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ABSTRACT
Justification Logic is a refinement of modal logic where the modality

□A is annotated with a reason s for “knowing” A and written ⟦s⟧A.
The expression s is a proof of A that may be encoded as a lambda

calculus term of type A, according to the propositions-as-types

interpretation. Our starting point is the observation that terms of

type ⟦s⟧A are reductions between lambda calculus terms. Reductions

are usually encoded as rewrites essential tools in analyzing the

reduction behavior of lambda calculus and term rewriting systems,

such as when studying standardization, needed strategies, Lévy

permutation equivalence, etc. We explore a new propositions-as-

types interpretation for Justification Logic, based on the principle

that terms of type ⟦s⟧A are proof terms encoding reductions (with

source s). Note that this provides a logical language to reason about

rewrites.
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NNNNNNN.NNNNNNN

Justification Logic [3, 4, 19] is a modal logic where necessity is

indexed by justification expressions. The modal proposition □A
becomes ⟦s⟧A where the justification expression s is a reason for

“knowing” A. Typically, s denotes a proof that attests to the truth
of A. An important property of Justification Logic is the reflection
principle: given a proof of A, one can encode this proof using a

justification expression s and prove ⟦s⟧A. Most formulations of
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Justification Logic are in Hilbert style. In that case s above is a com-

binator, called a proof polynomial, encoding a Hilbert style proof of

A. This paper proposes to explore the computational significance

of Justification Logic via the propositions-as-types methodology.

In fact, we focus here on an early precursor of Justification Logic,

namely the Logic of Proofs (LP) [1, 2]. The Logic of Proofs may

be understood as the justification counterpart of S4. All theorems

of S4 are also theorems of LP where occurrences of the necessity

modality have been suitably annotated with justification expres-

sions. Similarly, dropping the justification expressions of modalities

in theorems of Justification Logic yields S4 theorems.

Natural Deduction for the Logic of Proofs. A Natural Deduction

presentation for the Logic of Proofs suggests itself through the

reflection principle. Consider the following introduction rule for

the modality: if s is a proof of A, then ⟦s⟧A is provable, where s is a
justification expression denoting a Natural Deduction proof. The

sequents of our deductive system take the form Γ ⊢ A | s , where
Γ is a set of hypotheses and the justification expression s encodes
the current Natural Deduction proof of the sequent, so that we can

express the above reflection principle as an introduction rule: if one

proves Γ ⊢ A | s , then one may prove Γ ⊢ ⟦s⟧A | !s . The exclamation

mark in “!s” records the fact that a modality introduction rule

was applied, thus updating our current justification expression. Of

course, Γ cannot be any set of hypotheses at all since otherwise A
and ⟦s⟧Awould be logically equivalent (i.e.A ⊃ ⟦s⟧A and ⟦s⟧A ⊃ A
would both be provable). One could restrict the hypothesis in Γ
to be modal expressions, however the resulting system would not

be closed under substitution [8]. An alternative is to split them in

two disjoint sets, following Bierman and de Paiva [8] and Davies

and Pfenning [14]: we use ∆ for modal hypotheses (those assumed

true in all accessible worlds) and Γ for truth hypotheses (those

assumed true in the current world). Sequents now take the form

∆; Γ ⊢ A | s and we can recast the above mentioned introduction

rule for the modality as follows, where ∅ denotes an empty set of

truth hypotheses:

∆; ∅ ⊢ A | s

∆; Γ ⊢ ⟦s⟧A | !s
(1)

Although correct from a provability angle, one immediately realizes

that, in the presence of this proposed rule, proofs are not closed

under normalisation. This is an important requirement towards

our goal in uncovering a computational interpretation of ⟦s⟧A
since reduction on terms mimics normalisation on proofs. Indeed,

normalisation of the proof of ∆; ∅ ⊢ A | s will produce a proof of
∆; ∅ ⊢ A | t , for some t different from s . We need some means of

relating t back to s .

Towards a Typed Calculus of Rewrites. A rewrite is an expression

that denotes a sequence of reduction steps from a source term to a

target term. Consider for example the lambda calculus term λa.a
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denoting the identity function. Let us abbreviate this term I . The
term (Ib)(Ib) reduces in one β-step to b (Ib) by contracting the

leftmost redex. An expression denoting this reduction step would

be the rewrite:

ba(a.a,b) (Ib) : (Ib)(Ib) ▷ b(Ib)
The expression ba(a.a,b) (Ib) models the above mentioned reduc-

tion step. The symbol ‘ba’ is called a rule symbol since it witnesses
that a rewrite rule was applied (β in this case). The occurrence of

ba(a.a,b) tells us that a β-reduction step reduced the leftmost of the

two redexes in (Ib)(Ib). The term (Ib)(Ib) to the left of the triangle

is the source of the rewrite and b(Ib) on the right the target. We

could continue reduction from the target b(Ib) to obtain bb. The
rewrite encoding both steps would then be written:

ba(a.a,b) Ib;b ba(a.a,b) : (Ib)(Ib) ▷ bb
the semi-colon denoting composition of rewrites. Rewrites are use-

ful in studying properties of lambda calculus reduction, where the

rewrite steps themselves are of interest. It is particularly useful

due to the presence of syntactic accidents: two possible steps may

explain I (Ib) →β Ib both of which may be modeled with distinct

rewrites.

Returning to our discussion on (1) on obtaining some means of

relating t back to s , and given that proofs are reflected as justifica-

tion expressions in the logic, it seems natural to reify normalisation

steps as rewrites. This suggests that:

⟦s⟧A is the type of rewrites with source s .

Or in terms of a deduction rule:

∆; ∅ ⊢ ρ : s ▷ t : A

∆; Γ ⊢!(ρ, s, t) : ⟦s⟧A
A new sequent ∆; ∅ ⊢ ρ : s ▷ t : A types rewrites rather than terms.

It states that if ρ is a rewrite from source term s to target term t ,
then !(ρ, s, t) is a term. Since s may have occurrences of rewrites and

we are only interested in their source, !(ρ, s, t) is given type ⟦s⟧A
where s projects the source of all rewrites in s (for example, in the

case of !(σ ,p,q) it returns !p). The rest of this article is devoted to

developing this propositions-as-types interpretation for the Logic

of Proofs, called the Typed Rewrite Calculus (TRC), based on the

ideas discussed above.

Rewrites for Higher-Order Rewriting. Although this paper is not

about higher-order term rewriting (HOR), HOR is its starting point.

