1, we may immediately conclude by i.h.

(analogous to case 3.1). �e interesting case is when the outermost application takes
part in theWV step. �ere are two possibilities, depending on whether a ”@l step or a
”@r step is applied:

4.1 ”@l step. �en t1 must be of the form t2rxzu1s. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

4.1.1 If the reduction step t2rxzu1s Ñ r1 is an exponential step and the commuted
substitution rxzu1s is also the one contracted by the exponential step, then
the situation is exactly like in case 2.6 (Le� commutation with application for
exponential steps), by reading the diagram from the bo�om up.



291

4.1.2 Otherwise, note that the reduction step cannot be internal to u1, since LO

contexts do not go inside substitutions, so it must be internal to t2 and the
situation is:

t2rxzu1s q s2rxzu1s q

pt2 qqrxzu1s ps2 qqrxzu1s

”@l ”@l

4.2 ”@r step. �en q must be of the form q1rxzu1s and the situation is:

t1 q1rxzu1s s1 q1rxzu1s

pt1 q1qrxzu1s ps1 q1qrxzu1s

”@r ”@r

5. Inductive case 3: right of an application. Suppose that t “ q t1 Ñ q s1 “ s. If
the application of the WV step is internal to t1, we may immediately conclude by i.h.

(analogous to case 3.1). �e interesting case is when the outermost application takes
part in theWV step. �ere are two possibilities, depending on whether a ”@l step or a
”@r step is applied:

5.1 ”@l step. �en q must be of the form q1rxzu1s and the situation is:

q1rxzu1s t1 q1rxzu1s s1

pq1 t1qrxzu1s pq1 s1qrxzu1s

”@l ”@l

5.2 ”@r step. �en t1 must be of the form t2rxzu1s. We consider two further subcases,
depending on whether the commuted substitution is involved in the reduction
step:

5.2.1 If the reduction step t2rxzu1s Ñ r1 is an exponential step and the commuted
substitution rxzu1s is also the one contracted by the exponential step, then
the situation is exactly like in case 2.7 (Right commutation with application for
exponential steps), by reading the diagram from the bo�om up.

5.2.2 Otherwise, note that the reduction step cannot be internal to u1, since LO

contexts do not go inside substitutions, so it must be internal to t2 and the
situation is:

q t2rxzu1s q s2rxzu1s

pq t2qrxzu1s pq s2qrxzu1s

”@r ”@r

6. Inductive case 4: le� of a substitution. Suppose that t “ t1rxzqs Ñ s1rxzqs “ s.
If the application of theWV step is internal to t1, we may immediately conclude by i.h.

(analogous to case 3.1). �e interesting case is when the outermost substitution node
takes part in theWV step. �ere are four possibilities, depending on whether a”gc step,
a ”com step, a ”r¨s step, or a ”dup step is applied:
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6.1 ”gc step. �e reduction step cannot be internal to q, since LO contexts may not
go inside substitutions, so the step must be internal to t1, and closing the diagram
is trivial:

t1rxzqs s1rxzqs

t1 s1
”gc ”gc

Note that if x R fvpt1q then x R fvps1q by the usual property that reduction does
not create free variables.

6.2 ”com step. �en t1 must be of the form t2ryzu1s with x R fvpu1q. We consider two
further subcases, depending on whether the commuted substitution is involved in
the reduction step:

6.2.1 If the reduction step t2ryzu1s Ñ r1 is an exponential step and the commuted
substitution ryzu1s is also the one contracted by the exponential step, then the
situation is exactly like in case 2.2 (Commutation of independent substitutions

for exponential steps), by reading the diagram from the bo�om up.
6.2.2 Otherwise, note that the reduction step cannot be internal to u1, since LO

contexts may not go inside substitutions, so it must be internal to t2, and the
situation is:

t2ryzu1srxzqs s2ryzu1srxzqs

t2rxzqsryzu1s s2rxzqsryzu1s

”com ”com

6.3 ”r¨s step. Two cases, depending on whether the ”r¨s step is applied from le� to
right or from right to le�:

6.3.1 ”r¨s is applied from le� to right. �en t1 must be of the form t2ryzu1s with
x R fvpt2q. We consider two further subcases, depending on whether the
commuted substitution is involved in the reduction step:

6.3.1.1 If the reduction step t2ryzu1s Ñ r1 is an exponential step and the com-
muted substitution ryzu1s is also the one contracted by the exponential
step, then the situation is exactly like in case 2.3.2 (Composition of sub-

stitutions for exponential steps), by reading the diagram from the bo�om
up.

6.3.1.2 Otherwise, note that the reduction step cannot be internal to u1, since LO
contexts may not go inside substitutions, so it must be internal to t2, and
the situation is:

t2ryzu1srxzqs s2ryzu1srxzqs

t2ryzu1rxzqss s2ryzu1rxzqss

”r¨s ”r¨s

Note that if x R fvpt2q, then x R fvps2q, by the usual fact that reduction
does not create free variables.
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6.3.2 ”r¨s is applied from right to le�. �en q must be of the form q1ryzu1s, and the
reduction step must be internal to t1, so the situation is:

t1rxzq1ryzu1ss s1rxzq1ryzu1ss

t1rxzq1sryzu1s s1rxzq1sryzu1s

”r¨s ”r¨s

6.4 ”dup step. Two cases, depending on whether the ”dup step is applied from le� to
right or from right to le�:

6.4.1 ”dup is applied from le� to right. �en the reduction step is internal to t1 and
closing the diagram is immediate:

t1rxzqs s1rxzqs

t1
rysx
rxzqsryzqs s1

rysx
rxzqsryzqs

”dup ”dup

6.4.2 ”dup is applied from right to le�. �en t1 must be of the form t2ryzqs. We con-
sider two further subcases, depending on whether the commuted substitution
is involved in the reduction step:

6.4.2.1 If the reduction step t2ryzqs Ñ r1 is an exponential step and the a�ected
substitution ryzqs is also the one contracted by the exponential step, then
t2 must be of the form C1rxsyxyy and the situation is:

C1rxsyxyyryzqsrxzqs C1rxsyxqyryzqsrxzqs

C1xyyryzqs C1xqyryzqs

”dup ”dup

ls

ls

6.4.2.2 Otherwise, note that the reduction step cannot be internal to q, since LO

contexts may not go inside substitutions, so it must be internal to t2. �e
situation is then exactly like in case 6.4.1, by reading the diagram from
the bo�om up.

A.1.3 Pointing MAD invariants — proof of Lem. 3.57

Lemma A.13 (Full proof of Lem. 3.57—Pointing MAD invariants). Let S “ t | E | π | D be a

Pointing MAD reachable state whose initial code t is well-named. �en:

1. Subterm: any code in S is a literal subterm of t;

2. Names: the global closure of S is well-named.

3. Dump-Environment Compatibility:
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3.1 prrπssxty, E äq is closed;

3.2 for every pair px, π1q in D, prrπ1ssxxy, E äxq is closed;

3.3 E9D holds.

4. Contextual Decoding: rrpE,Dqss is a call-by-need evaluation context.

Proof. By induction on the length of the execution. Points 1 and 2 are by direct inspection of
the rules. Assuming E9D, point 4 is immediate by induction on the length of D.

�us we are only le� to check point 3. We use point 2, i.e. that substitutions in E bind
pairwise distinct variables. Following we show that transitions preserve the invariant:

1. Conmutative 1. We have:

t s | π | D | E ùs1 t | s :: π | D | E

Trivial, since the dump and the environment are the same and rrps :: πqssxty “ rrπssxt sy.

2. Conmutative 2. We have S ùs2 S
1 with:

S “ x | π | D | E1 :: rxzts :: E2

S 1 “ t | ε | px, πq :: D | E1 :: rxzls :: E2

Note that since by i.h. prrπssxxy, pE1 :: rxzts :: E2q äq is closed and x is free in rrπssxxy,
there cannot be any dumped substitutions in E2. �en pE1 :: rxzts :: E2q ä“ E1 ä::

rxzts :: E2 and we know:

prrπssxxy, E1 ä:: rxzts :: E2q is closed (A.7)

For 3.1, note pE1 :: rxzls :: E2q ä“ E2. �en we must show pt, E2q is closed, which is
implied by (A.7).

For 3.2, there are two cases:

• If the pair is px, πq, we must show

prrπssxxy, pE1 :: rxzls :: E2qäxq is closed, i.e.

prrπssxxy, E1 ä:: rxzls :: E2q is closed
which is implied by (A.7).

• If the pair is py, π1q in D, with y ‰ x, note �rst that

pE1 :: rxzts :: E2qäy“ E1 äy:: rxzts :: E2

And similarly for pE1 :: rxzls :: E2qäy. Moreover, by the invariant on S we know

prrπ1ssxyy, E1 äy:: rxzts :: E2q is closed

and this implies
prrπ1ssxyy, E1 äy:: rxzls :: E2q is closed

as required.
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For 3.3, we have already observed that E2 has no dumped substitutions. �en rxzls is
the rightmost dumped substitution in the environment of S 1, while px, πq is the le�most
pair in the dump. We conclude by the fact that the invariant already holds for S.

3. Multiplicative, empty dump. We have S ùm S
1 with:

S “ λx.t | s :: π | ε | E

S 1 “ t | π | ε | rxzss :: E

First note that, since the environment and the dump are dual in S, there are no dumped
substitutions in E.

For point 3.1, we know that:

prrπssxpλx.tq sy, Eq is closed (A.8)

and we have to check:
prrπssxty, rxzss :: Eq is closed

Let y P fvprrπssxtyq. �en either y “ x, which is bound by rxzss, or y P fvprrπssxλx.tyq,
in which case y is bound by E. Moreover, since rrπss is an application context, by (A.8)
we get ps, Eq is closed.

Points 3.2 and 3.3 are trivial since the dump is empty and the environment has no
dumped substitutions.

4. Multiplicative, non-empty dump. We have S ùm S
1 with:

S “ λx.t | s :: π | py, π1q :: D | E1 :: ryzls :: E2

S 1 “ t | π | py, π1q :: D | E1 :: ryzls :: rxzss :: E2

Note �rst that since the invariant holds for S, we know ryzls is the rightmost dumped
substitution in the environment of both S and S 1. �erefore pE1 :: ryzls :: E2qä“ E2

For proving point 3.1, we have:

prrπssxpλx.tq sy, E2q is closed

and we must show:
prrπssxty, rxzss :: E2q is closed

�e situation is exactly as in point 3.1 for the ùm transition, empty dump case.

For point 3.2, let pz, π2q be any pair in py, π1q :: D. Let also

E 11 :“

#

E1 ä if y “ z

E1 äz otherwise
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and note that pE1 :: ryzls :: Eq äy“ E 11 :: ryzls :: E for any environment E that
contains no dumped substitutions. By the invariant on S, we have that:

prrπ2ssxzy, E 11 :: ryzls :: E2q is closed

Moreover, from point 3.1 we know ps, E2q is closed. Both imply:

prrπ2ssxzy, E 11 :: ryzls :: rxzss :: E2q is closed

as required.

For point 3.3, just note that the substitution rxzss added to the environment is not
dumped, and so duality holds because it holds for S by i.h..

5. Exponential. We have S ùe S
1 with:

S “ v | ε | px, πq :: D | E1 :: rxzls :: E2

S 1 “ vα | π | D | E1 :: rxzvs :: E2

First note that since the environment and the dump are dual in S, we know E2 has no
dumped substitutions.

For proving point 3.1, by resorting to point 3.1 on the state S, for which the invariant
already holds, we have that:

pv, E2q is closed (A.9)

Moreover, by point 3.2 on S, specialized on the pair px, πq, we also know:

prrπssxxy, E1 ä:: rxzls :: E2q is closed (A.10)

We must check that:

prrπssxvαy, E1 ä:: rxzvs :: E2q is closed

Any free variable in rrπssxvαy is either free in π, in which case by (A.9) it must be bound
by E1 ä:: rxzls :: E2, or free in v, in which case by (A.9) it must be bound by E2. In
both cases it is bound by E1 ä:: rxzvs :: E2, as required. To conclude the proof of point
3.1, note that by combining (A.9) and (A.10) we get E1 ä:: rxzvs :: E2 is closed.

For proving point 3.2, let py, π1q be a pair in D. Using that x ‰ y, by the invariant on S
we know:

prrπ1ssxyy, E1 äy:: rxzls :: E2q is closed

and this implies:
prrπ1ssxyy, E1 äy:: rxzvs :: E2q is closed

as wanted.

Point 3.3 is immediate, given that the environment and the dump are already dual in S.
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A.1.4 Strong MAM invariants — proof of Lem. 3.64

Lemma A.14 (Full proof of Lem. 3.64—Strong MAM invariants). Let S “ ϕ | F | s | π | E be

a state reachable from an initial term t0. �en:

1. Compatibility: F and E are compatible, i.e. F9E.

2. Normal Form:

2.1 Backtracking Code: if ϕ “ ò, then s is normal, and if π is non-empty, then s is

neutral.

2.2 Frame: if F “ F 1 :: pu, π1q :: F 2, then u is neutral.

3. Backtracking Free Variables:

3.1 Backtracking Code: if ϕ “ ò then fvpsq Ď ΛpF q.

3.2 Pairs in the Frame: if F “ F 1 :: pu, π1q :: F 2 then fvpuq Ď ΛpF 2q.

4. Name:

4.1 Substitutions: if E “ E 1 :: rxzts :: E2 then x is fresh wrt t and E2.

4.2 Markers: if E “ E 1 :: Źx :: E2 and F “ F 1 :: x :: F 2 then x is fresh wrt E2 and

F 2, and E 1pyq “ K for any free variable y in F 2.

4.3 Abstractions: if axt is a subterm of F , s, π, or E then x may occur only in t and in

the closed subenvironment xŸ :: Ew :: Źx of E, if it exists.

5. Closure:

5.1 Environment: if E “ E 1 :: rxzts :: E2 then E2pyq ‰ K for all y P fvptq.

5.2 Code, Stack, and Frame: Epxq ‰ K for any free variable in s and in any code of π

and F .

We prove each of the items in each of the following subsections:

Compatibility Invariant

By induction on the length of the number of transitions to reach S. �e invariant trivially
holds for an initial state. For a non-empty evaluation sequence we list the cases for the last
transitions. We only deal with those that act on the frame or on the environment, as the others
immediately follows from the i.h..

• Case pF, λx.t, s :: π,E,óqùm pF, t, π, rxzss :: E,óq. By i.h. F and E are compatible,
i.e. F “ pFw :: Ftq9pEw :: Etq “ E with Ft9Et. Since rxzss :: Ew is still a weak
environment, we have pFw :: Ftq9prxzss :: Ew :: Etq, i.e. F9prxzss :: Eq.

• Case pF, λx.t, ε, E,óq  ós2 px :: F, t, ε,Źx :: E,óq. By i.h. F9E. By de�nition of
compatibility we obtain px :: F q9pŹx :: Eq.
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• Case px :: F, t, ε, E,òq  òs4 pF, λx.t, ε, xŸ :: E,òq. By i.h., px :: F q9E. By the
factorization property of compatible pairs (Lem. 3.63) E “ Ew :: Źx :: E 1 with F9E 1.
Now xŸ :: E “ xŸ :: Ew :: Źx :: E 1 “ E 1w :: E 1. �en, from F9E 1 by de�nition
F9pE 1w :: E 1q, i.e. F9pxŸ :: Eq.

• Case ppt, πq :: F, s, ε, E,òq  òs5 pF, ts, π, E,òq. By i.h., ppt, πq :: F q9E, so F9E by
(Lem. 3.63).

• Case pF, t, s :: π,E,òq  òs6 ppt, πq :: F, s, ε, E,óq. By i.h., we have that F9E which
implies ppt, πq :: F q9E by (Lem. 3.63).

Normal Form Invariant

�e invariant trivially holds for an initial state ó | ε | t | ε | ε. For a non-empty evaluation
sequence we list the cases for the last transitions. We only consider the cases for backtracking
phases (ò) or when the frame changes, the others ( ós1 ,ùm,ùe) are omi�ed because they
follow immediately from the i.h..

• Case pF, λx.t, ε, E,óq ós2 px :: F, t, ε,Źx :: E,óq.

1. Trivial since ϕ ‰ ò.

2. Suppose x :: F can be wri�en as x :: F 1 :: ps, π1q :: F 2. �en by i.h. s is a neutral
term.

• Case pF, x, π, E,óq ós3 pF, x, π, E,òqwith Epxq “ Ź. Note that x P ΛpEq, because
Epxq “ Ź.

1. x is a normal and neutral term.

2. It follows from the i.h., as F is unchanged.

• Case px :: F, t, ε, E,òq òs4 pF, λx.t, ε, xŸ :: E,òq.

1. By i.h. we know that t is a normal form. �en λx.t is a normal form. the stack is
empty, so we conclude.

2. It follows from the i.h..

• Case ppt, πq :: F, s, ε, E,òq òs5 pF, ts, π, E,òq.

1. By i.h. we have that s is a normal term while by i.h. t is neutral. �erefore ts is a
neutral term.

2. It follows from the i.h..

• Case pF, t, s :: π,E,òq òs6 ppt, πq :: F, s, ε, E,óq.

1. Trivial since ϕ ‰ ò.

2. t is a neutral term by i.h..
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Backtracking Free Variables Invariant

�e invariant trivially holds for an initial state ó | ε | t0 | ε | ε if t0 is closed and well-
named. For a non-empty evaluation sequence we list the cases for the last transitions. We
omit the transitions involving only states in evaluating phase, as for them everything follows
immediately from the i.h..

• Case pF, y, π, E,óq ós3 pF, y, π, E,òq with Epyq “ Ź.

1. Backtracking Code: by hypothesis Epyq “ Ź, and so y P ΛpEq “ ΛpF q by
Lem. 3.63.

2. Pairs in the Frame: it follows from the i.h..

• Case py :: F, u, ε, E,òq òs4 pF, λy.u, ε, yŸ :: E,òq.

1. Backtracking Code: by i.h. fvpuq Ď Λpy :: F q and so fvpayuq “ fvpuqztxu “

ΛpF q.

2. Pairs in the Frame: it follows from the i.h..

• Case ppu, πq :: F, r, ε, E,òq òs5 pF, ur, π, E,òq.

1. Backtracking Code: by i.h. fvprq Ď Λppu, πq :: F q “ ΛpF q and by i.h. fvpuq Ď

ΛpF q, and so fvpurq Ď ΛpF q.

2. Pairs in the Frame: it follows from the i.h..

• Case pF, u, r :: π,E,òq òs6 ppu, πq :: F, r, ε, E,óq.

1. Backtracking Code: nothing to prove.

2. Pairs in the Frame: by i.h. fvpuq Ď ΛpF q, the rest follows immediately from the
i.h..

Name Invariant

�e invariant trivially holds for an initial state ó | ε | u0 | ε | ε if u0 is closed and well-named.
For a non-empty evaluation sequence we list the cases for the last transitions:

• Case pF, ur, π, E,óq ós1 pF, u, r :: π,E,óq. Every point follows from its i.h..

• Case pF, λy.u, r :: π,E,óqùm pF, u, π, ryzrs :: E,óq.

1. Substitutions: for ryzrs it follows from the i.h., for E it follows from the i.h..

2. Markers: note that by i.h. y simply cannot occur in F , the rest follows from the
i.h..

3. Abstractions: it follows from the i.h..

• Case pF, λy.u, ε, E,óq ós2 py :: F, u, ε,Źy :: E,óq.
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1. Substitutions: it follows from the i.h..

2. Markers: for y it follows from the i.h., the rest follows from the i.h..

3. Abstractions: it follows from the i.h..

• Case pF, y, π, E,óq ùe pF, u
α, π, E,óq. It follows by the i.h. and the fact that in uα

the abstracted variables are renamed (with respect to u) with fresh names.

• Case pF, y, π, E,óq ós3 pF, y, π, E,òq. Every point follows from its i.h..

• Case py :: F, u, ε, E,òq  òs4 pF, λy.u, ε, yŸ :: E,òq. By the compatibility invariant
py :: F q9E, and by the factorization property of compatible pairs (Lem. 3.63)E “ Ew ::

Źy :: E 1.

1. Substitutions: it follows from the i.h..

2. Markers: it follows from the i.h..

3. Abstractions: for ayu it holds because by i.h. y does not appear in F nor in Et (it
may however occur in Ew, but this is taken into account by the statement). For
the other abstractions, it is immediate to conclude by i.h..

• Case ppu, πq :: F, r, ε, E,òq òs5 pF, ur, π, E,òq. Every point follows from its i.h..

• Case pF, u, r :: π,E,òq  òs6 ppu, πq :: F, r, ε, E,óq. Every point follows from its
i.h..

Closure Invariant

�e invariant trivially holds for an initial state ó | ε | t0 | ε | ε if t0 is closed and well-named.
For a non-empty evaluation sequence we list the cases for the last transitions:

• Case pF, ur, π, E,óq ós1 pF, u, r :: π,E,óq. Every point follows from its i.h..

• Case pF, λy.u, r :: π,E,óqùm pF, u, π, ryzrs :: E,óq.

1. Environment: for ryzrs it follows from the i.h., for the rest it follows from the i.h..

2. Code, Stack, and Frame: for y is evident, as ryzrs :: E is clearly de�ned on y, for
the rest it follows from the i.h..

• Case pF, λy.u, ε, E,óq ós2 py :: F, u, ε,Źy :: E,óq.

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: for y is evident, as Źy :: E is clearly de�ned on y, for the
rest it follows from the i.h..

• Case pF, y, π, E,óqùe pF, u
α, π, E,óq.

1. Environment: it follows from the i.h..
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2. Code, Stack, and Frame: for uα it follows from the i.h., as u appears in the environ-
ment out of all closed scopes (otherwise the transition would not take place). �e
rest follows from the i.h..

• Case pF, y, π, E,óq ós3 pF, y, π, E,òq with Epyq “ Ź.

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: it follows from the i.h..

• Case py :: F, u, ε, E,òq  òs4 pF, λy.u, ε, yŸ :: E,òq. By the compatibility invariant
py :: F q9E, and by the factorization property of compatible pairs (Lem. 3.63)E “ Ew ::

Źy :: E 1.

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: note that

2.1 Ew does not bind any variable occurring free in u by the backtracking invari-
ant,

2.2 Ew does not bind any variable occurring free in F by the name invariant, and
2.3 the stack is empty by hypothesis.

�enEw does not bind any free variable in the code, in the stack, nor in the frame,
and we conclude using the i.h., because xŸ :: Ew :: Źx :: E 1 by de�nition is
de�ned on a variable z if and only if E 1 is.

• Case ppu, πq :: F, r, ε, E,òq òs5 pF, ur, π, E,òq.

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: it follows from the i.h..

• Case pF, u, r :: π,E,òq òs6 ppu, πq :: F, r, ε, E,óq.

1. Environment: it follows from the i.h..

2. Code, Stack, and Frame: it follows from the i.h..

A.1.5 LO decoding invariant — proof of Lem. 3.67

For the invariant we need the following lemma.

Lemma A.15 (Compatible Pairs Decode to Non-Applicative Contexts). Let Fw be a weak

frame, Ew a weak environment, and F9E a compatible pair. �en rrFwss, rrEwss, and rrpF,Eqss

are contexts that are not applicative, i.e. not of the form CxLty.

Proof. �e fact that rrFwss and rrEwss are not applicative is an immediate induction over their
structure. For rrpF,Eqss we reason by induction on the compatibility of F and E. �e base
case rrpε, εqss “ l is evident. Inductive cases:
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1. Weak Extension, i.e. pFw :: Ftq9pEw :: EtqwithFt9Et. By i.h. rrpFt, Etqss is not applica-
tive and both rrFwss and rrEwss are not applicative. By de�nition, rrppFw :: Ftq, pEw ::

Etqqss “ rrpFt, EtqssxrrEwssxrrFwssyy, which is then not applicative.

2. Abstraction, i.e. px :: F q9pŹx :: Eq with F9E. Immediate, as rrpF,Eqssxλx.ly is not
applicative.

We can now prove that the decoding of the data-structures of a reachable state is a LO

context.

Lemma A.16 (Full proof of Lem. 3.67—LO decoding invariant). Let S “ xϕ | F | s | π | Ey

be a reachable state. �en rrpF,Eqss and CS are LO contexts.

Proof. We prove that rrpF,Eqss is a LO context, the fact that CS is a LO contexts then easily
follows, as CS :“ rrpF,Eqssxrrπssy.

�e invariant trivially holds for an initial state ó | ε | t0 | ε | ε. For a non-empty evaluation
sequence we list the cases for the last transitions. We omit the cases for which the environment
and the frame do not change (i.e.  ós1 ,ùe, ós3), as for them the statement follows from
the i.h..

• Case pF, λx.t, s :: π,E,óq ùm pF, t, π, rxzss :: E,óq. By i.h. rrpF,Eqss is LO. Let
F “ Fw :: Ft, so that rrpF,Eqss “ rrpFt, EqssxrrFwssy. Note that, by the name invariant
(Lem. 3.64), the eventual occurrences of x are all in t and so x R fvprrFwssq, and in par-
ticular x R lfvprrFwssq. �en, rrpFt, EqssxrrFwssrxzssy is LO: the conditions of Def. 3.5 are
satis�ed either because rrpF,Eqss “ rrpFt, EqssxrrFwssy is LO or because x R lfvprrFwssq.

• Case pF, λx.t, ε, E,óq  ós2 px :: F, t, ε,Źx :: E,óq. By i.h. we have rrpF,Eqss is LO
and by Lem. A.15 rrpF,Eqss is not applicative, so rrppx :: F q, pŹx :: Eqqss “ rrpF,Eqssxλx.ly

is LO (it satis�es the conditions of Def. 3.5 because rrpF,Eqss does).

• Case px :: F, t, ε, E,òq  òs4 pF, λx.t, ε, xŸ :: E,òq. By the compatibility invariant
(Lem. 3.64) px :: F q9E, and by the factorization property of compatible pairs (Lem. 3.63)
E “ Ew :: Źx :: E 1. By de�nition

rrppx :: F q, pEw :: Źx :: Etqqss “ rrpF,Etqssxλx.rrEwssy

that by i.h. is LO. Now, rrpF,Etqss is LO, as it satis�es the conditions of Def. 3.5 because
rrpF,Eqss does. We conclude by noticing that the compatible pair of the target state
satis�es rrpF, pxŸ :: Eqqss “ rrpF, pxŸ :: Ew :: Źx :: Etqqss “Lem. 3.66 rrpF,Etqss.

• Case ppt, πq :: F, s, ε, E,òq  òs5 pF, ts, π, E,òq. By i.h. we have that rrpppt, πq ::

F q, Eqss is LO and by frame part of the backtracking normal form invariant (Lem. 3.64)
t is neutral. By de�nition, rrpppt, πq :: F q, Eqss “ rrpF,Eqssxrrπssxtlyy, �en, rrpF,Eqss—
being a pre�x of rrpppt, πq :: F q, Eqss—veri�es the conditions of Def. 3.5 and is LO.

• Case pF, t, s :: π,E,òq òs6 ppt, πq :: F, s, ε, E,óq. Note that
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1. rrpF,Eqss is LO by i.h.,

2. rrpF,Eqss is not applicative by Lem. A.15,

3. fvptq Ď ΛpF q by the backtracking free variables invariant (Lem. 3.64).

4. t is a neutral term by the backtracking normal form invariant (Lem. 3.64), because
the stack at the le�-hand side is not empty.

Note that the third item guarantees that x R fvptq, and so in particular x R lfvptq,
for any ES rxzus in E (and so in rrpF,Eqss). �en rrpF,Eqssxrrπssxtlyy is LO (because it
veri�es the conditions of Def. 3.5, by the listed points), that is to say rrpppt, πq :: F q, Eqss

is LO.

A.2 Proofs of Chapter 4 – Foundations of Strong Call-by-

Need

A.2.1 Technical tools

�is subsection is devoted to bringing together various de�nitions and properties that are
used as technical tools throughout the proofs of Chapter 4 (Foundations of Strong Call-by-

Need). Most proofs in this subsection are ommited since they are straightforward.

Convention A.17. In the proofs of Chapter 4, we adopt the following notational conventions:

F ϑ
, F ϑ

1 , F ϑ
2 , etc. range over evaluation contexts in Eϑ

Iϑ, Iϑ1 , Iϑ2 , etc. range over inert evaluation contexts in E˝ϑ
Nϑ

, Nϑ
1 , Nϑ

2 , etc. range over strong normal forms in nfϑ

Mϑ
, Mϑ

1 , Mϑ
2 , etc. range over strong structures in Sϑ

so rather than saying “t is of the form Cxsy, where C P Eϑ and s P Sϑ1”, we might say “t is of the

form F ϑxMϑ1y”.

De�nition A.18 (Frozen variables). �e frozen variables fzϑpCq of a context C are the rigid
bound variables that bind the hole of C.

fzϑp˝q “ ϑ

fzϑpCtq “ fzϑpCq

fzϑptCq “ fzϑpCq

fzϑpλx.Cq “ fzϑYtxupCq

fzϑptrxzCsq “ fzϑpCq

fzϑpCrxztsq “

"

fzϑYtxupCq if t is a strong ϑ-structure
fzϑpCq otherwise

Lemma A.19. fzϑpC1xC2yq “ fzfz
ϑpC1qpC2q.

Proof. By induction on C1.
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Lemma A.20 (Decomposition of evaluation contexts). If C1xC2y is an evaluation context, then

C1 and C2 are evaluation contexts. More precisely, let Xϑ
denote either the set Eϑ or the set E˝ϑ. If

C1xC2y P Xϑ
then C1 P Xϑ

and C2 P Eϑ1 , where ϑ1 “ fzϑpC1q.

Proof. By induction on the formation rules for C1xC2y as a context in Xϑ.

Lemma A.21. Inert evaluation contexts do not go below answers, and evaluation contexts do not

go below db-redexes. More precisely:

1. If pλx.tqL “ Iϑxsy where Iϑ P E˝ϑ is an inert evaluation context, then Iϑ is a substitution

context, i.e. L can be split as L “ L1L2 such that Iϑ “ L2.

2. It cannot be the case that vL “ Iϑx∆y if ∆ is a db-redex or a variable.

3. Let t “ pλx.sqLu be the redex pa�ern of a db-step. Suppose that t “ F ϑxt1y for some

context F ϑ P Eϑ, some set of variables ϑ, and some term t1. �en L can be split as L “ L1L2

such that F ϑ “ L2 u.

Proof. �e �rst item is by induction on the length of the substitution context L. �e second
item is an immediate consequence of the �rst. For the third item consider the two possible
formation rules for F ϑ as a context in Eϑ. Rule EAppL is a consequence of the �rst item. Rule
EAppRStr is impossible.

Lemma A.22 (Answers are stable by reduction). Let pλx.tqLÑshzgc s. �en s is an answer.

Proof. By case analysis on the kind of step (db or lsv) and its position inside pλx.tqL. �e
interesting case is when it is a lsv step that contracts one of the substitutions in L. If the vari-
able contracted by the lsv step is inside t, the step is of the form pλx.CxxyyyqL1ryzvL

1sL2 Ñ

pλx.CxvyqL1ryzvsL
1L2 and s is an answer. If the variable contracted by the lsv step is in-

side one of the substitutions in L, the step is of the form pλx.tqL1ryzCxxzyysL2ryzvL
1sL3 Ñ

pλx.tqL1ryzCxvysL2ryzvsL
1L3 and s is an answer.

Lemma A.23 (Non-inert evaluation contexts are answers). Let C P EϑzE
˝
ϑ, i.e. an evaluation

context that is not inert. �en C has the form of an answer, i.e. it is either of the form pλx.C1qL,

or of the form pλx.tqL1ryzC
1sL2.

Proof. By induction on the derivation that C P Eϑ.

Lemma A.24 (Weakening ϑ). �e set ϑ can be weakened (i.e. extended) both for normal forms

and for evaluation contexts. More precisely, let ϑ Ď ϑ1. �en:

1. nfϑ Ď nfϑ1 and Sϑ Ď Sϑ1 .

2. Eϑ Ď Eϑ1 and E˝ϑ Ď E˝ϑ1 .
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Proof. �e �rst item is straightforward by induction on the derivation of a normal form. For
the second item, let Xϑ stand for either Eϑ or E˝ϑ and let us show that C P Xϑ implies C P Xϑ1

by induction on the formation rules for C as a context in Eϑ or E˝ϑ.
Most cases are straightforward by applying the i.h.. �e only subtle case is when C is built

by appending a non-structural substitution (rule ESubLNonStr), i.e. when C “ C1rxzts P Xϑ

with C1 P Xϑ, t R Sϑ and x R ϑ. �en we consider two subcases, depending on whether t is a
strong ϑ1-structure:

1. If t P Sϑ1 Note that ϑ Ď ϑ1 Ď ϑ1 Y txu so by i.h. we have that C1 P Xϑ1Ytxu. By applying
the formation rule for generalized ϑ1-evaluation contexts using a structural substitution
we conclude that C1rxzts P Xϑ1 , as wanted.

2. If t R Sϑ1 Note that x R ϑ1 by the variable convention (i.e. ϑ1 is a set of free variables,
but x is bound by a substitution). By i.h. we have that C1 P Xϑ1 . By applying the for-
mation rule for generalized ϑ1-evaluation contexts using a non-structural substitution
(ESubLNonStr) we conclude that C1rxzts P Xϑ1 , as wanted.

Lemma A.25 (Strengthening for normal forms). Let t be a pϑY txuq-normal form (resp. pϑY

txuq-structure).

1. If x R ngvptq, then t is a ϑ-normal form (resp. ϑ-structure).

2. If x P ngvptq, then t can be wri�en as t “ Cxxxyy where C is a (resp. inert) ϑ-evaluation

context.

Proof. �e �rst item is by induction on the derivation that t P nfϑY txu. �e second item is
by induction on the derivation that t P nfϑY txu, using the �rst item.

Lemma A.26 (Evaluation contexts are closed by adding substitutions). If C is a (resp. inert)

ϑ-evaluation context, then Crxzts is a (resp. inert) ϑ-evaluation context, provided that x R ϑ.

Proof. By case analysis on whether t is a strongϑ-structure, and the weakening lemma (Lem. A.24).

Lemma A.27 (Inversion for normal forms). If tL is a ϑ-normal form (resp. ϑ-structure) then t

is a fzϑpLq-normal form (resp. fzϑpLq-structure).

Proof. By induction on L.

A.2.2 Characterization of ϑ-normal forms — proof of Lem. 4.15

In this subsection we prove Lem. 4.15, which states that ϑ-normal forms as de�ned in Def. 4.11
are indeed the normal forms of the strategy ϑ

ù.

Lemma A.28. If t P nfϑ and t is not an answer, then t P Sϑ.

Proof. By induction on t P nfϑ.
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Lemma A.29. Variables below evaluation contexts are reachable. More precisely, if t “ Cxxxyy

where C P Eϑ (resp. t “ E˝ϑ), then x P ngvptq.

Proof. By induction on the derivation that C P Eϑ.

Lemma A.30 (Full proof of Lem. 4.15—Characterization of ϑ-normal forms). �e following

sets are equal:

• �e set of ϑ-normal forms nfϑ (cf. Def. 4.11).

• �e set of normal forms of the strong call-by-need strategy
ϑ

ù.

Proof. (Ě) Let t P NFp
ϑ

ùq. �en by induction on t, using Lem. A.28 and Lem. A.25 we can
check that t P nfϑ. (Ď) We prove the following more general property: nfϑY Sϑ Ď NFp

ϑ
ùq,

by taking a term t P nfϑYSϑ and proceeding by induction on the derivation that t P nfϑYSϑ.
�e interesting cases are n-app, nfSub, and nfSubG:

1. n-app: t “ t1t2 with t1 P Sϑ and t2 P nfϑ. By i.h., t1 P NFp
ϑ

ùq and t2 P NFp
ϑ

ùq. Since
t1 P Sϑ, then t1 is not an answer. �erefore t P NFp ϑ

ùq.

2. nfSub: t “ t1rxzt2s, where t1 P XϑYtxu and x P ngvpt1q and t2 P Sϑ. By i.h., t1 P NFp
ϑ

ùq

and t2 P NFp
ϑ

ùq. Finally, reduction at the root is not possible since t2 is a structure,
hence not an answer.

3. nfSubG: t “ t1rxzt2s, where t1 P Xϑ and x R ngvptq. By i.h., t1 P NFp
ϑ

ùq. By Lem. A.29,
reduction at the root is not possible. By the same lemma, the focus of reduction cannot
be any subterm in t2. �us t P NFp ϑ

ùq.

A.2.3 Unique decomposition — proof of Lem. 4.17

Our aim is to show that whenever C1xr1y “ C2xr2y, where C1 and C2 are evaluation contexts
over ϑ, and r1 and r2 are reducible subterms, then C1 “ C2 and r1 “ r2. A technical stumbling
block is that it is not possible to reason inductively: if a term is of the form Cxryrxztswhere r is
a reducible subterm, then in the subterm Cxry it is not necessarily the case that r is a reducible
subterm. For instance the underlined occurrence of x is a reducible subterm in pxxqrxzλy.ys
but not in xx. �e way out of this di�culty is generalizing the notion of reducible subterm
to that of reduction place. A reduction place is essentially a reducible subterm or the free
ocurrence of a variable. Reasoning inductively will be possible using reduction places, rather
than reducible subterms, since if r is a reduction place in Cxryrxzts then r is a reduction place
in Cxry. More precisely:

De�nition A.31 (Reduction place). In a term F ϑxty, the subterm t is said to be a F ϑ
-reduction

place if any of the following hold:

1. t is the redex pa�ern of a beta-step, i.e. t “ pλx.sqLu;
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2. t is the variable contracted by an ls-step, i.e. t “ x and F ϑ “ CxC1rxzvLsy;

3. t is a free variable (not bound by F ϑ) such that x R fzϑpF ϑq.

Lemma A.32 (Reduction places are stable by trimming a context down). Let F ϑ
1 xF

ϑ1

2 y P Eϑ,

and let t be a F ϑ
1 xF

ϑ1

2 y-reduction place. �en t is a F ϑ1

2 -reduction place.

Proof. Let us consider the three cases in Def. A.31 for the fact that t is a F ϑ
1 xF

ϑ1

2 y-reduction
place:

1. If t is the redex pa�ern of a beta-step �en t is trivially a F ϑ1

2 -reduction place.

2. If t is the variable contracted by an ls-step �at is, t “ x and x is bound to an answer
vL. �ere are two cases, depending on whether x is bound by the external context F ϑ

1

or by the internal context F ϑ1

2 :

2.1 If x is bound by F ϑ
1 .

�en x is not bound by F ϑ1

2 . To show that t “ x is indeed a F ϑ1

2 -reduction place,
it su�ces to show that x R fzϑ

1

pF ϑ1

2 q. By Lem. A.19 we know that fzϑ1pF ϑ1

2 q “

fzϑpF ϑ
1 xF

ϑ1

2 yq. Since x is bound by F ϑ
1 , let us write F ϑ

1 “ F ϑ
11xF

ϑ2

12 rxzvLsy. We
know that x R ϑ by Barendregt’s convention. By applying Lem. A.19 again we
obtain that fzϑpF ϑ

1 xF
ϑ1

2 yq “ fzϑ
3

pF ϑ2

12 xF
ϑ1

2 yrxzvLsq, where ϑ3 “ fzϑpF ϑ
11q. Note

that x is not bound by F ϑ
11, so x R ϑ3.

Now note that vL is an answer but not a structure, soϑ3 “ ϑ2 and fzϑ3pF ϑ2

12 xF
ϑ1

2 yrxzvLsq “

fzϑ
2

pF ϑ2

12 xF
ϑ1

2 yq. Note also that since x R ϑ3 and x is not bound by F ϑ2

12 xF
ϑ1

2 y we
know that x R fzϑ

2

pF ϑ2

12 xF
ϑ1

2 yq. Finally, we may apply Lem. A.19 once more to
conclude that x R fzϑ

2

pF ϑ2

12 xF
ϑ1

2 yq “ fzϑ
1

pF ϑ1

2 q, by which we conclude that x is a
F ϑ1

2 -reduction place, as required.