First-order term rewrite systems are sets of rewrite rules over first-

order terms. The latter are constructed from a given signature of

function symbols with arity. An example is the term rewrite sys-

tem consisting of two rewrite rules: { f (x) → x,a → b}, where f
has arity 1 and a and b have arity 0. Rewrites for first-order term

rewrite systems are introduced in [31] and [30, Ch.8]. They are

defined as first-order terms where the signature is extended with

additional function symbols for the rules (rule symbols) and repre-

sent (equational) proofs that a term reduces to another term. For

example, the reduction sequence f (a) → f (b) → b is represented

as ϱ(a);ϑ , where the rule symbol ϱ of arity 1, is a function symbol

denoting application of the first rule and ϑ , of arity 0, is a symbol

denoting application of the second rule. Rewrites without rule sym-

bols model a trivial reduction step over itself. For example, a in

the above mentioned rewrite ϱ(a);ϑ models the trivial step from a

to itself.
1
Rewrites are equipped with simple structural properties

stating, for example, that composition is associative and that, if ρ
is a rewrite from source s to target t , then ρ; t is equal to ρ.
HOR systems [30, Ch.11] are rewrite systems with binders, the

paradigmatic example being the lambda calculus and its binder

‘λ’. Rewrite rules are pairs of simply typed lambda calculus with

constants, following the HOAS approach [25]. For example, the β
rule as a HOR system is represented as app(lam(λx .yx), z) → yz.
Here we have function symbols app : ι ⊃ ι ⊃ ι and lam : (ι ⊃ ι) ⊃ ι,
for ι some base type. Terms are assumed to be in β-normal form.

2

Rewrites were extended to HOR by S. Bruggink [12, 13] following

the same idea as in the first-order case, namely adding an additional

rule symbol constant for each rewrite rule. Also, they are associated

a source and target term. Structural equality of rewrites, as in the

first order case, is also adopted so that, for example, ρ; t equates to
t , where this time the trivial step t is a simply typed term. Note that,

in particular, a variable x is equated to x ;x . This has the unfortunate
consequence of admitting the unsound equation [12, 13]:

ϑ =β (λx .x)ϑ = (λx .x ;x)ϑ =β ϑ ;ϑ

The rewrite ϑ ;ϑ is incorrect since the source a and target b of ϑ
do not coincide. Lambda-calculus substitution is incompatible with

rewrite composition. To avoid this obstacle, the author [12, 13]

drops composition from the set of simply typed constants, thus dis-

allowing nested rewrite composition such as in λx .x ;x . Reduction
sequences are modeled as sequences of rewrites. Left pending is the
problem of providing a type-system for rewrites with binders that

included rewrite composition.
3
We devised our Typed Rewrite Cal-

culus with this issue in mind and believe it can remedy the problem.

We embed rewrites into the typed lambda calculus by assigning

them a modal type and then introduce a notion of substitution on

modal variables compatible with rewrite composition. In particular,

we have (we use b for the trivial step from b to b, also u is a rewrite

variable):

!(ϑ ,a,b) = !(ϑ ;b,a,b)
= let u ⊜ !(ϑ ,a,b) in !(u,u,u)
= let u ⊜ !(ϑ ,a,b) in !(u;u,u,u)
= !(ϑ ;b;b,a,b)
= !(ϑ ,a,b)

Although this was the initial motivation for our work, our paper

focusses on the Typed Rewrite Calculus which we believe to be of

interest in itself. Exploring the use of the TRC as a framework for

rewrites in HOR is left to future work.

Summary of Contributions.

• A novel propositions-as-types presentation for the Logic of

Proofs based on rewrites as terms.

• A notion of reduction on rewrites we dub extension.

1
This is slightly more general than our example above where, in ba(a .s , t ), s and

t are terms, not rewrites. Although not required for reasoning about sequences of

rewrite steps, allowing rewrites that contain rule symbols to be nested provides a

concise notation reduction steps that reduce multiple, simultaneous redexes.

2
In fact, rewrites are restricted to higher-order patterns in βη normal form, where η
denotes the standard notion of restricted η-expansion.
3
“Because we introduced proof terms [=rewrites] in particular for easily defining meta-
operations on reductions, we have two options: do not allow nested compositions or do
not consider proof terms modulo βη-equivalence. I have opted for the first solution. It
is left to further research to devise an elegant form of proof term which includes nested
compositions but does not have the problem observed above.” [13, Pg.30].
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• Meta-theoretic properties of substitution (cf. Lem. 2.3, Lem. 2.4),

subject reduction for rewrite extension (cf. Prop. 3.7) and strong
normalization for rewrite extension (cf. Cor. 3.12).

Structure of the paper. Sec. 1 introduces the terms and rewrites. The

type system for TRC is presented in Sec. 2. Extension of rewrites is

discussed in Sec. 3. We present related work in Sec. 4 and conclude

in Sec. 5. Proofs are relegated to an extended report available at

ebonelli.github.io/files/rc.pdf.

1 TERMS AND REWRITES (AS TERMS)
This section presents (untyped) terms and rewrites. Types will be

considered in Sec. 2.

Terms and Rewrites. Terms (T) and Rewrites (R) are defined by

the following mutually recursive grammar:

s, t ::= a |u | λa.s | s t | !(ρ, s, t) | let u ⊜s in t
ρ,σ ::= a |u | ba(a.s, t) | bb(s,u .t) | ρ;σ | λa.ρ | ρ σ

| ⟨ρ |sσ ⟩ | let u ⊜ ρ inσ

Terms include the usual lambda calculus expressions consisting of

term variables a, abstraction λa.s and application s t . There are also
three new ones. A term of the form !(ρ, s, t) denotes a rewrite from
source term s to target term t . Variable u is a rewrite variable of

sort term. When a rewrite ρ is substituted into a term, this variable

will potentially be replaced with either the source or the target of

ρ, as will be made clear in the upcoming definition of substitution

of rewrites. The term let u ⊜s in t denotes rewrite composition. For

example, the term let v ⊜b in let u ⊜a in !(u v,u v,u v)will evaluate
b to obtain a term !(ρ, s, t) anda to obtain !(σ ,p,q) and then compose

the rewrites ρ and σ to build a rewrite ρ σ from the application

s p to t q. After appropriate substitutions the resulting term will be

!(ρ σ , s p, t q).
Rewrites denote reduction between a source and target term. The

rewrite a denotes the trivial reduction over term a. Rewrite u is the

same only that it, moreover, is subject to be replaced by rewrite

substitution. Rewrite ba(a.s, t)models a β-reduction step from term

(λa.s) t to term s{a/t }, the latter denoting the capture-avoiding

substitution of all free occurrences of a in s by t (defined below).

The rewrite bb(!(ρ, s, t),u .r ) similarly will stand for a reduction step

involving a redex of the form let u ⊜ !(ρ, s, t) in r , where u in r is to
be substituted by ρ, s and t ; further details will be supplied later. As
mentioned in the introduction, the rewrite ρ;σ denotes composition

of reductions. Not all such rewrites are reasonable since the target

of ρ may not coincide with the source of σ . Making this precise

requires a definition of source and target of a rewrite, a topic we

address below. The remaining rewrites denote reduction under a

term constructor: λa.ρ is for reduction under an abstraction, ρ σ for

reduction under an application, let u ⊜ ρ inσ for reduction under a

let and ⟨ρ |sσ ⟩ for reduction under a bang term constructor, where

s is assumed to be the source of ρ.4 Reduction under a term of the

form !(ρ, s, t) is interpreted as extending ρ with additional “work”

as captured by the rewrite σ . In fact, ⟨ρ |sσ ⟩ will be considered valid
only if the target of ρ coincides with the source of σ .

4
There is an abuse of notation here since “λa” is used both as a term constructor,

to build an abstraction, and as a rewrite constructor, to build a rewrite that denotes

reduction under an abstraction. The context should suffice to avoid confusion.

Free term variables and free rewrite variables are defined as

expected. Worthy of mention are the clauses: ftv(!(ρ, s, t)) := ∅ and

ftv(let u ⊜s in t) := ftv(s) ∪ ftv(t). The former owes to the fact that

term variables represent truth hypothesis in the current world and

hence, as is standard, cannot occur free in the term introduced by the

modal type Also, frv(!(ρ, s, t)) := frv(ρ) ∪ frv(s) ∪ frv(t), frv(let u ⊜
s in t) := frv(s)∪frv(t)\{u}, and frv(bb(s,u .t)) := frv(s)∪frv(t)\{u}.
The subset of rewrites called trivial rewrites (R1) is characterized
as follows:

s ::= a |u | λa.s | s s | ⟨ρ |ts⟩ | let u ⊜s in s
Any term s can be cast as a trivial rewrite s (written s), the latter
denoting the identity reduction over itself (cf. Lem. 1.3) as follows:

a := a
u := u

λa.s := λa.s
s t := s t

!(ρ, s, t) := ⟨ρ |s t⟩

let u ⊜s in t := let u ⊜s in t
In the clause for !(ρ, s, t) above, a trivial rewrite from !(ρ, s, t) to

itself consists in the rewrite ⟨ρ |s t⟩ that extends ρ with the trivial

rewrite for the target of ρ.

Substitution. We next introduce three notions of substitution, where

o below denotes an object (O) defined simply as the union of terms

and rewrites:

Substitution of term variables s{a/t }
Substitution of rewrite variables over trivial

rewrites

r{u/ρts }

Moded substitution of rewrite variables o{u/mρts }
Substitution of term variables is defined as expected. It is worth
mentioning that it does not propagate to rewrites since rewrites do

not have occurrences of free term variables, as may be seen from

looking at the clause defining !(ρ, s, t){a/r }.

b{a/r } :=

{
r , a = b

a, a , b

u{a/r } := u
(λb .s){a/r } := λb .s{a/r }
(s t){a/r } := s{a/r } t {a/r }

!(ρ, s, t){a/r } := !(ρ, s, t)
(let u ⊜s in t){a/r } := let u ⊜s{a/r } in t {a/r }

Substitution of rewrite variables into rewrites must be done

with some care. Consider the term u;u, which is well-formed since

u is a rewrite from u to itself. Let ρ be a rewrite from a source s
to target t . As discussed in the introduction, a naive definition of

(u;u){u/ρ } could end up producing ρ; ρ which is not well-formed

in the sense that the source and target of ρ may not coincide. Our

notion of substitution will produce ρ; t. Alternatively, one could
produce s; ρ. However, substituting ρ at the beginning or end makes

no difference since both ρ; t and s; ρ should be equated to ρ anyhow.

This will indeed be the case once we have introduced structural

equivalence on rewrites (Fig. 1). What is clear is that only one copy

of ρ should be substituted and that either prefixing or postfixing it

makes no difference.

Another observation we make is that when substituting in u;u we

replace each of the two occurrences of u by different objects. The

ebonelli.github.io/files/rc.pdf
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first occurrence gets replaced by ρ but the second one gets replaced

by a trivial rewrite, namely t. Accordingly, we split substitution of

rewrite variables in two: one that substitutes ρ itself and another one
that substitutes the source or target of ρ cast as a trivial rewrite. The

former is written r{u/ρts } and the latter o{u/mρts } where m stands

for either src or tgt. In particular, u{u/ρts } = ρ, u{u/srcρts } = s
and u{u/tgtρts } = t. Note also that defining (σ1;σ2){u/mρts } =
σ1{u/mρts };σ2{u/mρts } is correct but not so for r{u/ρts }. As a final
observation, both of these notions of substitution are mutually

recursive. Substitution of Rewrite Variables over trivial rewrites is

defined as:

a{u/ρts } := a

v{u/ρts } :=

{
ρ, u = v

v, u , v

(λa.s){u/ρts } := λa.s{u/ρts }
(p q){u/ρts } := p{u/ρts } q{u/ρts }

⟨σ |pq⟩{u/ρts } := ⟨σ ′ |p {u/srcρts }q{u/
tgtρts }⟩

where σ ′ = p{u/ρts };σ {u/tgtρts }
(let v ⊜p inq){u/ρts } := let v ⊜p{u/ρts } inq{u/ρts }

Notice the clause for ⟨σ |pq⟩. Substitution prepends a copy of the

source of σ in which ρ has been substituted (cf. rewrite p{u/ρts }
above) and updates σ so that all occurrences of u in σ are replaced

with the target of ρ (cf. rewrite σ {u/tgtρts } above). For the latter
it relies on moded substitution defined below. Similar updates are

applied to the source term p and trivial rewrite q. Perhaps worth

mentioning is that the resulting rewrite is also a trivial rewrite:

ρ ∈ R1 implies ρ{u/mσqp } ∈ R1.
Moded Substitution of Rewrite Variables over rewrites is defined

as follows:
5

a{u/mρts } := a

v{u/mρts } :=


s, u = v ∧m = src

t, u = v ∧m = tgt

v, u , v

ba(a.p,q){u/mρts } := ba(a.p{u/mρts },q{u/mρts })
bb(p,v .q){u/mρts } := bb(p{u/mρts },v .q{u/mρts })

(λa.ρ){u/mρts } := λa.ρ{u/mρts }
(σ τ ){u/mρts } := σ {u/mρts } τ {u/mρts }

⟨σ |pτ ⟩{u/mρts } := ⟨σ ′ |p {u/srcρts }τ {u/
tgtρts }⟩

where σ ′ = p{u/ρts };σ {u/tgtρts }
(σ ;τ ){u/mρts } := σ {u/mρts };τ {u/mρts }

(let v ⊜σ in τ ){u/mρts } := let v ⊜σ {u/mρts } in τ {u/mρts }

Notice how, in the clause for v , it is the source s and target t of
rewrite ρ that are substituted, prior to having being cast as trivial

rewrites. Also, moded substitution still needs access to ρ itself (not

just its source and target); it is used in the clause for ⟨σ |pτ ⟩. One
final comment on the above definition is that in the clause for σ ;τ
it is safe to distribute moded substitution over σ and τ .
Finally, moded Substitution of Rewrite Variables over terms is de-

fined as:

5σ {u/mρts } is defined for both m = src and m = tgt, however we only use this

notion of substitution form = tgt.

a{u/mρts } := a

v{u/mρts } :=


s, v = u ∧m = src

t, v = u ∧m = tgt

v, v , u

(λa.r ){u/mρts } := λa.r {u/mρts }
(p q){u/mρts } := p{u/mρts }q{u/mρts }

!(σ ,p,q){u/mρts } := !(σ ′,p{u/srcρts },q{u/tgtρts })
where σ ′ = p{u/ρts };σ {u/tgtρts }

(let v ⊜p inq){u/mρts } := let v ⊜p{u/mρts } inq{u/mρts }
For example, consider !(τ u, s1 u, s2 u) where τ has source s1 and

target s2. Then !(τ u, s1 u, s2 u){u/mρt2t1 } =!(s1 ρ;τ t2, s1 t1, s2 t2), for
m = src or m = tgt.