2.2 If x is bound by F ϑ1

2 .

�en t “ x is trivially a F ϑ1

2 -reduction place, as it is the variable contracted by an
ls-step.

3. If t is a free variable x such that x R fzϑpF ϑ
1 xF

ϑ1

2 yqAs x is not bound byF ϑ
1 xF

ϑ1

2 y, we have
that x is also not bound by F ϑ1

2 . Moreover, by Lem. A.19 we have that fzϑpF ϑ
1 xF

ϑ1

2 yq “

fzfz
ϑpFϑ1 qpF ϑ1

2 q. Since the composition F ϑ
1 xF

ϑ1

2 y is a context in Eϑ, by the decomposition
of evaluation contexts (Lem. A.20) we know that fzϑpF ϑ

1 q “ ϑ1, so we conclude that
x R fzϑpF ϑ

1 xF
ϑ1

2 yq “ fzϑ
1

pF ϑ1

2 q, so t is a F ϑ1

2 -reduction place, as required.

Lemma A.33 (Strong normal forms have no reduction places under an evaluation context).
Let Nϑ P nfϑ be a strong normal form. �en Nϑ

cannot be wri�en as F ϑxty such that F ϑ P Eϑ
is a generalized evaluation context and t is an F ϑ

-reduction place.

Proof. Suppose that Nϑ “ F ϑxty, where t is a F ϑ-reduction place. Let us check that this is
impossible by induction on F ϑ.
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1. EBox, i.e. F ϑ “ l �en Nϑ must be a l-reduction place, for l as a context in Eϑ. Let
us consider the three cases of the de�nition of l-reduction place:

1.1 If Nϑ
is the redex pa�ern of a beta-step.

�enNϑ “MϑNϑ
1 withMϑ an answer. But strong structures are not answers, so

this case is impossible.

1.2 If Nϑ
is the variable x contracted by an ls-step.

Impossible, since x is free.

1.3 If Nϑ
is a free variable x such that x R fzϑplq.

Impossible, since x R ϑ, but a variable x is a strong normal form in nfϑ if and only
if x P ϑ.

2. EAppL, i.e. F ϑ “ Iϑ s �en since F ϑxty is a ϑ-normal form, the subterm Iϑxty must
also be a ϑ-normal form. Moreover t is a a Iϑ-reduction place by Lem. A.32. By i.h. we
conclude that this is impossible.

3. ESubLNonStr, ESubLStr, ESubsR, EAppRStr, ELam Similar to EAppL.

Lemma A.34 (Full proof of Lem. 4.17—Unique decomposition). If F ϑ
1 xt1y “ F ϑ

2 xt2y such that

ti is a F ϑ
i -reduction place for i P t1, 2u, then F ϑ

1 “ F ϑ
2 and t1 “ t2.

Proof. By induction on the derivation of F ϑ
1 as a context in Eϑ:

1. EBox, F ϑ
1 “ l By cases on the de�nition that t1 is a F ϑ

1 -reduction place:

1.1 If t1 is the redex pa�ern of a beta-step Suppose that F ϑ
2 were not empty. Let t1 “

pλx.sqLu. �en F ϑ
2 xt2y “ pλx.sqLu. By Lem. A.21 we have that L can be split as

L “ L1L2 such that F ϑ
2 “ L2 u. �is means that t2 “ pλx.sqL1, so t2 cannot be a

F ϑ
2 -reduction place, as it is neither an application nor a variable. Hence this case

is impossible.

1.2 If t1 is a variable x contracted by an ls-step Impossible, as there is no substitution
binding x.

1.3 If t1 is a free variable x such that x R fzϑpF ϑ
1 q “ ϑ Immediate, as F ϑ

2 “ l so
t2 “ x R ϑ “ fzϑpF ϑ

2 q.

2. EAppL, i.e. F ϑ
1 “ Iϑ1 s �en Iϑ1xt1y s “ F ϑ

2 xt2y. By case analysis on the formation rules
for F ϑ

2 . Note that F ϑ
2 cannot be empty, since the symmetric situation has already been

considered.

2.1 EAppL, i.e. F ϑ
2 “ Iϑ2 s �en Iϑ1xt1y “ Iϑ2xt2y. �e contexts Iϑ1 and Iϑ2 are both in

E˝ϑ and hence also in Eϑ, and each ti is a Iϑi -reduction place (by Lem. A.32), so by
i.h. we have pIϑ1 , t1q “ pIϑ2 , t2q.
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2.2 EAppRStr, i.e. F ϑ
2 “ Mϑ F ϑ

21 �is implies that Mϑ “ Iϑ1xt1y where t1 is a Iϑ1 -
reduction place. A strong normal form such as Mϑ cannot have a reduction place
such as t1 under an evaluation context such as Iϑ1 . �is last fact is a direct appli-
cation of Lem. A.33.

3. ESubLNonStr, i.e. F ϑ
1 “ F ϑ

11rxzss with s R Sϑ and x R ϑ By case analysis on the
formation rules for F ϑ

2 . Note that F ϑ
2 cannot be empty, since the symmetric situation

has already been considered.

3.1 ESubLNonStr, i.e. F ϑ
2 “ F ϑ

21rxzss Note that each ti is a F ϑ
i1-reduction place by

Lem. A.32. By the i.h. on F ϑ
1 we have that pF ϑ

1 , t1q “ pF
ϑ
2 , t2q, so we conclude.

3.2 ESubLStr, i.e. F ϑ
2 “ F

ϑYtxu
21 rxzMϑs �is case is impossible, as the formation rule

for F ϑ
1 implies that s R Sϑ, while the formation rule for F ϑ

2 implies that s “Mϑ P

Sϑ.

3.3 ESubsR, i.e. F ϑ
2 “ F ϑ

21xxxyyrxzI
ϑs We claim that this case is impossible. Note that

we have that F ϑ
11xt1y “ F ϑ

21xxxyy, where t1 is a F ϑ
11-reduction place by virtue of

Lem. A.32. Moreover x R ϑ, and x is not bound by F ϑ
21 (by Barendregt’s conven-

tion), so x R fzϑpF ϑ
21q; these conditions imply that x is a F ϑ

21-reduction place. �is
allows us to apply the i.h., obtaining pF ϑ

11, xq “ pF ϑ
21, t1q. Since t1 “ x is a F ϑ

1 -
reduction place by hypothesis, and x is bound by F ϑ

1 , we conclude that it must be
involved in an ls-step. �is implies that the substitution rxzss contains an answer,
that is, s “ vL. But from the formation rule of F ϑ

2 , we also know that s “ Iϑxt2y.
So the situation is such that Iϑxt2y “ vL. By the fact that inert evaluation contexts
such as Iϑ do not go below answers (Lem. A.21) we conclude that t2 must be of
the form vL1. �is is a contradiction, as t2 is a F ϑ

2 -reduction place, which means
that it must be either an application or a variable.

4. ESubLStr, i.e. F ϑ
1 “ F

ϑYtxu
11 rxzMϑs By case analysis on the formation rules for F ϑ

2 .
Note that F ϑ

2 cannot be empty, nor built using ESubLNonStr or ESubLStr, since the
symmetric situations have already been considered.

4.1 ESubLStr, i.e. F ϑ
2 “ F

ϑYtxu
21 rxzMϑs �en each ti is a F ϑYtxu

i1 -reduction place as
a consequence of Lem. A.32, so we may apply the i.h. to conclude pF ϑYtxu

11 , t1q “

pF
ϑYtxu
21 , t2q, as required.

4.2 ESubsR, i.e. F ϑ
2 “ F ϑ

21xxxyyrxzI
ϑs �en we have that Mϑ “ Iϑxt2y. Note that

t2 is a Iϑ-reduction place by Lem. A.32. �is is impossible since Mϑ is a strong
normal form, and it might not have a reduction place under an evaluation context
(Lem. A.33).

5. ESubsR, i.e. F ϑ
1 “ F ϑ

11xxxyyrxzI
ϑ
1 s By case analysis on the formation rules for F ϑ

2 . Note
that F ϑ

2 cannot be empty, nor built using ESubLNonStr, ESubLNonStr, or ESubLStr,
since the symmetric situations have already been considered. �e only remaining pos-
siblity is that F ϑ

2 is built using ESubsR, i.e. F ϑ
2 “ F ϑ

21xxxyyrxzI
ϑ
2 s. �en each ti is a
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Iϑi -reduction place, as a consequence of Lem. A.32. By applying the i.h. we obtain that
pIϑ1 , t1q “ pI

ϑ
2 , t2q, as required.

6. EAppRStr, i.e. F ϑ
1 “Mϑ

1 F
ϑ
11 By case analysis on the formation rules for F ϑ

2 . Note that
F ϑ

2 cannot be empty, nor built using EAppL, since the symmetric situations have already
been considered. �e only remaining possiblity is that F ϑ

2 is built using EAppRStr, i.e.

F ϑ
2 “Mϑ

2 F
ϑ
21. �en each ti is a F ϑ

i1-reduction place, as a consequence of Lem. A.32. By
applying the i.h. we conclude that pF ϑ

11, t1q “ pF
ϑ
21, t2q, as required.

7. ELam, i.e. F ϑ
1 “ λx.F

ϑYtxu
11 �en F ϑ

2 cannot be empty (the symmetric situation was
already considered), so F ϑ

2 must be of the form λx.F
ϑYtxu
21 . By Lem. A.32 we know

that each ti must be a F ϑ
i1-reduction place, so we may apply the i.h. to conclude that

pF ϑ
11, t1q “ pF

ϑ
21, t2q, as required.

A.2.4 Conservativity — proof of �m. 4.23

In this section we give a proof of �m. 4.23, which states that our strong call-by-need strategy
is a conservative extension of weak call-by-need. �e proofs developed in this section rely
on an alternative characterization of weak normal forms. �e set of weak normal forms is
captured by WNFϑ ::“ vL | Exxxyy with x P ϑ. �e alternative characterization presented
below is convenient for carrying out the proofs.

De�nition A.35 (Head reachable variables). �e set of head reachable variables of a term is
de�ned as follows. Note that hrvptq Ď fvptq.

hrvpxq
def
“ txu

hrvptsq
def
“ hrvptq

hrvpλx.tq
def
“ ∅

hrvptrxzssq
def
“ phrvptqzxq Y

#

hrvpsq if x P hrvptq
∅ otherwise

�e set of ϑ-weak normal forms (Nw
ϑ ), is de�ned below, mutually inductively with the set

of ϑ-weak structures (Sw
ϑ ). Here, Xϑ stands for either the set Nw

ϑ or the set Sw
ϑ :

x P ϑ
nw-var

x P Sw
ϑ

t P Sw
ϑ nw-app

ts P Sw
ϑ

t P Sw
ϑ nw-incl

t P Nw
ϑ

nw-lam
λx.t P Nw

ϑ

t P XϑYtxu x P hrvptq s P Sw
ϑ nw-sub‚

trxzss P Xϑ

t P Xϑ x R hrvptq
nw-sub˝

trxzss P Xϑ

Lemma A.36. Nw
ϑ “ WNFϑ

Proof. Straightforward by induction on the derivations.

Lemma A.37. Let t P WNFϑ or t P Sw
ϑ . �en x P hrvptq implies x P ϑ.
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Proof. By simultaneous induction on the derivation that t P WNFϑ or t P Sw
ϑ . �e cases

nw-var, nw-incl, and nw-lam are immediate.

1. nw-app: t “ t1 t2 with t1 P Sw
ϑ . �en x P hrvpt1q and we conclude by i.h..

2. nw-sub‚: t “ t1ryzt2s and t1 P XϑYtxu and x P hrvpt1q and t2 P Sw
ϑ . Recall that:

hrvpt1ryzt2sq
def
“ phrvpt1qzyq Y

#

hrvpt2q if y P hrvpt1q
∅ otherwise

If x P hrvpt1ryzt2sq, there are two cases. Either x P hrvpt2q and we conclude from the
i.h.. Otherwise, x P hrvpt1qzy. �en x ‰ y and we also conclude from the i.h. too.

3. nw-sub˝: t “ t1ryzt2s with t1 P Xϑ and y R hrvpt1q �erefore, hrvpt1ryztsq “ hrvpt1qzy.
Suppose x P hrvpt1qzy. �en x ‰ y and x P hrvpt2q and we conclude using the i.h.

again.

Lemma A.38. If s P Sw
ϑ is a weak structure then hrvpsq is a singleton.

Proof. By induction on the derivation that s P Sw
ϑ . �e cases nw-var and nw-app are immedi-

ate.

1. nw-sub˝: �en t “ t1rxzt2s with x R hrvpt1q and t2 P Sw
ϑ . �us hrvptq “ hrvpt1qzx “

hrvpt1q and the result follows from the i.h. on t1.

2. nw-sub‚: �en t “ t1rxzt2s with t1 P Sw
ϑYtxu and x P hrvpt1q and t2 P Sw

ϑ . By the i.h.

hrvpt1q “ tzu, for some variable z. We consider two cases:

2.1 If x P hrvpt1q. �en z “ x and hrvpt1rxzt2sq “ hrvpt1qzx Y hrvpt2q “ hrvpt2q. �e
result follows from the i.h. on t2.

2.2 If x R hrvpt1q. �en hrvpt1rxzt2sq “ hrvpt1qzx “ hrvpt1q “ tzu.

Lemma A.39. Let t P Sw
ϑ . If x P hrvptq, then there is a weak evaluation context E P WCtx such

that t “ Exxxyy.

Proof. By induction on the derivation that t P Sw
ϑ .

1. nw-var: t “ x with x P ϑ. Take E “ l.

2. nw-app: t “ t1 t2 with t1 P Sw
ϑ . Resort to the i.h. to obtain E1 and set E def

“ E1 t2.

3. nw-sub˝: t “ t1ryzt2s with t1 P Sw
ϑ and y R hrvpt1q. �us hrvptq “ hrvpt1qzy “ hrvpt1q.

�erefore x P hrvpt1q, hence x ‰ y, and the i.h. yields E1 such that t1 “ E1rxs. We
conclude by se�ing E

def
“ E1ryzts.
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4. nw-sub‚: t “ t1ryzt2s and t1 P Sw
ϑYtxu and y P hrvpt1q and t2 P Sw

ϑ . By the i.h. there
exists E1 such that t1 “ E1xxyyy. Also, hrvpt1ryzt2sq “ hrvpt1qzy Y hrvpt2q “ hrvpt2q.
�e last equality follows from Lem. A.38. �us x P hrvpt2q and the i.h., again, yields E2

such that t1 “ E2xxxyy. We conclude by se�ing E
def
“ E1xxyyyryzE2s.

Remark A.40. Strong structures are also weak structures, i.e. Sϑ Ď Sw
ϑ .

Remark A.41 (Weakening). If s P Sw
ϑ is a weak structure then s P Sw

ϑYtxu.
Note: technically we require that x does not occur bound in s, which we can always guarantee
by α-conversion.

Lemma A.42. If Iϑ is an inert evaluation context, then Iϑxxxyy P Sw
ϑYtxu.

Proof. By induction on the derivation that Iϑ P E˝ϑ.

1. EBox, Iϑ “ l. �en x P ϑY txu and the result follows from nw-var.

2. EAppL, Iϑ “ Iϑ1 t. By the i.h. on Iϑ1 and nw-app.

3. EAppRStr, Iϑ “ t1 F
ϑ with t1 P Sϑ. By Rem. A.40, t1 P Sw

ϑ . Since x does not occur
bound in t1, by Rem. A.41, t1 P Sw

ϑYtxu. We conclude using nw-app.

4. ESubLNonStr, Iϑ “ Iϑ1 ryzts with t R Sϑ and y R ϑ. By the i.h. Iϑ1xxxyy P Sw
ϑYtxu.

Moreover, y R ϑ and, by the statement of the result, also y ‰ x. Hence y R ϑY txu. We
conclude from Lem A.37 and nw-sub˝.

5. ESubLStr, Iϑ “ I
ϑYtyu
1 ryzt2s with t2 P Sϑ. By the i.h. I

ϑYtyu
1 xxxyy is a ϑ Y tx, yu-

structure. Moreover, from Rem. A.40, t2 P Sw
ϑ . We may assume that y does not occur in

t2. We conclude using nw-sub˝or nw-sub‚, depending on whether y P hrvpI
ϑYtyu
1 xxxyyq

or not.

6. ESubsR, Iϑ “ Iϑ1xxyyyryzI
ϑ
2 s. By the i.h. Iϑ1xxyyy P Sw

ϑYtyu. By by Rem. A.41 Iϑ1xxyyy P

Sw
ϑYtx,yu. We conclude usingnw-sub˝ornw-sub‚, depending on whether y P hrvpIϑ1xxxyyq

or not.

Lemma A.43 (Strengthening). If s P Sw
ϑYtxu is a weak structure and x R hrvpsq, then s P Sw

ϑ .

Proof. By induction on the derivation that s P Sw
ϑYtxu.

Lemma A.44. Let Iϑ P E˝ϑ be an inert evaluation context. If Iϑrss R Sw
ϑ , then Iϑ P WCtx.

Proof. By induction on the derivation that Iϑ P E˝ϑ. �e case EBoxis immediate:

1. EAppL, Iϑ1 t. Since Iϑrss R Sw
ϑ , then Iϑ1 rss R Sw

ϑ . �us by i.h. Iϑ1 P WCtx. Hence also
Iϑ P WCtx.
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2. ESubLNonStr, Iϑ1 rxzts with t R Sϑ, x R ϑ. Note that Iϑ1 rss R Sw
ϑ for otherwise by x R ϑ

and Lem. A.37, we would have Iϑrss P Sw
ϑ . �erefore Iϑ1 P WCtx by the i.h. and hence

also Iϑ P WCtx.

3. ESubLStr, IϑYtxu1 rxzts with t P Sϑ. Note that IϑYtxu1 rss R Sw
ϑYtxu, for otherwise Iϑrss P

Sw
ϑ given that t P Sϑ and Rem. A.40. �us IϑYtxu1 P WCtx by the i.h. and hence also

Iϑ P WCtx.

4. ESubsR, Iϑ1xxxyyrxzIϑ2 s. By Lem. A.42, Iϑ1xxxyy is in Sw
ϑYtxu. Now it must be the case

that x P hrvpIϑ1xxxyyq for otherwise Iϑ1xxxyyrxzIϑ2 rsss P Sw
ϑ , contradicting the hypothesis.

Moreover,

• Iϑ2 rss must not be a weak structure for otherwise, again, Iϑ1xxxyyrxzIϑ2 rsss would
be a weak structure. �us we can apply the i.h. on Iϑ2 and deduce that Iϑ2 P WCtx.

• From x P hrvpIϑ1xxxyyq and Lem. A.39, we deduce the existence of E1 such that
E1xxxyy “ Iϑ1xxxyy.

We thus set E def
“ E1xxxyyrxzI

ϑ
2 s.

5. EAppRStr, t F ϑ with t P Sϑ. In this case, Rem. A.40 implies t F ϑ is a weak structure,
contradicting the hypothesis. So this case is not possible.

Lemma A.45. If F ϑ P Eϑ is an evaluation context such that F ϑxxxyy R WNFϑ then F ϑ P WCtx.

Proof. Note that F ϑxxxyy R WNFϑ so it is not an answer. �en, by the contrapositive of
Lem. A.23, the evaluation context F ϑ must be inert, i.e. F ϑ P E˝ϑ. Note moreover that
F ϑxxxyy R Sw

ϑ , so by Lem. A.44 we conclude.

Lemma A.46. Let F ϑ P Eϑ and y P hrvpF ϑrxsq with x ‰ y. �en y P hrvpF ϑrtsq, for any term

t.

Proof. We show this for F ϑ P Xϑ, where Xϑ stands for either the set Eϑ or the set E˝ϑ, by
induction on the derivation that F ϑ P Xϑ.

1. EBox, l. Holds trivially since y R hrvpF ϑrxsq.

2. EAppL, Iϑ t. Follows from i.h. and the de�nition of head reachable variables.

3. ESubLNonStr, F ϑ
1 rzzts with t R Sϑ and z R ϑ. If z P hrvpF ϑ

1 xxxyyq, then we resort to
the i.h.. If z P hrvpF ϑ

1 xxxyyq and y P hrvptq, then we use the i.h. with respect to z and
F ϑ

1 xxxyy.

4. ESubLStr, F ϑYtzu
1 rzzss with s P Sϑ. Similar to the previous case.

5. ESubsR, F ϑ
1 xxzyyrzzI

ϑs. If y P hrvpF ϑ
1 xxzyyq, the result is immediate. If z P hrvpF ϑ

1 xxzyyq

and y P Iϑxxxyy, then we resort to the i.h. on Iϑ.
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6. EAppRStr, s F ϑ
1 with s P Sϑ. Immediate.

7. ELam, λy.F ϑYtyu
1 . �is case is not possible since hrvpλy.F

ϑYtyu
1 xxxyyq “ ∅.

Lemma A.47. Let Xϑ
stand for either WNFϑ or Sw

ϑ . If x R hrvpF ϑrxsq and F ϑrxs P Xϑ
, then

F ϑrts P Xϑ
.

Proof. By simultaneous induction on F ϑrxs P WNFϑ and F ϑrxs P Sw
ϑ . �e nw-var, nw-incl,

and nw-lam cases are immediate.

1. nw-app: F ϑrxs “ t1t2 with t1 P Sw
ϑ . �en two cases are possible:

• t1t2 “ Iϑ t2. We resort to the i.h..

• t1t2 “ t1 F
ϑ
1 . �e result is immediate.

2. nw-sub‚: F ϑrxs “ t1ryzt2s with t1 P XϑYtyu and y P hrvpt1q and t2 P Sw
ϑ . �e following

further cases are considered:

• F ϑrxs “ F ϑ
1 rxsryzt2s with t2 R Sϑ and y R ϑ. �e result follows from the i.h. on

F ϑ
1 and Lem. A.46.

• F ϑrxs “ F
ϑYtyu
1 rxsryzt2s with t2 P Sϑ. �e result follows from the i.h. and

Lem A.46.

• F ϑrxs “ F ϑ
1 xxyyyryzI

ϑrxss and t2 “ Iϑrxs. Since y P hrvpt1q, then x R hrvpIϑrxsq.
�erefore we conclude from the i.h. on Iϑ.

3. nw-sub˝: F ϑrxs “ t1ryzt2s with t1 P Xϑ and y R hrvpt1q. �e following cases are
possible:

• F ϑrxs “ F ϑ
1 rxsryzt2s with t2 R Sϑ and y R ϑ. �e result follows from the i.h.

• F ϑrxs “ F
ϑYtyu
1 rxsryzt2s with t2 P Sϑ. �e result follows from the i.h.

• F ϑrxs “ F ϑ
1 xxyyyryzI

ϑrxss and t2 “ Iϑrxs. �e result is immediate.

Lemma A.48. Let r be a redex and Xϑ
stand for either Sw

ϑ or WNFϑ. If F ϑrrs P Xϑ
, then

hrvpF ϑrrsq “ hrvpF ϑrssq, for any s. �is also holds, in particular, if F ϑ
is an inert evaluation

context.

Proof. By induction on the derivation that F ϑrrs P Xϑ. �e nw-var, nw-incl, and nw-lam
cases are immediate.

1. nw-app: F ϑrrs “ t1t2 with t1 P Sw
ϑ . �en two cases are possible:

• t1t2 “ Iϑ t2. We resort to the i.h. with respect to item (2).

• t1t2 “ t1 F
ϑ
1 . �e result is immediate.
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2. nw-sub‚: F ϑrrs “ t1ryzt2s with t1 P XϑYtyu and y P hrvpt1q and t2 P Sw
ϑ . �e following

further cases are considered:

• F ϑrrs “ F ϑ
1 rrsryzt2s with t2 R Sϑ and y R ϑ. �e result follows from the i.h. on

F ϑ
1 rrs.

• F ϑrrs “ F
ϑYtyu
1 rrsryzt2swith t2 P Sϑ. �e result follows from the i.h. onF ϑYtyu

1 rrs.

• F ϑrrs “ F ϑ
1 xxyyyryzI

ϑrrss and t2 “ Iϑrxs. �e result follows from the i.h. on
Iϑrxs.

3. nw-sub˝: F ϑrrs “ t1ryzt2s with t1 P Xϑ and y R hrvpt1q. �e following cases are
possible:

• F ϑrrs “ F ϑ
1 rrsryzt2s with t2 R Sϑ and y R ϑ. �e result follows from the i.h.

• F ϑrrs “ F
ϑYtyu
1 rrsryzt2s with t2 P Sϑ. �e result follows from the i.h.

• F ϑrrs “ F ϑ
1 xxyyyryzI

ϑrrss and t2 “ Iϑrrs. �e result follows from the i.h..

Lemma A.49. Let Xϑ
stand for either WNFϑ or Sw

ϑ . If t
ϑ

ùr u and t P Xϑ
, then u P Xϑ

.

Proof. By induction on the derivation that t P Xϑ. �e nw-var, nw-incl, and nw-lam cases
are immediate.

1. nw-app: t “ t1t2 and t1 P Sw
ϑ . �en t1 t2 “ F ϑrrs and we have two further cases. If

t1 R Sϑ, then it must be the case that F ϑrrs “ Iϑrrs t2 and the result follows from
the i.h. with respect to item (2) and nw-app. If t1 P Sϑ, then it must be the case that
F ϑrrs “ t1 F

ϑ
1 rrs and the result is immediate from nw-app.

2. nw-sub‚: t “ t1rxzt2s and t1 P XϑYtxu, x P hrvpt1q, t2 P Sw
ϑ . Note that F ϑ “ l is not

possible since t2 is not an answer. �us one of the following holds:

• F ϑrrs “ F ϑ
1 rrsrxzt2swith t2 R Sϑ and x R ϑ. By Lem. A.37 this case is not possible.

• F ϑrrs “ F
ϑYtxnu
1 rrsrxzt2s with t2 P Sϑ. �e result follows from the i.h. and nw-

sub‚or nw-sub˝.

• F ϑrrs “ F ϑ
1 xxxyyrxzI

ϑrrss and t2 “ Iϑrrs. We use the i.h. with respect to item (2)
on t2 and then conclude using either nw-sub‚.

3. nw-sub˝: t “ t1rxzt2s and t1 P Xϑ and x R hrvpt1q. One of the following holds:

• F ϑ “ l. t1 “ F ϑ
1 xxxyy and t2 is an answer. By Lem. A.47, F ϑ

1 xxt2yy P WNFϑ. �us
we conclude using nw-sub˝. A similar argument applies if X “ Sw.

• F ϑrrs “ F ϑ
1 rrsrxzt2s with t2 R Sϑ and x R ϑ. �e result follows from the i.h. and

Lem A.48 (which guarantees that x R hrvpt11q, where t11 is the reduct of F ϑ
1 rrs).

• F ϑrrs “ F
ϑYtxu
1 rrsrxzt2s with t2 P Sϑ. �e result follows from the i.h.
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• F ϑrrs “ F ϑ
1 xxxyyrxzI

ϑrrss and t2 “ Iϑrrs. �e result is immediate.

�eorem A.50 (Full proof of �m. 4.23—Conservativity). If t0
ϑ

ù t1
ϑ

ù . . . tn´1
ϑ

ù tn
there exists an 1 ď i ď n such that the three following conditions hold:

1. t0
W
ùt1

W
ù . . . tn´1

W
ùti

2. ti
ϑzW
ù ti`1

ϑzW
ù . . . tn´1

ϑzW
ù tn

3. If i ă n, then tj P N
w
ϑ for all i ď j ď n.

Proof. Let Cixxxyy be the context selected at step ti
ϑ

ù ti`1. If Cixxxyy R Sw
ϑ and Cixxxyy not an

answer, then Ci P WCtx (cf. Lem A.45 in Appendix) and hence step ti
ϑ

ù ti`1 is also a weak
step. If, moreover, this happens for every step i with i P 1..n, then we are done. Otherwise,
let j P 1..n be the �rst index such that either Cjxxxyy P Sw

ϑ or Cjxxxyy not an answer. �en
all subsequent steps are non-weak steps; this follows from the fact that weak call-by-need
reduction preserves both answers and weak structures (cf. Lem. A.49).

A.2.5 Commutation — proof of Lem. 4.49 and Lem. 4.50

In this section we give a proof of the backward stability by internal steps result stated in
Lem. 4.49, and the postponement of internal steps result stated in Lem. 4.50. �ese proofs
are long and technical. Before being able to give a complete proof, we need many auxiliary
lemmas. �e items in the statement of Lem. 4.49 are sca�ered throughout various lemmas: the
�rst item of Lem. 4.49 is proved in Lem. A.51 (backward stability of answers) and Lem. A.52
(backward stability of db-redexes); the second item of Lem. 4.49 is proved in Lem. A.69 (back-
ward stability of normal forms); the third item of Lem. 4.49 is proved in Lem. A.70 (backward
stability of evaluation contexts).

�e rest of this section is organized in subsections as follows. Sec. A.2.5 deals with back-
ward stability of answers and db-redexes. Sections A.2.5–A.2.5 introduce auxiliary notions
and results: the set of structural variables of an evaluation context (Sec. A.2.5), critical con-
texts (Sec. A.2.5), an analysis of the context that results from replacing a value by a variable
in an evaluation context (Sec. A.2.5), a solution for a uni�cation problem with evaluation con-
texts (Sec. A.2.5), and non-garbage contexts (Sec. A.2.5). Backward stability is then addressed
for normal forms (Sec. A.2.5) and evaluation contexts (Sec. A.2.5). Finally we turn to the post-
ponement result itself (Sec. A.2.5).

As a notational remark, in this section we use anchor of a redex to refer to the underlined
subterm in each of the following cases:

1. db-redex: Cxpλx.tqL sy, i.e., the anchor is the pa�ern of the db-redex.

2. lsv-redex: C1xC2xxxyyrxzvLsy, i.e., the anchor is the occurrence of x substituted by the
lsv-step.
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Backward stability of answers and db-redexes by internal steps

In this subsection we tackle the �rst item of Lem. 4.49. We recall the statement: if t0
 ϑ
ÝÝÑsh t

and t is an answer (resp. a db redex), then t0 must also be an answer (resp. a db redex).
Backward stability of db redexes is necessary to show that internal steps can be postponed in
a situation like t0

 ϑ
ÝÝÑsh pλx.tqLs

ϑ
ù trxzssL, to ensure that there is a db step at the root of

t0. Backward stability of answers is necessary to show that internal steps can be postponed
in a situation like xrxzt0s

 ϑ
ÝÝÑsh xrxzvLs

ϑ
ù vrxzvsL. In that case it can be argued that the

step t0 Ñ vL has to be internal, so t0 is an answer and there is a lsv step at the root of t0.

Lemma A.51 (Backward stability of answers). Let t0
 ϑ
ÝÝÑsh pλx.sqL “ t be a ϑ-internal step.

�en the source of the step is of the form t0 “ pλx.s0qL0. Moreover, the anchor of the step is not

below a substitution context, i.e. it is inside s0 or inside one of the arguments of L0.

Proof. By induction on the context C under which the step takes place:

1. Empty, C “ l Note that the step cannot be a db step, as it would then be a ϑ-external
step, since l P Eϑ.

So the step must be a lsv step, contracting the outermost substitution, that is, t0 “
C1xxyyyryzvL2s

 ϑ
ÝÝÑsh C1xvyryzvsL2 “ t. Note that C1xvy “ pλx.sqL1 where L “

L1ryzvsL2.

We claim that C1 is not a substitution context. By contradiction, suppose that C1 is
a substitution context. �en the lsv step t0 “ yL1ryzvL2s

 ϑ
ÝÝÑsh vL1ryzvsL2 “ t is

ϑ-external since L1ryzvL2s P Eϑ. �is contradicts the assumption that the step is ϑ-
internal.

Now, since C1xvy “ pλx.sqL1, there are two cases, depending on the position of the hole
of C1:

1.1 �e hole of C1 lies inside s �en C1 “ pλx.C2qL1, and the step is of the form t0 “

pλx.C2xxyyyqL1ryzvL2s
 ϑ
ÝÝÑsh pλx.C2xvyqL1ryzvsL2 “ t. By taking s0 :“ C2xxyyy and

L0 :“ L1ryzvL2s we conclude.

1.2 �e hole of C1 lies inside L1 �en C1 “ pλx.sqL11rzzC2sL12 where L1 “ L11rzzC2xvysL12,
and the step is of the form t0 “ pλx.sqL11rzzC2xxyyysL12ryzvL2s

 ϑ
ÝÝÑsh pλx.sqL11rzzC2xvysL12ryzvsL2 “

t. By taking s0 :“ s and L0 :“ L11rzzC2xxyyysL12ryzvL2s we conclude.

Note that, as already argued, in both cases, the anchor of the step is not below a substi-
tution context.

2. Inside an abstraction, C “ λx.C1 �e step is of the form t0 “ λx.C1xr0y
 ϑ
ÝÝÑsh λx.C

1xry “

t, so L “ L0 “ l, with s0 “ C1xr0y and s “ C1xry. Note that the anchor of the step is
inside s0, hence not below a substitution context.

3. Le� of an application, C “ C1 u Impossible, since the step would be of the form t0 “

C1xr0yu
 ϑ
ÝÝÑsh C

1xryu “ t but t is not an application.
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4. Right of an application, C “ u C1 Impossible, analogous to the previous case.

5. Le� of a substitution, C “ C1ryzus �en the step is of the form t0 “ C1xryryzus
 ϑ
ÝÝÑsh

C1xr1yryzus “ pλx.sqL1ryzus “ t, where L “ L1ryzus. We consider two cases, depending
on whether u is a strong ϑ-structure:

5.1 If u P Sϑ Note that the isomorphic step C1xryÑshzgcpλx.sqL
1, taking place under the

context C1, cannot be pϑYtyuq-external, since then the fact that C1 P EϑYtyu would
imply that C1ryzus P Eϑ, and the original step would be ϑ-external, contradicting
the hypothesis.
Hence the step C1xry

 ϑYtyu
ÝÝÝÝÑsh pλx.sqL

1 is pϑYtyuq-internal. By i.h. we have that
C1xry “ pλx.s0qL

1
0, so the source of the original step is of the form C1xryryzus “

pλx.s0qL
1
0ryzus. By i.h., we also have that the anchor of the step is either inside s0,

or inside one of the arguments of L10 By taking L0 :“ L10ryzus we conclude.

5.2 If u R Sϑ Similar to the previous case: the isomorphic step C1xry Ñshzgc pλx.sqL
1,

taking place under the context C1, cannot be ϑ-external, as this would imply that
the original step is ϑ-external.
So it must be ϑ-internal and we may apply the i.h. to conclude that C1xry “
pλx.s0qL

1
0 and, moreover, that the anchor of the step is either inside s0, or inside

one of the arguments of L10. �is means that the source of the original step is of
the form C1xryryzus “ pλx.s0qL

1
0ryzus, as required.

6. Inside a substitution, C “ uryzC1s �en it must be the case that u “ pλx.sqL1 and the
step is of the form pλx.sqL1ryzC1xrys

 ϑ
ÝÝÑsh pλx.sqL

1ryzC1xr1ys, with L “ L1ryzC1xr1ys. By
taking s0 :“ s and L0 :“ L1ryzC1xrys we conclude. Note that the anchor of the step is
inside one of the arguments of L0, as required.

Lemma A.52 (Backward stability of db-redexes). Let t0
 ϑ
ÝÝÑsh pλx.sqLu “ t be a ϑ-internal

step. �en the source of the step is of the form t0 “ pλx.s0qL0 u0. Moreover, the anchor of the

step is not below a context of the form L1 u0, i.e. it is inside s0, inside one of the arguments of L0,

or inside u0.

Proof. By case analysis on the shape of the context C under which the step takes place. �e
interesting case is when going to the le� of an application, that is C “ C1 u. �en the step
is of the form C1xryu

 ϑ
ÝÝÑsh C1xr1yu. Consider the isomorphic step C1xry Ñshzgc C

1xr1y takes
place under the context C1. We consider two cases, depending on whether C1 is an generalized
evaluation context over ϑ:

1. If C1 P Eϑ Note that C1 is not an inert evaluation context, i.e. C1 R E˝ϑ, since otherwise we
would have C1 u P Eϑ, which means that the original step is ϑ-external. So C1 P EϑzE

˝
ϑ

and by Lem. A.23 we know that C1 has the form of an answer. More precisely, there are
two subcases:
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1.1 �e context C1 is of the form pλx.C2qL�en the original step is t0 “ pλx.C2xryqL s
 ϑ
ÝÝÑsh

pλx.C2xr1yqL s “ t. Taking s0 :“ C2xry, with L0 “ L and u0 “ u we conclude.

1.2 �e context C1 is of the form pλx.sqL1ryzC
2sL2 �en the original step is of the

form t0 “ pλx.sqL1ryzC
2xrysL2 s

 ϑ
ÝÝÑsh pλx.sqL1ryzC

2xr1ysL2 s “ t. By taking
L0 :“ L1ryzC

2xrysL2, with s0 “ s and u0 “ u we conclude.

2. If C1 R Eϑ �en the step C1xryÑshzgc C
1xr1y “ pλx.sqL is ϑ-internal, so since answers are

backward stable by internal steps (Lem. A.51) we have that C1xry “ pλx.s0qL0 and the
anchor of the step is not below a substitution context. Hence t “ C1xryu “ pλx.s0qL0 u

and the anchor of the original step is not below a context of the form Lu, as required.

Structural variables

In this subsection we introduce structural variables. Intuitively, the structural variables svpCq
of an evaluation context C are the free variables that must be frozen in order for C to be
an evaluation context. For instance svppxlqryzzsq “ txu and svppxlqrxzzsq “ tx, zu. To
understand the de�nition of structural variables, it might be helpful to observe that a term in
the process of being evaluated has already frozen subterms, which have been normalized and
are morally to the le� of the focus of evaluation, and still pending subterms, which are yet to
be evaluated and are morally to the right of the focus of evaluation. Structural variables are
de�ned to be the non-garbage variables that occur in the already frozen subterms.

Structural variables are required as tools to reason over arbitrary evaluation contexts.
In particular, the strengthening lemma for evaluation contexts (Lem. A.54) allows obtain-
ing a ϑ-evaluation context from a pϑ Y txuq-evaluation context C depending on whether
x P svpCq. �is mimicks the strengthening lemma for normal forms that we have already
stated (Lem. A.25) which allows obtaining a ϑ-normal form from a pϑ Y txuq-normal form t

depending on whether x P ngvptq.
In this subsection we also introduce a “proof tactic” (Tactic A.55) that will be used later.

De�nition A.53 (Structural variables). Let C be a generalized evaluation context over ϑ. More
precisely, let C P Xϑ where Xϑ is either the set Eϑ or the set E˝ϑ. �e set of structural variables
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of C, wri�en svpCq is de�ned by induction on the derivation that C P Xϑ as follows:

pEBoxq svplq
def
“ ∅

pEAppLq svpC1 tq
def
“ svpC1q

where C1 P E
˝
ϑ

pESubLNonStrq svpC1rxztsq
def
“ svpC1qztxu

where C1 P Xϑ, x R ϑ, and t R Sϑ

pESubLStrq svpC1rxztsq
def
“ psvpC1qztxuq Y

#

ngvptq if x P svpC1q

∅ otherwise
where C1 P XϑYtxu and t P Sϑ

pESubsRq svpC1xxxyyrxzC2sq
def
“ psvpC1qztxuq Y svpC2q

where C1 P Xϑ and C2 P E
˝
ϑ

pEAppRStrq svpt C1q
def
“ ngvptq Y svpC1q

where t P Sϑ and C1 P Eϑ

pELamq svpλx.C1q
def
“ svpC1qztxu

where C1 P EϑYtxu

Lemma A.54 (Strengthening for evaluation contexts). Let C be a (resp. inert) pϑ Y txuq-

evaluation context.

1. If x R svpCq then C is a (resp. inert) ϑ-evaluation context.

2. If x P svpCq and x R ϑ then for any term q there is a (resp. inert) ϑ-evaluation context C2

such that Cxqy “ C2xxxyy.

Proof. For the �rst item of the lemma, let Xϑ denote either the set Eϑ or the set E˝ϑ. Let us
show that if C P XϑYtxu and x R svpCq, then C P Xϑ. Proceed by induction on the size of the
context C, and then by case analysis on the last step of the derivation that C P XϑYtxu. �e
interesting case is when C is built by applying ESubLStr, that is, C “ C1ryzts P XϑYtxu with
t P SϑYtxu and C1 P XϑYtx,yu. �en x R svpC1ryztsq Ě svpC1qztyu, so x R svpC1qztyu. Observe
that x ‰ y by the variable convention, so actually x R svpC1q. Hence we can apply the i.h.,
obtaining that C1 P XϑYtyu. We consider two cases, depending on whether y is structural in
C1:

1. If y P svpC1q �en, by de�nition of the structural variables, we have that svpCq “

psvpC1qztyuq Y ngvptq. In particular, x R ngvptq. By the fact that garbage variables
are not required in “ϑ” (Lem. A.25) we have that t P Sϑ. Now we can apply the for-
mation rule for generalized contexts adding a structural substitution (ESubLStr), and
conclude C1ryzts P Xϑ, as required.

2. If y R svpC1q�en we may apply the i.h. again on the fact that C1 P XϑYtyu to obtain that
C1 P Xϑ. By the fact that adding an arbitrary substitution preserves evaluation contexts
(Lem. A.26) we have that C1rxzts P Xϑ, as required.
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For the second item of the lemma, let Xϑ stand for either Eϑ or E˝ϑ, and let C1 P XϑYtxu

where x P svpC1q and x R ϑ. Let us show that for any term q there is a context C2 P Xϑ such
that C1xqy “ C2xxxyy. Proceed by induction on the size of the term C1xqy, and then by case
analysis on the last step of the derivation that C1 P XϑYtxu. �e interesting cases are the rules
ESubLStr, ESubsR, and EAppRStr:

1. ESubLStr, C1 “ C11ryzts P XϑYtxu with t P SϑYtxu and C11 P XϑYtx,yu We consider two
cases, depending on whether x is a structural variable in C11:

1.1 If x P svpC11q �en by i.h. there is a context C21 P XϑYtyu such that C11xqy “

C21xxxyy. We consider two further subcases, depending on whether y is a structural
variable in C21:

1.1.1 If y P svpC21qWe consider two more cases, depending on whether x is garbage
in the structure t:

1.1.1.1 If x P ngvptq Since y P svpC21q we may apply the i.h. again, to obtain that
there exists a context C31 P Xϑ such that C21xxxyy “ C31xxyyy. Note that we
are able to apply the i.h. since the term C21xxxyy “ C11xqy is smaller than
the original term, namely C1xqy “ C11xqyryzts.
Since non-garbage variables are below evaluation contexts (Lem. A.25)
and t P SϑYtxu we know that there exists a context C22 P E˝ϑ such that
t “ C22xxxyy. So we have C1xqy “ C11xqyryzts “ C11xqyryzC22xxxyys “

C21xxxyyryzC22xxxyys “ C31xxyyyryzC22xxxyyswith C31 P Xϑ and C22 P E
˝
ϑ. By

applying the rule for building evaluation contexts by going inside substi-
tutions (ESubsR), we have that C31xxyyyryzC22s P Xϑ.

1.1.1.2 If x R ngvptq By the fact that garbage variables are not needed in “ϑ”
(Lem. A.25) we have that t P Sϑ. So C1xqy “ C11xqyryzts “ C21xxxyyryzts

with C21 P XϑYtyu and t P Sϑ. By applying the rule for building evaluation
contexts with structural substitutions (ESubLStr), we have that C21ryzts P

Xϑ.
1.1.2 If y R svpC21q �en since non-structural variables are not required in “ϑ”

(Lem. A.54), C21 P Xϑ. So C1xqy “ C11xqyryzts “ C21xxxyyryzts with C21 P Xϑ.
By the fact that adding an arbitrary substitution preserves evaluation contexts
(Lem. A.26), we have C21ryzts P Xϑ, as required.

1.2 If x R svpC11q Recall that, by hypothesis, x P svpC1q “ svpC11ryztsq and that by
de�nition of structural variables: svpC11ryztsq “ svpC11q Y A where A “ ngvptq

if y P svpC11q, and A “ ∅ otherwise. Since x R svpC11q, we must have that
y P svpC11q and x P ngvptq.
By applying the lemma that non-structural variables are not required in “ϑ” (Lem. A.54)
on the fact that C11 P XϑYtx,yu we have C11 P XϑYtyu. Since y P svpC11q, by the i.h.

we have that there exists a context C21 P Xϑ such that C11xqy “ C21xxyyy. More-
over, x P ngvptq, so since non-garbage variables are below evaluation contexts
(Lem. A.25), there exists a context C22 P E˝ϑ such that t “ C22xxxyy. So we have
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C1xqy “ C11xqyryzts “ C21xxyyyryzts “ C21xxyyyryzC22xxxyys with C21 P Xϑ and
C22 P E˝ϑ. By applying the rule for building evaluation contexts by going inside
substitutions (ESubsR), we obtain that C21xxyyyryzC22s P Xϑ, as required.

2. ESubsR, C1 “ C11xxyyyryzC12s P XϑYtxu with C11 P XϑYtxu and C12 P E˝ϑYtxu �en
svpC1q “ svpC11xxyyyryzC12sq “ psvpC11qztyuq Y svpC12q. Observe that x ‰ y by the
variable convention. We consider two cases, depending on whether x is a structural
variable in C11:

2.1 If x P svpC11q�en by i.h. there is a context C21 P Xϑ such that C11xxyyy “ C21xxxyy.
By the fact that adding an arbitrary substitution preserves evaluation contexts
(Lem. A.26), we obtain that C21ryzC12xqys P Xϑ, as required.

2.2 If x R svpC11q Since non-structural variables are not required in “ϑ” (Lem. A.54),
C11 P Xϑ. Moreover, it must be the case that x P svpC12q, so by i.h. we have that
there is a context C22 P E

˝
ϑ such that C12xqy “ C22xxxyy. By applying the formation

rule for generalized evaluation contexts going inside substitutions (ESubsR) we
conclude that C11xxyyyryzC22s P Xϑ, as required.

3. EAppRStr, C1 “ t C11 P XϑYtxu with t P SϑYtxu and C11 P EϑYtxu �en svpC1q “

ngvptq Y svpC11qWe consider two cases, depending on whether x is non-garbage in t:

3.1 Ifx P ngvptq Since non-garbage variables are below evaluation contexts (Lem. A.25),
the structure t can be wri�en as of the form C21xxxyy, with C21 P E˝ϑ. By applying
the formation rule for generalized evaluation contexts going to the le� of an ap-
plication (EAppL) we conclude that C21 C11xqy P E

˝
ϑ.

If Xϑ is E˝ϑ, we are done. If Xϑ is Eϑ, we are also done, since E˝ϑ Ď Eϑ.

3.2 If x R ngvptq Since garbage variables are not required in “ϑ” (Lem. A.25), t P
Sϑ. Moreover, x P svpC11q, so by i.h. there must exist a context C21 P Eϑ such
that C11xqy “ C21xxxyy. By applying the formation rule for generalized evaluation
contexts going to the right of a structure (EAppRStr) we conclude that t C21 P Xϑ

as required.

�e following result will be useful many times throughout the proofs in the remainder
of this section. We call it a “proof tactic”, rather than a “lemma”, following the nomenclature
usual in proof assistants such as Coq. �e exact way in which this result has to be instantiated
in each case may vary slightly.

Tactic A.55 (Strengthening ϑ). Consider a lsv step CxxxyyrxzvLs Ñ CxvyrxzvsL.

1. Strengthening ϑ for normal forms. Let Xϑ
stand for either the set nfϑ or the set Sϑ.

If Cxxxyy P Xϑ̂
, where ϑ̂ “ fzϑprxzvsLq then Cxxxyy P Xϑ

.

2. Strengthening ϑ for evaluation contexts. Let Xϑ
stand for either the set Eϑ or the set

E˝ϑ. If CrxzvsL P Xϑ
then Cxxxyy P Xϑ

and CxxxyyrxzvLs P Xϑ
.
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Proof. For the �rst item, note that x R ϑ̂ since x is bound to an answer, so it is not frozen. So
we have that ϑ̂ Ď ϑ Y domL. �e variables in domL do not occur free in the term Cxxxyy by
Barendregt’s convention, since Cxxxyy is outside the scope of L on the le�-hand side of the lsv
step. In particular, all the variables in domL are garbage variables in the term Cxxxyy. Hence,
by repeatedly applying the fact that garbage variables are not required in “ϑ” (Lem. A.25), we
obtain that Cxxxyy P Xϑ.

For the second item, by the decomposition of evaluation contexts lemma (Lem. A.20) the
context C must be an evaluation context in Xϑ̂ where ϑ̂ “ fzϑprxzvsLq. Note that x R ϑ̂ since
x is bound to an answer, so it is not frozen. So we have that ϑ̂ Ď ϑ Y domL. Note that the
variables in domL do not occur free in the context C by Barendregt’s convention, since C is
outside the scope of L on the le�-hand side of the lsv step. In particular, all the variables in
domL are not structural variables in the context C. Hence, by repeatedly applying the fact that
non-structural variables are not required in “ϑ” (Lem. A.54), we obtain that C P Xϑ. Moreover,
since adding arbitrary substitutions preserves evaluation contexts (Lem. A.26), CrxzvLs P Xϑ,
as required.

Critical contexts

Consider a context like C “ yryzzls and the set of frozen variables ϑ “ tzu. Note that CxIy “
yryzz Is is a ϑ-normal form since z I is a ϑ-structure. On the other hand, Cxxxyy “ yryzz xs is
not a ϑ-normal form because z x is not a ϑ-structure, as x R ϑ. Remark that C is a ϑ-evaluation
context. In the following Lem. A.57 we show that this is not just a coincidence. Indeed, we
will show that if a context is such that Cxty is a normal form but Cxxy is not a normal form,
then C must be an evaluation context.

�is result will be a useful tool to prove that normal forms and evaluation contexts are
backward stable by internal steps. For example, if Cxxxyyrxzvs  ϑÝÝÑsh Cxvyrxzvs is an internal
step and the right-hand side is a normal form, then Cxxxyy must be a normal form. Otherwise
we would have that Cxvy is a normal form while Cxxxyy is not, hence C would be an evaluation
context, contradicting the fact that the original step was internal.

De�nition A.56 (Critical contexts). Let Xϑ be a set of terms depending on a set of variables
ϑ. A context C is said to be Xϑ

-critical if the following conditions hold:

1. Cxqy P Xϑ for some term q; and

2. Cxxxyy R Xϑ for some variable x R ϑ that is not bound by C.

Lemma A.57 (Critical contexts are evaluation contexts). �e following inclusions between sets

hold:

1. �e set of nfϑ-critical contexts is included in Eϑ.

2. �e set of Sϑ-critical contexts is included in E˝ϑ.

Proof. Let Xϑ denote the set nfϑ (resp. Sϑ), and let Yϑ denote the set Eϑ (resp. E˝ϑ). Suppose
that C is a Xϑ-critical context, and let us show that C P Yϑ. Since C is Xϑ-critical, there is a



324

term q and a variable x not bound by C such that Cxqy P Xϑ and Cxxxyy R Xϑ. We proceed
by induction on the derivation that Cxqy P Xϑ. �e interesting cases are rules nfSubG and
nfSub:

1. nfSubG, Cxqy “ tryzss P Xϑ with t P Xϑ and y R ngvptq Let us check that C P Yϑ. If C
is empty, i.e. C “ l, we trivially have C P Yϑ. Otherwise, C is non-empty and there are
two possibilities:

1.1 �e hole of C is to the le�, i.e. C “ C1ryzss �en C1xqy P Xϑ by formation of
Cxqy P Xϑ. Moreover we claim that C1xxxyy R Xϑ. To see this, note that the fact
that y R ngvpC1xqyq Y txu implies that y R ngvpC1xxxyyq. So, by contradiction, if
we suppose C1xxxyy R Xϑ we can apply the same formation rule and obtain that
C1xxxyyryzss P Xϑ, contradicting the hypothesis that Cxxxyy R Xϑ.
�erefore we are able to apply the i.h. on the facts that C1xqy P Xϑ and C1xxxyy R Xϑ

to conclude that C1 P Yϑ. �is in turn implies that C1ryzss P Yϑ since adding an
arbitrary substitution preserves evaluation contexts (Lem. A.26).

1.2 �e hole of C is to the right, i.e. C “ tryzC1s �is case is not possible, since t P Xϑ

and y R ngvptq by formation, and this implies that tryzC1xxxyys P Xϑ, contradicting
the hypothesis that Cxxxyy R Xϑ.

2. nfSub, Cxqy “ tryzMϑs P Xϑ with t P XϑYtyu and Mϑ P Sϑ Let us check that C P Yϑ. If
C is empty, i.e. C “ l, we trivially have C P Yϑ. Otherwise, C is non-empty and there
are two possibilities:

2.1 �e hole of C is to the le�, i.e. C “ C1ryzMϑs �en C1xqy P XϑYtyu by formation.
Moreover, we claim that C1xxxyy R XϑYtxu. By contradiction, suppose that C1xxxyy P
XϑYtxu. �en C1xxxyyryzMϑs P Xϑ, contradicting the hypothesis that Cxxxyy R Xϑ.
So by i.h. we obtain that C1 P YϑYtxu and, applying the context forming rule for
structural substitutions (ESubLStr), we get C1ryzMϑs P Yϑ, that is to say C P Yϑ,
as required.

2.2 �e hole of C is to the right, i.e. C “ tryzC1s �en t P XϑYtyu and y P ngvptq by
formation. �is implies that t “ C1xxyyy with C1 P Yϑ by Lem. A.25
Note that C1xqy “ Mϑ P Sϑ. Moreover, we claim that C1xxxyy R Sϑ. By con-
tradiction, suppose that C1xxxyy P Sϑ. �en tryzC1xxxyys P Xϑ, contradicting the
hypothesis that Cxxxyy R Xϑ. So by i.h. we have that C1 P E˝ϑ.
Combining the facts that C1 P Yϑ and C1 P E˝ϑ, by applying the formation rule
for generalized evaluation contexts going inside substitutions, we conclude that
C1xxyyyryzC

1s P Yϑ, as required.

Replacing a value by a variable in an evaluation context

To prove that internal steps can be postponed we need to deal with situations such as Cxt, xyrxzvs  ϑÝÝÑsh

Cxt, vyrxzvs
ϑ

ù Cxt1, vy, where C is a two-hole context. Note that Cxl, vy is an evalua-
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tion context since the second step is external. To postpone the internal step we would like
that Cxl, xy is also an evaluation context. Unfortunately this is not always the case. As an
example, consider the two-hole context C “ pzl1qrzzyl2s with ϑ “ tyu and note that
Cxl, Iy “ pzlqrzzy Is is a tyu-evaluation context, since z is bound to a strong tyu-structure,
but Cxl, xy “ pzlqrzzy xs is not a tyu-evaluation context, since z is bound to y x, which is
not a strong tyu-structure. In such a situation, evaluation should focus on x, that is, what we
do have is that Cxt,ly “ pz tqrzzyls is a tyu-evaluation context. �e following lemma deals
with this situation in full generality.

Lemma A.58 (Replacing a value by a variable in an evaluation context). Let pC be a two-hole

context, x R ϑ a variable, v any value, and q be a term such that x is not bound by pCxq,ly. If

pCxl, vy P Xϑ
then either pCxl, xy P Xϑ

(le� branch) or pCxq,ly P Xϑ
(right branch) where

Xϑ
is either the set Eϑ or the set E˝ϑ.

Proof. Let us write l and b to distinguish the two holes of pC. �e proof goes by induction on
the derivation that pCxl, vy is a generalized evaluation context over ϑ.

1. EBox, pCxl, vy “ l P Xϑ Impossible, as pCxl, vy must contain a value v as a subterm.

2. EAppL,pCxl, vy “ Iϑ t P Xϑ with Iϑ P E˝ϑ If the value v is inside t, i.e. pCxl,by “ IϑCxby

then the le� branch of the disjunction holds as IϑCxxy P Xϑ.
Otherwise, the value v is inside Iϑ, i.e. there is a two-hole contextpC1 such thatpCxl,by “
pC1xl,by t and pC1xl, vy “ Iϑ P E˝ϑ. �en it is straightforward to conclude by i.h..

3. ESubLNonStr, pCxl, vy “ F ϑryzts P Xϑ where F ϑ P Xϑ and t R Sϑ If the value v

is inside t, i.e. pCxl,by “ F ϑryzCxbys, we may apply the fact that adding an arbitrary
substitution preserves evaluation contexts (Lem. A.26), obtaining thatF ϑryzCxxys P Xϑ,
that is pCxl, xy P Xϑ and the le� branch of the disjunction holds. Otherwise the value v
is inside F ϑ, i.e. there is a two-hole context pC1 such that pCxl,by “ pC1xl,byryzts and
pC1xl, vy “ F ϑ P Xϑ. �en it is straightforward to conclude by i.h..

4. ESubLStr, pCxl, vy “ F ϑYtyuryzMϑs P Xϑ where F ϑYtyu P XϑYtyu and Mϑ P Sϑ If the
value v is inside Mϑ, i.e. Mϑ “ Cxvy, we consider two further subcases, depending on
whether Cxxxyy is a strong ϑ-structure:

4.1 If Cxxxyy P Sϑ Applying the formation rule for generalized ϑ-evaluation contexts,
using a structural substitution (ESubLStr), we conclude that F ϑYtyuryzCxxxyys P

Xϑ, that is pCxl, xy P Xϑ, and the le� branch of the disjunction holds.
4.2 If Cxxxyy R Sϑ �en, since Cxvy P Sϑ but Cxxxyy R Sϑ, we have that C is Sϑ-critical.

By Lem. A.57 we have that every Sϑ-critical context is a E˝ϑ context, so C P E˝ϑ.
We consider two further subcases, depending on whether y is a structural variable
in F ϑYtyu:

4.2.1 If y P svpF ϑYtyuq Since structural variables are below evaluation contexts
(Lem. A.54), there is a context F ϑ

2 P Xϑ such that F ϑYtyuxqy “ F ϑ
2 xxyyy. �is

means that F ϑYtyuxqyryzCs “ F ϑ
2 xxyyyryzCs P Xϑ since C P E˝ϑ is a inert con-

text. So the right branch holds.
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4.2.2 If y R svpF ϑYtyuq Since non-structural variables are not required in “ϑ” (Lem. A.54),
F ϑYtyu P Xϑ. Since adding an arbitrary substitution preserves evaluation con-
texts (Lem. A.26), we conclude that F ϑYtyuryzCxxxyys P Xϑ, and the le� branch
holds.

Otherwise, the value v is inside F ϑYtyu, i.e. there is a two-hole context pC1 such that
pCxl,by “ pC1xl,byrxzM

ϑs and pC1xl, vy “ F ϑYtyu P XϑYtyu. �en it is straightfor-
ward to conclude by i.h..

5. ESubsR, pCxl, vy “ F ϑxxyyyryzIϑs P Xϑ with F ϑ P Xϑ and Iϑ P E˝ϑ If the value v is
inside F ϑxxyyy, there are two cases, depending on whether the hole of F ϑ lies inside the
value v or not:

5.1 If the hole of F ϑ lies inside v �en F ϑ “ C1xλz.C2y where v “ λz.C2xxyyy and
pCxl,by “ C1xbyryzI

ϑxlys. By the decomposition of evaluation contexts lemma
(Lem. A.20) we have that C1 P Xϑ. By the fact that adding an arbitrary substitution
preserves evaluation contexts (Lem. A.26), C1rxzI

ϑxqys P Xϑ. �is means that
pCxq,ly “ C1rxzI

ϑxqys P Xϑ, so the right branch holds.
5.2 If the hole of F ϑ and the position of v are disjoint �en there is a two-hole con-

text pC1 such that pC1xl, vy “ F ϑ. Note, in particular, that pC1xy, vy “ F ϑxxyyy,
and pCxl,by “ pC1xy,byryzI

ϑxlys. By i.h. there are two possibilities. �en it is
straightforward to conclude by i.h.; using Lem. A.26 in the right branch case.

Otherwise, the value v is inside Iϑ. �is means that there is a two-hole context pC1 such
that pC “ F ϑxxyyyryzpC1s and pC1xl, vy “ Iϑ. �en it is straightforward to conclude by
i.h..

6. EAppRStr, pCxl, vy “ Mϑ F ϑ P Xϑ, with Mϑ P Sϑ and F ϑ P Eϑ If the value v is inside
Mϑ

i.e. Mϑ “ Cxvy and pCxl,by “ CxbyF ϑxly, we consider two further subcases,
depending on whether Cxxxyy is a strong ϑ-structure:

6.1 If Cxxxyy P Sϑ Applying the formation rule for generalized ϑ-evaluation contexts,
going to the right of a structure (EAppRStr), we conclude thatpCxl, xy “ CxxxyyF ϑ P

Xϑ, so the le� branch holds.
6.2 If Cxxxyy R Sϑ �en, since Cxvy P Sϑ but Cxxxyy R Sϑ, we have that C is Sϑ-critical.

By Lem. A.57 we have that every Sϑ-critical context is a E˝ϑ context, so C P E˝ϑ.
Applying the formation rule for generalized ϑ-evaluation contexts, going to the
le� of an application (EAppL), we conclude that pCxq,ly “ CF ϑxqy P Xϑ, so the
right branch holds.

Otherwise, the value v is inside F ϑ, that is, there is a two-hole context pC1 such that
pC “Mϑ

pC1 and F ϑ “ pC1xl, vy. �en it is straightforward to conclude by i.h..

7. ELam, pCxl, vy “ λy.F ϑYtyu P Eϑ with F ϑYtyu P EϑYtyu Immediate by i.h..
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Stripping substitutions

Consider the following uni�cation problem: if C is an evaluation context and we know that
Cxty “ sL, then what is the shape of C? We call this the problem of stripping substitutions

out of an evaluation context. It might simply be the case that C “ C1L where C1 is in turn an
evaluation context. But it may also be the case that C goes inside a substitution, for example,
C “ xrxzyls and L “ rxzyts. �e relation between C and L can actually get quite hairy: C
can take a number of “jumps” inside L. For instance, C “ x1rx1zyryzx2ssrzzusrx2zls with
L “ rx1zyryzx2ssrzzusrx2zts. We characterize the solution to this problem by de�ning an
auxiliary sort of chain contexts. A chain context L is intuitively a context with two holes,
and t1L tt2u stands for the result of plugging t1 and t2 in each of its holes. For instance, in
the example above we would have l1L tl2u “ l1rx1zyryzx2ssrzztsrx2zl2s. �us C can be
recovered as sL tlu and L can be recovered as lL ttu.

De�nition A.59 (Chain context). �e sets of pϑ, xq-chain contexts, ranged over by L ,L 1,
etc., are de�ned inductively with the two following rules:

ϑ1 “ fzϑpL2q

C P E˝ϑ1 is a inert evaluation context
L1, L2 are substitution contexts

xL1, x, C, L2y is a pϑ, xq-chain context

ϑ1 “ fzϑpLq

C P E˝ϑ1 is a inert evaluation context
L is a substitution context

L is a pϑ1 Y tyu, xq-chain context
xL , y, C, Ly is a pϑ, xq-chain context

Given a pϑ, xq-chain context L , its instantiation on two terms t1, t2, wri�en t1L tt2u, is de-
�ned inductively as follows:

t1xL1, x, C, L2ytt2u
def
“ t1L1rxzCxt2ysL2

t1xL , y, C, Lytt2u
def
“ pt1L tyuqryzCxt2ysL

Sometimes we write L ϑ
x to stress that L is a pϑ, xq-chain context. �e number of rules

required to build a chain context L is called the number of jumps of L .

Lemma A.60 (Weakening for chain contexts). If L is a pϑ, xq-chain context, and ϑ Ď ϑ1 then

L is a pϑ1, xq-chain context.

Proof. By induction on the formation rules for chain contexts, using the weakening lemma
for evaluation contexts (Lem. A.24).

De�nition A.61 (Adding substitutions to chain contexts). If L is a substitution context, ϑ1 “
fzϑpLq and L is a pϑ1, xq-chain context then we write L L for the pϑ, xq-chain context de�ned
as follows:

1. xL1, x, C, L2yL
def
“ xL1, x, C, L2Ly

2. xL 1, x, C, L1yL
def
“ xL 1, x, C, L1Ly

Note that t1pL Lqtt2u “ pt1L tt2uqL.
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Lemma A.62 (Stripping substitutions from a context using chain contexts). Let F ϑ P Xϑ
be

a generalized evaluation context, where Xϑ
stands for either Eϑ or E˝ϑ. Suppose that F ϑxty “ sL

where all the substitution nodes in the spine of L belong to the context F ϑ
(rather than to the

subterm t), that is, one of the following holds:

• A. F ϑ “ CL and s “ Cxty.

• B. F ϑ “ sL1rxzCsL2 and L “ L1rxzCxtysL2.

�en in each case the following more precise conditions hold:

• A. �ere is an evaluation context F ϑ1

1 P Xϑ1
where ϑ1 “ fzϑpLq such that F ϑ “ F ϑ1

1 L and

s “ F ϑ1

1 xty.

• B. �ere is an evaluation context F ϑ1

1 P Xϑ1
where ϑ1 “ fzϑpLq, and a pϑ, xq-chain context

L such that F ϑ “ F ϑ1

1 xxxyyL tlu and L “ lL ttu.

Proof. By induction on L, using the fact that if CL is a ϑ-evaluation context then C is a fzϑpLq-
evaluation context (Lem. A.20).

Lemma A.63 (Stripping substitutions from a lsv redex using chain contexts). Let Xϑ
denote

either the set Eϑ or the set E˝ϑ. If F ϑ
1 xF

ϑ1

2 xxxyyrxzvL
1sy “ tL where F ϑ

1 xF
ϑ1

2 rxzvL
1sy P Xϑ

is an

evaluation context then at least one of the following four possibilities holds:

1. A F ϑ
1 “ F ϑ2

11 L where ϑ2 “ fzϑpLq and F ϑ2

11 P Xϑ2
.

2. B F ϑ
1 “ F ϑ2

11 xxyyyL tlu such that L “ lL tF ϑ1

2 xxxyyrxzvL
1su, where ϑ2 “ fzϑpLq, the

evaluation context F ϑ2

11 is in Xϑ2
and L is a pϑ, yq-chain context.

3. C F ϑ1

2 “ F ϑ2

21 L̃ such that L “ F ϑ
1 xL̃rxzvL

1sy, where ϑ2 “ fzϑpL̃q, the context F ϑ
1 is a

substitution context, and the evaluation context F ϑ2

21 is in Eϑ2 .

4. D F ϑ1

2 “ F ϑ2

21 xxyyytlu such that L “ F ϑ
1 xlL txurxzvL1sy, where ϑ2 “ fzϑpLq, the context

F ϑ
1 is a substitution context, the evaluation context F ϑ2

21 is in Eϑ2 , and L is a pϑ2, yq-chain

context.

Proof. We know thatF ϑ
1 xF

ϑ1

2 xxxyyrxzvL
1sy “ tL. We consider two cases, depending on whether

L is “contained” in F ϑ
1 , that is, all the substitution nodes in the spine of L belong to the context

F ϑ
1 , or otherwise:

1. If all the substitution nodes in the spine of L belong to the context F ϑ
1 �at is, the

substitution nodes in L do not come from the subterm F ϑ1

2 xxxyyrxzvL
1s. �en we may

strip the substitution L from F ϑ
1 using Lem. A.62, which means that we are either in

case A or case B, and we are done.

2. Otherwise �en some of the substitution nodes in L come from the subtermF ϑ1

2 xxxyyrxzvL
1s.

So we have that F ϑ
1 is a substitution context and that L “ F ϑ

1 xL1y for some substitution
context L1. Note that L1 is non-empty since otherwise L would be subsumed in F ϑ

1 ,
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which has already been considered in the previous case. Since L1 is non-empty we have
that L1 “ L̃rxzvL1s. So F ϑ1

2 xxxyyrxzvL
1s “ tL̃rxzvL1s. �en we may strip the substitution

L̃ from F ϑ1

2 rxzvL
1s using Lem. A.62. �is gives us two possibilities, which correspond to

cases C and D respectively.

Non-garbage contexts

�is subsection deals with non-garbage contexts, which are used in the next subsection to
prove backward stability for normal forms.

De�nition A.64 (Non-garbage contexts). �e set of non-garbage contexts is given by the
following grammar:

R ::“ l | R t | t R | λx.R | Rrxzts | RxxxyyrxzRs

Lemma A.65 (Non-garbage variables are variables below non-garbage contexts). �e follow-

ing equivalence holds:

ngvptq “ tx | DR. R is a non-garbage context and t “ Rxxxyyu

Proof. By induction on t.

Lemma A.66 (Generalized evaluation contexts are non-garbage). LetF ϑ P Eϑ be a generalized

ϑ-evaluation context. �en F ϑ
is non-garbage.

Proof. By induction on the derivation that F ϑ P Eϑ.

Lemma A.67 (Replacing a variable in a non-garbage context yields a non-garbage context).
Let pC be a two-hole context such that pCxl, yy is a non-garbage context and y is not bound by the

context pCxq,ly (for an arbitrary term q). �en for any term s the context pCxl, sy is non-garbage.

Proof. By induction on the derivation that pCxl, yy is a non-garbage context.

Lemma A.68 (Preservation of non-garbage variables by internal steps when going to normal
form). Let t

 ϑ
ÝÝÑsh s be a ϑ-internal step, such that s P nfϑ is a strong ϑ-normal form. �en

ngvptq Ď ngvpsq.

Proof. Let r : t
 ϑ
ÝÝÑsh s be the internal step. �e proof goes by induction on t. If t is a variable

or an abstraction it is immediate. We consider the cases for application and substitution:

1. Application, t “ t1 t2 Note that r cannot be a step at the root, since it would be a db

step, and it would be external. Hence there are two cases, depending on whether the
step r is internal to t1 or internal to t2:

1.1 If r is internal to t1 Let r1 : t1Ñshzgcs1 be the step isomorphic to r but going under
the context l t2. �en s “ s1 t2. Note that r1 cannot be ϑ-external, for otherwise
r would be ϑ-external. So ngvpt1 t2q “ ngvpt1qY ngvpt2q Ď

i.h. ngvps1qY ngvpt2q “

ngvps1 t2q.
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1.2 If r is internal to t2 Let r1 : t2 Ñshzgc s2 be the step isomorphic to r but going
under the context t1 l. �en s “ t1 s2. Recall that by hypothesis s P nfϑ is a
normal form, so t1 must be a strong ϑ-structure, i.e. t1 P Sϑ. �e step r1 cannot be
ϑ-external, for otherwise r would be ϑ-external (note that this depends on the fact
that t1 is a structure). So ngvpt1 t2q “ ngvpt1q Y ngvpt2q Ď

i.h. ngvpt1q Y ngvps2q “

ngvpt1 s2q.

2. Substitution, t “ t1rxzt2sWe consider three cases, depending on whether (1) the step r

is at the root of t, (2) r is internal to t1, (3) r is internal to t2.

2.1 If r is at the root of t �en r is a lsv step, which means that t1 “ Cxxxyy and
t2 “ vL in such a way that r : t “ CxxxyyrxzvLs

 ϑ
ÝÝÑsh CxvyrxzvsL “ s. Since

s “ CxvyrxzvsL P nfϑwe may strip the substitution context rxzvsL (by Lem. A.27)
to obtain that Cxvy P nfϑ̂where ϑ̂ Ď fzϑprxzvsLq “ fzϑpLq. We consider two cases,
depending on whether Cxxxyy is a normal form in nfϑ̂:

2.1.1 If Cxxxyy P nfϑ̂ We consider two further subcases, depending on whether x is
a non-garbage variable in Cxxxyy:

2.1.1.1 If x P ngvpCxxxyyq Recall that ϑ̂ Ď ϑ Y domL. Moreover, observe that
Cxxxyy is outside the scope of L in the original term CxxxyyrxzvLs, so by
Barendregt’s convention we may suppose that variables in domL do not
occur in Cxxxyy. In particular, variables in domL are garbage in Cxxxyy, so
since garbage variables are not required in “ϑ” (Lem. A.25), Cxxxyy P nfϑ.
Since x P ngvpCxxxyyq and Cxxxyy is a normal form in nfϑ, by the fact
that non-garbage variables in normal forms are below evaluation contexts
(Lem. A.25), we have that there exists an evaluation context F ϑ P Eϑ such
that Cxxxyy “ F ϑxxxyy. �ere are two subcases, depending on whether
C “ F ϑ or C ‰ F ϑ:
• If C “ F ϑ �en CrxzvLs is an evaluation context in Eϑ, contradicting

the fact that r is ϑ-internal.
• If C ‰ F ϑ �en there is a two-hole context pC such that pCxl, xy “ F ϑ

andpCxx,ly “ C, and the step is of the form: r : t “ pCxx, xyrxzvLsÑshzgc

pCxx, vyrxzvsL “ s. Note that the underlined occurrence of x is non-
garbage on the le�-hand side, so it is also non-garbage on the right-
hand side.
More precisely, pCxl, xy “ F ϑ is an evaluation context so by Lem. A.66
it is also a non-garbage context. Recall that replacing a variable by
an arbitrary term in a non-garbage context is still a non-garbage con-
text (Lem. A.67), so pCxl, vy is also non-garbage. Moreover, since non-
garbage variables coincide with variables below non-garbage contexts
(Lem. A.65) we have that x P ngvppCxx, vyq.
�is contradicts the fact that s is a normal form, since to conclude that
pCxx, vyrxzvLs is a normal form, given that x P ngvppCxx, vyq, we would
require that x is bound to a structure, but it is bound to a value v.
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2.1.1.2 If x R ngvpCxxxyyq Let us show that ngvptq Ď ngvpsq. Consider an arbitrary
variable y P ngvptq “ ngvpCxxxyyrxzvLsq, and let us show that y P ngvpsq.
Since x is garbage in Cxxxyy, it must be the case that y P ngvpCxxxyyq.
Moreover, since x ‰ y and y is non-garbage in Cxxxyy, by the fact that non-
garbage variables are below non-garbage contexts (Lem. A.65) there must
exist a two-hole contextpC such thatpCxl, xy is non-garbage andpCxy,ly “
C. By replacing a variable in a non-garbage context (Lem. A.67) we obtain
that pCxl, vy “ C is also non-garbage. So y P ngvppCxy, vyq “ ngvpCxvyq.
Hence y P ngvpCxvyrxzvsLq “ ngvpsq, as required.

2.1.2 If Cxxxyy R nfϑ̂ �en by de�nition (Def. A.56) C is a nfϑ̂-critical context.
By Lem. A.57 since C is Xϑ̂-critical, it is an evaluation context, C P Eϑ̂. By
strengthening ϑ (Tactic A.55) CrxzvLs P Eϑ, contradicting the fact that the
step r is ϑ-internal.

2.2 If r is internal to t1 Let r1 : t1 Ñ s1 be the step isomorphic to r but going under the
context rxzt2s. �en s “ s1rxzt2s. Note that r1 cannot be ϑ-external, since then r

would be ϑ-external. �ere are two cases, depending on whether x is garbage in
t1 or not:

2.2.1 If x P ngvpt1q Note that by i.h. x P ngvps1q. �en ngvptq “ ngvpt1q Y

ngvpt2q Ď
i.h. ngvps1q Y ngvpt2q “ ngvps1rxzt2sq “ ngvpsq.

2.2.2 If x R ngvpt1q�en ngvptq “ ngvpt1q Ď
i.h. ngvps1q Ď ngvps1rxzt2sq “ ngvpsq.

2.3 If r is internal to t2 Let r1 : t2 Ñ s2 be the step isomorphic to r but going under
the context t1rxzls. �en s “ t1rxzs2s. We consider two subcases, depending on
whether x is garbage in t1 or not:

2.3.1 If x P ngvpt1q We consider two subcases, depending on whether r1 is ϑ-
external or ϑ-internal:

2.3.1.1 If r is ϑ-external Since t1rxzs2s is a normal form, we have that t1 P

nfϑY txu. By the fact that non-garbage variables in normal forms are
below evaluation contexts (Lem. A.25) there must exist an evaluation con-
text F ϑ

1 P Eϑ such that t1 “ F ϑ
1 xxxyy. Moreover, since the step r1 is ex-

ternal, we have that t2 “ F ϑ
2 xxΣyy where F ϑ

2 P Eϑ and Σ is the anchor of
a redex. If we let Σ1 denote its contractum, we have that the step r is of
the form r : t “ F ϑ

1 xxxyyrxzF
ϑ
2 xΣys

 ϑ
ÝÝÑsh F

ϑ
1 xxxyyrxzF

ϑ
2 xΣ

1ys “ s. Note
that F ϑ

2 cannot be a inert ϑ-evaluation context, since otherwise the step
r would be ϑ-external.
Hence we have that F ϑ

2 R E˝ϑ. Recall that evaluation contexts which are
not inert evaluation contexts have the shape of an answer (Lem. A.23).
In particular, the subterm F ϑ

2 xΣ
1y is an answer pλy.rqL. �is contradicts

the hypothesis that s “ F ϑ
1 xxxyyrxzpλy.rqLs is in normal form, since x is

below an evaluation context and bound to an answer.
2.3.1.2 If r is ϑ-internal �en ngvptq “ ngvpt1qYngvpt2q Ď

i.h. ngvps1qYngvpt2q “

ngvpsq as required.
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2.3.2 If x R ngvpt1q�en ngvptq “ ngvpt1q “ ngvpsq and we are done.

Backward stability of normal forms

To prove that internal steps can be postponed, we need to deal with situations such as ts  ϑ
ÝÝÑsh

t1s
ϑ

ù t1s1. Here t1l must be an evaluation context, since the second step is external, so t1 is
a structure. We would like to obtain that tl is also an evaluation context, i.e. we would like
to show that t is a structure. �is is where the following lemma comes into play.

Lemma A.69 (Backward stability of normal forms). Let t0
 ϑ
ÝÝÑsh t be an internal step with

t P Xϑ
where Xϑ

stands for either nfϑ or Sϑ. �en t0 P Xϑ
.

Proof. By induction on the derivation that t P Xϑ. �e interesting cases are n-app, nfSubG,
and nfSub.

1. n-app, t “MϑNϑ P Sϑ with Mϑ P Sϑ and Nϑ P nfϑ Note that the step r cannot be at
the root of t0, since the right-hand side of both db and lsv steps is a substitution, rather
than an application.

So t0 is an application t1 t2, and we consider two cases depending on whether the step
r is internal to t1 or internal to t2:

1.1 If r is to the le� of t0 “ t1N
ϑ Let r1 : t1ÑshzgcM

ϑ be the step isomorphic to r but
going under the context lNϑ. Note that r1 cannot be ϑ-external, since this would
imply that r is ϑ-external. So r1 is ϑ-internal and by i.h. we have that t1 P Sϑ.
Hence t0 “ t1N

ϑ P Sϑ, as required.

1.2 If r is to the right of t0 “ Mϑ t2 Let r1 : t2 Ñshzgc N
ϑ be the step isomorphic

to r but going under the context Mϑl. Note that r1 cannot be ϑ-external, since
this would imply that r is ϑ-external. So r1 is ϑ-internal and by i.h. we have that
t2 P nfϑ. Hence t0 “Mϑ t2 P Sϑ, as required.

2. nfSubG, t “ srxzus P Xϑ with x R ngvpsq and s P Xϑ We consider three cases,
depending on whether (1) r is a step at the root of t0, (2) t0 is a substitution s0rxzu0s

and r is internal to t1, (3) t0 is a substitution s0rxzu0s and r is internal to t2.