Some basic, but subtle to prove, properties for substitution are

presented below, after introducing structural equivalence.

Structural Equivalence andWell-Formedness. Asmentioned, a rewrite

may not have a source and target. If it does we say it is well-formed.
For example, if a and b are distinct variables, then a;b is not well-

formed. More generally, for ρ;σ to be well-formed the target of ρ
must coincide with the source of σ (similar requirements apply to

!(ρ, s, t) and ⟨ρ |sσ ⟩). This leads us to consider how terms are to be

compared. Since terms may include rewrites, we need to consider

rewrite comparison too.

One reasonable property is that composition be associative: rewrites

(ρ;σ );τ and ρ; (σ ;τ ) should be considered equivalent. Similarly, ρ; t
should be considered equivalent to ρ, assuming that ρ and t are

composable (in which case t should be equivalent to the target

of ρ, though it may not be identical to it). Another example of

rewrite equivalence is as follows. Let I be the term λb .b and con-

sider the lambda calculus reduction λa.I (Ia) →β λa.Ia →β λa.a,

where the redex being reduced in each step is underlined. It can be

represented via the rewrite λa.I ba(b .b,a); λa.ba(b .b,a). However,
the same reduction sequence could also have been represented

as λa.(I ba(b .b,a); ba(b .b,a)). Such minor, structural variations are

absorbed through structural equivalence.

Definition 1.1 (Source/Target Predicate; Structural Equivalence). The
source/target (ST) predicate • : • ▷ • ⊆ R × T × T is defined

mutually recursively with structural equivalence • ≃ • ⊆ O×O via

the rules in Fig. 1.
6
If ρ : s ▷ t holds then we say that ρ has source

s and target t . There are two structural equivalence judgements:

s ≃ t Structurally equivalent terms
ρ ≃ σ : s ▷ t Structurally equivalent rewrites

If s ≃ t , then we say s and t are structurally equivalent terms. If

ρ ≃ σ : s ▷ t , then we say ρ and σ are structurally equivalent

rewrites with source s and target t . In that case both ρ : s ▷ t and
σ : s ▷ t hold (Lem. 1.4).

The rules defining the ST-predicate • : • ▷ • (whose names are pre-

fixed with ST in Fig. 1) are quite expected. We comment on ST-Bang.
As already mentioned, ⟨ρ |sσ ⟩ is a rewrite denoting reduction under

a term of the form !(ρ, s, r ) and consists of the additional “work”

with which ρ is extended. The additional work is represented by the

rewrite σ whose source must coincide with the target of ρ (modulo

structural equivalence). The source and target of ⟨ρ |sσ ⟩ are !(ρ, s, r )
and !(ρ;σ , s, t).

6
The congruence rules for ≃ have been omitted.
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ST-TVar
a : a ▷ a

ST-RVar
u : u ▷ u

ST-β
ba(a.s, t) : (λa.s) t ▷ s{a/t }

ST-β□
bb(!(ρ, s, t),u .r ) : let u ⊜ !(ρ, s, t) in r ▷ r {u/tgtρts }

ρ : s ▷ t
ST-Abs

λa.ρ : λa.s ▷ λa.t

ρ : s1 ▷ t1 σ : s2 ▷ t2
ST-App

ρ σ : s1 s2 ▷ t1 t2

ρ : s1 ▷ t1 σ : s2 ▷ t2
ST-Let

let u ⊜ ρ inσ : let u ⊜s1 in s2 ▷ let u ⊜ t1 in t2

ρ : r ▷ s σ : s ▷ t
ST-Comp

ρ;σ : r ▷ t

ρ : s ▷ r σ : r ▷ t
ST-Bang

⟨ρ |sσ ⟩ : !(ρ, s, r ) ▷ !(ρ;σ , s, t)

r ≃ r ′ ρ : r ′ ▷ s ′ s ′ ≃ s
ST-SEq

ρ : r ▷ s

EqR-Refl-TVar
a ≃ a : a ▷ a

EqR-Refl-RVar
u ≃ u : u ▷ u

EqR-Refl-β
ba(a.s, t) ≃ ba(a.s, t) : (λa.s) t ▷ s{a/t }

EqR-Refl-β□
bb(!(ρ, s, t),u .r ) ≃ bb(!(ρ, s, t),u .r ) : let u ⊜ !(ρ, s, t) in r ▷ r {u/tgtρts }

ρ : p ▷ q t : q ▷ r
EqR-IdR

ρ; t ≃ ρ : p ▷ r

s : p ▷ q ρ : q ▷ r
EqR-IdL

s; ρ ≃ ρ : p ▷ r

σ : p ▷ q ρ : q ▷ r τ : r ▷ s
EqR-Ass

(σ ; ρ);τ ≃ σ ; (ρ;τ ) : p ▷ s

ρ : p ▷ q σ : q ▷ r
EqR-Abs

λa.ρ; λa.σ ≃ λa.(ρ;σ ) : λa.p ▷ λa.r

ρ1 : p1 ▷ q1 ρ2 : q1 ▷ r1 σ1 : p2 ▷ q2 σ2 : q2 ▷ r2
EqR-App

(ρ1 σ1); (ρ2 σ2) ≃ (ρ1; ρ2) (σ1;σ2) : p1 p2 ▷ r1 r2

ρ1 : p1 ▷ q1 ρ2 : q1 ▷ r1 σ1 : p2 ▷ q2 σ2 : q2 ▷ r2
EqR-Let

let u ⊜ ρ1 inσ1; let u ⊜ ρ2 inσ2 ≃ let u ⊜ ρ1; ρ2 inσ1;σ2 : let u ⊜p1 inp2 ▷ let u ⊜r1 in r2

ρ : p ▷ q σ : q ▷ r τ : r ▷ s
EqR-BangR

⟨ρ |pσ ⟩; ⟨ρ;σ |pτ ⟩ ≃ ⟨ρ |pσ ;τ ⟩ : !(ρ,p,q) ▷ !(ρ;σ ;τ ,p, s)

s ≃ s ′ ρ ≃ σ : s ′ ▷ t ′ t ′ ≃ t
EqR-SEq

ρ ≃ σ : s ▷ t

EqT-TVar
a ≃ a

EqT-RVar
u ≃ u

s ≃ t
EqT-Abs

λa.s ≃ λa.t

s ≃ p t ≃ q
EqT-App

s t ≃ p q

s ≃ p t ≃ q ρ ≃ σ : s ▷ t
EqT-Bang

!(ρ, s, t) ≃!(σ ,p,q)

s ≃ p t ≃ q
EqT-Let

let u ⊜s in t ≃ let u ⊜p inq

Figure 1: Source/Target Predicate and Structural Equivalence of Rewrites and Terms

The rules defining structural equivalence of terms (those whose

names are prefixed with EqT in Fig. 1) are as expected. The rules

defining structural equivalence of rewrites (those whose names are

prefixed with EqR in Fig. 1) are similar to the ones one has in first-

order term rewriting (cf.Def. 8.3.1. in [30]) except for two important

differences. The first is the need to rely on structural equivalence on

terms to define structural equivalence on rewrites, given that terms

and rewrites are mutually dependent. The other is the presence of

the novel rewrite as term !(ρ, s, t), rewrites on such terms ⟨ρ |pσ ⟩
and their associated equation ⟨ρ |pσ ⟩; ⟨ρ;σ |pτ ⟩ ≃ ⟨ρ |pσ ;τ ⟩. The
latter states how two rewrites under a bang may be composed.