2.1 If r is at the root Note that r cannot be a db step since it would be external, it must
be a lsv step r : t0 “ CxxyyyryzvLs

 ϑ
ÝÝÑsh CxvyryzvsL “ srxzus. So s is of the form

s “ s1L1 with L1rxzus “ ryzvsL and Cxvy “ s1. Note that since s “ s1L1 P Xϑ by
Lem. A.27 we must have s1 P Xϑ̂ where ϑ̂ Ď fzϑpL1rxzusq “ fzϑpryzvsLq “ fzϑpLq.
We consider two subcases, depending on whether Cxxyyy P Xϑ̂.

2.1.1 If Cxxyyy P Xϑ̂ By strengthening ϑ (Tactic A.55), Cxxyyy P Xϑ. Consider two
further subcases, depending on whether y is a garbage variable in Cxxyyy:
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2.1.1.1 If y P ngvpCxxyyyq Recall that non-garbage variables in a normal form are
below evaluation contexts (Lem. A.25). �en since Cxxyyy is a normal form
in Xϑ and y P ngvpCxxyyyq, we have that Cxxyyy may be wri�en as F ϑxxyyy,
where F ϑ P Eϑ.
If C andF ϑ are the same context, then CryzvLs P Eϑ, which contradicts the
hypothesis that the step r is ϑ-internal. So we may suppose that C ‰ F ϑ.
�en there is a two-hole context pC such that pCxl, yy “ F ϑ and pCxy,ly “
C, and the step r is of the form: r : pCxy, yyryzvLsÑshzgc

pCxy, vyryzvsL “ t.
Note that the underlined occurrence of y is non-garbage on the le�-hand
side, so it is also non-garbage on the right-hand side.
More precisely, pCxl, yy “ F ϑ is an evaluation context so by Lem. A.66 it is
also a non-garbage context. Recall that replacing a variable by an arbitrary
term in a non-garbage context is still a non-garbage context (Lem. A.67),
so pCxl, vy is also non-garbage. Moreover, since non-garbage variables
coincide with variables below non-garbage contexts (Lem. A.65) we have
that y P ngvppCxy, vyq.
�is contradicts the fact that t is a normal form, since to conclude that
pCxy, vyryzvs is a normal form, given that y P ngvppCxy, vyq we would re-
quire that y is bound to a structure, but it is bound to a value v.

2.1.1.2 If y R ngvpCxxyyyq �en we are done, as Cxxyyy P Xϑ, so by applying the
nfSubG rule we obtain that CxxyyyryzvLs P Xϑ, as wanted.

2.1.2 If Cxxyyy R Xϑ̂ Note that Cxvy “ s1 P Xϑ̂. So by de�nition (Def. A.56) C is a Xϑ̂-
critical context. By Lem. A.57 since C is Xϑ̂-critical, it is an evaluation context,
C P Xϑ̂. By strengthening ϑ (Tactic A.55), CryzvLs P Xϑ, contradicting the fact
that the step r is ϑ-internal.

2.2 If r is to the le� of t0 “ s0rxzus Let r1 : s0 Ñshzgc s be the step isomorphic to
r but going under the context lrxzus. Note that r1 cannot be ϑ-external, since
then r would be ϑ-external. So r1 is ϑ-internal and by i.h. we have that s0 P Xϑ.
Moreover, since non-garbage variables are preserved by internal steps (Lem. A.68),
by the contrapositive we have that x R ngvps0q, hence t0 “ s0rxzus P Xϑ as
required.

2.3 If r is to the right of t0 “ srxzu0s�en by applying the rulenfSubG it is immediate
that t0 “ srxzu0s P Xϑ

3. nfSub, t “ srxzMϑs P Xϑ with x P ngvpsq, s P XϑYtxu and Mϑ P Sϑ We consider
three cases, depending on whether (1) r is a step at the root of t0, (2) t0 is a substitution
s0rxzu0s and r is internal to t1, (3) t0 is a substitution s0rxzu0s and r is internal to t2.

3.1 If r is at the root Note that r cannot be a db step since it would be external, it must
be a lsv step: r : t0 “ CxxyyyryzvLs

 ϑ
ÝÝÑsh CxvyryzvsL “ srxzMϑs. So let us write

s as of the form s “ s1L1 in such a way that L1rxzM
ϑs “ ryzvsL. By Lem. A.27

we have that s1 P Xϑ̂ where ϑ̂ Ď fzϑpL1rxzM
ϑsq “ fzϑpryzvsLq “ fzϑpLq. �en the

remainder of this case is analogous to case 2.1 of this lemma.
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3.2 If r is to the le� of t0 “ s0rxzM
ϑs Let r1 : s0 Ñshzgc s be the step isomorphic to r

but going under the context lrxzMϑs. Note that r1 cannot be pϑYtxuq-external,
since then r would be ϑ-external. So r1 is pϑYtxuq-internal, and since s P XϑYtxu

by i.h. we have that s0 P XϑYtxu. We consider two further subcases, depending on
whether x is garbage in s0:

3.2.1 If x P ngvps0q�en s0rxzM
ϑs P Xϑ since s0 P XϑYtxu, by the rule nfSub.

3.2.2 If x R ngvps0q�en since garbage variables are not required in “ϑ” (Lem. A.25),
we have that s0 P Xϑ. Hence s0rxzM

ϑs P Xϑ, by the rule nfSubG.

3.3 If r is to the right of t0 “ srxzu0s Let r1 : u0 Ñshzgc M
ϑ be the step isomorphic

to r but going under the context srxzls. We consider two cases, depending on
whether r1 is ϑ-external or ϑ-internal:

3.3.1 If r1 is ϑ-external First note that, since x P ngvpsq and s P XϑYtxu, by the fact
that non-garbage variables in normal forms are below evaluation contexts
(Lem. A.25) there must exist an evaluation context F ϑ

1 P Eϑ such that s “
F ϑ

1 xxxyy.
Moreover, since r1 is a ϑ-external step, the term u0 can be wri�en as F ϑ

2 xΣy,
whereF ϑ

2 is an evaluation context inEϑ and Σ is the anchor of a redex. If we let
Σ1 denote the contractum of Σ, the internal step is r : F ϑ

1 xxxyyrxzF
ϑ
2 xΣys

 ϑ
ÝÝÑsh

F ϑ
1 xxxyyrxzF

ϑ
2 xΣ

1ys “ srxzMϑs “ t. Since the step r is ϑ-internal, the context
F ϑ

2 cannot be a inert evaluation context, i.e. F ϑ
2 R E˝ϑ. Recall that evaluation

contexts which are not inert evaluation contexts have the shape of an answer
(Lem. A.23). �is means that F ϑ

2 xΣ
1y “ pλy.rqL is an answer. But we also

had that F ϑ
2 xΣ

1y “ Mϑ, so it is both an answer and a structure, which is
impossible.

3.3.2 If r1 is ϑ-internal �en by i.h. u0 is a structure, i.e. u0 PM
ϑ. Hence srxzu0s P

Xϑ, as required.

Backward preservation of evaluation contexts

To prove that internal steps can be postponed, we need to deal with situations such as trxzIs  ϑÝÝÑsh

F ϑxxxyyrxzIs
ϑ

ù F ϑxIyrxzIs. We would like to obtain that t can also be wri�en as Cxxxyy for
some evaluation context C, to swap the external step before the internal one. �is is precisely
the situation addressed by the following lemma.

Lemma A.70 (Backward stability of evaluation contexts). Let t0
 ϑ
ÝÝÑsh F

ϑxxxyy be an internal

step with F ϑxxxyy P Xϑ
, where Xϑ

stands for either Eϑ or E˝ϑ, and such that F ϑ
does not bind x.

�en there exists an evaluation context F ϑ
0 P Xϑ

such that t0 “ F ϑ
0 xxxyy.

Proof. Let r be the name of the ϑ-internal step r : t0
 ϑ
ÝÝÑsh F ϑxxxyy. �e proof goes by

induction on the derivation that F ϑ P Xϑ. �e cases for rules EBox, EAppL, and ELam are
easy. We deal with the other rules:
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1. ESubLNonStr, F ϑ “ F ϑ
1 ryzts with F ϑ

1 P Xϑ and t R Sϑ We consider three cases,
depending on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution
t10ryzr0s and the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and the step r is
internal to r0.

1.1 �e internal step r is at the root of t0 Note that r cannot be a db step, since it
would be external. So it is an lsv step of the form: r : t0 “ CxxzyyrzzvLs

 ϑ
ÝÝÑsh

CxvyrzzvsL “ F ϑ
1 xxxyyryzts “ t1. Let L1 be the substitution context such that

L1ryzts “ rzzvsL, and using Lem. A.62 let us strip the substitution L1 from F ϑ
1 xxxyy.

�is gives us two possibilities, A and B:

1.1.1 Case A �en F ϑ
1 “ F ϑ̂

11L1 and Cxvy “ F ϑ̂
11xxxyy where ϑ̂ “ fzϑpL1q and F ϑ̂

11 P

Xϑ̂. We consider three further subcases, depending on the position of the hole
of C relative to the position of the hole of F ϑ̂

11.
1.1.1.1 �e hole of C and the hole of F ϑ̂

11 are disjoint �en there is a two-hole
context pC such that pCxl, vy “ F ϑ̂

11 and pCxx,ly “ C. By Lem. A.58 there
are two possibilities: the le� and the right branch of the disjunction. �e
right branch case is impossible since it contradicts that r is ϑ-internal
(by strengthening ϑ, Tactic A.55). In the le� branch case, pCxl, zy P Xϑ̂

so by strengthening ϑ (Tactic A.55), pCxl, zyrzzvLs P Xϑ. Hence t0 “
pCxx, zyrzzvLs and by taking F ϑ

0 :“ pCxl, zyrzzvLs we conclude.
1.1.1.2 �e context C is a pre�x of the context F ϑ̂

11 By strengthening ϑ (Tac-
tic A.55), CrzzvLs P Xϑ̂. �is contradicts the fact that r is ϑ-internal.

1.1.1.3 �e context F ϑ̂
11 is a pre�x of the context C �en C “ F ϑ̂

11xC1y, so C1xvy “

x, which is impossible.
1.1.2 Case B �en F ϑ

1 “ F ϑ̂
11xxwyyL tlu, Cxvy “ F ϑ̂

11xxwyy, and L1 “ lL txu

where ϑ̂ “ fzϑpL1q, the evaluation context F ϑ̂
11 is in Xϑ̂, and L is a pϑ,wq-

chain context. We consider three further subcases, depending on the posi-
tion of the hole of C relative to the position of the hole of F ϑ̂

11. �ey re-
mainder of this case is similar to case 1.1.1, except when the hole of C and
the hole of F ϑ̂

11 are disjoint. �en there is a two-hole context pC such that
pCxl, vy “ F ϑ̂

11 and pCxw,ly “ C, and the internal step r is of the form:
r : t0 “ pCxw, zyrzzvLs

 ϑ
ÝÝÑsh

pCxw, vyrzzvsL “ t1. Note that w is bound
by rzzvsL “ lL txuryzts on the right-hand side of the step r since L is a
pϑ,wq-chain context. So w must be bound by rzzvLs on the le�-hand side of
the step r, for otherwise it would be free, and free variables cannot become
bound by reduction.
Hence it must be the case that w “ z. Note that w is bound to a term of the
form Iϑ11 xxw1yy on the right-hand side of the step r, and we have just argued
that w “ z, so Iϑ11 xxw1yy “ v. �is is impossible since answers do not have
variables below inert evaluation contexts (Lem. A.21).

1.2 �e internal step r is to the le� of t0 “ t10ryzts Let r1 : t10 Ñshzgc F
ϑ
1 xxxyy be the

step isomorphic to r but going under the context ryzts. �en by i.h. there is an
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evaluation context F ϑ
10 P Xϑ such that t10 “ F ϑ

10xxxyy. By taking F ϑ
0 :“ F ϑ

10ryzts P

Xϑ we conclude that t0 “ F ϑ
10xxxyyryzts, as required.

1.3 �e internal step r is to the right of t0 “ F ϑ
1 xxxyyryzt

1
0sBy takingF ϑ

0 :“ F ϑ
10ryzt

1
0s P

Xϑ we conclude that t0 “ F ϑ
10xxxyyryzts, as required.

2. ESubLStr, F ϑ “ F
ϑYtyu
1 ryzMϑs with F ϑYtyu P XϑYtyu and Mϑ P Sϑ We consider

three cases, depending on whether (1) the internal step r is at the root of t0, (2) t0 is a
substitution t10ryzr0s and the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and
the step r is internal to r0.

2.1 �e internal step r is at the root of t0 Note that r cannot be a db step, since it
would be external. So r is an lsv step of the form: r : t0 “ CxxzyyrzzvLs

 ϑ
ÝÝÑsh

CxxvyyrzzvsL “ F
ϑYtyu
1 xxxyyryzMϑs “ t1. Let L1 be the substitution context such

that rzzvsL “ L1ryzM
ϑs, and using Lem. A.62 let us strip the substitution L1 from

F
ϑYtyu
1 xxxyy. �is gives us two possibilities, A and B:

2.1.1 Case A �en F ϑYtyu
1 “ F

ϑ̂Ytyu
11 L1 and Cxvy “ F ϑ̂Ytyuxxxyy where ϑ̂ Y tyu “

fzϑYtyupL1q and F
ϑ̂Ytyu
11 P Xϑ̂Ytyu. We consider three further subcases, de-

pending on the position of the hole of C relative to the position of the hole of
F
ϑ̂Ytyu
11 :

2.1.1.1 �e hole of C and F ϑ̂Ytyu
11 are disjoint �en there is a two-hole context pC

such that pCxl, vy “ F
ϑ̂Ytyu
11 and pCxx,ly “ C. By Lem. A.58 there are two

possibilities: the le� and the right branch of the disjunction. �e right
branch case is impossible, ssible since it contradicts that r is ϑ-internal
(by strengthening ϑ, Tactic A.55).
In the le� branch case, by strengthening ϑ (Tactic A.55), pCxl, zyrzzvLs P
Xϑ. �en it is immediate to conclude, since by takingF ϑ

0 :“ pCxl, zyrzzvLs P

Xϑ, we have that t0 “ pCxx, zyrzzvLs, as required.
2.1.1.2 �e context C is a pre�x ofF ϑ̂Ytyu

11 By strengtheningϑ (Tactic A.55), CrzzvLs P
XϑYtyu Moreover, y is bound by L1ryzM

ϑs “ rzzvsL, and y ‰ z, since y
is bound to Mϑ and z is bound to v. Hence y cannot occur free in the
subterm Cxxzyy on the le�-hand side of the step r. In particular, y does not
occur as a structural variable in C. So applying the fact that non-structural
variables are not required in “ϑ” (Lem. A.54) we obtain that CrzzvLs P Xϑ.
�is contradicts that the step r is ϑ-internal.

2.1.1.3 �e context F ϑ̂Ytyu
11 is a pre�x of C �en C “ F

ϑ̂Ytyu
11 xC1y, so C1xvy “ x,

which is impossible.
2.1.2 Case B �enF ϑ

1 “ F
ϑYtyu
11 xxwyyL tlu, Cxvy “ F

ϑ̂Ytyu
11 xxwyy, and L1 “ lL txu,

where ϑ̂Y tyu “ fzϑYtyupL1q, the evaluation context F ϑ̂Ytyu is in Xϑ̂Ytyu, and
L is a pϑ,wq-chain context. We consider three further subcases, depending
on the position of the hole of C relative to the position of the hole of F ϑ̂Ytyu

11 .
�e remainder of this case is similar to 2.1.1 except when the hole of C and
F
ϑ̂Ytyu
11 are disjoint. �en there is a two hole context pC such that pCxl, vy “



337

F
ϑ̂Ytyu
11 and pCxw,ly “ C. �e step r is of the form: r : pCxw, zyrzzvLs

 ϑ
ÝÝÑsh

pCxw, vyrzzvsL. Note that w is bound by lL txuryzMϑs “ rzzvsL, since L is
a pϑ,wq-chain context. Hence it must be the case that w “ z, for otherwise,
if it were the case that w P domL, w would occur free on the le�-hand side of
the step r, since it occurs outside the scope of L. �is is impossible since free
variables cannot become bound a�er a reduction step.
Note that w must be bound to a term of the form Iϑ11 xxw1yy and, since we have
just argued that w “ z, we have that Iϑ11 xxw1yy “ v. �is is impossible since
answers do not have variables below inert evaluation contexts (Lem. A.21).

2.2 �e internal step r is to the le� of t0 “ t10ryzM
ϑs Let r1 : t10 Ñshzgc F

ϑYtyu
1 xxxyy be

the step isomorphic to r but going under the context ryzMϑs. Note that r1 must be
pϑYtyuq-internal, otherwise rwould be pϑYtyuq-external. By i.h. there is an eval-
uation context F ϑYtyu

10 P XϑYtyu such that t10 “ F
ϑYtyu
10 xxxyy. It is immediate to con-

clude by taking F ϑ
0 :“ F

ϑYtyu
10 ryzMϑs P Xϑ, since then t0 “ F

ϑYtyu
10 xxxyyryzMϑs.

2.3 �e internal step r is to the right of t0 “ F
ϑYtyu
1 xxxyyryzt10s Let r1 : t10 Ñshzgc

Mϑ. We consider two cases, depending on whether the step r1 is ϑ-internal or
ϑ-internal:

2.3.1 If r1 is ϑ-external Two further subcases, depending on whether y is a struc-
tural variable in F ϑYtyu

1 or not:
2.3.1.1 If y P svpF ϑYtyu

1 q Since r1 : t10ÑshzgcM
ϑ is a ϑ-external step, we can write

t10 “ F ϑ
3 xΣy and Mϑ “ F ϑ

3 xΣ
1y where Σ is the anchor of a redex, Σ1 its

contractum, and F ϑ
3 is an evaluation context F ϑ

3 P Eϑ. Moreover, since
structural variables are below evaluation contexts (Lem. A.54), there exists
an evaluation context F ϑ

2 P Xϑ such that F ϑYtyu
1 xxxyy “ F ϑ

2 xxyyy. Hence
the step r is of the form: r : F ϑ

2 xxyyyryzF
ϑ
3 xΣysÑshzgcF

ϑ
2 xxyyyryzF

ϑ
3 xΣ

1ys.
If F ϑ

3 happens to be a inert evaluation context, i.e. F ϑ
3 P E˝ϑ then the

composition F ϑ
2 xxyyyryzF

ϑ
3 s is a ϑ-evaluation context and r is a ϑ-external

step, contradicting the hypothesis that it was internal.
So we may suppose that F ϑ

3 is not a inert evaluation context. By Lem. A.23
we know that evaluation contexts which are not inert evaluation contexts
have the shape of an answer, that is, F ϑ

3 x˚y is an answer when �lling the
hole with an arbitrary term. In particular,F ϑ

3 xΣ
1y “Mϑ is both an answer

and a structure, which is impossible.
2.3.1.2 If y R svpF ϑYtyu

1 q By the fact that non-structural variables are not required
in “ϑ” (Lem. A.54), we have that F ϑYtyu

1 P Xϑ. �en, regardless of whether
t10 is a structure or not, adding an arbitrary substitution (Lem. A.26) we
have F ϑYtyu

1 ryzt10s P Xϑ. It is then immediate to conclude by taking F ϑ
0 :“

F
ϑYtyu
1 ryzt10s P Xϑ, since indeed t0 “ F

ϑYtyu
1 xxxyyryzt10s.

2.3.2 If r1 is ϑ-internal Since structures are backward preserved by internal steps
(Lem. A.69), t10 P Sϑ. We conclude by taking F ϑ

0 :“ F
ϑYtyu
1 ryzt10s P Xϑ, since

t0 “ F
ϑYtyu
1 xxxyyryzt10s, as required.
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3. ESubsR, F ϑ “ F ϑ
1 xxyyyryzI

ϑs where F ϑ
1 P Xϑ and Iϑ P E˝ϑ We consider three cases,

depending on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution
t10ryzr0s and the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and the step r is
internal to r0.

3.1 �e internal step r is at the root of t0 Note that r cannot be a db redex, since it
would be external. So r is a lsv redex of the form: r : t0 “ CxxzyyrzzvLs Ñ

CxvyrzzvsL “ F ϑ
1 xxyyyryzI

ϑxxxyys “ t1. Let L1 be the substitution context such
that L1ryzI

ϑxxxyys “ rzzvsL, and using Lem. A.62 let us strip the substitution L1

from F ϑ
1 xxyyy. �is gives us two possibilities, A and B:

3.1.1 Case A �en: F ϑ
1 “ F ϑ̂

11L1 and Cxvy “ F ϑ̂
11xxyyy where ϑ̂ “ fzϑpL1q and F ϑ̂

11 P

Xϑ̂.
We consider three further subcases, depending on the position of the hole of
C relative to the position of the hole of F ϑ̂

11.
3.1.1.1 �e hole of C and the hole of F ϑ̂

11 are disjoint �en there is a two-hole
context pC such that pCxl, vy “ F ϑ̂

11 and pCxy,ly “ C. Note that y is bound
by the substitution context L1ryzI

ϑxxxyys “ rzzvsL on the right-hand side
of the step r. So it must be the case that y “ z, for if we had y P domL,
we would have that y is free on the le�-hand side of the step r, since it
occurs outside the scope of the substitution L. �is is impossible, since a
free variable cannot become bound along reduction.
Also note that y is bound to Iϑxxxyy and, since y “ z, we have Iϑxxxyy “

v. �is is impossible, since answers do not have variables below inert
evaluation contexts (Lem. A.21).

3.1.1.2 �e context C is a pre�x of F ϑ̂
11 �en by the decomposition of evaluation

contexts lemma (Lem. A.20) the context C must be an evaluation context
in Xϑ̂. By strengthening ϑ (Tactic A.55), CrzzvLs P Xϑ, contradicting the
fact that the step r is ϑ-internal.

3.1.1.3 �e context F ϑ̂
11 is a pre�x of C �en C “ F ϑ̂

11xC1y, so C1xvy “ y, which is
impossible.

3.1.2 Case B �en: F ϑ
1 “ F ϑ̂

11xxwyyL tlu, Cxvy “ F ϑ̂
11xxwyy, and L1 “ lL tyu,

where ϑ̂ “ fzϑpL1q, the evaluation context F ϑ̂
11 is in Xϑ̂, and L is a pϑ,wq-

chain context. We consider three further subcases, depending on the position
of the hole of C relative to the position of the hole of F ϑ̂

11. �e remainder of
this case is similar to 3.1.1.

3.2 �e internal step r is to the le� of t0 “ t10ryzI
ϑs Let r1 : t10 Ñshzgc F

ϑ
1 xxyyy be the

step isomorphic to r but going under the context ryzIϑxxxyys. Note that r1 must be
ϑ-internal, for if it were ϑ-external, by adding an arbitrary substitution (Lem. A.26)
it would contradict the fact that r is ϑ-internal.
So we may apply the i.h. to obtain that there exists an evaluation context F ϑ

10 P Xϑ

such that t10 “ F ϑ
10xxyyy. Applying theESubsR rule and takingF ϑ

0 :“ F ϑ
10xxyyyryzI

ϑs P

Xϑ, we have that t0 “ F ϑ
10xxyyyryzI

ϑxxxyys, as required.
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3.3 �e internal step r is to the right of t0 “ F ϑ
1 xxyyyryzt

1
0s Let r1 : t10 Ñshzgc I

ϑxxxyy

be the step isomorphic to r but going under the context F ϑ
1 xxyyyryzls. Note that

r1 cannot be ϑ-external, since then r would be ϑ-external. Hence r1 is ϑ-external,
and we may apply the i.h. to obtain that there is a inert evaluation context Iϑ0 P E˝ϑ
such that t10 “ Iϑ0xxxyy. Taking F ϑ

0 :“ F ϑ
1 xxyyyryzI

ϑ
0 s P Xϑ, we have that t0 “

F ϑ
1 xxyyyryzI

ϑ
0xxxyys, as required.

4. EAppRStr, F ϑ “ Mϑ F ϑ
1 where Mϑ P Sϑ and F ϑ

1 P Eϑ We consider three cases, de-
pending on whether (1) the internal step r is at the root of t0, (2) t0 is an application
t10 r0 and the step r is internal to t10, (3) t0 is an application t10 r0 and the step r is internal
to r0.

4.1 �e internal step r is at the root of t0 �is case is impossible: r cannot be a db step
or a lsv step, since the right-hand side of both db and lsv steps is a substitution,
not an application.

4.2 �e internal step r is to the le� of t0 “ t10 F
ϑ
1 xxxyy Let r1 : t10ÑshzgcM

ϑ be the step
isomorphic to r but going under the context lF ϑ

1 xxxyy. Note that r1 must be ϑ-
internal, otherwise r would be ϑ-external. �en since normal forms are backward
preserved by internal steps (Lem. A.69), t10 must be a strong ϑ-structure Mϑ

0 . By
taking F ϑ

0 :“Mϑ
0 F

ϑ
1 P Xϑ we have that t0 “Mϑ

0 F
ϑ
1 xxxyy, as required.

4.3 �e internal step r is to the right of t0 “ Mϑ t10 Let r1 : t10 Ñshzgc F
ϑ
1 xxxyy be

the step isomorphic to r but going under the context Mϑl. By i.h. there is an
evaluation context F ϑ

10 P Eϑ such that t10 “ F ϑ
10xxxyy. Taking F ϑ

0 :“ Mϑ F ϑ
10 P Xϑ

we have that t0 “Mϑ F ϑ
10xxxyy, as required.

Postponement of internal steps

We turn to the proof of postponement of internal steps a�er external steps. �e proof is long
and by a heavy case analysis. For organizational purposes we split the proof in two lemmas:
the �rst one (Lem. A.71) deals with the case in which the external step is a db step; the second
one (Lem. A.72) deals with the case in which the external step is a lsv step. Finally in Lem. 4.50
we conclude and give the proof of Postponement itself (Lem. 4.50 in the main body).

Lemma A.71 (Postponement of internal steps a�er external db steps). Given any set of vari-

ables ϑ such that fvpt0q Ď ϑ, if t0
 ϑ
ÝÝÑsh t1

ϑ
ù t3 where the second step is a db step, there exists

a term t2 such that t0
ϑ

ù t2�shzgc t3 where the �rst step is a db step. An explicit construction

for the diagrams is given.

Proof. Let us call r to the internal step t0
 ϑ
ÝÝÑsh t1 and r1 to the external db step t1

ϑ
ù t3.

�en t1 “ F ϑxpλx.sqLuy and t3 “ F ϑxsrxzusLy. �roughout the proof we write ∆ for the db
redex pλx.sqLu and ∆1 for its contractum srxzusL. Let Xϑ denote either the set Eϑ or the set
E˝ϑ. By induction on the derivation that F ϑ P Xϑ, the term t0 will be shown to be of the form
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F ϑ
0 x∆0y, where F ϑ

0 P Xϑ, and ∆0 is a db redex, and t2 “ F ϑ
0 x∆

1
0y, where ∆1

0 is the contractum
of ∆0, in such a way that the diagram is closed as required by the statement.

1. EBox, F ϑ “ l P Xϑ �en there is a db redex at the root of t1. By Lem. A.52, the internal
step t0

 ϑ
ÝÝÑsh t1 must be of the form r : t0 “ pλx.s0qL0 u0

 ϑ
ÝÝÑsh pλx.sqLu “ t1 and the

anchor of r must lie either inside s0, inside u0, or inside one of the arguments of L0. By
taking F ϑ

0 :“ l we conclude.

2. EAppL, F ϑ “ Iϑ r P Xϑ with Iϑ P E˝ϑ �e situation is t0
 ϑ
ÝÝÑsh Iϑx∆y r

ϑ
ù Iϑx∆1y r.

We consider three cases: (1) the step r is at the root of t0; (2) t0 is an application t0 “ t10 r0

and the step r takes place inside t10; (3) t0 is an application t0 “ t10 r0 and the step r takes
place inside r0.

2.1 �e internal step r is at the root of t0 Impossible: r cannot be a db step, since it
would be external, and it cannot be a lsv step.

2.2 �e internal step r is to the le� of t0 “ t10 r0 �en there is a step r1 : t10ÑshzgcI
ϑx∆y.

We consider two subcases, depending on whether r1 is ϑ-external or ϑ-internal.

2.2.1 If r1 is ϑ-external �en t10 is of the form rF ϑxΣy where rF ϑ is an evaluation
context in Eϑ and Σ is the anchor of a redex. Note that rF ϑ R E˝ϑ, i.e. it is
not a inert evaluation context, since that would imply that rF ϑ r P Xϑ and
we would have that the step r : rF ϑxΣy r

 ϑ
ÝÝÑsh Iϑx∆y r is external. Hence

since rF ϑ P EϑzE
˝
ϑ by Lem. A.23 we conclude that t10 is of the form v0L0, i.e.

an answer. Moreover, since answers are stable by reduction (Lem. A.22) we
have that Iϑx∆y is an answer, and this is impossible since answers do not have
redexes below inert evaluation contexts (Lem. A.21).

2.2.2 If r1 is ϑ-internal Immediate by i.h..

2.3 �e internal step r is to the right of t0 “ t10 r0 �en t10 “ Iϑx∆y and r0
 ϑ
ÝÝÑsh r.

By taking F ϑ
0 :“ Iϑ r0 P Xϑ closing the diagram is immediate.

3. ESubLNonStr, F ϑ “ F ϑ
1 ryzrs with y R ϑ, r R Sϑ and F ϑ

1 P Xϑ �e situation is
t0

 ϑ
ÝÝÑsh F

ϑ
1 x∆yryzrs

ϑ
ù F ϑ

1 x∆
1yryzrs. �ere are three cases: (1) the step r is at the

root of t0; (2) t0 is a substitution t0 “ t10ryzr0s and the step r takes place inside t10; (3) t0
is a substitution t0 “ t10ryzr0s and the step r takes place inside r0.

3.1 �e internal step r is at the root of t0 Note that r cannot be a db step as it would be
external. Suppose that r is a lsv step. �en t0 “ CxxzyyrzzvL1s

 ϑ
ÝÝÑsh CxvyrzzvsL

1 “

F ϑ
1 x∆yryzrs

ϑ
ù F ϑ

1 x∆
1yryzrs. We know that CxvyrzzvsL1 “ F ϑ

1 x∆yryzrs. �e
outermost substitution ryzrs is either rzzvs (if L1 is empty) or it is the outermost
substitution in L1. In any case, the substitution ryzrs is not part of C.
Let L1 be a substitution context such that rzzvsL1 “ L1ryzrs and using Lem. A.62
let us strip the substitution L1 from F ϑ

1 x∆y. �is gives us two possibilities, case A

and case B in the statement of Lem. A.62:
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3.1.1 Case A �en F ϑ
1 “ F ϑ1

11L1 in such a way that: Cxvy “ F ϑ1

11x∆y, where ϑ1 “
fzϑpL1ryzrsq “ fzϑprzzvsL1q and F ϑ1

11 P Xϑ1 . We consider three subcases, de-
pending on the position of the hole of C relative to the position of the hole of
F ϑ1

11 .
3.1.1.1 �e hole of C and the hole of F ϑ1

11 are disjoint �en there is a two-hole
context pC such that pCxl, vy “ F ϑ1

11 and pCx∆,ly “ C and the situation is
t0 “ pCx∆, zyrzzvL1s

 ϑ
ÝÝÑsh

pCx∆, vyrzzvsL1 “ t1
ϑ

ù pCx∆1, vyrzzvsL1 “ t3.
Recall that pCxl, vy “ F ϑ1

11 P Xϑ1 where ϑ1 “ fzϑprzzvsL1q. Note that
z R ϑ1 since the value v is not a strong structure. By Lem. A.58 there
are two possibilities: the le� and the right branch of the disjunction. �e
right branch case, pCx∆,ly P Xϑ1 , is impossible, as we would have that
pCx∆,lyrzzvsL1 P Xϑ, since fzϑprzzvsLq “ ϑ1. �is implies that there
are two di�erent steps of the generalized call-by-need evaluation strat-
egy under ϑ outgoing from t1: one is the db step t1 “ pCx∆, xyrxzvsL1

ϑ
ù

pCx∆1, xyrxzvsL1 “ t3 and the other one is the lsv step: t1 “ pCx∆, xyrxzvsL1
ϑ

ù

pCx∆, vyrxzvsL1. �e coexistence of two di�erent steps contradicts the fact
that ϑ

ù is a strategy (as shown in Lem. 4.17).
In the le� branch case,pCxl, zy P Xϑ1 . �en we also have thatpCxl, zyrzzvL1s P
Xϑ, and it is immediate to close the diagram.

3.1.1.2 �e context C is a pre�x of F ϑ1

11 Let F ϑ1

11 “ CxC1y. By the decomposition of
evaluation contexts (Lem. A.20) C P Xϑ1 . By strengthening ϑ (Tactic A.55)
we have that C P Xϑ. Hence the step r is external, which is a contradiction.

3.1.1.3 �e context F ϑ1

11 is a pre�x of C Let C “ F ϑ1

11xC
1y. Hence C1xvy “ pλx.sqLu.

�ere are four possibilities for the position of the hole of C1: inside s, inside
one of the substitutions in L, inside u, or right above λx.s (i.e. C1 “ lLu).
In the �rst three cases it is easy to close the diagram. For example, if
the hole of C1 is inside s, i.e. C1 “ pλx.C2qLu and s “ C2xvy, closing
the diagram is straightforward noting that F ϑ1

11 rzzvL
1s is a ϑ-evaluation

context, by strengthening ϑ (Tactic A.55).
�e last case is impossible: if the context C1 is of the form C1 “ lLu, then
by strengthening ϑ (Tactic A.55) we have that F ϑ1

11xlLsyrzzvL1s P Xϑ. and
we obtain that r is an external step.

3.1.2 Case B . �en F ϑ
1 “ F ϑ1

11xxx
1yyL tlu in such a way that Cxvy “ F ϑ1

11xxx
1yy

and L1 “ lL t∆u, where ϑ1 “ fzϑpL1ryzrsq “ fzϑprzzvsL1q, the evaluation
context is F ϑ1

11 P Xϑ1 , and L is a pϑ, x1q-chain context. �e remainder of this
case is similar to case 3.1.1. Namely, we consider three subcases, depending
on the position of the hole of C relative to the position of the hole of F ϑ1

11 .
�e only di�erence with respect to case 3.1.1. is when the context C is a pre�x
of F ϑ1

11 . �en F ϑ1

11 “ CxC1y, so by Lem. A.20 C P Xϑ1 , and by strengthening ϑ
(Tactic A.55) C P Xϑ which means that r is external.

3.2 �e internal step r is to the le� of t0 “ t10ryzr0sNote that isomorphic step t10Ñshzgc

t11 must be internal, so this case is immediate by i.h..
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3.3 �e internal step r is to the right of t0 “ t10ryzr0s �en it is immediate to close
the diagram, recalling that adding an arbitrary substitution preserves evaluation
contexts (Lem. A.26).

4. ESubLStr, F ϑ “ F
ϑYtyu
1 ryzrswith r P Sϑ and F ϑYtyu P XϑYtyu �e situation is t0

 ϑ
ÝÝÑsh

F
ϑYtyu
1 x∆yryzrs “ t1

ϑ
ù F

ϑYtyu
1 x∆1yryzrs “ t3. �ere are three cases: (1) the step r is

at the root of t0; (2) t0 is a substitution t10ryzr0s and the step r takes place inside t10; (3)
t0 is a substitution t10ryzr0s and the step r takes place inside r0.

4.1 �e internal step r is at the root of t0 Note that r cannot be a db step, as that
would be an external step. Suppose then that r is a lsv step. �e situation is t0 “
CxxzyyrzzvL1s

 ϑ
ÝÝÑsh CxvyrzzvsL1 “ F

ϑYtyu
1 x∆yryzrs “ t1

ϑ
ù F

ϑYtyu
1 x∆1yryzrs “

t3. We know that CxvyrzzvsL1 “ F
ϑYtyu
1 xpλx.sqLuyryzrs. Note that L1 cannot be

empty since the outermost substitution ryzrs cannot coincide with rzzvs, given
that r P Sϑ is a structure, and therefore it cannot be a value like v.
Let L1 be a substitution context such that rzzvsL1 “ L1ryzrs, and using Lem. A.62
let us strip the substitution L1 from F

ϑYtyu
1 x∆y. �is gives us two possibilities, case

A and case B in the statement of Lem. A.62:
4.1.1 Case A �en F ϑYtyu

1 “ F
ϑ1Ytyu
11 L1 in such a way that rzzvsL1 “ L1ryzrs and

Cxvy “ F
ϑ1Ytyu
11 xpλx.sqLuy, whereϑ1Ytyu “ fzϑYtyupL1ryzrsq “ fzϑYtyuprzzvsL1q

and F ϑ1Ytyu
11 P Xϑ1Ytyu. We consider three subcases, depending on the position

of the hole of C relative to the position of the hole of F ϑ1Ytyu
11 . �ese are similar

to the three subcases of 3.1.1.
4.1.2 Case B �en F ϑYtyu

1 “ F
ϑ1Ytyu
11 xxx1yyL tlu such that Cxvy “ F

ϑ1Ytyu
11 xxx1yy and

lL t∆u “ L1, where ϑ1Ytyu “ fzϑYtyupL1q, the evaluation context F ϑ1Ytyu
11 is

in Xϑ1Ytyu, and L is a pϑYtyu, x1q-chain context. We consider three subcases,
depending on the position of the hole of C relative to the position of the hole
of F ϑ1Ytyu

11 . �ese are similar to the three subcases of 3.1.2.
4.2 �e internal step r is to the le� of t0 “ t10ryzrs Note that the step t10 Ñshzgc t

1
1

must be pϑ Y tyuq-internal, for otherwise the step at the top of the diagram r :

t10ryzrs Ñshzgc t
1
1ryzrs would be a ϑ-external step. �en it is straightforward to

conclude by i.h..
4.3 �e internal step r is to the right of t0 “ t10ryzr0s Here r0 Ñshzgc r and t10 “

F
ϑYtyu
1 x∆y. We consider two cases, depending on whether the step r1 : r0Ñshzgc r

is ϑ-external or ϑ-internal:
4.3.1 If r1 is ϑ-external Two further subcases, depending on whether y P svpF ϑYtyu

1 q

or not:
4.3.1.1 If y P svpF ϑYtyu

1 q Since r1 : r0 Ñshzgc r is a ϑ-external step, we can write
r0 “ F ϑ

3 xΣy and r “ F ϑ
3 xΣ

1ywhere Σ is the anchor of r1 and Σ1 is its con-
tractum, and moreover F ϑ

3 is an evaluation context F ϑ
3 P Eϑ. Moreover,

since structural variables are below evaluation contexts (Lem. A.54), there
is an evaluation context F ϑ

2 P Xϑ such that F ϑYtyu
1 x∆y “ F ϑ

2 xxyyy. Hence
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the step r at the top of the diagram is of the form r : t0 “ F ϑ
2 xxyyyryzF

ϑ
3 xΣysÑshzgc

F ϑ
2 xxyyyryzF

ϑ
3 xΣ

1ys “ t1. If F ϑ
3 happens to be a inert evaluation context,

i.e. F ϑ
3 P E˝ϑ then the composition F ϑ

2 xxyyyryzF
ϑ
3 s is a ϑ-evaluation con-

text and r is a ϑ-external step, contradicting the hypothesis that it was
internal.
So we may suppose thatF ϑ

3 is not a inert evaluation context. By Lem. A.23,
evaluation contexts which are not inert evaluation contexts have the shape
of an answer. In particular F ϑ

3 xΣ
1y “ pλx1.t1qL2 and we have a ϑ-external

step: r2 : t1 “ F ϑ
2 xxyyyryzpλx

1.t1qL2s
ϑ

ù F ϑ
2 xλx

1.t1yryzλx1.t1sL2. Hence
t1 has two distinct external steps, namely r1 and r2. �is is impossible as
a consequence of the unique decomposition lemma (Lem. 4.17).

4.3.1.2 If y R svpF
ϑYtyu
1 q �en by Lem. A.54 we have that F ϑYtyu

1 P Xϑ, so
F
ϑYtyu
1 ryzr0s P Xϑ, regardless of whether r0 is a ϑ-structure or not. �en

it is straightforward to close the diagram.
4.3.2 If r1 is ϑ-internal Since normal forms are backward preserved by internal

steps (Lem. A.69), r0 is a structure; more precisely r0 P Sϑ. �is allows us
to conclude that F ϑYtyu

1 ryzr0s P Xϑ, and it is straightforward to close the
diagram.

5. ESubsR, F ϑ “ F ϑ
1 xxyyyryzI

ϑs, where F ϑ
1 P Xϑ and Iϑ P E˝ϑ �e situation is t0

 ϑ
ÝÝÑsh

F ϑ
1 xxyyyryzI

ϑx∆ys “ t1
ϑ

ù F ϑ
1 xxyyyryzI

ϑx∆1ys “ t3. �ere are three cases: (1) the step
r is at the root of t0; (2) t0 is a substitution t10ryzr0s and the step takes place inside t10;
(3) t0 is a substitution t10ryzr0s and the step takes place inside r0.

5.1 �e internal step r is at the root of t0 Note that r cannot be a db step since
then it would be ϑ-external, so r must be a lsv step t0 “ CxxzyyrzzvL1s

 ϑ
ÝÝÑsh

CxxzyyrzzvsL1 “ F ϑ
1 xxyyyryzI

ϑx∆ys “ t1. Let L1 be a substitution context such that
rzzvsL1 “ L1ryzI

ϑx∆ys, and using Lem. A.62 let us strip the substitution L1 from
F ϑ

1 xxyyy. �is gives us two possibilities, case A and case B in the statement of
Lem. A.62:

5.1.1 Case A �en F ϑ
1 “ F ϑ1

11L1 such that F ϑ1

11xxyyy “ Cxvy where ϑ1 “ fzϑpL1q and
the evaluation context F ϑ1

11 is in Xϑ1 . We consider three subcases, depending
on the position of the hole of C relative to the position of the hole of F ϑ1

11 .
5.1.1.1 �e hole of C and the hole of F ϑ1

11 are disjoint �en there is a two-hole
contextpC such thatpCxl, vy “ F ϑ1

11 andpCxy,ly “ C. So the starting term t0
is of the form: t0 “ CxxzyyrzzvL1s “ pCxy, zyrzzvL1s “ F ϑ1

11xxyyyrzzvL
1s and

t0Ñshzgc t1. �e variable y occurs bound in t1, so it must also occur bound
in t0, which means that y “ z. Since L1ryzI

ϑx∆ys “ rzzvsL1 we have that
Iϑx∆y “ v. �is is impossible since answers do not have redexes under
inert evaluation contexts (Lem. A.21).

5.1.1.2 �e context C is a pre�x of F ϑ1

11 �en F ϑ1

11 “ CxC1y, so by the decomposition
lemma for evaluation contexts (Lem. A.20) C P Xϑ1 . By strengthening ϑ
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(Tactic A.55), CrzzvL1s P Xϑ. �is contradicts the fact that r is an internal
step.

5.1.1.3 �e context F ϑ1

11 is a pre�x of C �en C “ F ϑ1

11xC
1y. Given that Cxvy “

F ϑ
11xxyyy we have that v “ y, which is impossible.

5.1.2 Case B �en F ϑ
1 “ F ϑ1

11xxx
1yyL tlu such that F ϑ1

11xxx
1yy “ Cxvy and L1 “

lL tyu where ϑ1 “ fzϑprzzvsL1q “ fzϑpL1ryzI
ϑx∆ysq, the evaluation context

F ϑ1

11 is in Xϑ1 , and L is a pϑ, x1q-chain context. �e remainder of this case is
similar to the previous item 5.1.1. For case 5.1.1.1, recall that answers do not
have variables under inert evaluation contexts (Lem. A.21).

5.2 �e internal step r is to the le� of t0 “ t10ryzr0s�en there is a step r1 : t10 Ñshzgc

F ϑ
1 xxyyy. �e step r1 must be ϑ-internal, otherwise r would be ϑ-external. Since

r1 is internal, by Lem. A.70 we have that t10 is of the form F ϑ
0 xxyyy, where F ϑ

0 is an
evaluation context in Xϑ. �en it is immediate to close the diagram.

5.3 �e internal step r is to the right of t0 “ t10ryzr0s�en there is a step r1 : r0Ñshzgc

Iϑx∆1y. We consider two subcases, depending on whether r1 is ϑ-external or ϑ-
internal:

5.3.1 If r1 is ϑ-external �en its source r0 is of the form r0 “ rF ϑxΣywhere rF ϑ P Eϑ
is an evaluation context and Σ is the anchor of a redex. Moreover, rF ϑ R E˝ϑ,
i.e. it cannot be a inert evaluation context, since otherwise we would have
that r is external. So given that rF ϑ P EϑzE

˝
ϑ by Lem. A.23 we conclude that

r0 is of the form r0 “ v0L0, i.e. an answer. By the fact that answers are stable
by reduction (Lem. A.22) this means that Iϑx∆1y is also an answer, which
contradicts the fact that answers do not have redexes below inert evaluation
contexts (Lem. A.21).

5.3.2 If r1 is ϑ-internal Immediate by i.h..

6. EAppRStr, F ϑ “ r F ϑ
1 , where r P Sϑ and F ϑ

1 P Eϑ �e situation is t0
 ϑ
ÝÝÑsh r F

ϑ
1 x∆y “

t1
ϑ

ù r F ϑ
1 x∆

1y “ t3. �ere are three cases: (1) the step r is at the root of t0; (2) t0 is an
application r0 t

1
0 and the step takes place inside r0; (3) t0 is a substitution r0 t

1
0 and the

step takes place inside t10.

6.1 �e internal step r is at the root of t0 �is case is impossible. Note that r cannot
be a db step at the root, since it would be an external step. Moreover, r cannot be a
lsv step at the root, since then the outermost constructor of t1 “ r F ϑ

1 x∆y would
be a substitution, but it is an application.

6.2 �e internal step r is to the le� of t0 “ r0 t
1
0 �en there is a step r1 : r0Ñshzgc r. It

cannot be ϑ-external, for this would imply that r is ϑ-external. Note that r P Sϑ,
so by Lem. A.69 we have that r0 P Sϑ. �en it is immediate to close the diagram.

6.3 �e internal step r is to the right of t0 “ r0 t
1
0 �ere is a step r1 : t10Ñshzgc F

ϑ
1 x∆y.

It cannot be ϑ-external, as this would imply that r is also ϑ-external. �en it is
straightforward to conclude by i.h..



345

7. ELam, F ϑ “ λy.F ϑYtyu Straightforward by i.h..

Lemma A.72 (Postponement of internal steps a�er external lsv steps). Given any set of vari-

ables ϑ such that fvpt0q Ď ϑ, if t0
 ϑ
ÝÝÑsh t1

ϑ
ù t3 where the second step is a lsv step, there exists

a term t2 such that t0
ϑ

ù t2�shzgc t3 where the �rst step is a lsv step. An explicit construction

for the diagrams is given.

Proof. Let Xϑ denote either the set Eϑ or the set E˝ϑ. Let us call r to the internal step t0
 ϑ
ÝÝÑsh

t1 and r1 to the external lsv step t1
ϑ

ù t3. �en t1 “ F ϑ
1 xF

ϑ1

2 xxxyyrxzvLsy and t3 “

F ϑ
1 xF

ϑ1

2 xvyrxzvsLy, where F ϑ
1 xF

ϑ1

2 rxzvLsy P Xϑ. We write ∆ to stand for the lsv redex
F ϑ1

2 xxxyyrxzvLs and ∆1 for its contractum F ϑ1

2 xvyrxzvsL.
By induction on the derivation that F ϑ

1 P Xϑ, the term t0 will be shown to be of the form
F ϑ

10xF
ϑ2

20 xxxyyrxzv0L0sy, where F ϑ
10xF

ϑ2

20 rxzv0L0sy P Xϑ, and then t2 “ F ϑ
10xF

ϑ2

20 xv0yrxzv0sL0y,
in such a way that the diagram is closed as required by the statement. We write ∆0 to stand
for the lsv redex F ϑ2

20 xxxyyrxzv0L0s and ∆1
0 for its contractum F ϑ2

20 xvyrxzv0sL0. Furthermore,
suppose that F ϑ1

2 P Yϑ1 . �en the inductive construction will ensure that F ϑ2

20 P Yϑ2 , where
Yϑ is either Eϑ or E˝ϑ.

1. EBox, F ϑ
1 “ l P Xϑ Note that in this case ϑ1 “ fzϑplq “ ϑ. �en there is a lsv redex at

the root of t1 “ F ϑ
2 xxxyyrxzvLs. We consider three cases: (1) the step r : t0

 ϑ
ÝÝÑsh t1 is at

the root of t0; (2) t0 is a substitution t10rxzs0s and r is internal to t10; (3) t0 is a substitution
t10rxzs0s and r is internal to s0.

1.1 �e internal step r is at the root of t0 Note that r cannot be a db step, since it would
be external. So r is a lsv step, i.e. t0 “ Cxxyyyryzv1L1s

 ϑ
ÝÝÑsh Cxv

1yryzv1sL1 “ t1 “

F ϑ
2 xxxyyrxzvLs. Let L1 be a substitution context such that ryzv1sL1 “ L1rxzvLs, and

using Lem. A.62 let us strip L1 from F ϑ
2 xxxyy. �is gives us two possibilities, case

A and case B in the statement of Lem. A.62:

1.1.1 Case A �en F ϑ
2 xxxyy “ F ϑ2

21 xxxyyL1 where ϑ2 “ fzϑpL1q, the evaluation con-
text F ϑ2

21 is in Xϑ2 and we have Cxv1y “ F ϑ2

21 xxxyy. We consider three further
subcases, depending on the position of the hole of C relative to the position of
the hole of F ϑ2

21 .
1.1.1.1 �e hole of C and the hole of F ϑ2

21 are disjoint �en there is a two-hole
context pC such that pCxl, vy “ F ϑ2

21 and pCxx,ly “ C. By Lem. A.58 there
are two possibilities for pC: the le� and the right branch of the disjunction.
�e right branch, C “ pCxx,ly P Xϑ2 , is impossible since by strengthen-
ing ϑ (Tactic A.55), Cryzv1L1s P Xϑ, which contradicts the fact that r is
external.
In the le� branch case, pCxl, yy P Xϑ2 . By strengthening ϑ (Tactic A.55),
pCxl, yy P Xϑ. Note also that x is bound by L1rxzvLs “ ryzv

1sL1, and that
it must occur bound in t0 “ pCxx, yyryzv1L1s, since free variables cannot
become bound. So x it must be bound by ryzv1L1s, which means that x “ y,
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and in particular v “ v1 and L “ L1. �en it is immediate to close the
diagram.

1.1.1.2 �e context C is a pre�x of F ϑ2

21 �en F ϑ2

21 “ CxC1y, so by Lem. A.20 C must
be an evaluation context in Xϑ2 . By the fact that non-structural variables
are not required in “ϑ” (Lem. A.54) we obtain that C P Xϑ. �is contradicts
the hypothesis that r is an internal step.

1.1.1.3 �e context F ϑ2

21 is a pre�x of C �en C “ F ϑ2

21 xC
1y. Since Cxv1y “ F ϑ2

21 xxxyy

this implies that v1 “ x, which is impossible.
1.1.2 Case B �enF ϑ

2 xxxyy “ F ϑ2

21 xxzyyL txu such that Cxv1y “ F ϑ2

21 xxzyy andlL txu “

L1, where ϑ2 “ fzϑpL1q, the evaluation contextF ϑ2

21 is inXϑ2 , and L is a pϑ, zq-
chain context. �e remainder of this case is by case analysis on the relative
positions of the hole of C and the hole of F ϑ2

21 , similar to item 1.1.1.

1.2 �e internal step r is to the le� of t0 “ t10rxzs0s�en there is a step r1 : t10 Ñshzgc

F ϑ
2 xxxyy. Note that r1 cannot be ϑ-external, for this would imply that r is ϑ-

external. Hence r1 is ϑ-internal, so given that evaluation contexts are backward
preserved by internal steps (Lem. A.70), there is an evaluation context F ϑ

20 P Xϑ

such that t10 “ F ϑ
20xxxyy. �en it is immediate to close the diagram.

1.3 �e internal step r is to the right of t0 “ t10rxzs0s�en there is a step r1 : s0Ñshzgc

vL. We consider two cases, depending on whether r1 is a ϑ-external or a ϑ-internal
step:

1.3.1 If r1 is ϑ-external �en s0 is of the form rF ϑxΣy, where rF ϑ is an evaluation
context in Eϑ and Σ is the anchor of a redex. Note that rF ϑ is an evaluation
context but it is not a inert evaluation context, i.e.

rF ϑ R E˝ϑ, since if we had
rF ϑ P E˝ϑ then the context F ϑ

2 xxxyyrxz
rF ϑs would be an evaluation context, and

the step r would be external, contradicting the hypothesis that it is internal.
�en since rF ϑ P EϑzE

˝
ϑ by the Lem. A.23 we may conclude that rF ϑxΣy “ v0L0,

and it is immediate to close the diagram.
1.3.2 If r1 is ϑ-internal �en since answers are backward stable by internal steps

(Lem. A.51), s0 is of the form s0 “ v0L0, and the diagram can be closed just as
in the previous case.

2. EAppL, F ϑ
1 “ Iϑ t �e situation is t0

 ϑ
ÝÝÑsh Iϑx∆y t “ t1

ϑ
ù Iϑx∆1y t “ t3, where

IϑxF ϑ1

2 rxzvLsy is a inert evaluation context in E˝ϑ. �is case is analogous to item 2 of
the previous lemma (Lem. A.71), as the proof does not rely on ∆ being a db redex.

3. ESubLNonStr, F ϑ
1 “ F ϑ

11ryzts, where y R ϑ, t R Sϑ, and F ϑ
11 P Xϑ �e situation is

t0
 ϑ
ÝÝÑsh F

ϑ
11x∆yryzts “ t1

ϑ
ù F ϑ

11x∆
1yryzts “ t3. We consider three cases, depending

on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution t10ryzr0s and
the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and the step r is internal to r0.

3.1 �e internal step r is at the root of t0 �en r cannot be a db step, since it would
be external. So it must be a lsv step. �en the step r is of the form: t0 “
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Cxxzyyrzzv1L1s
 ϑ
ÝÝÑsh Cxv1yrzzv1sL1 “ F ϑ

11x∆yryzts “ t1. Let L1 be a substitution
context such that L1ryzts “ rzzv1sL1. Recall that ∆ “ F ϑ1

2 xxxyyrxzvLs. Using
Lem. A.63 let us strip L1 from F ϑ

11xF
ϑ1

2 rxzvLsy. �is gives us four possibilities, A,
B, C, and D in the statement of Lem. A.63.

3.1.1 Case A �en F ϑ
11 “ F ϑ̂

111L1 and Cxv1y “ F ϑ̂
111x∆y, where ϑ̂ “ fzϑpL1q and

F ϑ̂
111 P Xϑ̂. We consider three further subcases, depending on the position of

the hole of C relative to the position of the hole of F ϑ̂
111.

3.1.1.1 �e hole of C and the hole of F ϑ̂
111 are disjoint �en there is a two hole

context pC such that pCxl, v1y “ F ϑ̂
111 and pCx∆,ly “ C. By Lem. A.58 there

are two possibilities for pC: the le� and the right branch of the disjunction.
�e right branch, C P Xϑ̂, is impossible, since by strengthening ϑ (Tac-
tic A.55) we have C P Xϑ, which contradicts the fact that r is an internal
step.
In the le� branch case, pCxl, zy is an evaluation context in Xϑ̂. Since
ϑ̂ “ fzϑprzzv1sL1q Ď ϑ Y domL1, by applying the fact that non-structural
variables are not required in “ϑ” (Lem. A.54) we obtain that pCxl, zy P Xϑ.
�en closing the diagram is straightforward.

3.1.1.2 �e context C is a pre�x of F ϑ̂
111 By the decomposition of evaluation con-

texts lemma (Lem. A.20), we have that C P Xϑ̂. Since ϑ̂ Ď ϑ Y domL1,
by applying the fact that non-structural variables are not required in “ϑ”
(Lem. A.54) we obtain that C P Xϑ. �is contradicts the fact that r is an
internal step.

3.1.1.3 �e contextF ϑ̂
111 is a pre�x of C�en C “ F ϑ̂

111xC1y, so C1xv
1y “ F ϑ1

2 xxxyyrxzvLs.
We proceed by case analysis on the position of the hole of C1 in the term
F ϑ1

2 xxxyyrxzvLs: it can be to the le� of the substitution rxzvLs, or inside
the substitution.
• Le� of the substitution, C1 “ C11rxzvLs Now C11xv

1y “ F ϑ1

2 xxxyy. Let
us analyze the relative positions of the holes of the contexts C11 and
F ϑ1

2 . Observe that F ϑ1

2 cannot be a pre�x of C11, as this would imply
that x “ C2xvy. So there are two possibilities, either the holes of C11

and F ϑ1

2 are disjoint, or C11 is a pre�x of F ϑ1

2 :
– If the holes of C11 and F ϑ1

2 are disjoint �en there is a two-hole con-
text pC such that pCxl, v1y “ F ϑ1

2 and pCxx,ly “ C11. By Lem. A.58
there are two possibilities for pC: the le� and the right branch of the
disjunction. �e right branch case, C11 P Yϑ1 , is impossible since then
C “ F ϑ̂

111xC11rxzvLsyrzzv
1L1s P Xϑ, which contradicts the fact that r

is an internal step. In the le� branch case, pCxl, zy P Yϑ1 , so closing
the diagram is straightforward.

– If C11 is a pre�x of F ϑ1

2 �en F ϑ1

2 “ C11xC2y. �e situation is t0 “
F ϑ̂

111xC11xxzyyrxzvLsyrzzv
1L1s

 ϑ
ÝÝÑsh F

ϑ̂
111xC11xv

1yrxzvLsyrzzv1sL1 “ t1
and we have that F ϑ1

2 xxxyy “ C11xv
1y. Given that C11 is a pre�x of

F ϑ1

2 , we have in particular that x occurs free in v1. �is is impossible



348

by Barendregt’s variable convention, since v1 is outside the scope of
the substitution binding x in t0.

• Inside the substitution, C1 “ F ϑ1

2 xxxyyrxzC11s So C1xv
1y “ vL. We con-

sider two further subcases, depending on whether the hole of C1 is in-
side v or inside one of the substitutions in L.
– If C1 “ C111L and v “ C111xv

1y�ere are two possibilities, depending
on whether the context C111 is empty. If C111 is empty, then the situa-
tion is t0 “ F ϑ̂

111xF
ϑ1

2 xxxyyrxzzLsyrzzv
1L1s

 ϑ
ÝÝÑsh F

ϑ̂
111xF

ϑ1

2 xxxyyrxzv
1Lsyrzzv1sL1 “

t1. Note that the contextF ϑ̂
111xF

ϑ1

2 xxxyyrxzlLsyrzzv1L1s is aϑ-evaluation
context, so the step r is external, contradicting the hypothesis that it
is internal.
On the other hand, if C111 is non-empty, i.e. C111 “ λx1.C2, then clos-
ing the diagram is straightforward.

– If C1 “ vL1ryzC111sL2 and L “ L1ryzC111xv
1ysL2 �en closing the

diagram is straightforward.
3.1.2 Case B �en F ϑ

11 “ F ϑ̂
111xxwyyL tlu, Cxv1y “ F ϑ̂

111xxwyy, and L1 “ lL t∆u,
where ϑ̂ “ fzϑpL1q, the evaluation context F ϑ̂

111 is in Xϑ̂, and L is a pϑ,wq-
chain context. We consider three further subcases, depending on the position
of the hole of C relative to the position of the hole of F ϑ̂

111.
3.1.2.1 �e hole of C and the hole of F ϑ̂

111 are disjoint �en there is a two hole
context pC such that pCxl, v1y “ F ϑ̂

111 and pCxw,ly “ C. By Lem. A.58 there
are two possibilities for pC: the le� and the right branch of the disjunction.
�e right branch case, C P Xϑ̂, is impossible since by strengthening ϑ
(Tactic A.55) we have Crzzv1L1s P Xϑ, which contradicts the fact that r is
an internal step.
In the le� branch case, pCxl, zy P Xϑ̂. Note that in the term t1, the variable
w is bound by lL t∆uryzts “ rzzv1sL1 since L is a pϑ,wq-chain context.
�en w must also occur bound in the term t0 “ pCxw, v1yrzzv1L1s, since
reduction cannot make a free variable become bound. Hence w “ z.
Consider the binding of w in the substitution context lL t∆u. We know
that it is of the form Iϑ1xΣy where Iϑ1 is a inert evaluation context for
some value of ϑ1, and Σ is either ∆ (if L has exactly one jump) or a
variable (if L has more than one jump). So we have that v1L1 “ Iϑ1xΣy.
�is is impossible since answers do not have redexes or variables below
inert evaluation contexts (Lem. A.21).

3.1.2.2 �e context C is a pre�x of F ϑ̂
111 �en by Lem. A.20, C P Xϑ̂. By strength-

ening ϑ (Tactic A.55), Crzzv1L1s P Xϑ. �is contradicts the fact that r is an
internal step.

3.1.2.3 �e context F ϑ̂
111 is a pre�x of C �en C “ F ϑ̂

111xC1y, sow “ C1xxv
1yy, which

is impossible.
3.1.3 Case C �enF ϑ

11 is a substitution context, and: F ϑ1

2 “ F ϑ̂1
21L2, L1 “ F ϑ

11xL2rxzvLsy,
and Cxv1y “ F ϑ̂1

21xxxyy, where ϑ̂1 “ fzϑ
1

pL2q and the evaluation context F ϑ̂1
21 is
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in Yϑ̂1 . �e remainder of this case is similar to case 3.1.2, by case analysis on
the position of the hole of C relative to the position of the hole of F ϑ̂1

21 .
3.1.4 Case D �enF ϑ

11 is a substitution context,F ϑ1

2 “ F ϑ̂1
21xxwyyL tlu, L1 “ F ϑ

11xlL txurxzvLsy,
and Cxv1y “ F ϑ̂1

21xxwyy, where ϑ̂1 “ fzϑ
1

plL txuq, the evaluation context F ϑ̂1
21 is

in Yϑ̂1 , and L is a pϑ1, wq-chain context. �e remainder of this case is similar
to case 3.1.2, by case analysis on the position of the hole of C relative to the
position of the hole of F ϑ̂1

21 .

3.2 �e internal step r is to the le� of t0 “ t10ryzr0s�en there is a step r1 : t10 Ñshzgc

F ϑ
11x∆y. Note that r1 must be ϑ-internal, for otherwise r would be ϑ-external.

�en it is straightforward to conclude by i.h..

3.3 �e internal step r is to the right of t0 “ t10ryzr0s�en r : r0 Ñshzgc r and closing
the diagram is immediate.

4. ESubLStr, F ϑ
1 “ F

ϑYtyu
11 ryzts with F ϑYtyu

11 P XϑYtyu and t P Sϑ �e situation is t0
 ϑ
ÝÝÑsh

F
ϑYtyu
11 x∆yryzts “ t1

ϑ
ù F

ϑYtyu
11 x∆1yryzts “ t3. We consider three cases, depending

on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution t10ryzr0s and
the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and the step r is internal to r0.

4.1 �e internal step r is at the root of t0 Note that r cannot be a db step, since it would
be external. So it must be a lsv step of the form: r : t0 “ Cxxzyyrzzv1L1s

 ϑ
ÝÝÑsh

Cxxv1yyrzzv1sL1 “ t1. Let L1 be a substitution context such that L1ryzts “ rzzv
1sL1.

Recall that ∆ “ F ϑ1

2 xxxyyrxzvLs. Using Lem. A.63 let us strip L1 fromF
ϑYtyu
11 xF ϑ1

2 rxzvLsy.
�is gives us four possibilities, A, B, C, and D in the statement of Lem. A.63.

4.1.1 Case A �en: F ϑYtyu
11 “ F

ϑ̂Ytyu
111 L1 and Cxv1y “ F

ϑ̂Ytyu
111 x∆y, where ϑ̂ “ fzϑYtyupL1qztyu

and F ϑ̂Ytyu
111 P XϑYtyu. We consider three cases, depending on whether the

holes of C and F ϑ̂Ytyu
111 are disjoint, C is a pre�x of F ϑ̂Ytyu

111 , or F ϑ̂Ytyu
111 is a pre�x

of C.
4.1.1.1 �e hole of C and the hole of F ϑ̂Ytyu

111 are disjoint �en there is a two-hole
context such thatpCxl, v1y “ F

ϑ̂Ytyu
111 andpCx∆,ly “ C. By Lem. A.58 there

are two possibilities for pC: the le� and the right branch of the disjunction.
�e right branch case, C P Xϑ̂Ytyu, is impossible, since by strengthening
ϑ (Tactic A.55) we have Crzzv1L1s P Xϑ which contradicts the hypothesis
that r is an internal step.
In the le� branch case, pCxl, zy P Xϑ̂Ytyu. By strengthening ϑ (Tactic A.55),
pCxl, zyrzzv1L1s P Xϑ and closing the diagram is straightforward.

4.1.1.2 �e context C is a pre�x of F ϑ̂Ytyu
111 �en by the decomposition of evalua-

tion contexts lemma (Lem. A.20) we know that C P Xϑ̂Ytyu. By strength-
ening ϑ (Tactic A.55), Crzzv1L1s P Xϑ. �is contradicts the hypothesis that
r is an internal step.

4.1.1.3 �e context F ϑ̂Ytyu
111 is a pre�x of C �en C “ F

ϑ̂Ytyu
111 xC1y. So ∆ “ C1xv

1y.
Recall that ∆ “ F ϑ1

2 xxxyyrxzvLs. �e remainder of this case is analogous
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to case 3.1.1.3, by case analysis on whether the hole of C1 lies to the le�
or inside the substitution rxzvLs.

4.1.2 Case B �en F
ϑYtyu
11 “ F

ϑ̂Ytyu
111 xxwyyL tlu, Cxv1y “ F

ϑ̂Ytyu
111 xxwyy, and L1 “

lL t∆u, where ϑ̂ “ fzϑYtyupL1qztyu, the evaluation context F ϑ̂Ytyu
111 is in

Xϑ̂Ytyu, and L is a pϑY tyu, wq-chain context.
We consider three further subcases, depending on the position of the hole of
C relative to the position of the hole of F ϑ̂Ytyu

111 .
4.1.2.1 �e hole of C and the hole of F ϑ̂Ytyu

111 are disjoint �en there is a two-hole
context pC such that pCxl, v1y “ F

ϑ̂Ytyu
111 and pCxw,ly “ C. By Lem. A.58

there are two possibilities for pC: the le� and the right branch of the dis-
junction. �e right branch case, C P Xϑ̂Ytyu, is impossible, since by strength-
ening ϑ (Tactic A.55), we have that pCxl, zyrzzv1L1s P Xϑ, which contra-
dicts the fact that the step r is internal.
In the le� branch case, pCxl, zy P Xϑ̂Ytyu. By strengthening ϑ (Tactic A.55),
pCxl, zyrzzv1L1s P Xϑ. �en closing the diagram is immediate.

4.1.2.2 �e context C is a pre�x of F ϑ̂Ytyu
111 By the decomposition lemma for eval-

uation contexts (Lem. A.20) we know that C P Xϑ̂Ytyu. By strengthening ϑ
(Tactic A.55), pCxl, zyrzzv1L1s P Xϑ. �is contradicts the fact that the step
r is internal.

4.1.2.3 �e context F ϑ̂Ytyu
111 is a pre�x of C �en C “ F

ϑ̂Ytyu
111 xC1y. Hence w “

C1xvy, which is impossible.
4.1.3 Case C �enF ϑ

11 is a substitution context, and: F ϑ1

2 “ F ϑ̂1
21L2, L1 “ F ϑ

11xL2rxzvLsy,
and Cxv1y “ F ϑ1

21xxxyy, where ϑ̂1 “ fzϑ
1

pL2q and the evaluation context F ϑ̂1
21 is

in Yϑ̂1 . �e remainder of this case is analogous to case 3.1.3, by case analysis
on the relative positions of the holes of C and F ϑ̂1

21 .
4.1.4 Case D �en F ϑ

11 is a substitution context, and: F ϑ1

2 “ F ϑ̂1
21xxwyyL tlu, L1 “

F
ϑYtyu
11 xlL txurxzvLsy, and Cxv1y “ F ϑ̂1

21xxwyy, where ϑ̂1 “ fzϑYtyupL1q, the
evaluation context F ϑ̂1

21 is in Yϑ̂1 , and L is a pϑ1, wq-chain context. �e re-
mainder of this case is analogous to case 3.1.4, by case analysis on the relative
positions of the holes of C and F ϑ̂1

21 .

4.2 �e internal step r is to the le� of t0 “ t10ryzr0s�en there is a step r1 : t10 Ñshzgc

F
ϑYtyu
11 x∆yryzts. It must be a pϑ Y tyuq-internal step, for otherwise r would be
ϑ-external. �en it is straightforward to conclude by i.h..

4.3 �e internal step r is to the right of t0 “ t10ryzr0s�en the internal step r is of the
form: F ϑYtyu

1 x∆yryzr0s
 ϑ
ÝÝÑsh F

ϑYtyu
1 x∆yryzts and there is a step r1 : r0 Ñshzgc t.

We consider two cases, depending on whether y is a structural variable in F ϑYtyu
1 .

4.3.1 If y P svpF
ϑYtyu
1 q �en since structural variables are below evaluation con-

texts (Lem. A.54) there is a context rF ϑ
1 P Xϑ such that F ϑYtyu

1 x∆y “ rF ϑ
1 xxyyy.

Consider two further subcases, depending on whether r1 is ϑ-external or ϑ-
internal:
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4.3.1.1 If r1 is a ϑ-external step �en r is ϑ-external, contradicting the hypothesis
that it is ϑ-internal.

4.3.1.2 If r1 is a ϑ-internal step �en since normal forms are backward preserved
by internal steps (Lem. A.69), r0 is a structure in Sϑ, so F ϑYtyu

1 ryzr0s is an
evaluation context in Xϑ and closing the diagram is straightforward.

4.3.2 If y R svpF
ϑYtyu
1 q �en since non-structural variables are not required in “ϑ”

(Lem. A.54), F ϑYtyu is an evaluation context in Xϑ. Regardless of whether
r0 is a structure or not a structure, the context F ϑYtyu

1 rxzr0s is an evaluation
context in Xϑ. �en closing the diagram is straightforward.

5. ESubsR, F ϑ
1 “ F ϑ

11xxyyyryzI
ϑs with F ϑ

11 P Xϑ and Iϑ P E˝ϑ �e situation is t0
 ϑ
ÝÝÑsh

F ϑ
11xxyyyryzI

ϑx∆ys “ t1
ϑ

ù F ϑ
11xxyyyryzI

ϑx∆1ys “ t3. We consider three cases, depend-
ing on whether (1) the internal step r is at the root of t0, (2) t0 is a substitution t10ryzr0s

and the step r is internal to t10, (3) t0 is a substitution t10ryzr0s and the step r is internal
to r0.

5.1 �e internal step r is at the root of t0 Note that r cannot be a db step, since it would
be external, so it must be a lsv step of the form r : t0 “ Cxxzyyrzzv1L1s

 ϑ
ÝÝÑsh

Cxv1yrzzv1sL1 “ t1. Let L1 be a substitution context such that L1ryzI
ϑx∆ys “

rzzv1sL1. Using Lem. A.62 let us strip L1 from F ϑ
11ryzI

ϑx∆ys. �is gives us two
possibilities, A and B in the statement of Lem. A.62.

5.1.1 Case A �en F ϑ
11 “ F ϑ̂

111L1 and Cxv1y “ F ϑ̂
111xxyyy, where ϑ̂ “ fzϑpL1q and

F ϑ̂
111 P Xϑ̂. We consider three cases, depending on whether the holes of C and
F ϑ̂

111 are disjoint, C is a pre�x of F ϑ̂
111, or F ϑ̂

111 is a pre�x of C.
5.1.1.1 �e hole of C and the hole of F ϑ̂

111 are disjoint �en there is a two-hole
context pC such that pCxl, v1y “ F ϑ̂

111 and pCxy,ly “ C. Note that the
internal step r is of the form: r : pCxy, zyrzzv1L1s

 ϑ
ÝÝÑsh

pCxy, v1yrzzv1sL1 and
y is bound by L1ryzI

ϑx∆ys “ rzzv1sL1 on the right-hand side, so it must
be the case that y “ z, for otherwise y would be free on the le�-hand side,
and free variables cannot become bound. �erefore, since y “ z, we have
that v1 “ Iϑx∆y. �is is impossible, since answers do not have redexes
below inert evaluation contexts (Lem. A.21).

5.1.1.2 �e context C is a pre�x of F ϑ̂
111 By the decomposition of evaluation con-

texts lemma (Lem. A.20) we know that C P Xϑ̂. By strengthening ϑ (Tac-
tic A.55), Crzzv1L1s P Xϑ. �is contradicts the fact that r is a ϑ-internal
step.

5.1.1.3 �e context ofF ϑ̂
111 is a pre�x of C�en C “ F ϑ̂

111xC1y, so y “ C1xv
1ywhich

is impossible.
5.1.2 Case B �en F ϑ

11 “ F ϑ̂
111xxwyyL tlu, Cxv1y “ F ϑ̂

111xxwyy, and L1 “ lL tyu,
where ϑ̂ “ fzϑpL1q, the evaluation context F ϑ̂

111 is in Xϑ̂, and L is a pϑ,wq-
chain context. �e remainder of this case is similar to case 5.1.1, by case anal-
ysis on the relative positions of the holes of C and F ϑ̂

111.
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5.2 �e internal step r is to the le� of t0 “ t10ryzr0s Let r1 : t10 Ñshzgc F
ϑ
11xxyyy be

the step isomorphic to r but going under the substitution ryzIϑx∆ys. Note that
r1 cannot be ϑ-external since, by Lem. A.26, this would imply that r is also ϑ-
external. So r1 is ϑ-internal and we may apply the fact that evaluation contexts
are backward preserved by internal steps (Lem. A.70) to conclude that t10 has to be
of the form F ϑ

110xxyyy. �en closing the diagram is straightforward.
5.3 �e internal step r is to the right of t0 “ t10ryzr0s Let r1 : r0 Ñshzgc I

ϑx∆y be
the step isomorphic to r but going inside the substitution F ϑ

11xxyyyryzls. Note that
r1 cannot be ϑ-external since this would imply that r is ϑ-external. �en it is
immediate to conclude by i.h..

6. EAppRStr, F ϑ
1 “ MϑF ϑ

11, where Mϑ P Sϑ and F ϑ
11 P Eϑ �e situation is t0

 ϑ
ÝÝÑsh

MϑF ϑ
11x∆y “ t1

ϑ
ù MϑF ϑ

11x∆
1y “ t3. Note that the internal step r cannot be at the

root: it cannot be a db step, since it would be external, and it cannot be a lsv step, since
then there would be a substitution node at the root of t1. So t0 must be an application
node r1 r2 and there are two remaining cases: (1) the step r is internal to r1, (2) the step
r is internal to r2.

6.1 �e internal step r is internal to the le� of t0 “ r1 r2 �en t0 “ r1 F
ϑ
11x∆y. Let

r1 : r1 Ñshzgc M
ϑ be the step isomorphic to r below the context lF ϑ

11x∆y. Note
that r1 cannot be ϑ-external as this would imply that r is also ϑ-external. By the
fact that strong normal forms are backward stable by internal steps (Lem. A.69),
r1 must be a strong ϑ-structure. �en closing the diagram is straightforward.

6.2 �e internal step r is internal to the right of t0 “ r1 r2 �en t0 “ Mϑ r2. Let
r1 : r2 Ñshzgc F

ϑ
11x∆y be the step isomorphic to r below the context Mϑl. Note

that r1 cannot ϑ-external since this would imply that r is also ϑ-external. �en it
is immediate to conclude by i.h..

7. ELam, F ϑ
1 “ λy.F ϑYtyu, where F ϑ P Eϑ Straightforward by i.h..

Lemma A.73 (Full proof of Lem. 4.50—Postponement of internal steps). Let ϑ be such that

fvpt0q Ď ϑ. If t0
 ϑ
ÝÝÑsh t1

ϑ
ù t3 there exists a term t2 such that t0

ϑ
ù t2 �shzgc t3. Fur-

thermore, p
 ϑ
ÝÝÑshdb,

ϑ
ùdb,

 ϑ
ÝÝÑshlsv,

ϑ
ùlsvq forms a square factorization system according to

the terminology of [3], taking
ϑ

ùdb (resp.
ϑ

ùlsv) to be the external db (resp. lsv) reduction,

and
 ϑ
ÝÝÑshdb (resp.

 ϑ
ÝÝÑshlsv) to be the internal db (resp. lsv) reduction. More precisely, only the

following swaps are allowed:

 ϑ
ÝÝÑshdb

ϑ
ùdb Ď p

ϑ
ùdbq

`p
 ϑ
ÝÝÑshdbq

˚

 ϑ
ÝÝÑshlsv

ϑ
ùlsv Ď p

ϑ
ùlsvq

`p
 ϑ
ÝÝÑshlsvq

˚

 ϑ
ÝÝÑshdb

ϑ
ùlsv Ď

ϑ
ùlsv p

 ϑ
ÝÝÑshq

˚

 ϑ
ÝÝÑshlsv

ϑ
ùdb Ď

ϑ
ùdb p

 ϑ
ÝÝÑshq

˚
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Proof. Let r be the internal step t0
 ϑ
ÝÝÑsh t1 and r1 the external step t1

ϑ
ù t3. �e proof goes

by case analysis on the kind of step r1. If r1 is a db step, this is a consequence of Lem. A.71. If
r1 is a lsv step, this is a consequence of Lem. A.72. Note that in both cases the construction
is given inductively. In all the base cases, the diagram is closed according to the allowed
swaps. In all the inductive cases, the diagram is closed using the same kind of swaps as in the
inductive hypothesis.

A.3 Proofs of Chapter 6 – A Labeled Linear Substitution

Calculus

A.3.1 Redex creation — proof of Prop. 6.4

De�nition A.74 (Ancestor of a variable). Let C1xxxyy
R
ÝÑ C2xxxyy be a step in the LSC. Consider

the term that results from marking the occurrence of x under the context C1, i.e. C1xxx
ayy, and

let R1 be the step in the LSC with marks corresponding to R via the obvious bijection, i.e.

R1 : C1xxx
ayy

a
ÝÑ t. �en the occurrence of x under C1 is an ancestor of the occurrence of x

under C2 before the step R if t “ C12xxx
ayy where the context C12 is a variant of the context C2

(with possibly some other marks).

It is a well-known fact that in the λ-calculus free variables cannot be created. �at is, if
tÑ s is a step, then fvptq Ě fvpsq. �e same property also holds in the LSC. Actually, both in
the λ-calculus and in the LSC, a stronger property holds: for any step tÑ s, every occurrence
of a free variable x in s has an ancestor in t.

Lemma A.75 (Every variable occurrence has an ancestor). Let R : t1 Ñ t2 “ Cxxxyy be a step

in the LSC. �en x has an ancestor, i.e. there exists a context C0 such that t1 “ C0xxxyy and such

that the occurrence of x under C0 is an ancestor of the occurrence of x under C before the step R.

Proof. �is property can be checked by a straightforward case analysis on the kind of redex
R (db, ls, or gc). If R is a db redex, the step is of the form:

t1 “ pλy.tqLs
R
ÝÑ tryzssL “ t2

Consider an occurrence of a variable x on the term t2, under a context C, i.e. t “ Cxxxyy. �en
there are three possibilities:

1. �e variable occurrence is inside t. �at is, C “ C1rxzssL. �en taking C0 :“

pλx.C1qL s, the occurrence of x in t1 under C0 is an ancestor of the occurrence of x
in t2 under C.

2. �e variable occurrence is inside s. Similar to the previous case. More precisely, we
have that C “ trxzC1sL, and we take C0 :“ pλx.tqL C1.