Given !(ρ,p,q), a rewrite σ extending ρ must be composable with

ρ and produces !(ρ;σ ,p, r ) as target. A further rewrite extending

ρ;σ , say τ , will produce term !((ρ;σ );τ ,p, s) as target.
We next mention some lemmata on structural equivalence. The

first one is that the source and target are unique modulo structural

equivalence. It is straightforward to prove.

Lemma 1.2 (Uniqeness of Source and Target). If ρ : s ▷ t and
ρ : p ▷ q, then s ≃ p and t ≃ q.

The lemma below states that a trivial rewrite is a step over itself:

Lemma 1.3. s : p ▷ q implies p ≃ q ≃ s .

The next result states that the rewrites related by structural equiva-

lence have the same source and target. Its proof relies on Lem. 1.3:

Lemma 1.4. ρ ≃ σ : s ▷ t implies ρ : s ▷ t and σ : s ▷ t .
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The term-as-a-trivial-rewrite operation • is compatible with struc-

tural equivalence:

Lemma 1.5. s ≃ t implies s ≃ t : s ▷ s .

Finally, substitution is compatible with structural equivalence too.

For substitution of term variables this is proved by induction on

s ≃ t :

Lemma 1.6 (Structural Eqivalence is closed under substi-

tution of term variables). Suppose s ≃ t and p ≃ q. Then
s{a/p} ≃ t {a/q}.

For substitution of rewrite variables, the result is broken down into

four items all of which are proved by simultaneous induction:

Lemma 1.7 (Structural Eqivalence is closed under substitu-

tion of rewrite variables). Suppose τ ≃ υ : p ▷ q. Then
(a) ρ ≃ σ : s ▷ t implies ρ{u/mτqp } ≃ σ {u/mυqp } : s{u/mτqp } ▷

t {u/mτqp }.
(b) s ≃ t implies s{u/mτqp } ≃ t {u/mυqp }.
(c) s ≃ t implies s{u/τqp } ≃ t{u/υ

q
p } : s{u/srcτ

q
p } ▷ s{u/tgtτ

q
p }

(d) s ≃ t implies s{u/mτqp } ≃ t{u/mυ
q
p } : s{u/mτ

q
p } ▷ s{u/mτ

q
p }

Having introduced the ST-predicate and structural equivalence we

can now precisely state when terms and rewrites are well-formed.

Definition 1.8 (Well-formed Terms and Rewrites).
(a) s ∈ T is well-formed if for all subexpressions of s of the form

!(ρ,p,q), (ρ,p,q) is well-formed.

(b) (ρ, s, t) ∈ R×T×T is well-formed iff ρ : s ▷ t and s and t are
well-formed.

ρ ∈ R is well-formed if there exist s and t such that (ρ, s, t) is
well-formed.

For example, a;b is not well-formed, however ba(a.a,b) and a;a
are. The triple (ba(a.!(b; c,a,a),b), (λa.!(b; c,a,a))b, !(b; c,a,a)) is
notwell-formed. Indeed, even thoughwe do have ba(a.!(b; c,a,a),b) :
(λa.!(b; c,a,a))b ▷ !(b; c,a,a) the source term (λa.!(b; c,a,a))b is

not well-formed (since b; c : a ▷ a does not hold).

Well-formedness is preserved by structural equivalence, a fact that

relies on Lem. 1.4

Lemma 1.9 (Structural Eqivalence Preserves Well-Formed-

ness). If s is well-formed and s ≃ t , then t is well-formed. Similarly, if
(ρ, s, t) is well-formed and ρ ≃ σ : s ▷ t , then (σ , s, t) is well-formed.

We conclude the section with two important results on commuta-

tion of substitutions. We assume for these results that our objects

are well-formed
7
. The first one concerns commutation of term and

rewrite substitutions.

Lemma 1.10 (Commutation of Rewrite Substitutionwith Term

Substitution). Suppose a < ftv(ρ, s, t).
p{u/mρts }{a/q{u/mρts }} = p{a/q}{u/mρts }

where all three occurrences of m are either all src or all tgt.

The second is about commutation of rewrite substitutions and re-

quires some care. First note that when •{u/mρts } commutes “over”

•{v/mµqp } in the expression o{v/mµqp }{u/mρts }, a copy of ρ has

7
Lem. 1.10 in fact holds without this assumption, but Lem. 1.11 relies on it.

to be prefixed in front of µ leading to p{u/ρts }; µ{u/tgtρts } (as wit-
nessed in item (a) of Lem. 1.11 below). We comment on item (b)

of Lem. 1.11, below, after having analyzed a sample proof case for

item (a) which motivates the need for it.

Lemma 1.11 (Commutation of Rewrite Substitution). Let o be
any object ( i.e. term or rewrite) and suppose v < frv(ρ, s, t).

(a) Suppose all occurrences of m below are either all src or all tgt.
Then,

o{v/mµqp }{u/mρts }
≃ o{u/mρts }{v/mp{u/ρts }; µ{u/tgtρts }

q {u/tgtρts }
p {u/srcρts }

}

(b) If o ∈ R1, then

o{v/srcµqp }{u/ρts };
o{v/µqp }{u/tgtρts }

≃ o{u/srcρts }{v/p{u/ρts }; µ{u/tgtρts }
q {u/tgtρts }
p {u/srcρts }

};

o{u/ρts }{v/tgtp{u/ρts }; µ{u/tgtρts }
q {u/tgtρts }
p {u/srcρts }

}

Item (b) is motivated by analyzing the following proof case for

item (a). Suppose o =!(σ , r1, r2) and let us introduce the following

abbreviations:

αm := •{v/mp{u/ρts }; µ{u/tgtρts }
q {u/tgtρts }
p {u/srcρts }

}

α := •{v/p{u/ρts }; µ{u/tgtρts }
q {u/tgtρts }
p {u/srcρts }

}

We seek to prove:

!(σ , r1, r2){v/mµqp }{u/mρts } ≃!(σ , r1, r2){u/mρts }αm

We reason as in Fig. 2 where (⋆) is the property that the function that

casts a term as a trivial rewrite commutes with rewrite substitution

(p{u/mρts } = p{u/mρts }). The topmost box signals exactly where we

apply item (b) above. Consider the case where r1 = v . If one just con-
siders the left argument of the composition inside the box, namely

r1{v/srcµqp }{u/ρts }, then the resulting term would be p{u/ρts }. If we
now take the left argument of the composition in the second box,

namely r1{u/srcρts }α , then we have p{u/ρts }; µ{u/tgtρts }. Clearly
these rewrites are not equivalent. However, when the entire com-

posed rewrites inside the boxes are considered, then we do obtain

structurally equivalent rewrites.

2 TYPES
This section presents the type system for TRC. As mentioned in

the introduction, types will include the modal type ⟦s⟧A where s
is a so called source-expression.

Types and Typing Judgements. Propositions (P) are defined by the

following grammar:

A,B ::= P |A ⊃ B | ⟦s⟧A
where P ranges over some set of propositional variables and s is
a source-term. Source-terms (s-terms) are terms where all refer-

ences to rewrites are omitted; they are written in boldface:

s, t ::= a |u | λa.s | s t | !s | let u⊜s in t

The s-term underlying a term can be obtained from the following

translation that drops all references to rewrites:
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= !(σ , r1, r2){v/mµqp }{u/mρts }
= !(r

1
{v/µqp };σ {v/tgtµ

q
p }, r1{v/srcµ

q
p }, r2{v/tgtµ

q
p }){u/mρts }

= !(r1{v/srcµqp }{u/ρts }; (r1{v/µ
q
p };σ {v/tgtµ

q
p }){u/tgtρts },q{v/srcµ

q
p }{u/srcρts }, r2{v/tgtµ

q
p }{u/tgtρts })

= !(r1{v/srcµqp }{u/ρts }; (r1{v/µ
q
p }{u/tgtρts };σ {v/tgtµ

q
p }{u/tgtρts }), r1{v/srcµ

q
p }{u/srcρts }, r2{v/tgtµ

q
p }{u/tgtρts }) (⋆)

≃ !( (r1{v/srcµqp }{u/ρts }; r1{v/µ
q
p }{u/tgtρts }) ;σ {v/tgtµ

q
p }{u/tgtρts }, r1{v/srcµ

q
p }{u/srcρts }, r2{v/tgtµ

q
p }{u/tgtρts })

≃ !( (r1{u/srcρts }α ; r1{u/ρts }α tgt) ;σ {v/tgtµ
q
p }{u/tgtρts }, r1{v/srcµ

q
p }{u/srcρts }, r2{v/tgtµ

q
p }{u/tgtρts }) (item (b)

≃ !((r1{u/srcρts }α ; r1{u/ρts }α tgt);σ {u/tgtρts }α tgt, r1{u/srcρts }α src, r2{u/tgtρts }α tgt) (item (a))

= !(r1{u/srcρts }α ; (r1{u/ρts }α tgt;σ {u/tgtρts }α tgt), r1{u/srcρts }α src, r2{u/tgtρts }α tgt)
= !(r1{u/srcρts }α ; (r1{u/ρts };σ {u/tgtρts })α tgt, r1{u/srcρts }α src, r2{u/tgtρts }α tgt)
= !(r1{u/srcρts }α ; (r1{u/ρts };σ {u/tgtρts })α tgt, r1{u/srcρts }α src, r2{u/tgtρts }α tgt) (⋆)

= !(r1{u/ρts };σ {u/tgtρts }, r1{u/srcρts }, r2{u/tgtρts })αm
= !(σ , r1, r2){u/mρts }αm

Figure 2: Commutation of substitution of rewrite variables - Sample proof case

a := a
u := u

λa.s := λa.s
s t := s t

!(ρ, s, t) := !s
let u ⊜s in t := let u = s in t

Substitution over s-terms is defined as follows:

a{u/p} := a

v{u/p} :=

{
p, u = v

v, u , v

(λa.s){u/p} := λa.s{u/p}
(s t){u/p} := s{u/p} t {u/p}
(!s){u/p} := !s{u/p}

(let u⊜s in t){u/p} := let u = s{u/p} in t {u/p}
Substitution of s-terms in types is defined as follows:

P {u/s} := P
(A ⊃ B){u/s} := A{u/s} ⊃ B{u/s}
(⟦p⟧A){u/s} := ⟦p{u/s}⟧A{u/s}

We write ∆ for a set of rewrite hypotheses and Γ for a set of term

hypotheses. If ∆ = {u1 : A1, . . . ,un : An }, then we write dom(∆)
for the set {u1, . . . ,un }, frv(∆) for

⋃
i ∈1..n frv(Ai ), and similarly

for ftv(∆). There are two typing judgements:

∆; Γ ⊢ s : A Term typing judgement
∆; Γ ⊢ ρ : s ▷ t : A Rewrite typing judgement

A term typing judgement ∆; Γ ⊢ s : A is well-formed if, (1)

dom(∆) ∩ frv(∆, Γ) = ∅ and (2) dom(Γ) ∩ ftv(∆, Γ) = ∅. Similarly

for the rewrite typing judgement. These conditions state that the

labels of the hypothesis are fresh.

Type System. The type system for TRC is given by the rules of Fig. 3.

A judgement ∆; Γ ⊢ s : A is derivable, indicated with ⊩ ∆; Γ ⊢ s : A,
if it is provable using these rules. Moreover, we write ⊩π ∆; Γ ⊢ s : A
if it is derivable with derivation π . This notation applies to rewrite

typing judgements too.

We next comment on the salient typing rules. The Bang rule was
motivated in the introduction. Note that the type of !(ρ, s, t) is ⟦s⟧A.
The rule R-Bang types the rewrite that denotes reduction inside a

term of the form !(ρ, s, r ). Reduction under such a term corresponds

to extending ρ with some additional work σ . The source of ⟨ρ |sσ ⟩
is !(ρ, s, r ) and the target is !(ρ;σ , s, t).

Example 2.1. For any source term p, we can give a derivation of the

proposition:

⟦p⟧A ⊃ ⟦!p⟧⟦p⟧A
It is presented in Fig. 4 where we omit some of the rule names to

save space. Also, ∆ := {u : A} and Γ := {a : ⟦p⟧A}.
Other theorems of TRC are:

• ⟦s⟧(A ⊃ B) ⊃ ⟦p⟧A ⊃ ⟦s p⟧B
• ⟦s⟧A ⊃ A

These may be seen as annotated versions of the S4 theorems:

• □(A ⊃ B) ⊃ □A ⊃ □B
• □A ⊃ A

Remark 1. If we drop all annotations in the modality in theorems
of TRC, then we obtain theorems of (minimal) S4. This follows from
observing that applying this same forgetful function on the typing
rules, yields the system for S4 presented in [14]. Similarly, if we drop
all references to rewrites we can prove all theorems of LP. This stems
from observing that by performing this transformation on the typing
rules, yields the Hypothetical Logic of Proofs [10].

Basic Metatheory of TRC. This section presents some basic meta-

theoretic results on TRC. First note that ⊩ ∆; Γ ⊢ ρ : s ▷ t : A im-

plies ρ : s ▷ t (i.e. the triple (ρ, s, t) satisfies the ST-predicate). In
fact, ⊩ ∆; Γ ⊢ ρ : s ▷ t : A implies (ρ, s, t), s and t are well-formed

(cf. Def. 1.8) and, similarly, ⊩ ∆; Γ ⊢ s : A implies s is well-formed.

Typable terms can be recast as typable trivial rewrites.

Lemma 2.2 (Term as Trivial Rewrite). If ⊩π ∆; Γ ⊢ s : A, then
also ⊩ ∆; Γ ⊢ s : s ▷ s : A.