3. �e variable occurrence is inside one of the substitutions in L. Similar to the
previous cases. More precisely, we have that there exist substitution contexts L1 and
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L2 such that L “ L1rzzC
1xxxyysL2 and C “ trxzssL1rzzC

1sL2. �en we may conclude by
taking C0 :“ pλx.tqL1rzzC

1sL2 s.

�e proofs for the ls and gc cases are similar.

Lemma A.76 (Creation of an answer). Recall that an answer is a term of the form pλx.tqL.

Suppose that Cxxxyy is not an answer and Cxty is an answer. �en C is a substitution context and

t is an answer.

Proof. Straightforward by induction on C.

Proposition A.77 (Full proof of Prop. 6.4—Redex creation in the LSC). Let t1
R
ÝÑ t2

S
ÝÑ t3 be

a sequence of two redexes in the LSC such that R creates S. �en S is created in exactly one of

the following possible ways. �e anchors of the redexes R and S are underlined in each case for

clarity.

1. Creation case 1: db creates db.

t1 “ Cxppλx.pλy.tqL1qL2 sqL3 uy
R
ÝÑ Cxpλy.tqL1rxzssL2L3 uy “ t2

2. Creation case 2: db creates ls.

t1 “ C1xpλx.C2xxxyyqL ty
R
ÝÑ C1xC2xxxyyrxztsLy “ t2

3. Creation case 3: db creates gc. For x R fvptq:

t1 “ C1xpλx.tqL sy
R
ÝÑ C1xtrxzssLy “ t2

4. Creation case 4: ls creates db upwards.

t1 “ CxxL1rxzpλy.tqL2sL3 sy
R
ÝÑ Cxpλy.tqL2L1rxzpλy.tqL2sL3 sy “ t2

5. Creation case 5: ls creates db downwards.

t1 “ C1xC2xxL1 tyrxzpλy.sqL2sy
R
ÝÑ C1xC2xpλy.sqL2L1 tyrxzpλy.sqL2sy “ t2

6. Creation case 6: ls creates gc. For x R C2xty:

t1 “ C1xC2xxxyyrxztsy
R
ÝÑ C1xC2xtyrxztsy “ t2

7. Creation case 7: gc creates gc. For y P fvpsq and y R fvpC2xtyq:

t1 “ C1xC2xtrxzssyryzusy
R
ÝÑ C1xC2xtyryzusy “ t2

Proof. �roughout the proof, we let ∆ stand for the pa�ern of S and ∆1 for its contractum.
Similarly, Σ stands for the pa�ern of S and Σ1 for its contractum. By case analysis on the kind
of redex R:
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1. If R is a db redex. �en t1 “ Cxpλx.tqL sy
R
ÝÑ CxtrxzssLy “ t2. Consider the position

of the hole of C, relative to the position the pa�ern Σ of S.
First, if the position of the hole of C is a pre�x of the position of Σ, then there are two
subcases, depending on whether Σ overlaps the spine of trxzssL or it does not overlap
the spine:

1.1 If Σ overlaps the spine of trxzssL. �en the redex S must be either a ls redex
contracting one of the substitutions among rxzssL, or a gc redex collecting one of
the substitutions among rxzssL. Let us call the a�ected substitution the one that is
either contracted by a ls step or collected by a gc step.
If the substitution that is being a�ected is one of the substitutions in L then it is
immediate to observe that this case is impossible, as S has an ancestor before R.
For example, if S is a gc step, then L “ L1ryzrsL2 and the situation is:

Cxpλx.tqL1ryzrsL2 sy
R //

S0 ��

CxtrxzssL1ryzrsL2y

S��
Cxpλx.tqL1L2 sy CxtrxzssL1L2y

observe that y R fvptrxzssL1q implies y R fvppλx.tqL1q.
If the substitution that is being a�ected is rxzss then the step S is created by R,
and we are either in Creation case 2: db creates ls or in Creation case 3: db

creates gc. For example, if S is a gc step:

t1 “ Cxpλx.tqL sy
R
ÝÑ CxtrxzssLy “ t2

1.2 If Σ does not overlap the spine of trxzssL. �en it may be the case that Σ lies
inside t, or inside s, or inside one of the subsitutions of L. In all of these cases, S
has an ancestor and the situation is impossible. For example, if Σ lies inside t then
t is of the form t “ C1xΣy, and the situation is:

Cxpλx.C1xΣyqL sy R //

S0 ��

CxC1xΣyrxzssLy

S��
Cxpλx.C1xΣ1yqL sy CxC1xΣ1yrxzssLy

Second, if the positions of the hole of C and Σ are disjoint, then S has an ancestor and
this case is impossible. More precisely, there must exist a two-hole context pC such that
C “ pCxl,Σy, and the situation is:

pCxpλx.tqLs,Σy R //

S0 ��

pCxtrxzss,Σy

S��
pCxpλx.tqLs,Σ1y pCxtrxzss,Σ1y

Finally we arrive to the more complex case, when the position of the pa�ern of Σ is a
pre�x of the position of the hole of C, that is, there exist contexts C1 and C2 such that
t2 “ C1xΣy and C “ C1xC2y. Note that Σ “ C2xtrxzssLy. We proceed by case analysis
on the kind of redex S:
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1.1 If S is a db redex. �en Σ “ pλy.uqL1 r “ C2xtrxzssLy. If the hole of C2 is inside
u, inside r, or inside one of the substitutions of L1, then S has an ancestor S0. For
example if the hole of C2 is inside u then C2 “ pλy.C3qL

1 r, and the situation is:

C1xpλy.C3x∆yqL
1 ry

R //

S0 ��

C1xpλy.C3x∆
1yqL1 ry

S��
C1xC3x∆yryzrsL

1y C1xC3x∆
1yryzrsL1y

�e only remaining possibility is that there exist substitution contexts L1 and L2

such that L1 “ L1L2 and C2 “ L2 r. �e situation is:

t1 “ C1xppλx.tqL sq L2 ry
R
ÝÑ C1xtrxzssL L2 ry “ t2

so t is of the form t “ pλy.rqL3. Hence we are in Creation case 1: db creates db.

1.2 If S is a ls redex. �en Σ “ C3xxyyyryzrs “ C2xtrxzssLy. Let us consider three
subcases, depending on the position of the hole of C2 inside Σ.
First, if the hole of C2 lies inside C3xxyyy, then C2 “ C4ryzrs and C3xxyyy “ C4x∆

1y.
By Lem. A.75 there is a context C13 such that C4x∆y “ C13xxyyy and, moreover, the
occurrence of y under C13 is an ancestor of the occurrence of y under C3 before the
step R. �is means that S has an ancestor S0, so this case is impossible. More
precisely, the situation is:

C1xC
1
3xxyyyryzrsy

S0 ��

C1xC4x∆yryzrsy
R // C1xC4x∆

1yryzrsy C1xC
1
3xxyyyryzrsy

S��
C1xC3xryryzrsy C1xC3xryryzrsy

Second, if the hole of C2 lies inside r, then C2 “ C3xxyyyryzC4s. �en S has an
ancestor S0, so this case is impossible. More precisely, the situation is:

C1xC3xxyyyryzC4x∆ysy
R //

S0 ��

C1xC3xxyyyryzC4x∆
1ysy

S��
C1xC3xC4x∆yyryzC4x∆ysy C1xC3xC4x∆

1yyryzC4x∆
1ysy

�e interesting case is the last, when C2 is an empty context. �en C3xxyyyryzus “

trxzssL. Again we consider two subcases, depending on whether L is empty or
non-empty:

1.2.1 If L is empty. �en x “ y and s “ u, so the situation is:

t1 “ C1xpλx.C5xxxyyqsy
R
ÝÑ C1xC5xxxyyrxzssy “ t2

and we are in Creation case 2: db creates ls.
1.2.2 If L is non-empty. �en L “ L1ryzrs and C3xxyyy “ trxzssL1. �e situation is:

C1xpλx.tqL
1
ryzussy

R
ÝÑ C1xtrxzssL

1
ryzusy
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Note that y cannot occur in s by Barendregt’s convention. So y occurs either
in t or in L1, which means that the redex S has an ancestor S0 before R. For
example, if y occurs in t, then t “ C5xxyyy and:

C1xpλx.C5xxyyyqL
1ryzussy

R //

S0 ��

C1xC5xxyyyrxzssL
1ryzusy

S��
C1xpλx.C5xuyqL

1ryzussy C1xC5xuyrxzssL
1ryzusy

1.3 If S is a gc redex. �en Σ “ uryzrs “ C2xtrxzssLy with y R fvpuq. Let us
consider three subcases, depending on the position of the hole of C2 inside Σ.
First, if the hole of C2 lies insideu, thenu “ C2x∆

1y. Note that fvp∆q “ fvppλx.tqL sq “

fvptrxzssLq “ fvp∆1q, so fvpC2x∆yq “ fvpC2x∆
1yq. In particular, y R fvpC2x∆yq.

�en this case is impossible, since S has an ancestor S0. Graphically:

C1xC2x∆yryzrsy
R //

S0 ��

C1xC2x∆
1yryzrsy

S��
C1xC2x∆yy C1xC2x∆

1yy

Second, if the hole of C2 lies inside r, then r “ C2x∆y. �is case is impossible since
S has an ancestor S0. Graphically:

C1xuryzC2x∆ysy
R //

S0 ��

C1xuryzC2x∆
1ysy

S��
C1xuy C1xuy

Finally, if C2 is the empty context, then uryzrs “ trxzssL. Again we consider two
subcases, depending on whether L is empty or non-empty:

1.3.1 If L is empty. �en x “ y, t “ u, and s “ r. Note that x R fvptq, so the
situation is:

t1 “ pλx.tqL s
R
ÝÑ trxzssL “ t2

and we are in Creation case 3: db creates gc.
1.3.2 If L is non-empty. �en L “ L1ryzrs, sou “ trxzssL1. Note that fvppλx.tqL1q Ě

fvptrxzssL1q, so y R fvppλx.tqL1q implies y R fvptrxzssL1q. �is means that
this case is impossible since S has an ancestor S0. More precisely the situation
is:

C1xpλx.tqL
1ryzrs sy

R //

S0 ��

C1xtrxzssL
1ryzrsy

S��
C1xpλx.tqL

1 sy C1xtrxzssL
1y

2. If R is a ls redex. �en t1 “ C1xC2xxxyyrxztsy
R
ÝÑ C1xC2xtyrxztsy “ t2. Consider the

position of the hole of C1, relative to the position of the pa�ern Σ of S.
First, if the position of the hole of C1 is a pre�x of the position of Σ, then there is a
context C3 such that C2xtyrxzts “ C3xΣy. We consider three subcases for the position of
the hole of C3: to the le� of the substitution, inside the substitution, or at the root (i.e.

C3 empty):
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2.1 If C3 “ C4rxzts. �en C2xty “ C4xΣy. Now again we consider the position of the
hole of C2 relative to the position of Σ.
First, if the position of the hole of C2 is a pre�x of the position of Σ, then there is
a context C14 such that C4 “ C2xC

1
4y and t “ C14xΣy. �en this case is impossible

since S has an ancestor S0. More precisely, the situation is:

C1xC2xxxyyrxzC
1
4xΣysy

R //

S0 ��

C1xC2xC
1
4xΣyyrxzC

1
4xΣysy

S��
C1xC2xxxyyrxzC

1
4xΣ

1ysy C1xC2xC
1
4xΣ

1yyrxzC14xΣysy

Second, if the positions of the hole of C2 and the hole of C4 are disjoint, then there
exists a two-hole context pC such that pCxl,Σy “ C2 and pCxt,ly “ C4. �en again
this case is impossible since S has an ancestor S0:

C1xpCxx,Σyrxztsy
R //

S0 ��

C1xpCxt,Σyrxztsy

S��

C1xpCxx,Σ
1yrxztsy C1xpCxt,Σ

1yrxztsy

�ird, if the position of the hole of C4 is a pre�x of the position of the hole of C2,
then there is a context C12 such that C2 “ C4xC

1
2y and Σ “ C12xty. We consider three

subcases depending on the kind of redex S:

2.1.1 If S is a db redex. �en Σ “ pλy.sqLu “ C12xty. �e proof proceeds by
analyzing the position of the hole of C12 inside Σ.
First note that, if C12 is empty, we have already considered this situation since
C2 is a pre�x of C4.
Second, if the hole of C12 lies inside s, inside u, or inside one of the substitutions
in L, then this case is impossible since S has an ancestor S0. For example, if
the hole of C12 lies inside s, we have that C12 “ pλy.C22qLu, s “ C22xty, and the
situation is:

C1xC4xpλy.C
2
2xxxyyqLuyrxztsy

R //

S0 ��

C1xC4xpλy.C
2
2xtyqLuyrxztsy

S��
C1xC4xC

2
2xxxyyLryzusyrxztsy C1xC4xC

2
2xtyLryzusyrxztsy

�e only remaining possibility is the interesting one, when the hole of C12 lies
somewhere along the spine of pλy.sqL, more precisely, there exist substitution
contexts L1 and L2 such that L “ L1L2 and C12 “ C22L2 u. �en t “ pλy.sqL1 so
the situation is:

t1 “ C1xC4xxL2 uyrxzpλy.sqL1sy
R
ÝÑ C1xC4xpλy.sqL1L2 uyrxzpλy.sqL1sy “ t2

and we are in Creation case 5: ls creates db downwards.
2.1.2 If S is a ls redex. �en Σ “ C5xxyyyryzss. �e proof proceeds by analyzing

the position of the hole of C12 inside Σ.
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First note that, if C12 is empty, we have already considered this situation since
C2 is a pre�x of C4.
Second, if the hole of C12 is to the le� of the substitution and it is disjoint from
the hole of C5, that is, there is a two-hole contextpC such thatpCxl, yyryzss “ C12
and pCxt,ly “ C5. �en this case is impossible as S has an ancestor S0. More
precisely, the situation is:

C1xC4xpCxx, yyryzssyrxztsy
R //

S0 ��

C1xC4xpCxt, yyryzssyrxztsy

S��

C1xC4xpCxx, syryzssyrxztsy C1xC4xpCxt, syryzssyrxztsy

�ird, if the hole of C12 is to the le� of the substitution and it is a pre�x of the
position of the hole of C5, that is, C5 “ C12xC

1
5y. �en t “ C15xxyyy. Note that the

steps R and S would need to be of the form:

C1xC4xC
1
2xxxyyryzssyrxzC

1
5xxyyysy

R // C1xC4xC
1
2xC

1
5xxyyyyryzssyrxzC

1
5xxyyysy

S��
C1xC4xC

1
2xC

1
5xsyyryzssyrxzC

1
5xxyyysy

However, this case is impossible, since the variable y is outside the scope of
the substitution binding y on the le�-hand side of R, so by Barendregt’s con-
vention the step S cannot exist.
�e only remaining possibility is that the hole of C12 is inside the substitution,
that is, C12 “ C5xxyyyryzC

2
2s with s “ C22xty. �en this case is impossible, as S

has an ancestor S0. In fact the situation is:

C1xC4xC5xxyyyryzC
2
2xxxyysyrxztsy

R //

S0 ��

C1xC4xC5xxyyyryzC
2
2xtysyrxztsy

S��
C1xC4xC5xC

2
2xxxyyyryzC

2
2xxxyysyrxztsy C1xC4xC5xC

2
2xtyyryzC

2
2xtysyrxztsy

2.1.3 If S is a gc redex. �en Σ “ sryzus “ C12xty, with y R fvpsq. �e proof
proceeds by analyzing the position of the hole of C12 inside Σ.
First note that, if C12 is empty, we have already considered this situation since
C2 is a pre�x of C4.
Second, if the hole of C12 is to the le� of the substitution, that is, C12 “ C22ryzus

and s “ C22xty. Note that y R s “ C22xty implies that y R C22xxxyy, since x ‰ y.
�en this case is impossible since S has an ancestor S0. More precisely, the
situation is:

C1xC4xC
2
2xxxyyryzusyrxztsy

R //

S0 ��

C1xC4xC
2
2xtyryzusyrxztsy

S��
C1xC4xC

2
2xxxyyyrxztsy C1xC4xC

2
2xtyyrxztsy

�e only remaining possibility is that the hole of C12 is inside the substitution,
i.e. that C12 “ sryzC22s with u “ C22xty. �en this case is impossible since S has
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an ancestor S0. More precisely, the situation is:

C1xC4xsryzC
2
2xxxyysyrxztsy

R //

S0 ��

C1xC4xsryzC
2
2xtysyrxztsy

S��
C1xC4xsyrxztsy C1xC4xsyrxztsy

2.2 If C3 “ C2xtyrxzC4s. �en t “ C4xΣy. �is case is impossible, since S has an
ancestor S0. More precisely, the situation is:

C1xC2xxxyyrxzC4xΣysy
R //

S0 ��

C1xC2xC4xΣyyrxzC4xΣysy

S��
C1xC2xxxyyrxzC4xΣ

1ysy C1xC2xC4xΣyyrxzC4xΣ
1ysy

2.3 If C3 “ l. �en C2xtyrxzts “ Σ. �is means that Σ must be either a ls redex or a
gc redex, because its pa�ern is a substitution. Let us check each of these cases:

2.3.1 If S is a ls redex. �en C2xty “ C4xxxyy. Note that it cannot be the case that
C2 is a pre�x of C4, since this would mean that C4 “ C2xC

1
4y and t “ C14xxxyy.

�is would mean that the step R should be of the form

C1xC2xxxyyyrxzC
1
4xxxyys

R
ÝÑ C1xC2xC

1
4xxxyyyyrxzC

1
4xxxyys

but this is impossible by Barendregt’s convention, since the free occurrence
of the variable x in C14xxxyy becomes bound when performing the substitution.
So the holes of C2 and C4 must be disjoint. More precisely, there exists a two-
hole context pC such that pCxl, xy “ C2 and pCxt,ly “ C4. �en this whole
case is impossible, as S would have an ancestor S0, as shown in the following
diagram:

C1xpCxx, xyrxztsy
R //

S0 ��

C1xpCxt, xyrxztsy

S��

C1xpCxx, tyrxztsy C1xpCxt, tyrxztsy

2.3.2 If S is a gc redex. �en x R fvpC2xtyq. So the situation is:

t1 “ C1xC2xxxyyrxztsy
R
ÝÑ C1xC2xtyrxztsy “ t2

and we are in Creation case 6: ls creates gc.

Second, if the positions of the hole of C1 and the position of Σ are disjoint, then there
must be a two-hole context pC such that C1 “ pCxl,Σy. �en this case is impossible, since
S has an ancestor S0. Graphically, the situation must be:

pCxC2xxxyyrxzts,Σy
R //

S0 ��

pCxC2xtyrxzts,Σy

S��
pCxC2xxxyyrxzts,Σ

1y pCxC2xtyrxzts,Σ
1y

Finally, if the position of Σ is a pre�x of the position of the hole of C1, then C1 “ C11xC12y

such that Σ “ C12xC2xtyrxztsy “ C12x∆
1y. We proceed by case analysis on the kind of

redex S:
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2.1 If S is a db redex. �en Σ “ pλy.sqLu “ C12xC2xtyrxztsy. We proceed by case
analysis on the position of the hole of C12 inside Σ.
First, if the hole of C12 lies inside s, or inside u, or inside one of the substitutions in
L, then this case is impossible since S has an ancestor S0. For example, if the hole
of C12 lies inside s, that is C12 “ pλy.C

1
12qLu with s “ C112x∆

1y, then the situation
is:

pλy.C112x∆yqLu
R //

S0 ��

pλy.C112x∆
1yqLu

S��
C112x∆yryzusL C112x∆

1yryzusL

�e remaining possibility is that the hole of C12 lies along the spine of pλy.sqL.
More precisely, there exist substitution contexts L1 and L2 such that L “ L1L2,
with ∆1 “ pλy.sqL1 and C12 “ L2 u. �en the situation is:

t1 “ C11xC2xxxyyrxzts
l jh n

∆

L2 uy
R
ÝÑ C11xC2xtyrxzts

l jh n

∆1

L2 uy “ t2

where C2xtyrxzts “ pλy.sqL1.
To conclude, note that there are two possibilities in this case, depending on whether
the term C2xxxyy is of the form pλy.s0qL0 (an answer) or not.

2.1.1 If C2xxxyy is an answer. �en S has an ancestor S0. Indeed, the situation is:

C11xpλy.s0qL0L2 uy

S0

��

C11xC2xxxyyrxzts
l jh n

∆

L2 uy
R// C11xC2xtyrxzts

l jh n

∆1

L2 uy C11xpλy.sqL1L2 u
l jh n

Σ

y

S��
C11xs0ryzusL0L2y C11xsryzusL1L2

l jh n

Σ1

y

2.1.2 If C2xxxyy is not an answer. Since C2xxxyy is not an answer but C2xty is an
answer, by Lem. A.76 it must be the case that C2 is a substitution context L3,
and t is an answer, t “ pλy.t1qL1. Hence the situation is:

t1 “ C11xxL3rxzpλy.t
1
qL1sL2 uy

R
ÝÑ C11xpλy.t

1
qL1L3rxzpλy.t

1
qL1sL2 uy “ t2

and we are in Creation case 4: ls creates db upwards.
2.2 If S is a ls redex. �en Σ “ C3xxyyyryzss “ C12xC2xtyrxztsy. We proceed by case

analysis on the position of the hole of C12 inside Σ.
First, if the hole of C12 is to the le� of the substitution and disjoint of the hole
of C3ryzss, more precisely if there exists a two hole context pC such that C12 “

pCxl, yyryzss and C3 “ pCx∆1,ly, then this case is impossible, since S has an an-
cestor S0:

C11xpCx∆, yyryzssy
R //

S0 ��

C11xpCx∆
1, yyryzssy

S��

C11xpCx∆, syryzssy C11xpCx∆
1, syryzssy
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Second, if the hole of C12 is to the le� the substitution and it is a pre�x of C3ryzss,
more precisely if C12 “ C112ryzss and C3 “ C112xC

1
3y, then we have that C13xxyyy “

C2xtyrxzts. We consider three subcases, depending on whether the hole of C13 lies
inside the le� copy of t, inside the right copy of t, or in a disjoint position in C2:

2.2.1 If the hole of C13 lies inside the le� copy of t . �at is, C13 “ C2xC4yrxzts.
�en this case is impossible, as S has an ancestor S0. More precisely:

C11xC
1
12xC2xxxyyrxzC4xxyyysyryzssy

R //

S0

��

C11xC
1
12xC2xC4xxyyy

l jh n

t

yrxz C4xxyyy
l jh n

t

syryzssy

S��
C11xC

1
12xC2xxxyyrxzC4xsysyryzssy C11xC

1
12xC2xC4xsyyrxzC4xxyyysyryzssy

2.2.2 If the hole of C13 lies inside the right copy of t . �at is, C13 “ C2xtyrxzC4s.
Similar to the previous case.

2.2.3 If the hole of C13 lies in a disjoint position of C2. �en there is a two hole
context pC such that pCxl, tyrxzts “ C3 and pCxy,ly “ C2. �en this case is
impossible, as S has an ancestor S0. More precisely:

C11xC
1
12x

pCxy, xyrxztsyryzssy R //

S0 ��

C11xC
1
12x

pCxy, tyrxztsyryzssy

S��

C11xC
1
12x

pCxs, xyrxztsyryzssy C11xC
1
12x

pCxs, tyrxztsyryzssy

�ird, if the hole of C12 lies inside the substitution ryzss, that is, C12 “ C3xxyyyryzC
1
12s,

then this case is impossible, since S has an ancestor S0. More precisely:

C11xC3xxyyyryzC
1
12x∆ysy

R //

S0 ��

C11xC3xxyyyryzC
1
12x∆

1ysy

S��
C11xC3xC

1
12x∆yyryzC

1
12x∆ysy C11xC3xC

1
12x∆

1yyryzC112x∆
1ysy

�e remaining possibility is that C12 is empty, that is, C12 “ l, x “ y, t “ s, and
there is a two-hole context pC such that pCxl, xy “ C2 and pCxt,ly “ C3. �en this
case is impossible, since S has an ancestor S0. �e situation is:

C11xpCxx, xyrxztsy
R //

S0 ��

C11xpCxt, xyrxztsy

S��

C11xpCxx, tyrxztsy C11xpCxt, tyrxztsy

2.3 If S is a gc redex. �en Σ “ sryzus “ C12xC2xtyrxztsy where y R fvpsq. We
proceed by case analysis on the position of the hole of C12 inside Σ.
First, if the hole of C12 is to the le� of the substitution, that is, C12 “ C112ryzus, then
this case is impossible since S has an ancestor S0. More precisely:

C11xC
1
12x∆yryzusy

R //

S0 ��

C11xC
1
12x∆

1yryzusy

S��
C11xC

1
12x∆yy C11xC

1
12x∆

1yy
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Observe that fvp∆q “ fvpC2xxxyyrxztsq “ fvpC2xtyrxztsq “ fvp∆1q so from the
fact that y R fvpC112x∆

1yq we may conclude that y R fvpC112x∆yq.
Second, if the hole of C12 is inside the substitution, that is, C12 “ sryzC112s then this
case is impossible since S has an ancestor S0. More precisely:

C11xsryzC
1
12x∆ysy

R //

S0 ��

C11xsryzC
1
12x∆

1ysy

S��
C11xsy C11xsy

�e only remaining possibility is that C12 is empty, i.e. C12 “ l, x “ y, u “ t, and
s “ C2xty. �en the situation is the following, with x R fvpC2xtyq:

t1 “ C11xC2xxxyyrxztsy
R
ÝÑ C11xC2xtyrxztsy “ t2

and we are in Creation case 6: ls creates gc.

3. If R is a gc redex. �en t1 “ Cxtrxzssy
R
ÝÑ Cxty “ t2 with x R fvptq. Consider the

position of the hole of C, relative to the position of the pa�ern Σ of S.
First, if the position of the hole of C is a pre�x of the position of Σ, then t “ C1xΣy.
�en this case is impossible since S has an ancestor S0. �e situation is:

CxC1xΣyrxzssy
R //

S0 ��

CxC1xΣyy

S��
CxC1xΣ

1yrxzssy CxC1xΣ
1yy

Second, if the position of the holes of C and the position of Σ are disjoint, then there is
a two-hole context pC such that C “ pCxl,Σy. �en this case is impossible since S has an
ancestor S0. �e situation is:

CxpCxtrxzss,Σyy R //

S0 ��

CxpCxt,Σyy

S��

CxpCxtrxzss,Σ1yy CxpCxt,Σ1yy

Finally, if the position of Σ is a pre�x of the position of the hole of C, then C “ C1xC2y

such that Σ “ C2xty. We proceed by case analysis on the kind of redex S:

3.1 If S is a db redex. �at is Σ “ pλy.uqLr “ C2xty. �en the hole of C2 lies either
inside u, inside r, inside one of the substitutions of L, or along the spine of pλy.uqL
(i.e. there exist substitution contexts L1, L2 such that L “ L1L2 and C2 “ L2r). In
any case, this case is impossible since S has an ancestor S0. For example, if the
hole of C2 lies inside u, then C2 “ pλy.C

1
2qLr and the situation is:

C1xpλy.C
1
2xtrxzssyqLry

R //

S0 ��

C1xpλy.C
1
2xtyqLry

S��
C1xC

1
2xtrxzssyryzrsLy C1xC

1
2xtyryzrsLy
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3.2 If S is a ls redex. �at is Σ “ C3xxyyyryzus “ C2xty. �en the hole of C2 lies
either inside u, inside C3 disjoint from the variable y, or it is a pre�x of C3ryzus.
In any case, this case is impossible since S has an ancestor S0. For example, if the
hole of C2 lies inside u, then C2 “ C3xxyyyryzC

1
2s and the situation is:

C1xC3xxyyyryzC
1
2xtrxzssysy

R //

S0 ��

C1xC3xxyyyryzC
1
2xtysy

S��
C1xC3xC

1
2xtrxzssyyryzC

1
2xtrxzssysy C1xC3xC

1
2xtyyryzC

1
2xtysy

3.3 If S is a gc redex. �at is Σ “ uryzrs “ C2xty with y R fvpuq. �en the hole of
C2 lies either inside u or inside r. Let us consider each case.
First, if the hole of C2 lies inside u, that is C2 “ C12ryzrs, there are two subcases,
depending on whether y P fvpsq:

3.3.1 If y P fvpsq. �en the situation is:

t1 “ C1xC
1
2xtrxzssyryzusy

R
ÝÑ C1xC

1
2xtyryzusy “ t2

where y P fvpsq and y R fvpC12xtyq, so we are in Creation case 7: gc creates

gc.
3.3.2 If y R fvpsq. �en note that y R fvpC12xtrxzssyq, so this case is impossible,

since S has an ancestor S0. �e situation is:

C1xC
1
2xtrxzssyryzrsy

R //

S0 ��

C1xC
1
2xtyryzrsy

S��
C1xC

1
2xtrxzssyy C1xC

1
2xtyy

Second, if the hole of C2 lies inside r, that is C2 “ uryzC12s, then this case is impos-
sible, since S has an ancestor S0. �e situation is:

C1xuryzC
1
2xtrxzssysy

R //

S0 ��

C1xuryzC
1
2xtysy

S��
C1xuy C1xuy

A.3.2 Strong permutation — proof of Prop. 6.30

For the proof of Prop. 6.30 we need an auxiliary technical tool. We already know that adding
a label to a context is not always de�ned as a context. For instance, α : l is not a valid
labeled context. Sometimes it will be convenient to allow this to stand for a generalized notion
of contexts, which we call pseudo-contexts. Pseudo-contexts will be allowed to have a label
decorating the hole. For instance, α : l will be a pseudo-context such that pα : lqxty “ α : t.
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De�nition A.78 (Pseudo-contexts). A pseudo-context P is given by the following grammar,
where C is a regular context:

P ::“ C | Cxα : ly

�e operation of plugging a term into a pseudo-context is de�ned as follows:

P xty
def
“

#

Cxty if P “ C

Cxα : ty if P “ Cxα : ly

�e result of adding a labelα to the empty contextl can be de�ned to be precisely the pseudo-
context α : l. With this extension, the operation α : C can always be thought as yielding a
pseudo-context.

Proposition A.79 (Full proof of Prop. 6.30—Strong permutation). Let R : t
µ
ÝÑ` s and S :

t
ν
ÝÑ` u be steps in the LLSC. �en there exists a term r and two derivations σ : s

ν
ÝÑÝÑ` r and

ρ : u
µ
ÝÑÝÑ` r. Diagrammatically:

t
µ //

ν

��

s

ν
����

u
µ // // r

Moreover:

1. If R is a db step, σ consists of exactly one step.

2. If R is a ls step, σ may consist of one or two steps.

3. If R is a gc step, σ may consist of zero or one steps.

And symmetrically for S and ρ.

Proof. If R and S lie in disjoint positions, the result is immediate. �e non-trivial case is,
without loss of generality, when the position of the redex occurrence R is a pre�x of the
position of the redex occurrence S. We only consider the case when R and S are di�erent
redexes. Note that even if R and S are di�erent, they might lie in the same position; for
instance pxaxbqrxzycsΩ has two ls redexes at the root. �e proof is by induction on the context
C under which the redex occurrence R is contracted:

1. Base case, C “ l. Depending on the kind of the redex R:

1.1 R is a db-redex. �at is t “ @αppλβΩx.t
1qL, s1q and µ “ dbpβq. If S is internal to

t1, s1 or L (i.e. without overlapping the hole of L), the steps are disjoint, and it is
immediate. Furthermore, since any application must be internal to t1, s1 or L, we
have already considered all the possible cases of S being a db-redex.
�e remaining possibilities are that S is a ls-redex or a gc-redex, involving one
of the substitutions in L. �at is, L must have the form L1ryzu

1sΘL2, and one of the
two following cases applies:

1.1.1 S is a ls-redex, contracting ryzu1sΘ.
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1.1.2 S is a gc-redex, erasing ryzu1sΘ.

Let us prove each case separately:

1.1.1 S is a ls-redex, contracting ryzu1sΘ. Since there is a ls-redex, we know that
pλαΩx.t

1qL1 must be of the form C1xxyγyy. �e contracted occurrence of y can
be either inside t1 or inside L1. �e name of the redex S is ν “ Ó pγq ‚ Ò pu1q.
We consider two subcases:

1.1.1.1 If the a�ected occurrence is inside t1, we have t1 “ C1xxy
γyy. Let pt1 be

the corresponding term a�er contracting the a�ected occurrence of y, i.e.:
pt1 :“ C1xγ ‚ : u1y. �en:

@αppλβΩx.t
1qL1ryzu

1sΘL2, s
1q
dbpβq//

Ópγq ‚ Òpu1q ��

αrdbpβqs : t1rxztdbpβqu : s1sΩL1ryzu
1sΘL2

Ópγq ‚ Òpu1q
��

@αppλβΩx.pt
1qL1ryzu

1sΘL2, s
1q
dbpβq// αrdbpβqs : pt1rxztdbpβqu : s1sΩL1ryzu

1sΘL2

Note that on the right hand side we are using Lem. 6.9 to conclude that:

αrdbpβqs : t1 “ αrdbpβqs : C1xxy
γ
yy is of the form C11xxy

γ1
yy

where Ó pγq “ Ó pγ1q and, moreover:

αrdbpβqs : pt1 “ αrdbpβqs : C1xγ ‚ : u1y “ C11xγ
1
‚ : u1y

1.1.1.2 If the a�ected occurrence is inside L1, we have that L1 “ LArzzC1xxy
γyysΨLB.

Let pL1 be the corresponding substitution context a�er contracting the af-
fected occurrence of y, i.e. pL1 :“ LArzzC1xγ ‚ : u1ysΨLB. �e situation is
then:

@αppλβΩx.t
1qL1ryzu

1sΘL2, s
1q
dbpβq//

Ópγq ‚ Òpu1q ��

αrdbpβqs : t1rxztdbpβqu : s1sΩL1ryzu
1sΘL2

Ópγq ‚ Òpu1q
��

@αppλβΩx.t
1qpL1ryzu

1sΘL2, s
1q
dbpβq// αrdbpβqs : t1rxztdbpβqu : s1sΩpL1ryzu

1sΘL2

1.1.2 S is a gc-redex, erasing ryzu1sΘ. Since it is a gc-redex, we know pλβΩx.t1qL1 has
no free occurrences of y. �e name of the redex S is then: ν “ ta ‚ Ò pu1q | a P
Θu. By the usual fact that reduction cannot create free variables, we have:

@αppλβΩx.t
1qL1ryzu

1sΘL2, s
1q
dbpβq//

ta ‚ Òpu1q | aPΘu ��

αrdbpβqs : t1rxztdbpβqu : s1sΩL1ryzu
1sΘL2

ta ‚ Òpu1q | aPΘu
��

@αppλβΩx.t
1qL1L2, s

1q
dbpβq // αrdbpβqs : t1rxztdbpβqu : s1sΩL1L2

1.2 R is a ls-redex. �at is t “ Cxxxαyyrxzt1sΩ and µ “ Ó pαq ‚ Ò pt1q. Note that if S is
internal to C (i.e. without overlapping the hole of C), the steps are disjoint, and the
proof is direct. If S is internal to t1, it is also straightforward to close the diagram,
although the ls-step duplicates t1, which requires contracting two residuals of S.
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More precisely, suppose t1 ν
ÝÑ`

pt1; then:

Cxxxαyyrxzt1sΩ
Ópαq ‚ Òpt1q //

ν

��

Cxxα ‚ : t1yyrxzt1sΩ

ν ‹

��

Cxxα ‚ : pt1yyrxzt1sΩ

ν
��

Cxxxαyyrxzpt1sΩ
Ópαq ‚ Òppt1q // Cxxα ‚ : pt1yyrxzpt1sΩ

Note that the name ν in the step marked with ‹ is not changed, by the fact that
adding labels preserves redex names (Lem. 6.10). To close this diagram, note also
that Ò ppt1q “ Ò pt1q by the fact that reduction preserves the �rst label of a term
(Lem. 6.11).

We have already considered the cases when S is internal to C and internal to t1.
�e remaining cases are that the redex occurrence S contains as a subterm either
the a�ected variable xα or the a�ected substitution rxzt1sΩ. Some situations are
impossible and can be dismissed:
• A db-step cannot possibly involve rxzt1sΩ, since there is no application node

that contains such substitution.
• A gc-step cannot erase rxzt1sΩ, since there is at least one free occurrence of x

in Cxxxαyy.
So we are le� to check the following cases:

1.2.1 S is a db-redex, including xα as a subterm

1.2.2 S is a ls-redex, including xα as a subterm

1.2.3 S is a ls-redex, contracting rxzt1sΩ

1.2.4 S is a gc-redex, including xα as a subterm

Let us prove each of these separately:
1.2.1 S is a db-redex, including xα as a subterm. Let q be the subterm corresponding

to the db-redex S. Since q is a subterm of Cxxxαyy, we know Cxxxαyy “ C1xqy.
Also, since q is a db-redex, it has the form q “ @βppλγΘy.s

1qL, u1q where ν “
dbpγq. Note that for this case we are also assuming that the occurrence of the
a�ected variable xα lies inside this subterm q. �is leads to three cases for C,
depending on whether the hole of C corresponds to a position inside s1, inside
u1 or inside L:

C “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

C1x@βppλγΘy.C2qL, u
1q y with C2xxx

αyy “ s1

“the hole is internal to s1”

C1x@βppλγΘy.s
1qL, C2q y with C2xxx

αyy “ u1

“the hole is internal to u1”

C1x@βppλγΘy.s
1qL1rzzC2sΨL2, u

1q y with L1rzzC2xxx
αyysΨL2 “ L

“the hole is internal to L”
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Respectively for each case, let pC be the pseudo-context that results a�er con-
tracting the db-redex in C. Respectively in each of the three cases above:

C
dbpγq
ÝÝÝÑ` pC “

$

’

’

&

’

’

%

βrdbpγqs : C2ryztdbpγqu : u1sΘL

βrdbpγqs : s1ryztdbpγqu : C2sΘL

βrdbpγqs : s1ryztdbpγqu : u1sΘL1rzzC2sΨL2

Having de�ned pC, we have:

C1xqyrxzt
1sΩ Cxxxαyyrxzt1sΩ

dbpγq
��

Ópαq ‚ Òpt1q // Cxα ‚ : t1yrxzt1sΩ

dbpγq
��

pCxxxαyyrxzt1sΩ
Ópαq ‚ Òpt1q //

pCxα ‚ : t1yrxzt1sΩ

Note that since pC is a pseudo-context, the expression pCxxαy could prepend
additional labels to the label α decorating the variable node x. However, the
residual of the step R has the same name as R, namely Ó pαq ‚ Ò pt1q, since
Ó pδαq “ Ó pαq for any label δ.