The proof is by induction on π . We consider here two of the interest-

ing cases. The first one is when ∆; Γ ⊢ s : A is ∆; Γ ⊢ !(ρ, s, t) : ⟦s⟧B
and π ends in

∆; ∅ ⊢ s, t : B ∆; ∅ ⊢ ρ : s ▷ t : B
Bang

∆; Γ ⊢ !(ρ, s, t) : ⟦s⟧B
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a : A ∈ Γ
TVar

∆; Γ ⊢ a : A

∆; Γ,a : A ⊢ s : B
Abs

∆; Γ ⊢ λa.s : A ⊃ B

∆; Γ ⊢ s : A ⊃ B ∆; Γ ⊢ t : A
App

∆; Γ ⊢ s t : B

u : A ∈ ∆
RVar

∆; Γ ⊢ u : A

∆; ∅ ⊢ r , s : A ∆; ∅ ⊢ ρ : r ▷ s : A
Bang

∆; Γ ⊢ !(ρ, r , s) : ⟦r⟧A
∆; Γ ⊢ s : ⟦p⟧A ∆,u : A; Γ ⊢ t : C

Let
∆; Γ ⊢ let u ⊜s in t : C{u/p}

a : A ∈ Γ
R-Refl-TVar

∆; Γ ⊢ a : a ▷ a : A

u : A ∈ ∆
R-Refl-RVar

∆; Γ ⊢ u : u ▷ u : A

∆; ∅ ⊢ s, r , t : A ∆; ∅ ⊢ ρ : s ▷ r : A ∆; ∅ ⊢ σ : r ▷ t : A
R-Bang

∆; Γ ⊢ ⟨ρ |sσ ⟩ : !(ρ, s, r ) ▷ !(ρ;σ , s, t) : ⟦s⟧A
∆; Γ ⊢ ρ : r ▷ s : A ∆; Γ ⊢ σ : s ▷ t : A

R-Trans
∆; Γ ⊢ ρ;σ : r ▷ t : A

∆; Γ,a : A ⊢ s : B ∆; Γ ⊢ t : A
R-β

∆; Γ ⊢ ba(a.s, t) : (λa.s) t ▷ s{a/t } : B

∆; ∅ ⊢ ρ : s ▷ t : A ∆,u : A; Γ ⊢ r : C
R-β□

∆; Γ ⊢ bb(!(ρ, s, t),u .r ) : let u ⊜ !(ρ, s, t) in r ▷ r {u/tgtρts } : C{u/s}

∆; Γ,a : A ⊢ ρ : s ▷ t : B
R-Abs

∆; Γ ⊢ λa.ρ : λa.s ▷ λa.t : A ⊃ B

∆; Γ ⊢ ρ : s1 ▷ t1 : A ⊃ B ∆; Γ ⊢ σ : s2 ▷ t2 : A
R-App

∆; Γ ⊢ ρ σ : s1 s2 ▷ t1 t2 : B

∆; Γ ⊢ ρ : s1 ▷ t1 : ⟦p⟧A ∆,u : A; Γ ⊢ σ : s2 ▷ t2 : C
R-Let

∆; Γ ⊢ let u ⊜ ρ inσ : let u ⊜s1 in s2 ▷ let u ⊜ t1 in t2 : C{u/p}

∆; Γ ⊢ s : A s ≃ t
SEq-T

∆; Γ ⊢ t : A

∆; Γ ⊢ ρ : s ▷ t : A ρ ≃ σ : s ▷ t s ≃ p t ≃ q
SEq-R

∆; Γ ⊢ σ : p ▷ q : A

Figure 3: Typing Rules

∅; Γ ⊢ a : ⟦p⟧A

∆; ∅ ⊢ u : u ▷ u : A

∆; ∅ ⊢ !(u, u , u) : ⟦u⟧A
∆; ∅ ⊢ u; u : u ▷ u : A

∆; ∅ ⊢ !(u; u, u , u) : ⟦u⟧A
∆; ∅ ⊢ u : A ∆; ∅ ⊢ u : u ▷ u : A

R-Bang
∆; ∅ ⊢ ⟨u |uu⟩ : !(u, u , u) ▷ !(u; u, u , u) : ⟦u⟧A

Bang
∆; Γ ⊢ !(⟨u |uu⟩, !(u, u , u), !(u; u, u , u)) : ⟦!u⟧⟦u⟧A

Let
∅; Γ ⊢ let u ⊜a in !(⟨u |uu⟩, !(u, u , u), !(u; u, u , u)) : (⟦!u⟧⟦u⟧A){u/p }

Abs
∅; ∅ ⊢ λa .let u ⊜a in !(⟨u |uu⟩, !(u, u , u), !(u; u, u , u)) : ⟦p⟧A ⊃ ⟦!p⟧⟦p⟧A

Figure 4: Sample Type Derivation

Given ⊩ ∆; ∅ ⊢ t : B, we may apply the IH
8
to obtain a derivation

of ∆; ∅ ⊢ t : t ▷ t : B. Then we deduce

∆; ∅ ⊢ s, t : B ∆; ∅ ⊢ ρ : s ▷ t : B ∆; ∅ ⊢ t : t ▷ t : B
R-Bang

∆; Γ ⊢ ⟨ρ |s t⟩ : !(ρ, s, t) ▷ !(ρ; t, s, t) : ⟦s⟧B
We conclude that the judgement

∆; Γ ⊢ ⟨ρ |s t⟩ : !(ρ, s, t) ▷ !(ρ, s, t) : ⟦s⟧B
is derivable from SEq-R. The other interesting case is when the

derivation of ∆; Γ ⊢ s : A ends in

∆; Γ ⊢ t : A t ≃ s
SEq-T

∆; Γ ⊢ s : A

8
This shows why we have included the judgement ∆; ∅ ⊢ s , t : B in the hypothesis of

Bang: it allows for structural induction on the derivation of a term.

In this case we resort to the IH, Lem. 1.5 and rule SEq-R.
Next we present two substitution lemmas. The first is straightfor-

ward to prove (it uses Lem. 1.6). The second (Lem. 2.4) however, is

subtle and has guided the notion of substitution on rewrites that

we presented in Sec. 1.

Lemma 2.3 (Term Substitution). Suppose ⊩ ∆; Γ,a : A ⊢ s : B and
⊩ ∆; Γ ⊢ t : A. Then ⊩ ∆; Γ ⊢ s{a/t } : B.
The second substitution lemma (Lem. 2.4) starts by assuming that

⊩ ∆; ∅ ⊢ ρ : s ▷ t : A, ⊩ ∆; ∅ ⊢ s : A and ⊩ ∆; ∅ ⊢ t : A. Note that ty-
pability of s and t from typability of ρ (upcoming Lem. 2.5) is proved

with the help of Lem. 2.4 itself, so we have to assume typability of

all three objects at this point. We use S below to denote either a

term or a rewrite subject.
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Lemma 2.4 (Rewrite Substitution). Suppose ⊩ ∆; ∅ ⊢ ρ : s ▷ t : A,
⊩ ∆; ∅ ⊢ s : A and ⊩ ∆; ∅ ⊢ t : A. Suppose, moreover, also that ⊩
∆,u : A; Γ ⊢ S : B.