1.2.2 S is a ls-redex, including xα as a subterm. Since the redex occurrence S in-
cludes xα as a subterm, it cannot contract the same substitution as the redex
occurrence R, for in that case they would be the same redex, substituting the
same occurrence of xα. Let q be the subterm corresponding to the ls-redex
S. Since q is a subterm of Cxxxαyy, we know Cxxxαyy “ C1xqy. Moreover, since
q is a ls-redex, it has the form: q “ C1xxyβyyryzs1sΘ where ν “ Ó pβq ‚ Ò ps1q.
Here we are also assuming that the a�ected occurrence of xα is internal to q.
�is leads to two cases for C, depending on whether the hole corresponds to
a position inside C1 or inside s1:

C “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

C1x C2xxl, y
βyyryzs1sΘ y where C2 is a two-hole context

such that C2xxx
α,lyy “ C1

“the hole is internal to C1”

C1x C
1xxyβyyryzC2sΘ y where C2xxx

αyy “ s1

“the hole is internal to s1”

We analyze these two subcases separately:
1.2.2.1 C “ C1x C2xxl, y

βyyryzs1sΘ y. �is case is straightforward:

Cxxxαyyrxzt1sΩ

C1xx C2xxx
α, yβyyryzs1sΘ yyrxzt

1sΩ
Ópαq ‚ Òpt1q //

Ópβq ‚ Òps1q ��

C1xx C2xxα ‚ : t1, yβyyryzs1sΘ yyrxzt
1sΩ

Ópβq ‚ Òps1q ��
C1xx C2xxx

α, β ‚ : s1yyryzs1sΘ yyrxzt
1sΩ

Ópαq ‚ Òpt1q// C1xx C2xxα ‚ : t1, β ‚ : s1yyryzs1sΘ yyrxzt
1sΩ
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1.2.2.2 C “ C1x C
1xxyβyyryzC2sΘ y. Let us abbreviate ∆ :“ C2xα ‚ : t1y. �en:

Cxxxαyyrxzt1sΩ

C1xx C
1xxyβyyryzC2xxx

αyysΘ yyrxzt
1sΩ

Ópαq ‚ Òpt1q //

Ópβq ‚ ÒpC2xxxαyyq

��

C1x C
1xxyβyyryz∆sΘ yrxzt

1sΩ

Ópβq ‚ ÒpC2xα ‚ :t1yq

��

C1xx C
1xxβ ‚ : C2xxx

αyyyyryzC2xxx
αyysΘ yyrxzt

1sΩ

Ópαq ‚ Òpt1q ,, ,,
C1x C

1xβ ‚ : ∆yryz∆sΘ yrxzt
1sΩ

To be able to close the diagram, we need the two following observations:
• By Lem. 6.9, Ò pC2xxx

αyyq “ Ò pC2xxα ‚ : t1yyq.
• By Lem. 6.9: β ‚ : C2xxx

αyy is of the form C12xxx
α1yy, where Ó pαq “

Ó pα1q and β ‚ : C2xα : t1y “ C12xα
1 : t1y.

1.2.3 S is a ls-redex, contracting rxzt1sΩ. �at is, Cxxxαyy “ C1xxxβyy, where xα is the
occurrence a�ected byR, and xβ is the occurrence a�ected byS. Since the two
occurrences are distinct, there is a two-hole context C2 such that C2xxl, xβyy “
C C2xxxα,lyy “ C1. It is then immediate to close the diagram:

C2xxxα, xβyyrxzt1sΩ
Ópαq ‚ Òpt1q //

Ópβq ‚ Òpt1q

��

C2xxα ‚ : t1, xβyyrxzt1sΩ

Ópβq ‚ Òpt1q

��
C2xxxα, β ‚ : t1yyrxzt1sΩ

Ópαq ‚ Òpt1q // C2xxα ‚ : t1, β ‚ : t1yyrxzt1sΩ

1.2.4 S is a gc-redex, including xα as a subterm. Let q be the subterm corresponding
to the gc-redex. As in the previous cases, since q is a subterm of Cxxxαyy, we
have that Cxxxαyy “ C1xqy. Moreover, q must have the form q “ s1ryzu1sΘ,
with y R fvps1q. As we are also assuming that the a�ected occurrence of xα is
in q, there are two possibilities for C, depending on whether the hole of C lies
in a position inside s1 or inside u1:

C “

$

’

’

’

’

&

’

’

’

’

%

C1x C2ryzu
1sΘ y where C2xxx

αyy “ s1

“the hole is internal to s1”

C1x s
1ryzC2sΘ y where C2xxx

αyy “ u1

“the hole is internal to u1”

We analyze these two subcases separately:
1.2.4.1 C “ C1x C2ryzu

1sΘ y

Cxxxαyyrxzt1sΩ

C1xx C2xxx
αyyryzu1sΘ yyrxzt

1sΩ
Ópαq ‚ Òpt1q//

ta ‚ Òpu1q | aPΘu
��

C1xx C2xxα ‚ : t1yyryzu1sΘ yyrxzt
1sΩ

ta ‚ Òpu1q | aPΘu
��

C1xx C2xxx
αyy yyrxzt1sΩ

Ópαq ‚ Òpt1q // C1xx C2xxα ‚ : t1yy yyrxzt1sΩ
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1.2.4.2 C “ C1x s
1ryzC2sΘ y

Cxxxαyyrxzt1sΩ

C1xx s
1ryzC2xxx

αyysΘ yyrxzt
1sΩ

Ópαq ‚ Òpt1q//

ta ‚ ÒpC2xxx
α
yyq | aPΘu

��

C1xx s
1ryzC2xxα ‚ : t1yysΘ yyrxzt

1sΩ

ta ‚ ÒpC2xxα ‚ :t1yyq | aPΘu
��

C1xx s
1 yyrxzt1sΩ C1xx s

1 yyrxzt1sΩ

We conclude this subcase noting that Ò pC2xxx
αyyq “ Ò pC2xxα ‚ : t1yyq by

Lem. 6.9.
1.3 R is a gc-redex. �at is: t “ t1rxzs1sΩ x R fvpt1q and µ “ ta ‚ Ò ps1q | a P Ωu. If

the redex occurrence S is internal to t1, it is straightforward to close the diagram.
If it is internal to s1, it is also straightforward, taking in account the fact that the
contraction of R erases S. More precisely, if we suppose that s1 ν

ÝÑ` ps
1, we have:

t1rxzs1sΩ
ta ‚ Òps1q | aPΩu //

ν

��

t1

t1rxzps1sΩ
ta ‚ Òpps1q | aPΩu // t1

Note that Ò ps1q “ Ò pps1q by the fact that reduction preserves the �rst label of a
term (Lem. 6.11).

�e remaining possibility is that the redex occurrence S involves the substitution
at the root of t. �is cannot happen:
• �e redex occurrence S cannot be a db-redex, as there is no application node

at the root.
• �e redex occurrence S cannot be a ls-redex, since that would require at least

one free occurrence of x in t1.
• If S is a gc-redex, thenR and S are the same redex ocurrence, which is trivial

and was already considered.

2. Inductive case. All the inductive cases are trivial, since we only care about the case when
the position of R is a pre�x of the position of S. Hence both redex occurrences R and
S must be internal to the same subcontext of C, and we conclude by i.h..

A.3.3 Postponement of gc in the LLSC-calculus — proof of Lem. 6.50

Lemma A.80 (Full proof of Lem. 6.50—Postponement of gc in the LLSC-calculus). Let ρ :

t �` s be a reduction sequence. �en there exists a term u and a reduction sequence σ : t �`

dbY ls u�` gc s.

Moreover, let #µpρq denote the number of redexes named µ that are contracted along the

reduction sequence ρ. �en:
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1. �e number of db and ls redexes is preserved:

#µpρq “ #µpσq if µ is the name of a db or ls redex

2. �e number of gc redexes may increase:

#µpρq ď #µpσq if µ is the name of a gc redex

3. �e reduction σ contracts the same names as ρ:

#µpσq ą 0 ùñ #µpρq ą 0 for any redex name µ

Proof. �e proof is split in two parts:

1. First we show that any two steps t1
µ
ÝÑ` gc t2

ν
ÝÑ` dbY ls t3 can be swapped in such a way

that t1
ν
ÝÑ` dbY ls t

1
2 p

µ
ÝÑ` gc q

n t3, requiring 1 ď n ď 2 steps of gc to close the diagram.

2. We then argue that this process terminates. It is easy to check that the conditions on
#µpρq are preserved by the swapping operation.

Swapping. Let t1
µ
ÝÑ` gc t2

ν
ÝÑ` dbY ls t3. By induction on the context C under which theÑ` gc

redex in t1 is contracted, we show that the following diagram can be closed with 1 ď n ď 2

steps of gc:
t1

µ //

ν
��

t2

ν

��
pt2

µ // // t3

1. Base case, C “ l. �e situation is:

t1 “ t2rxzssΩ

ν
��

ta ‚ Òpsq | aPΩu // t2
ν
��

t3rxzssΩ
ta ‚ Òpsq | aPΩu // t3

Since we know x R fvpt2q, we use the fact that t2
ν
ÝÑ` dbY ls t3 does not create free

variables to conclude x R fvpt3q.

2. Inductive case, under an abstraction, C “ λαΩx.C
1
. Direct by i.h., since both steps must be

internal to C1.

3. Inductive case, le� of an application, C “ @αpC1, sq. �e situation is:

@α
pt11, sq

µ
ÝÑ` gc @α

pt12, sq
ν
ÝÑ` dbY ls t3

with t11
µ
ÝÑ` gc t

1
2. �ere are three subcases, depending on whether the Ñ` dbY ls step is

internal to t12, internal to s, or at the root.
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3.1 Ñ` dbY ls step internal to t12. �en t3 is of the form @αpt13, sq and t11
µ
ÝÑ` gc t

1
2

ν
ÝÑ`

dbY ls t
1
3. We conclude by i.h.:

@αpt11, sq
µ //

ν��

@αpt12, sq

ν
��

@αppt12, sq
µ // // @αpt13, sq

3.2 Ñ` dbY ls step internal to s. �en t3 is of the form @αpt12, s
1q with t11

µ
ÝÑ` gc t

1
2 and

s
ν
ÝÑ` dbY ls s

1. �e steps are disjoint and can be swapped trivially:

@αpt11, sq
µ //

ν
��

@αpt12, sq

ν
��

@αpt11, s
1q

µ // @αpt12, s
1q

3.3 Ñ` dbY ls step at the root. �e Ñ` dbY ls involves the topmost application, so it
must be a db step. �en t12 must be of the form pλβΩx.u

1qL. We have ν “ dbpβq,
and the situation is as follows:

@αpt11, s
1q

µ // @αppλβΩx.u
1qL, s1q

dbpβq
��

αrdbpβqs : u1rxztdbpβqu : s1sΩL

where t11
µ
ÝÑ` gc t

1
2 “ pλ

β
Ωx.u

1qL. �en t11 must be of the form pλβΩx.u0qL0 and there
are three possibilities:
• �e gc step is internal to u0. �at is, L “ L0, and:

u0 “ Cxr11ryzr
1
2sΘy

ta ‚ Òpr12q | aPΘu
ÝÝÝÝÝÝÝÝÝÑ` gc Cxr

1
1y “ u1

�en by Lem. 6.10, we have that

αrdbpβqs : u0
ta ‚ Òpr12q | aPΘu
ÝÝÝÝÝÝÝÝÝÑ` gc αrdbpβqs : u1

And so we conclude:

@αppλβΩx.u0qL, s
1q

ta ‚ Òpr12q | aPΘu //

β
��

@αppλβΩx.u
1qL, s1q

β
��

αrdbpβqs : u0rxztdbpβqu : s1sΩL
ta ‚ Òpr12q | aPΘu// αrdbpβqs : u1rxztdbpβqu : s1sΩL

• �e gc step is internal to one of the arguments of L0. �at is, u1 “ u0 and:

L0 “ L1ryzr
1
sΘL2 L “ L1ryzr

2
sΘL2

r1
µ
ÝÑ` gc r

2

�en:

@αppλβΩx.u
1qL0, s

1q
µ //

β
��

@αppλβΩx.u
1qL, s1q

β
��

αrdbpβqs : u1rxztdbpβqu : s1sΩL0

µ // αrdbpβqs : u1rxztdbpβqu : s1sΩL
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• �e gc step erases one of the substitutions in L0. �at is, u1 “ u0 and:

L0 “ L1rxzr
1
sΘL2 L “ L1L2

qL0
ta ‚ Òpr1q | aPΘu
ÝÝÝÝÝÝÝÝÝÑ` gc qL for any term q

�e diagram is closed exactly as in the previous case, takingµ :“ ta ‚ Ò pr1q | a P

Θu.

4. Inductive case, right of an application, C “ @αps, C1q. �e situation is:

@α
ps, t11q

µ
ÝÑ` gc @α

ps, t12q
ν
ÝÑ` dbY ls t3

If the Ñ` dbY ls step is internal to s or t12, the situation is analogous to the le� of an

application case (points 3.1 and 3.2 of this lemma). �e non-trivial case is when there is
aÑ` db step at the root. �at is:

s “ pλβΩx.s
1
qL ν “ β

By Lem. 6.10, since we had a step t11
µ
ÝÑ` gc t

1
2, we also have a step tdbpβqu : t11

µ
ÝÑ`

gc tdbpβqu : t12. �en:

@αppλβΩx.s
1qL, t11q

µ //

β
��

@αppλβΩx.s
1qL, t12q

β
��

αrdbpβqs : s1rxztdbpβqu : t11sΩL
µ // αrdbpβqs : s1rxztdbpβqu : t12sΩL

5. Inductive case, le� of a substitution, C “ C1rxzssΩ. �e situation is:

t11rxzssΩ
µ
ÝÑ` gc t

1
2rxzssΩ

ν
ÝÑ` dbY ls t3

If the Ñ` dbY ls step is internal to t12 or s, the situation is analogous to the le� of an

application case (points 3.1 and 3.2 of this lemma). �e non-trivial case is when there is
aÑ` ls step at the root. �en t12 must be of the form Cxxxαyy and:

t12rxzssΩ “ CxxxαyyrxzssΩ
Ópαq ‚ Òpsq
ÝÝÝÝÝÝÑ` ls Cxα ‚ : syrxzssΩ “ t3

Moreover, since t11
µ
ÝÑ` gc t

1
2, we have that t11 must be of the form C1xu1ryzr1sΘy, with

y R fvpu1q, so that:

t11 “ C1xu1ryzr1sΘy
ta ‚ Òpr1q | aPΘu
ÝÝÝÝÝÝÝÝÝÑ` gc C

1
xu1y “ t12 “ Cxxxαyy

�is implies that the substituted occurrence of xα in t12 lies either in C1 or in u1. Let pC1
and pu1 denote the result of replacing the a�ected occurrence of xα (if any) by pα ‚ : sq,
in C1 and u1 respectively. �en:

t11rxzssΩ t12rxzssΩ

C1xu1ryzr1sΘyrxzssΩ
ta ‚ Òpr1q | aPΘu//

Ópαq ‚ Òpsq��

C1xu1yrxzssΩ CxxxαyyrxzssΩ

Ópαq ‚ Òpsq
��

pC1xpu1ryzr1sΘyrxzssΩ
ta ‚ Òpr1q | aPΘu//

pC1xpu1yrxzssΩ Cxα ‚ : syrxzssΩ

We use the fact that y R fvpu1q and y R fvpsq to conclude that y R fvppu1q, and thus be
able to apply the gc step on the bo�om of the diagram.
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6. Inductive case, right of a substitution, C “ srxzC1sΩ. �e situation is:

srxzt11sΩ
µ
ÝÑ` gc srxzt

1
2sΩ

ν
ÝÑ` dbY ls t3

If the Ñ` dbY ls step is internal to s or t12, the situation is analogous to the le� of an

application case (points 3.1 and 3.2 of this lemma). �e non-trivial case is when there is
aÑ` ls step at the root. �en s “ Cxxxαyy and:

Cxxxαyyrxzt11sΩ
µ //

Ópαq ‚ Òpt11q��

Cxxxαyyrxzt12sΩ

Ópαq ‚ Òpt12q��
Cxxα ‚ : t11yyrxzt

1
1sΩ

µ // Cxxα ‚ : t12yyrxzt
1
1sΩ

µ // Cxxα ‚ : t12yyrxzt
1
2sΩ

We use the fact that reduction preserves the �rst label (Lem. 6.11) to conclude that since
t11

µ
ÝÑ` gc t

1
2 then Ò pt11q “ Ò pt12q; this is to ensure that the ls steps both have the same

name. Moreover, we use the fact that adding labels preserves redex names (Lem. 6.10)
to conclude that α ‚ : t11

µ
ÝÑ` gc α ‚ : t12; this is to ensure that the �rst gc step at the

bo�om of the diagram has the right name.

Finally, note that this is the only case throughout the proof by induction that duplicates
the number of gc steps that are required to close the diagram. All the other cases either
resort to the inductive hypothesis or require exactly one gc step. Since this case corre-
sponds to having a ls step at the root, it can be applied at most once, implying that the
number n of gc steps that are required to close the diagram must be 1 ď n ď 2.

Termination. �e process of swapping gc and db Y ls steps is modeled by the string
rewriting system:

R :

#

baÑ ab

baÑ abb

where a represents db Y ls steps and b represents gc steps. To see that R is strongly nor-
malizing consider the decreasing measure m : ta,bu‹ Ñ N given by:

mpsq :“
ÿ

i,si“b

3#tjąi | sj“au

A.4 Proofs of Chapter 7 – Applications of the Labeled Lin-

ear Substitution Calculus

A.4.1 Contribution — auxiliary lemmas for Prop. 7.12

In this section we state and prove auxiliary results that are needed to prove that the LSC
without gc veri�es the Contribution axiom. Note that, even though Prop. 7.12 is about the
LSC without gc, the LLSC (with labels) is used as an auxiliary tool, so most lemmas in this
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section concerns the labeled version of the LSC. Since the gc rule is never used here, in order
to alleviate notation, we omit the sets of labels on abstractions and substitutions, which are
irrelevant in this context. �at is, we write λαx.t and trxzss rather than λαΩx.t and trxzssΩ,
omi�ing the “Ω” subscripts.

Correctness

�e following de�nitions and lemmas are used to prove the implication p1 ùñ 2q (Correct-

ness) of Prop. 7.12.

De�nition A.81 (Inclusion of labels). �e order relation of inclusion between labels α, β,
wri�en α Ď β, is given by the re�exive and transitive closure of the following rules:

α Ď rαs α Ď tαu α Ď dbpαq α Ď αβ α Ď βα

De�nition A.82 (All labels in a term). Given a labeled term t P T `, the set of all labels
decorating nodes in t is wri�en labelsptq. Formally:

labelspxαq
def
“ tαu

labelsp@αpt, sqq
def
“ tαu Y labelsptq Y labelspsq

labelspλαx.tq
def
“ tαu Y labelsptq

labelsptrxzssq
def
“ labelsptq Y labelspsq

�is de�nition is also extended to contexts, by se�ing labelsplq def
“ ∅.

Lemma A.83 (Redex names that contribute to a step must occur in the source). LetR` : t`0 Ñ

t`1 be a step in the LLSC without gc. Let ν be the name of R`
, and let µ be another redex name

such that µ
Name
ãÑ ν. �en there exists a label α P labelspt`0q such that µ Ď α.

Proof. It is easy to check that name contribution implies label inclusion, so from the hypoth-
esis µ Name

ãÑ ν we have that µ Ď ν. Moreover, the inclusion is proper, i.e. µ ‰ ν since, by
de�nition, µ Name

ãÑ µ does not hold. We proceed by case analysis on the kind of step R`:

1. db step. �en we have:

t`0 “ Cx@α
ppλβx.t`qL, s`qy

dbpβq
ÝÝÝÑ` Cxαrdbpβqs : t`rxztdbpβqu : s`sLy “ t`1

Since µ Ď ν “ dbpβq and µ ‰ ν, it must be the case that µ Ď β and β P labelspt`0q, so
we are done.

2. ls step. �en we have:

t`0 “ C1xC2xxx
α
yyrxzt`sy

Ópαq ‚ Òpt`q
ÝÝÝÝÝÝÑ` C1xC2xα : t`yrxzt`sy “ t`1

Observe that µ Ď ν “ Ó pαq ‚ Ò pt`q and that Ó pαq and Ò pt`q are atomic labels. We
claim that either µ Ď Ó pαq or µ Ď Ò pt`q. Indeed:
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2.1 If µ is the name of a db redex, then it is of the form dbpγq so necessarily dbpγq Ď

Ó pαq or dbpγq Ď Ò pt`q.

2.2 If µ is the name of a ls redex, then it is of the form γ ‚ δ where γ and δ are atomic
labels. Since we already know that µ ‰ ν, the “ ‚ ” in µ must occur either in Ó pαq
or in Ò pt`q. �is in turn implies that γ ‚ δ Ď Ó pαq or γ ‚ δ Ď Ò pt`q.

Now there are two possibilities: if µ Ď Ó pαq then µ Ď α P labelspt`0q, and we are
done. Otherwise, it must be the case that µ Ď Ò pt`q. Let us write the term t` as of
the form t` “ s`L where L is a list of substitutions and s` is a term whose root is
not a substitution node (i.e. it is an application, an abstraction or a variable). �en
by de�nition Ò pt`q “ Ò pβq where β is the label decorating s`. �us we obtain that
µ Ď Ò pt`q “ Ò pβq Ď β P labelspt`q, as required.

De�nition A.84 (Labels of variables). Let vlpt`q be de�ned as the following set:

vlpt`q “ tÓ pαq | xα is a subterm of t` for some xu

Inductively:
vlpxαq

def
“ tÓ pαqu

vlpλαx.t`q
def
“ vlpt`q

vlp@αpt`, s`qq
def
“ vlpt`q Y vlps`q

vlpt`rxzs`sq
def
“ vlpt`q Y vlps`q

�is de�nition is also extended to contexts by se�ing vlplq “ ∅.

Remark A.85. vlpCxt`yq “ vlpCq Y vlpt`q

Remark A.86. vlpα : t`q “ vlpt`q

Lemma A.87 (Labels of variables are not created). Let t`0 Ñ` t
`
1 be a step in the labeled calculus.

�en vlpt`0q Ě vlpt`1q.

Proof. Straightforward by case analysis on the kind of contracted redex.

De�nition A.88 (Labels of substitutions). Let slpt`q be de�ned as the following set:

slpt`q “ tÒ ps`q | rxzs`s is a substitution occurring in t` for some xu

Inductively:
slpxαq

def
“ ∅

slpλαx.t`q
def
“ slpt`q

slp@αpt`, s`qq
def
“ slpt`q Y slps`q

slpt`rxzs`sq
def
“ tÒ ps`qu Y slpt`q Y slps`q

�is de�nition is also extended to contexts by se�ing slplq “ ∅.
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Remark A.89. For any context C and any term t` we have:

slpCxt`yq “ slpCq Y slpt`q Y

#

tÒ pt`qu if C is of the form C1xs`rxzlLsy

∅ otherwise

Remark A.90. slpα : t`q “ slpt`q

Lemma A.91 (Creation of labels of substitutions). Let t`0 Ñ` t
`
1 be a step in the labeled calculus.

�en:

1. If it is a db step of name dbpβq, then slpt`0q Y ttdbpβquu “ slpt`1q.

2. If it is a ls step, then slpt`0q “ slpt`1q.

Proof. Straightforward by case analysis on the kind of contracted redex.

Lemma A.92 (Possible shapes of redex names). Let ρ` : t`0 �` t
`
1 be a derivation in the LLSC

without gc, where t`0 is an initially labeled term. Let µ be the name of a redex contracted along

ρ`. �en µ must have one of the following three forms:

dbpαq a ‚ b a ‚ tdbpαqu

Proof. We claim that if t`0 �` u
` and t`0 is an initially labeled term, then the following proper-

ties hold for u`:

(I1) If xα is a subterm of u`, i.e. Ó pαq P vlpu`q, then Ó pαq is an initial label a.

(I2) If rxzt`s is a substitution occurring in u`, i.e. Ò pt`q P slpu`q, then Ò pt`q is an initial label
a or a label of the form tdbpαqu.

By induction on the length of the derivation t`0 �` u
`, it can be checked that this invariant is

preserved More precisely, let s`0 Ñ` s
`
1 be a labeled step and suppose that the invariant holds

for s`1. By the fact that variable labels are not created, as shown in Lem. A.87, condition (I1)

is preserved. By the fact that substitution labels are only created with the form tdbpαqu, as
shown in Lem. A.91, condition (I2) is preserved.
Moreover, if the invariant holds for a term s`0, the name of any labeled step s`0 Ñ` s

`
1 has one

of the forms in the statement. Indeed, by case analysis on the kind of step taken:

1. db step. �en the name of the step is dbpβq and it has the �rst of the forms in the
statement.

2. ls step. �en the step is of the form:

s`0 “ C1xC2xxx
α
yyrxzt`sy

Ópαq ‚ Òpt`q
ÝÝÝÝÝÝÑ` C1xC2xα ‚ : t`yrxzt`sy “ s`1

�e name of the step is Ó pαq ‚ Ò pt`q. Since the invariant holds for s`0, condition (I1)

ensures that Ó pαq is an initial label and condition (I2) ensures that Ò pt`q is either an
initial label or of the form tdbpαqu. Hence the name of the step has either the second
form or the third form in the statement.
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Lemma A.93 (Set of labels a�er a step). Let R` : t`0 Ñ` t
`
1 be a step in the LLSC without gc, let

µ be the name of R`
, and let α P labelspt`1q. �en at least one of the following conditions hold:

(I) α P labelspt`0q

(II) µ “ dbpβq and α “ γrdbpβqsδ with γ, β, δ P labelspt`0q

(III) µ “ dbpβq and α “ tdbpβquγ with β, γ P labelspt`0q

(IV) µ “ Ó pβq ‚ Ò pγq and α “ β ‚ γ with β, γ P labelspt`0q

Proof. By case analysis on the kind of redex R`:

1. db redex. �en µ “ dbpβq and we have:

t`0 “ Cx@γ
ppλβx.t`qL, s`qy

dbpβq
ÝÝÝÑ` Cxγrdbpβqs : t`rxztdbpβqu : s`sLy “ t`1

Let α P labelspt`1q. We consider the following cases, depending on the position where
α occurs in t`1:

1.1 Internal to C, i.e. α P labelspCq. �en α P labelspt`0q and we are in the situation (I).
1.2 Internal to L, i.e. α P labelspLq. �en α P labelspt`0q and we are in the situation (I).
1.3 Internal to pγrdbpβqs : t`q, i.e. α P labelspγrdbpβqs : t`q. Let δ be the external label

of t`, i.e. the one decorating the outermost node of t` which is not a substitution.
More precisely, let δ “ `pt`q. Note that:

labelspγrdbpβqs : t`q “ labelspt`qztδu Y tγrdbpβqsδu

So either α P labelspt`q Ď labelspt`0q and we are in the situation (I), or α “

γrdbpβqsδ and we are in the situation (II) since γ, β, δ P labelspt`0q.
1.4 Internal to ptdbpβqu : s`q, i.e. α P labelsptdbpβqu : s`q. Let γ be the external label

of s`, i.e. the one decorating the outermost node of s` which is not a substitution.
More precisely, let δ “ `ps`q. Note that:

labelsptdbpβqu : s`q “ labelsps`qztδu Y ttdbpβquδu

So either α P labelsps`q Ď labelspt`0q and we are in the situation (I), or α “

tdbpβquδ and we are in the situation (III) since β, δ P labelspt`0q.

2. ls redex. �en µ “ Ó pβq ‚ Ò pγq and we have:

t`0 “ C1xC2xxx
β
yyrxzt`sy

Ópβq ‚ Òpγq
ÝÝÝÝÝÝÑ` C1xC2xβ ‚ : t`yrxzt`sy “ t`1

where γ is the external label of t`, i.e. the label decorating the outermost node of t`
which is not a substitution, that is γ “ `pt`q. Let α P labelspt`1q. We consider the
following cases, depending on the position where α occurs in t`1:
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2.1 Internal to C1, i.e. α P labelspC1q. �enα P labelspt`0q and we are in the situation (I).

2.2 Internal to C2, i.e. α P labelspC2q. �enα P labelspt`0q and we are in the situation (I).

2.3 Internal to t`, i.e. α P labelspt`q. �en α P labelspt`0q and we are in the situation (I).

2.4 Internal to pβ ‚ : t`q, i.e. α P labelspβ ‚ : t`q. Since γ is the most external label of
t` we have that:

labelspβ ‚ : t`q “ labelspt`qztγu Y tβ ‚ γu

So either α P labelspt`q Ď labelspt`0q and we are in the situation (I), or α “ β ‚ γ

and we are in the situation (IV), since β, γ P labelspt`0q.

Lemma A.94 (Redex names in a term result from contracting a redex of that name). Let

ρ` : t`0 �` t
`
1 be a derivation in the LLSC without gc, where t`0 is an initially labelled term. Let µ

be a redex name such that µ Ď α for some label α P labelspt`1q. �en ρ` has a step whose name

is µ, i.e. ρ` can be wri�en as of the form ρ`1R
`ρ`2, where the name of R`

is µ.

Proof. By induction on the length of ρ`:

1. Base case, i.e. ρ` empty. We claim that this case is impossible. By hypothesis, there exists
a label α such that µ Ď α P labelspt`0q. Since t`0 is an initially labelled term, the label α
must be an initial label, i.e. α “ a. �en we have that µ Ď a. If µ is the name of a db

redex, we have that µ “ dbpβq Ď a, which is a contradiction. Similarly, if µ is the name
of a ls redex, we have that µ “ β ‚ γ Ď a, which is also not possible.

2. Induction, i.e. ρ` “ σ`S`. Let s` “ tgtpσ`q “ srcpS`q and let ν be the name of σ`. Since
α P labelspt`1q, by Lem. A.93 at least one of the following cases applies:

(I) If α P labelsps`q. �en by i.h. σ` can be wri�en as of the form σ` “ σ`1R
`σ`2 where

the name of R` is µ, so ρ` “ σ`1R
`σ`2S

` and we conclude.

(II) If ν “ dbpβq with α “ γrdbpβqsδ and γ, β, δ P labelsps`q. Since µ Ď α “

γrdbpβqsδwe consider three posibilities, depending on the position whereµ occurs
in α:

2.0.1 If µ Ď γ or µ Ď β or µ Ď δ. �en since γ, β, δ P labelsps`q, we may apply
the i.h. to obtain that σ` can be wri�en as of the form σ` “ σ`1R

`σ`2 where the
name of R` is µ, so we conclude.

2.0.2 If µ “ dbpβq. �en the name of the step S` is ν “ µ, so we conclude.
2.0.3 Otherwise. Note that µ cannot be of the form rdbpβqs, because µ is the name

of a redex. Hence the only remaining possibility is that µ overlaps at least
one of the two boundaries in the expression γrdbpβqsδ. By “overlapping one
of the two boundaries” we mean that µ is a label of the form µ “ εζ where
either:

ε is a su�x of γ and ζ is a pre�x of rdbpβqsδ
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or
ε is a su�x of γrdbpβqs and ζ is a pre�x of δ.

Note that the label µ cannot be the name of a db redex, and it must be the
name of an ls redex. �is leaves us with only two possibilities, namely that
µ “ γ1 ‚ rdbpβqs or that µ “ rdbpβqs ‚ δ1. �is contradicts the fact that the
shape of the name of a ls step, when starting from an initially labeled term,
is either of the form a ‚ b or of the form a ‚ tdbpβ1qu, as has been shown in
Lem. A.92.

(III) If ν “ dbpβq with α “ tdbpβquγ and β, γ P labelsps`q. Since µ Ď α “ tdbpβquγ

we consider three possibilities, depending on the position where µ occurs in α:

2.0.1 If µ Ď β or µ Ď γ. �en since β, γ P labelsps`q, we may apply the i.h. to
obtain that σ` can be wri�en as of the form σ` “ σ`1R

`σ`2 where the name of
R` is µ, so we conclude.

2.0.2 If µ “ dbpβq. �en the name of the step S` is ν “ µ, so we conclude.
2.0.3 Otherwise. Note that µ cannot be equal to tdbpβqu since µ is the name of

a redex. So µ must necessarily overlap tdbpβqu and γ. �is implies that µ
cannot possibly be the name of a db redex, and it must be the name of a ls

redex. In particular, µ must be of the form tdbpβqu ˝ γ1. �is contradicts the
fact that the shape of the name of a ls step, when starting from an initially
labeled term, is either of the form a ‚ b or of the form a ‚ tdbpβ1qu, as has been
shown in Lem. A.92.

(IV) If ν “ Ó pβq ‚ Ò pγq with α “ β ‚ γ and β, γ P labelsps`q. Since µ Ď α “ β ‚ γ we
consider two possibilities, depending on the position where µ occurs in α:

2.0.1 If µ Ď β or µ Ď γ. �en since β, γ P labelsps`q, we may apply the i.h. to
obtain that σ` can be wri�en as of the form σ` “ σ`1R

`σ`2 where the name of
R` is µ, so we conclude.

2.0.2 Otherwise. In any other case, µ must overlap one of the two boundaries in the
expression β ‚ γ. �en µ cannot be the name of a db redex, and it must be the
name of a ls redex, i.e. µ “ δ ‚ ε where δ and ε are atomic labels. �e only
remaining possibility is that δ “ Ó pβq and ε “ Ó pγq. Hence the name of the
step S` is ν “ Ó pβq ‚ Ó pγq “ µ, and we conclude.

Completeness

�e following de�nitions and lemmas are used to prove the implication p2 ùñ 1q (Com-

pleteness) in Prop. 7.12.

Lemma A.95 (Any redex has a residual a�er a derivation not including its name). In the LSC

without gc, letR0 be a step and ρ be a coinitial derivation. Let t` be an initially reachable variant

of the source, and consider the labeled variantsR`
0 and ρ` ofR0 and ρ respectively, whose source is
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t`. Let µ be the name of R`
0, and suppose that µ is not among the names of the redexes contracted

by ρ`. �en there exists a step R1 P R0{ρ. Moreover, the name of its labeled variant R`
1 is also µ.

Proof. By induction on ρ. If ρ is empty it is immediate by takingR1 :“ R0. Otherwise, ρ` is of
the form S`σ`. �e names of R`

0 and S` are di�erent by hypothesis, hence R0 and S must be
di�erent steps. Since in the LSC without gc there is no erasure, there is at least one residual
R2 P R0{S, and given that residuals have the same name as their ancestors (Lem. 6.33), the
name of the labeled variant R`

2 of R2 is also µ. Applying the i.h., we conclude that there is a
step R1 P R2{σ, i.e. R1 P R0{Sσ, and the name of the labeled variant R`

1 of R1 is also µ, as
required.

Lemma A.96 (Any redex has an ancestor before a derivation not contributing to its name). In

the LSC without gc, let ρ be a derivation and let R1 be a composable step, i.e. tgtpρq “ srcpR1q.

Let t` be an initially reachable variant of the source of ρ, consider the labeled variant ρ` of ρ

whose source is t`, and the labeled variant of R`
1 of R1 whose source if tgtpρ`q. Let µ be the name

ofR`
1, and suppose that the names of the redexes contracted by ρ` do not contribute to µ, i.e. every

step S` in ρ` has a name ν such that ν
Name
ãÑ µ does not hold. �en there exists a step R0 such that

R1 P R0{ρ. Moreover, the name of its labelled variant R`
0 is also µ.

Proof. By induction on the length of ρ. If ρ is empty it is immediate by taking R0 :“ R1.
Otherwise, ρ` is of the form σ`S`. �e name of S` does not contribute to the name of R`

0 by
hypothesis.

Recall that Prop. 6.41 states that whenever a step T `1 creates a step T `2 we have that the
name of T `1 contributes to the name of T `2 . By the contrapositive, whenever the name of a step
T `1 does not contribute to the name of a step T `2 , the second step T `2 must have an ancestor.

In our case, given that the name of S` does not contribute to the name of R`
0, there must

exist an ancestor, i.e. a stepR2 such thatR0 P R2{S. Moreover, by the fact that residuals have
the same name as their ancestors (Lem. 6.33) the name of the labeled variant R`

2 of R2 must
be µ.

�en, by applying the i.h., we conclude that there is a step R1 such that R2 P R1{σ, i.e.

R0 P R1{σS, and the name of the labeled variant R`
0 of R0 is also µ, as required.

A.4.2 Reachable normal forms are stable — proof of Prop. 7.27

De�nition A.97 (Reachable contexts). Reachable contexts are de�ned by the following gram-
mar:

R ::“ l | R t | t R | λx.R | Rrxzts | RxxxyyrxzRs

A variable x is reachable in a term t if it occurs free under a reachable context, i.e. t “ Rxxxyy

such that R does not bind x. We write rvptq for the set of reachable variables of t. Given a
term t, a reachable step is given by either a db redex whose application lies below a reachable
context, or an ls redex contracting a variable which lies below a reachable context. A term t

is a reachable-normal form if it has no reachable redexes. �e set of reachable-normal forms is
wri�en RNF. If a context (resp. variable, redex) is not reachable we say that it is unreachable.
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Our aim is to prove that the set of reachable normal forms is a stable set. �e proof depends
on a number of technical de�nitions and lemmas. We omit the long proofs by case analysis
of these lemmas.

De�nition A.98 (Nesting). We follow the de�nition of nesting given in [6]. NamelyR imme-

diately nests S (wri�en R ă1
B S) if the anchor of S lies inside the box of R. Moreover, R ăB S

is de�ned as the transitive closure of ă1
B, and then we say that R nests S.

De�nition A.99 (Strongly reachable redex). A step R : t Ñ dbY ls s is strongly reachable if
and only ifR is reachable and it is not nested by any other redex, i.e. R is minimal with respect
to ăB.

Lemma A.100 (Characterization of reachability). �e following properties hold:

1. A variable x is reachable in t if and only if x P fvpnfgcptqq.

2. A term t is a reachable normal form if and only if nfgcptq is inÑ dbY ls -normal form.

Proof. �e proof of the �rst item is by induction on t. �e interesting case is when t “ srxzus.
�en:

nfgcptq “

#

nfgcpsqryznfgcpuqs if y P fvpnfgcpsqq
nfgcpsq otherwise

so there are two cases:

1. If y P fvpnfgcpsqq. �en by i.h., y P rvpsq, so x P rvptq ðñ x P prvpsqztyuq Y rvpuq

ðñ x P pfvpnfgcpsqqztyuq Y fvpnfgcpuqq ðñ x P fvpnfgcptqq.

2. If y R fvpnfgcpsqq. �en by i.h., y R rvpsq, so x P rvptq ðñ x P rvpsq ðñ

x P fvpnfgcpsqq ðñ x P fvpnfgcpsryzusqq ðñ x P fvpnfgcptqq.

�e proof of the second item is similar, by induction on t. As before, the interesting case is
when t “ srxzus and there are two cases.

1. If x P fvpnfgcpsqq. By item 1. of this lemma, we have that x P rvpsq, so s “ Rxxxyy. �en
the term t is not a RNF, since t “ Rxxxyyrxzus so it has a reachable ls step. On the other
hand, the term nfgcptq is not aÑ dbY ls -normal form, since nfgcptq “ nfgcpsqrxznfgcpuqs
and x occurs free in nfgcpsq, so there is a ls step.

2. If x R fvpnfgcpsqq. By item 1. of this lemma, we have that x R rvpsq, so t is a RNF ðñ
s, u areRNFs ðñ nfgcpsq, nfgcpuq areÑ dbY ls -normal forms ðñ nfgcpsqrxznfgcpuqs
is aÑ dbY ls -normal form.

De�nition A.101 (Free occurrence, descendant of a free occurrence). We say that pt, C, xq is
a free occurrence if t “ Cxxxyy where C does not bind x. A free occurrence pt, C, xq is reachable

if C is a reachable context, and unreachable otherwise. If ρ : t � s is a reduction sequence,
we say that a free occurrence ps, C2, xq is a descendant of a free occurrence pt, C1, xq a�er ρ if
given an initially labelled variant ρ` : t` �` s

` of the reduction ρwe have that t` “ C`1xxx
Ópαqyy

and s` “ C`2xxx
αyy, where C`1 and C`2 are labelled variants of C1 and C2 respectively.



383

Remark A.102. Since the labeled calculus LLSC is an orthogonal axiomatic rewriting sys-
tem (Prop. 6.32), descendants a�er a derivation ρ coincide with descendants a�er a derivation
σ whenever ρ and σ are permutation equivalent.

Lemma A.103 (Unreachable occurrences and steps can be erased). Consider a reduction to

gc-normal form σ : t� gc nfgcptq. �en:

1. If pt, C, xq is an unreachable free occurrence, then pt, C, xq has no descendants a�er σ.

2. If R : tÑ dbY ls s is an unreachable step, then R{σ is empty.

Proof. We only give the proof of item 1., by induction on C. �e proof of item 2. is similar, by
induction on the context C, under which the step R takes place, and depends on item 1.

1. Empty, C “ l. Impossible, since then C is a reachable context.

2. Le� of an application, C “ C1 s. Note that C1 must be an unreachable context, otherwise
C would be reachable. So pC1xxxyy, C1, xq is an unreachable free occurrence. Consider a
derivation to gc normal form σ : C1xxxyy s� gc nfgcpC1xxxyyq nfgcpsq. By algebraic con�u-
ence, we know that σ is permutation equivalent to the composition of two derivations,
i.e. σ ” σ1 σ2, where σ1 carries C1xxxyy to gc-normal form and σ2 carries s to gc-normal
form. More precisely, σ1 is de�ned as the embedding of the reduction sequence τ1 under
the context l s, and σ2 is de�ned as the embedding of the reduction sequence τ2 under
the context nfgcpC1xxxyyql, where τ1 : C1xxxyy� gc nfgcpC1xxxyyq and τ2 : s� gc nfgcpsq.
By i.h. pC1xxxyy, C1, xq has no descendants a�er τ1. �is implies that pCxxxyy, C, xq has
no descendants a�er σ1. Hence pCxxxyy, C, xq has no descendants a�er σ1σ2 ” σ, as
required.

3. Right of an application, C “ s C1. By i.h., similar to the previous case.

4. Under an abstraction, C “ λx.C1. By i.h., similar to the previous case.

5. Le� of a substitution, C “ C1rxzss. Note that C1 must be an unreachable context, other-
wise Cwould be reachable. So pC1xxxyy, C1, xq is an unreachable free occurrence. Consider
a derivation to gc normal form σ : C1xxxyyrxzss� gc nfgcpC1xxxyyqrxznfgcpsqs‹. By alge-
braic con�uence, we know that σ is permutation equivalent to the composition of three
derivations, i.e. σ ” σ1 σ2 σ3, where σ1 carries C1xxxyy to gc-normal form, σ2 carries s to
gc-normal form, and σ3 performs the garbage collection of the outermost substitution,
if possible. More precisely, σ1 is de�ned as the embedding of the reduction sequence
τ1 under the context lrxzss, and σ2 is de�ned as the embedding of the reduction se-
quence τ2 under the context nfgcpC1xxxyyqrxzls, where τ1 : C1xxxyy � gc nfgcpC1xxxyyq
and τ2 : s � gc nfgcpsq. Moreover, σ3 is de�ned either an empty derivation or a single
gc step, in such a way that σ3 : nfgcpC1xxxyyqrxznfgcpsqs � gc nfgcpC1xxxyyqrxznfgcpsqs‹.
By i.h. pC1xxxyy, C1, xq has no descendants a�er τ1. �is implies that pCxxxyy, C, xq has
no descendants a�er σ1. Hence pCxxxyy, C, xq has no descendants a�er σ1σ2σ3 ” σ, as
required.
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6. Inside a substitution, C “ sryzC1s. We know that C is an unreachable context. Hence
there are two possibilities, depending on whether y is a reachable variable in s:

6.1 If y is a reachable variable in s. �en C1 must be an unreachable context, otherwise
C would be reachable. �e result follows by applying the i.h., similarly as in the
previous case.

6.2 If y is not an reachable variable in s. �at is, y R rvpsq. �en y R fvpnfgcpsqq by the
characterization of reachable variables (Lem. A.100). �is means that nfgcpsryzC1xxxyysq “
nfgcpsq so, by algebraic con�uence, σ is permutation equivalent to the composi-
tion of a derivation and a step, i.e. σ ” σ1 S, such that σ1 normalizes s and S
performs the gc step that erases the outermost substitution. More precisely, σ1 is
de�ned as the embedding of a derivation τ1 under the context lryzC1xxxyys, where
τ1 : s � gc nfgcpsq and S is gc step S : nfgcpsqryzC1xxxyys Ñ gc nfgcpsq. �en
the free occurrence pt, C, xq has no descendants a�er σ1S ” σ, since S erases the
subterm that contains the descendant of said free occurrence.

Lemma A.104 (Composition of reachable contexts). �e composition C1xC2y is a reachable

context if and only if C1 and C2 are reachable contexts.

Proof. Straightforward by induction on C1.

Lemma A.105 (Strongly reachable redexes are not nested). Let R be a strongly reachable

redex. �en for any other redex S we have that  pS ăB Rq.

Proof. Suppose that S ăB R. �en since ăB is de�ned as the transitive closure of ă1
B, we have

that S ĺB S
1 ă1

B R. Note that S 1 cannot be a reachable redex, since R is strongly reachable,
and hence minimal among the reachable redexes. So S 1 is unreachable. Let us show that this
is impossible, by case analysis on the kind of redex S 1:

1. If S 1 is a db redex. �en S 1 is of the form S 1 : Cxpλx.tqL sy Ñ db CxtrxzssLy and since
S 1 ăB R, the anchor of R is inside s, i.e. s “ C1xuy where the root of u is the anchor
of R. �en since R is reachable we have that the context Cxpλx.tqL C1y is a reachable
context. By Lem. A.104 we conclude that C must also be a reachable context. Hence S 1
is reachable, which is a contradiction.

2. If S 1 is a ls redex. �en S 1 is of the form: S 1 : C1xC2xxxyyrxztsy Ñ ls C1xC2xtyrxztsy

and since S 1 ăB R, the anchor of R is inside t, i.e. t “ C1xsy where the root of s is
the anchor of R. �en since R is reachable we have that the context C1xC2xxxyyrxzC

1sy

is a reachable context. By Lem. A.104 we conclude that C1 and C2xxxyyrxzC
1s must

also be reachable contexts. Now observe that the only production that can be used
to derive that C2xxxyyrxzC

1s is a reachable context, is “R ::“ RxxxyyrxzRs”. So we must
have that C2xxxyy “ C3xxxyy where C3 is a reachable context. By Lem. A.104 we have
that C1xC3rxztsy is a reachable context. Hence the ls step T : C1xC3xxxyyrxztsy Ñ ls
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C1xC3xtyrxztsy is reachable. Moreover T ă1
B R, since the anchor of R is inside the ar-

gument of the substitution rxzts. �is contradicts the fact that R is strongly reachable,
and we obtain a contradiction, as required.

Lemma A.106 (Context-freeness). Let R, S, and T be coinitial redexes such that R1 P R{S

and T 1 P T {S. If  pS ăB Rq then pT ăB R ðñ T 1 ăB R
1q.

Proof. �is is the context-freeness property. See [6, Proposition 4] for a proof.

De�nition A.107 (Chained substitution context). A substitution context L is said to be px, zq-
chained according to the following inductive de�nition:

x R dompLq

L is px, xq-chained
x ‰ y y ‰ z C is a reachable context L is px, yq-chained

LryzCxxzyys is px, zq-chained

x ‰ y y ‰ z L is px, zq-chained
Lryzts is px, zq-chained

Remark A.108. In general a x-chained substitution context is of the form:

L0rx0zC0xxx1yysL1rx1zC1xxx2yys . . . Ln´1rxn´1zCn´1xxxnyysLn

for some integer n ě 0, where x0 “ x, xn`1 “ z, and Ci is a reachable context for every
0 ď i ď n.
Remark A.109. If L1 is px, yq-chained and L2 is py, zq-chained, then L1L2 is px, zq-chained.

Lemma A.110 (Reachability inside a substitution). A context tLrzzCs is reachable if and only

if there exists a variable x such that the following three conditions hold:

1. C is a reachable context,

2. t is of the form t “ C1xxxyy where C1 is a reachable context, and

3. L is a px, zq-chained substitution context.

Proof. Let us check each side of the implication:

pñq It is immediate to check that C must be a reachable context by Lem. A.104. Let us check
the second and third conditions by induction on the length of L. If L is empty, then t
must be of the form C1xxzyy and indeed L “ l is pz, zq-chained. If L “ L1ryzss there are
two possibilities:

1. If z is reached via s. �at is s “ C2xxzyy where tL1ryzC2s is a reachable context. By
i.h. t “ C1xxxyy and L1 is a px, yq-chained substitution context. So L “ L1ryzC2xxzyys

is px, zq-chained.
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2. Otherwise. �en tL1 is of the form C2xxzyy where C2 is a reachable context, so
tL1rzzCs is a reachable context. By i.h. this means that t “ C1xxxyy and L1 is a
px, zq-chained substitution context. So L “ L1ryzss is also px, zq-chained.

pðq Let t “ C1xxxyy. By induction on the derivation that L is px, zq-chained:

1. If L is pz, zq-chained with z R dompLq. �en x “ z and C1xxzyyrzzCs is reachable
since C1 and C are reachable.

2. If L “ L1ryzC2xxzyys where C2 is reachable and L1 is px, yq-chained. By i.h. we have
that C1xxxyyL1ryzC2s is a reachable context. Hence C1xxxyyL1ryzC2xxzyysrzzCs is reach-
able.

3. If L “ L1ryzss where L1 is px, zq-chained. By i.h. we have that C1xxxyyL1rzzCs is a
reachable context. Hence by Lem. A.104 C1xxxyyL1 must be of the form C1xxzyywhere
C1 is a reachable context. �en C1ryzss is also reachable, which in turn implies that
C1xxzyyryzssrzzCs “ C1xxxyyL1ryzssrzzCs is reachable, as required.

Lemma A.111 (Strongly reachable redexes have reachable residuals). Let R be a strongly

reachable redex and let S ‰ R be any other redex coinitial to R. �en:

• �e set of residuals R{S is a singleton and it is reachable.

• If tgtpRq is in RNF, then R{S is strongly reachable.

Proof. During the proof we shall implicity use the fact that these two conditions are equivalent
for a reachable redex R:

(1) For every redex S we have that  pS ăB Rq.

(2) For every reachable redex S we have that  pS ăB Rq, i.e. R is strongly reachable.

�e implication p1 ùñ 2q is immediate. �e reverse implication is Lem. A.105. �e proof
proceeds by induction on the context C under which the S step takes place. We study only
the base case, when C “ l. �e inductive cases are not all straightforward, but they can be
proved using the same ideas. By case analysis on the kind of redex S:

1. db redex. �en the step S is of the form pλx.tqL s
S
ÝÑ trxzssL. Note that S is a reachable

redex so, since R is minimal, the anchor of R cannot be internal to s. We consider two
subcases, depending on whether the anchor of R is internal to t or internal to L.

1.1 If the anchor of R is internal to t. �en t “ C1xuy where the anchor of R is at the
root of u and the situation is:

pλx.C1xuyqL s

R ��

S // C1xuyrxzssL

R{S ��
pλx.C1xu1yqL s C1xu1yrxzssL
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Note thatR is reachable, so pλx.C1qL s is a reachable context. �en, by Lem. A.104,
we have that C1rxzssL is also a reachable context. Hence R{S is reachable.
Moreover, let us show that R{S is strongly reachable. By contradiction, suppose
that T ă1

B R{S for some reachable redex T . We consider three cases, depending
on whether T is a db redex created by S, a ls redex created by S, or it has has an
ancestor before S:

1.1.1 T is a db redex created by S. �is case is not possible, since there should be an
outermost application in order to create a db redex in this way.

1.1.2 T is a ls redex created byS. �is case is not possible as we would have pT ă1
B

Rq, since the box of T is the argument of the substitution rxzss and the anchor
of R{S is inside u.

1.1.3 T has an ancestor before S. Let T0 be an ancestor of T , i.e. T P T0{S. �en
since  pS ăB Rq and T ăB R{S, by Context-freeness (Lem. A.106) we have
that T0 ăB R, contradicting the fact that R is minimal with respect to the box
order.

1.2 If the anchor of R is internal to L. �en L “ L1ryzC
1usL2, where the anchor of R is

at the root of u, and the situation is:

pλx.tqL1ryzC
1xuysL2 s

S //

R ��

trxzssL1ryzC
1xuysL2

R{S ��
pλx.tqL1ryzC

1xu1ysL2 s trxzssL1ryzC
1xu1ysL2

�en since R is a reachable redex, the context pλx.tqL1ryzC
1sL2 s must be reach-

able. By Lem. A.110 there must exist a variable z such that λx.t is of the form
C2xxzyy where C2 is a reachable context, and moreover L1 is a pz, yq-chained sub-
stitution context. Note that λx.t “ C2xxzyy so C2 “ λx.C1 and x ‰ z. In particular,
t “ C1xxzyy and C1 is a reachable context. By applying Lem. A.110 now in the op-
posite direction, we have that the context trxzssL1ryzC

1sL2 is reachable, so R{S
is a reachable redex. Moreover, let us show that R{S is strongly reachable. By
contradiction, suppose that T ă1

B R{S for some reachable redex T . We consider
three cases, depending on whether T is a db redex created by S, a ls redex created
by S, or it has has an ancestor before S:

1.2.1 T is a db redex created by S. �is case is not possible, since there should be an
outermost application in order to create a db redex in this way.

1.2.2 T is a ls redex created by S. �en T contracts an occurrence of x in t, and the
box of T is the argument of the substitution rxzss. �e anchor of R{S is not
inside that substitution, so we have  pT ă1

B R{Sq.
1.2.3 T has an ancestor before S. Let T0 be an ancestor of T , i.e. T P T0{S. �en

since  pS ăB Rq and T ăB R{S, by Context-freeness (Lem. A.106) we have
that T0 ăB R, contradicting the fact that R is minimal with respect to the box
order.
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2. ls redex. �en the step S is of the form: C1xxxyyrxzts
S
ÝÑ C1xtyrxzts. Let us consider two

cases, depending on whether the anchor of R is to the le� of the substitution, or inside
the substitution:

2.1 If the anchor of R is to the le� of the substitution, i.e. internal to C1xxxyy. Let
C1xxxyyrxzts “ C1xuyrxzts such that u is the anchor ofR. We consider three further
subcases, depending on the relative positions of the hole of C1 and the hole of C1:

2.1.1 If C1 is a pre�x of C1. �at is, C1 “ C1xC2y. �en C1xxxyy “ C1xC2xuyy, so C2

must be empty and u “ x must be the anchor of R, so R is an ls redex.
FurthermoreR contracts the same variable occurrence as S, soR “ S, which
is impossible.

2.1.2 If C1 is a pre�x of C1. �at is, C1 “ C1xC2y. �en the source of R and S is of
the form C1xC2xxxyyyrxzts, where the subterm C2xxxyy is the anchor of R. Note
that R cannot be a ls step, since then we would have that C2 “ l. �is
would in turn mean that R and S contract the same variable occurrence, so
R “ S, which is impossible. Hence R must be a db step, that is, C2xxxyy “

pλy.sqLu. Let pλy.ŝqL̂ û be the term that results from pλy.sqLu by replacing
the occurrence of x under the context C2 by t, i.e. pλy.ŝqL̂ û “ C2xty. �e
situation is:

C1xpλy.sqLuyrxzts
S //

R

��

C1xpλy.ŝqL̂ ûyrxzts

R{S

��
C1xsryzusLyrxzts C1xŝryzûsL̂yrxzts

By hypothesis,R is a reachable redex, so the context C1rxzts is reachable. �en
R{S is also a reachable redex. Moreover, let us show that R{S is strongly
reachable. By contradiction, suppose that T ă1

B R{S for some reachable redex
T . We consider two cases, depending on whether T is a db redex created by
S, or it has has an ancestor before S:

2.1.2.1 T is a db redex created by S. In order to create a db redex, we know
that two conditions must hold. On the �rst hand, the argument of the
substitution contracted by S must be an answer, more precisely, we know
that t is of the form t “ vL1, where v is an abstraction. On the other
hand, C2 must be an applicative context, more precisely we know that
C2 “ C12xlL2 ry.
To conclude, note that the application node involved in the pa�ern of
T is strictly contained either in ŝ, or in L̂, or in û, so it cannot possibly
nest R{S. To state it more precisely, we consider three similar subcases,
depending on whether the hole of C2 lies inside s, inside L, or inside u:
• �e hole of C2 lies inside s. �en s “ C22xlL2 ry and C12 “ pλy.C22qLu.
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�e situation is:

C1xpλy.C22xxL2 ryqLuyrxzvL1s
S //

R ��

C1xpλy.C22xvL1L2 ryqLuyrxzvL1s

R{S ��
C1xC22xxL2 ryryzusLyrxzvL1s C1xC22xvL1L2 ryryzusLyrxzvL1s

�e redex T is underlined and clearly  pT ăB R{Sq since the anchor
of R{S is to the le� of the box of T .

• �e hole of C2 lies inside L. Similar to the previous case.
• �e hole of C2 lies inside u. Similar to the previous case.

2.1.2.2 T has an ancestor before S. Let T0 be an ancestor of T , i.e. T P T0{S. �en
since  pS ăB Rq and T ăB R{S, by Context-freeness (Lem. A.106) we
have that T0 ăB R, contradicting the fact that R is minimal with respect
to the box order.

2.1.3 If C1 and C1 are disjoint. �en there is a two hole context pC such that: C1 “
pCxl, xy and C1 “ pCxs,ly, and the situation is:

pCxs, xyrxzts S //

R ��

pCxs, tyrxzts

R{S ��
pCxs1, xyrxzts pCxs2, tyrxzts

Since R is a reachable redex, the context pCxl, xy is reachable. Hence pCxl, ty
is also reachable, which implies that R{S is also a reachable redex. Moreover,
let us show that R{S is strongly reachable. By contradiction, suppose that
T ă1

B R{S for some reachable redex T . We consider two cases, depending on
whether T is a db redex created by S, or it has has an ancestor before S:
• T is a db redex created by S. In order to create a db redex, we know

that two conditions must hold. On the �rst hand, the argument of the
substitution contracted by S must be an answer, more precisely, we know
that t is of the form t “ vL1 where v is an abstraction. On the other
hand, C1 must be an applicative context, more precisely we know that
C1 “ C11xlL2 uy. Moreover, since the anchor of R{S is inside the box of
T , we have that u “ C3xsy, and pC “ C11xl2L2 C3xl1yy where l1 and l2

are the �rst and second parameters of the two-hole context pC. �en the
situation is:

C11xxL2 C3xsyyrxzvL1s
S //

R ��

C11xvL1L2 C3xsyyrxzvL1s

R{S ��
C11xxL2 C3xs

1yyrxzvL1s
S{R // C11xvL1L2 C3xs

1yyrxzvL1s

SinceR is a reachable redex by hypothesis, the context C11xxL2 C3yrxzvL1s

must be reachable. By Lem. A.104 this implies that C11xlL2 C3xs
1yyrxzvL1s

must also be a reachable context. Hence the step at the bo�om of the
diagram S{R is a reachable redex. �is contradicts the hypothesis that
the target of R is in RNF.
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• T has an ancestor before S. Recall that R is strongly reachable so it is
minimal with respect to the box order and in particular  pS ăB Rq.
Let T0 be an ancestor of T , i.e. T P T0{S. �en since  pS ăB Rq and
T ăB R{S, by Context-freeness (Lem. A.106) we have that T0 ăB R,
contradicting the fact that R is minimal with respect to the box order.

2.2 If the anchor of R is inside the substitution, i.e. internal to t. �is case is impossible,
as we would have S ă1

B R, but R is strongly reachable, and in particular minimal
with respect to the box order.

With these tools, we can prove the main result of this section.

Proposition A.112 (Full proof of Prop. 7.27—�e set RNF is stable).

Proof. �e proof goes by checking items 1. and 2. in the de�nition of stable set:

1. RNF is closed under parallel moves. It su�ces to check that RNF is closed under
reduction. Let R : t Ñ dbY ls s with t P RNF, and let us check that s P RNF. It can be
proved as a lemma that RNFs given in Lem. A.100, that t P RNF if and only if nfgcptq is
inÑ dbY ls -normal form, and similarly for s.

Let σ : t � gc nfgcptq be a sequence of gc steps to normal form. Since t P RNF, by
Lem. A.100, we have that nfgcptq is in Ñ dbY ls -normal form. Consider the relative
projections σ{R and R{σ. Since σ{R is the projection of a sequence of gc steps, it is
also sequence of gc steps. Let σ{R : s� gc s

1. �e situation is:

t

σ
����

R // s

σ{R
����

nfgcptq
R{σ

// // s1

Since nfgcptq is in Ñ dbY ls -normal form, R{σ must be empty, so s1 “ nfgcptq. In
particular, s1 is a gc normal form, so by con�uence s1 is the gc normal form of s, i.e.

nfgcpsq “ s1 “ nfgcptq. �erefore nfgcpsq is in Ñ dbY ls -normal form which means, by
Lem. A.100, that s P RNF as required.

2. RNF is closed under unneeded expansion.. Let R : t Ñ dbY ls s with t R RNF and
s P RNF, and let us show that R is RNF-needed. In fact, it su�ces to show that R is a
strongly reachable redex. First we prove that R is reachable.

Claim: R is a reachable redex. By contradiction, suppose that R is unreachable,
consider a reduction from t to gc-normal form σ : t � gc nfgcptq, and the relative
projections R{σ : nfgcptq � dbY ls s

1 and σ{R : s � dbY ls s
1. By the fact that

unreachable redexes have no residual a�er going to gc-normal form (Lem. A.103)
we know that R has no residual a�er σ, so R{σ is empty. Hence nfgcptq “ s1, so



391

s1 is in gc-normal form and by con�uence we obtain that nfgcpsq “ s1 “ nfgcptq.
�e situation is:

t

σ
����

R // s

σ{R
����

nfgcptq
R{σ

// // s1

Since t P RNF, by the characterization of RNFs given in Lem. A.100, we have that
nfgcptq is not a Ñ dbY ls -normal form. On the other hand, since s P RNF, by
Lem. A.100, we have that nfgcpsq “ nfgcptq is a Ñ dbY ls -normal form. �is is a
contradiction, which concludes the proof of the claim.

To see thatR is a strongly reachable redex, we are le� to check thatR is minimal, among
the reachable redexes, with respect to the nesting order ăB. Indeed, by contradiction,
suppose that R is not minimal. �en since the order ăB is well-founded (as there are
�nitely many redexes in any given term) there is a reachable redex such that S ăB R

and such that S is minimal among the reachable redexes. �at is, S is a strongly reach-
able redex. �en by the fact that strongly reachable redexes have reachable residuals
(Lem. A.111) the redex S{R is reachable. �is contradicts the fact that s is in RNF. So
R must be minimal with respect to the nesting order ăB, as required.

A.4.3 Head linear reduction is normalizing — proof of Coro. 7.56

Corollary A.113 (Full proof of Coro. 7.56—Head-linear reduction is HLNF-normalizing). �e

strategy SHL associated to the sub-ARS HL is HLNF-normalizing.

Proof. To show that SHL is HLNF-normalizing, using Prop. 7.54 we must show that:

1. �e set NFpHLq coincides with the set HLNF, so being NFpHLq-normalizing is equiva-
lent to being HLNF-normalizing. For this we will show the two inclusions:

1.1 NFpHLq Ď HLNF

1.2 HLNF Ď NFpHLq

2. �e sub-ARS HL is closed and residual-invariant, to be able to apply Prop. 7.54. For this
we will show that:

2.1 �e set NFpHLq is closed by reduction.

2.2 �e sub-ARS HL is residual-invariant.

Part 1a: every HL-normal form is a HLNF.

By induction on t it is straightforward to check that if t P NFpHLq then t P HLNF.
Part 1b: every HLNF is a HL-normal form.

It is immediate to check that pλx.tqL and Hxxxyy have no db or ls redexes under a head
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context.
Part 2a: the set NFpHLq is closed by reduction.

We have already seen that NFpHLq “ HLNF. Let t P HLNF and t Ñ s, and let us check that
s P HLNF. More precisely, wee show that if t is an answer, s is still an answer, and if t is a
structure whose head variable is x, s is still a structure with the same head variable:

1. If t is an answer, t “ pλx.t1qL. �ere are three cases depending on the kind of the step
tÑ s:

1.1 db step. A db step can be internal to t1 or internal to one of the substitutions in L.

1.2 ls step. �e variable contracted by an ls step can be internal to t1 or internal to
one of the substitutions in L; the substitution a�ected by the ls step might be or
not be one of the substitutions of L.

In any case, the contractum s is still an answer.

2. If t is a structure, t “ Hxxxyy. By induction on H :

2.1 Empty, H “ l. Trivial, as there are no steps from x.

2.2 Le� of an application, H “ H 1 u. �ree cases, depending on the position where
the step tÑ s takes place:

2.2.1 At the root. �is case is impossible, as the step should be a db step, butH 1xxxyy

is not of the form pλy.t1qL.
2.2.2 Le� of the application. �at is, the step is internal to H 1xxxyy. �en we have

that t “ H 1xxxyyu Ñ r u “ s, and r is a structure by i.h., so s “ r u is also a
structure.

2.2.3 Right of the application. �at is, the step is internal to u. �en we have that
t “ H 1xxxyyuÑ H 1xxxyy r “ s, and s “ H 1xxxyy r is still a structure.

2.3 Le� of a substitution, H “ H 1ryzus.

2.3.1 At the root. �e step must contract an occurrence of y in H 1xxxyy. Note that,
since t is a structure, the head context H “ H 1ryzus must not bind x, and in
particular x ‰ y. So there is a two-hole context pC such that H 1 “ pCxl, yy,
and the step is of the form:

t “ pCxx, yyryzus Ñ pCxx, uyryzus “ s

Note that pCxl, uy is still a head context as a consequence of (A.11), so s is a
structure with head variable x.

2.3.2 Le� of the substitution. �en the step is t “ H 1xxxyyryzus Ñ rryzus “ s. By
i.h. r is a structure with the same head variable, i.e. r “ H2xxxyy. Note that
x ‰ y, so s “ H2xxxyyryzus is a structure with head variable x.

2.3.3 Inside the substitution. �en the step is t “ H 1xxxyyryzus Ñ H 1xxxyyryzrs “ s.
So s “ H 1xxxyyryzrs is still a structure with head variable x.
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Part 2b: the sub-ARS HL is residual-invariant.

Let R P HL and consider R ‰ S. Let us show that there is a residual R1 P HLXR{S.
Before, let us state two simple facts:

pCxl, ty is a head context ùñ pCxl, t1y is a head context
where pC is any two-hole context (A.11)

C1xC2rxztsy is a head context ùñ C1xC2y is a head context (A.12)
�ese properties can be shown by induction on C.

Now we proceed by induction on the head context H under which the step R takes place:

1. Empty, H “ l. Two cases, depending on the kind of redex of R:

1.1 If R is a db step. �en R is of the form:

pλx.tqL sÑ trxzssL

�ere are three cases, depending on the position where S takes place. Note that S
cannot be at the root:

1.1.1 If S is internal to t. By this we mean that S is a db redex completely internal to
t, or an ls redex whose anchor is a variable y that lies inside t (the substitution
binding y might be also inside t, or it might be one of the substitutions in L).
Let pt denote the result of applying S on t. �en:

pλx.tqL s
R //

S
��

trxzssL

pλx.ptqL s
R{S // pλx.ptqL s

and R{S is also in HL.
1.1.2 If S is internal to L. By this we mean that L “ L1ryzusL3, and S is either a db

redex completely internal to u, or an ls redex whose anchor is a variable z
that lies inside u (the substitution binding z might be also inside u, or it might
be one of the substitutions in L2). Let pL denote the result of applying S on L.
�en:

pλx.tqL s
R //

S
��

trxzssL

pλx.tqpL s
R{S // pλx.tqpL s

and R{S is also in HL.
1.1.3 If S is internal to s. Let ps denote the result of applying S on s. �en:

pλx.tqL s R //

S
��

trxzssL

pλx.tqL ps
R{S // pλx.tqL ps

and R{S is also in HL.
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1.2 If R is a ls step. �en R is of the form:

Hxxxyyrxzts Ñ Hxtyrxzts

�ere are four cases, depending on the position where S takes place.
1.2.1 At the root. Note that S ‰ R and that S cannot be a db step, since there

is not an application at the root. �e remaining possibility is that S is a ls

step contracting a di�erent occurrence of x. �at is, that there is a two-hole
context pC such that:

pCxl, xy “ H

�en:
pCxx, xyrxzts R //

S
��

pCxt, xyrxzts

pCxx, tyrxzts
R{S //

pCxt, tyrxzts

To conclude thatR{S P HL it su�ces to observe that pCxl, ty is a head context
as a consequence of (A.11) and the fact that pCxl, xy is a head context.

1.2.2 Internal toHxxxyy, disjoint from the hole ofH . �en there is a two-hole context
pC such that

pCxl, sy “ H

and pCxx,ly is the context under which the step S takes place. �en:

pCxx, syrxzts
R //

S
��

pCxt, syrxzts

pCxx, s1yrxzts
R{S //

pCxt, s1yrxzts

To conclude that R{S P HL it su�ces to observe that pCxl, s1y is a head con-
text as a consequence of (A.11) and the fact that pCxl, sy is a head context.

1.2.3 Internal to Hxxxyy, above the hole of H . Two cases, depending on the kind of
redex of S:

1.2.3.1 If S is a db redex. �en the step S is of the form:

C1xpλy.sqLuyrxzts Ñ C1xsryzusLyrxzts

such thatHxxxyy “ C1xpλy.sqLuy and C1 is a pre�x ofH (i.e. H “ C1xC2y).
So the hole of H can be either:
• Internal to s. �is is impossible as head contexts do not go under ab-

stractions.
• Internal to one of the substitutions in L. �is is impossible as head con-

texts do not go inside substitutions.
• Internal to u. �is is impossible as head contexts do not go to the right

of applications.
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1.2.3.2 If S is a ls redex. �en the step S is of the form:

C1xC2xxyyyryzssyrxzts Ñ C1xC2xsyryzssyrxzts

such that Hxxxyy “ C1xC2xyyryzssy and C1 is a pre�x of H (i.e. H “

C1xC3y). Note that the hole ofH cannot be internal to s since head contexts
cannot go inside substitutions, so the hole ofH must be internal to C2xxyyy

�e occurrences of x and y must be disjoint, since they are di�erent vari-
ables andR and S are di�erent ls redexes, so there must exist a two-hole
context pC such that:

C1xpCxl, yyryzssy “ H pCxx,ly “ C2

�en:
C1xpCxx, yyryzssyrxzts

R //

S
��

C1xpCxt, yyryzssyrxzts

C1xpCxx, syryzssyrxzts
R{S // C1xpCxt, syryzssyrxzts

To conclude thatR{S P HL it su�ces to observe that C1xpCxl, syryzssy is a
head context as a consequence of (A.11) and the fact that C1xpCxl, yyryzssy

is a head context.
1.2.4 Internal to t. �en:

Hxxxyyrxzts
R //

S
��

Hxtyrxzts

Hxxxyyrxzt1s
R{S // Hxt1yrxzt1s

2. Le� of an application, H “ H 1 t. We argue that the step S cannot take place at the root.
Suppose that S takes place at the root. �en it is a db step. �en pλx.sqL must have a
db or ls redex under the head context H 1. Two cases:

2.1 If R is a db redex. �en there must be an application node in pλx.sqL under a head
context. But head contexts do not go below abstractions or inside substitutions, so
this is impossible.

2.2 If R is a ls redex. �en there must be a variable in pλx.sqL under a head context.
But head contexts do not go below abstractions or inside substitutions, so this is
impossible.

�en the step S must take place either to the le� of the application (and we conclude
by i.h.) or to the right of the application (and then R and S are disjoint, so it is trivial).

3. Le� of a substitution, H “ H 1rxzts. �ree cases:

3.1 If S takes place at the root. �en S must be a ls redex. Depending on the kind of
redex of R:
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3.1.1 If R is a db redex. �en R is of the form:

H 1
xpλy.sqLuyrxzts Ñ H 1

xsryzusLyrxzts

Four cases depending on the position of the contracted occurrence of x:
3.1.1.1 �e contracted occurrence of x is in H 1

. �en there is a two-hole context pC
such that:

pCxl, xy “ H

and:
pCxpλy.sqLu, xyrxzts

R //

S
��

pCxsryzusL, xyrxzts

pCxpλy.sqLu, tyrxzts
R{S //

pCxsryzusL, tyrxzts

To conclude that R{S P HL it su�ces to observe that pCxl, ty is a head
context as a consequence of (A.11) and the fact that pCxl, xy is a head
context.

3.1.1.2 �e contracted occurrence of x is in s. Let ps denote the result of replacing
the corresponding occurrence of x in s by t. �en:

H 1xpλy.sqLuyrxzts
R //

S
��

H 1xsryzusLyrxzts

H 1xpλy.psqLuyrxzts
R{S // H 1xpsryzusLyrxzts

3.1.1.3 �e contracted occurrence of x is in L. Analogous to the previous case.
3.1.1.4 �e contracted occurrence of x is in u. Analogous to the previous case.

3.1.2 If R is a ls redex. �en R is of the form:

H1xH2xxyyyryzssyrxzts Ñ H1xH2xsyryzssyrxzts

with H 1 “ H1xH2ryzssy.

�ree cases depending on the position of the contracted occurrence of x:

3.1.1 �e contracted occurrence of x is inH1. �en there is a two-hole context pC such
that:

pCxl, xy “ H1

and:
pCxH2xxyyyryzss, xyrxzts

R //

S
��

pCxH2xsyryzss, xyrxzts

pCxH2xxyyyryzss, tyrxzts
R{S //

pCxH2xsyryzss, tyrxzts

To conclude thatR{S P HL it su�ces to observe that pCxl, ty is a head context
as a consequence of (A.11) and the fact that pCxl, xy is a head context.
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3.1.2 �e contracted occurrence of x is in H2. Analogous to the previous case.
3.1.3 �e contracted occurrence of x is in s. �en s “ C1xxxyy and:

H1xH2xxyyyryzC1xxxyysyrxzts
R //

S
��

H1xH2xC1xxxyyyryzC1xxxyysyrxzts

H1xH2xxyyyryzC1xtysyrxzts
R{S // H1xH2xC1xtyyryzC1xtysyrxzts

To conclude that R{S P HL it su�ces to observe that H1xH2ryzC1xtysy is a
head context as a consequence of (A.11) and the fact that H1xH2ryzC1xxysy is
a head context.

3.2 If S takes place to the le� of the substitution. �en we conclude by i.h..

3.3 If S takes place to the right of the substitution. �en R and S are disjoint, so it is
trivial.

A.4.4 Need linear reduction is normalizing — proof of Coro. 7.59

Lemma A.114 (Properties of needed contexts). �e following hold:

1. Answers have no redexes or variables under need contexts.

If pλx.sqL “ Nx∆y then ∆ is not a redex nor a free occurrence of a variable.

2. Unique needed variable.

If N1xxxyy “ N2xxyyy then N1 “ N2.

3. Erasing a substitution in a need context.

If N1xN2rxztsy is a need context, then N1xN2y is also a need context.

4. Replacing a term in a need context.

If pC is a two-hole context, pCxl, ty is a need context, and t has no variables bound by pC, then

pCxl, sy is also a need context (where s is an arbitrary term).

Proof. Item 1 is by induction on L. Items 2 and 3 are by induction on N1. Item 4 is by induction
on the formation of the need context pCxl, ty.

Corollary A.115 (Full proof of Coro. 7.59—Needed linear reduction is NLNF-normalizing).
�e strategy SNL associated to the sub-ARS NL is NLNF-normalizing.

Proof. To show that SNL is NLNF-normalizing, we will apply Prop. 7.54 to conclude that SNL

is NFpNLq-normalizing. We must show that:

1. �e set NFpNLq coincides with the set NLNF, so being NFpNLq-normalizing is equiva-
lent to beingNLNF-normalizing. For this we will show the two inclusions, (1a)NFpNLq Ď
NLNF and (1b) NLNF Ď NFpNLq.
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2. �e sub-ARS NL is closed residual-invariant, to be able to apply Prop. 7.54. For this we
will show that (2a) the set NFpNLq is closed by reduction, and (2b) the sub-ARS NL is
residual-invariant.

Part 1a: every NL-normal form is a NLNF.

By induction on t it is straightforward to check that if t P NFpNLq then t P NLNF.
Part 1b: every NLNF is a NL-normal form.

Given t P NLNF it can be shown that it is a NL-normal form. �ere are two cases, depending
on the shape of t. If t is an answer it is a direct consequence of Lem. A.114. If it is a structure,
t “ Nxxxyy, then it is straightforward by induction on N.
Part 2a: the set NFpNLq is closed by reduction.

By items (1a) and (1b), we know that NFpNLq “ NLNF. Let t1 P NLNF and let t1 Ñ t2 be an
arbitrary step (not necessarily in the strategy). We claim that t2 P NLNF. �ere are two cases,
depending on the shape of t1: if t1 is an answer pλx.tqL, then by induction on L it can be seen
that t2 is also an answer. If t1 is a structure Nxxxyy, then by induction on N it can be seen that
t2 is also of the form N1xxxyy.
Part 2b: the sub-ARS NL is residual-invariant.

Let R P NL and consider R ‰ S. Let us show that there is a residual R1 P NL X R{S.
By induction on the need context N under which the step R takes place. Most overlappings
between redexesR and S are uninteresting, and it is immediate to show that there is a residual
R1 P R{S in the strategy, resorting to Lem. A.114 when required. Below we deal with the
interesting cases:

• lsnl vs. ls at the root: let pC be a two-hole context such that pCxl, xy is a need context.
�en:

NxpCxx, xyrxzvLsy
R //

S
��

NxpCxvL, xyrxzvLsy

NxpCxx, vLyrxzvLsy
R{S // NxpCxvL, vLyrxzvLsy

To conclude that R{S P NL it su�ces to observe that pCxl, ty is a need context as a
consequence of Lem. A.114.

• lsnl vs. db above the variable: that is, R : N1xN2xxxyyrxzvL
1sy Ñ N1xN2xvL

1yrxzvL1sy

and S : N1xN
1
2xpλy.sqLuyrxzvL

1sy Ñ N1xN
1
2xsryzusLyrxzvL

1sy such that the context N12 is
a pre�x of the context N2, i.e. N2 “ N12xN

2
2y. �e variable x must lie somewhere inside

the db-redex pλy.sqLu, below the need context N22. But need contexts do not go below
abstractions or to the right of applications, so this case is impossible.

• lsnl vs. ls above the variable: let pC be a two-hole context such that pCxl, yy is a need
context. �en:

N1xN2xpCxx, yyryzssyrxzvLsy
R //

S
��

N1xN2xpCxvL, yyryzssyrxzvLsy

N1xN2xpCxx, syryzssyrxzvLsy
R{S // N1xN2xpCxvL, syryzssyrxzvLsy
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To conclude thatR{S P NL it su�ces to observe that N2xpCxl, syryzssy is a need context
as a consequence of Lem. A.114.

• lsnl vs. ls duplicating R on the needed position: let x be bound to an answer vL
either in N1 or in N3. �en:

N1xN2xxyyyryzN3xxysy
R //

S
��

N1xN2xxyyyryzN3xvLysy

N1xN2xN3xxyyryzN3xxysy
R1 // N1xN2xN3xvLyyryzN3xxysy

Note that R1 is one of the two residuals of R, and R1 P NL.

• lsnl vs. ls duplicating R on a non-needed position: let x be bound to an answer
vL either in N1 or in N2, and let pC be a two-hole context such that pCxl, yy is a need
context. �en:

N1xpCxy, yyryzN2xxysy
R //

S
��

N1xpCxy, yyryzN2xvLysy

N1xpCxy, N2xxyyryzN2xxysy
R1 // N1xpCxy, N2xxyyryzN2xvLysy

To conclude that R1 P NL it su�ces to observe that pCxl, N2xxyy is a need context as a
consequence of Lem. A.114.

• lsnl vs. step internal to the argument: Let vL Ñ t be a step. By Part 2a, the set of
SNL-normal forms is closed by reduction and, more speci�cally, the set of answers is
closed by reduction. So t “ v1L1. �en:

N1xN2xxxyyrxzvLsy
R //

S
��

N1xN2xtyrxzvLsy

N1xN2xxxyyrxzv
1L1sy

R{S // N1xN2xv
1L1yrxzv1L1sy



Bibliography

[1] Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit sub-
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[73] �érèse Hardin and Luc Maranget. Functional runtime systems within the lambda-
sigma calculus. J. Funct. Program., 8(2):131–176, 1998.

[74] J Roger Hindley and Jonathan P Seldin. Lambda-calculus and combinators: an introduc-

tion, volume 13.

[75] Roger Hindley. Reductions of residuals are �nite. Transactions of the American Mathe-

matical Society, 240:345–361, 1978.

[76] W. A. Howard. �e formulae-as-types notion of construction, pages 480–490. Academic
Press, London-New York, 1980.

[77] Gérard Huet. �e zipper. Journal of functional programming, 7(5):549–554, 1997.
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