(a) S = σ : p ▷ q implies

⊩ ∆; Γ ⊢ σ {u/tgtρts } : p{u/tgtρts } ▷ q{u/tgtρts } : B{u/s}.
(b) S = σ : p ▷ q implies

⊩ ∆,u : A; Γ ⊢ p : B and ⊩ ∆,u : A; Γ ⊢ q : B.

(c) S = p implies

⊩ ∆; Γ ⊢ p{u/mρts } : B{u/s}.
(d) S = p implies

⊩ ∆; Γ ⊢ p{u/ρts } : p{u/srcρts } ▷ p{u/tgtρts } : B{u/s}.
(e) S = p implies

⊩ ∆; Γ ⊢ p{u/mρts } : p{u/mρts } ▷ p{u/mρts } : B{u/s}.

The proof is by simultaneous induction on ⊩ ∆,u : A; Γ ⊢ S : B.
We conclude this section with a result that states that the source and

target of a typable rewrite are typable. The proof is by induction

on the derivation of ∆; Γ ⊢ ρ : s ▷ t : A and relies on the Term

Substitution Lemma (Lem. 2.3(c)), Term as a Trivial Rewrite Lemma

(Lem. 2.2), and the Rewrite Substitution Lemma (Lem. 2.4).

Lemma 2.5. ⊩ ∆; Γ ⊢ ρ : s ▷ t : A implies ⊩ ∆; Γ ⊢ s : A and also ⊩
∆; Γ ⊢ t : A.

One of the key cases in the proof is when the derivation of the

typing judgement ∆; Γ ⊢ ρ : s ▷ t : A ends in an instance of the rule

R-β□:
∆; ∅ ⊢ ρ1 : p ▷ q : A ∆, u : A; Γ ⊢ r : C

∆; Γ ⊢ bb(!(ρ1, p, q), u .r ) : let u ⊜ !(ρ1, p, q) in r ▷ r {u/tgtρ1qp } : C {u/p }

By the IH on ∆; ∅ ⊢ ρ1 : p ▷ q : A, we deduce ∆; ∅ ⊢ p : A and

∆; ∅ ⊢ q : A. This allows us to use the Rewrite Substitution Lemma

(Lem. 2.4) for typing r {u/tgtρ1qp }. For typing let u ⊜ !(ρ1,p,q) in r
we use Bang, then Let.

3 REWRITE EXTENSION
In the Typed Rewrite Calculus rather than reduction on terms we

have extension of rewrites. Extension is similar to reduction in the

lambda calculus but it applies to rewrites, it is defined modulo
structural equivalence, and it leaves a trail. A rewrite σ extends a

rewrite ρ if σ results from appending a rewrite step to ρ, modulo

structural equivalence. For example, given the rewrite I (Ia) : I (Ia) ▷
I (Ia) one has the following extension sequence of rewrites to normal

form:

I (Ia) : I (Ia) ▷ I (Ia)
↣ I (ba(b .b,a)) : I (Ia) ▷ Ia
↣ I (ba(b .b,a)); ba(b .b,a) : I (Ia) ▷ a

(2)

The rewrite I (ba(b .b,a)); ba(b .b,a) is in normal form since it cannot

be extended further. This section proves two results on rewrite

extension, namely that is preserves typability (cf. Prop. 3.7) and
that it is strongly normalizing (cf. Cor. 3.12). Confluence fails to
hold for trivial reasons (as explained below).

Rewrite and Term Extension. We now define rewrite extension for-

mally. Since terms may contain rewrites, we introduce two exten-

sion judgements:

r ↣ s Term extension
ρ : r ▷ s ↣ σ : p ▷ q Rewrite extension

Term r extends to s , written r ↣ s , iff:

∃r ′, s ′ s.t. r ≃ r ′ 7→ s ′ ≃ s

Rewrite ρ extends to σ , written ρ : r ▷ s ↣ σ : r ▷ q, iff:

∃ρ ′,σ ′
s.t. ρ ≃ ρ ′ : r ▷ s and ρ ′ : r ▷ s 7→ σ ′

: r ▷ q and

σ ′ ≃ σ : r ▷ q

The judgements for one-step extension r 7→ s and ρ : r ▷ s 7→

σ : r ▷ q are defined by the rules of Fig. 5. The rules above the

horizontal line apply to terms and the rules below it to rewrites.

These rules are mostly self-explanatory. For example, E-β , states
that if the “current” rewrite is of the form ρ : s ▷ (λa.t1) t2, then
it can be extended by adding a witness to a β-rewrite step that is

sourced at its target, namely ρ; ba(a.t1, t2) : s ▷ t1{a/t2}. Perhaps
worth mentioning is that in the congruence rule for ⟨ρ |rσ ⟩, namely

E-BangR, it is σ that may be extended, but not ρ.
We will only be interested in extension on well-formed terms and

well-formed rewrites. Term and rewrite extension preserves well-

formedness (cf. Def. 1.8):

Lemma 3.1 (Extension preserves well-formedness). s ↣ t and s
well-formed implies t well-formed. Similarly, ρ : s ▷ t ↣ ρ ′ : s ▷ t ′

and (ρ, s, t) well-formed implies (ρ ′, s, t ′) well-formed.

We next set up some auxiliary notions and results required for

proving that extension of rewrites does preserve types. We begin

with the definition of a step rewrite, a rewrite that corresponds
to one reduction step. In other words, a rewrite that models the

contraction of exactly one redex.

Definition 3.2 (Step Rewrite). Step rewrites are defined by the fol-

lowing grammar:

ξ ::= ba(a.s, r ) | bb(s,u .r ) | λa.ξ | ξ s | s ξ
| let u ⊜ ξ in s | let u ⊜s in ξ | ⟨ρ |s ξ ⟩

The next result formalizes what is intuitively clear from the def-

inition of extension, namely that extending a rewrite consists in

suffixing a step:

Lemma 3.3 (Extension adds a step). ρ : s ▷ t ↣ ρ ′ : s ▷ t ′ im-
plies there exists ξ s.t. ρ ′ ≃ ρ; ξ : s ▷ t ′. Moreover, (ρ, s, t)well-formed
implies (ξ , t, t ′) well-formed.

In our upcoming proof of Extension Reduction (Prop. 3.7) we need

to extract the suffixed step from the extension of a rewrite, and

analyze its form. These steps will be broken down into a step context

and redex.

Definition 3.4 (Step Contexts). Step contexts are defined by the fol-

lowing grammar:

C ::= □ | C s | sC | λa.C | let u ⊜C in s | let u ⊜s inC | ⟨ρ |sC⟩

There are three notions of filling the hole of a step context. Sim-

ple replacement of a rewrite ρ for the hole is written C⟨ρ⟩. Such a

replacement produces a rewrite. Then we have source filling and tar-
get filling. The former is denoted C[p]src and the latter C[ρ,p,q]tgt.
These notions of filling produce terms. They are used in conjunction

to denote the source and target of the rewrite C⟨ρ⟩ (cf. Lem. 3.5).

Both are defined below:
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s 7→ s ′

E-AbsT
λa.s 7→ λa.s ′

s 7→ s ′

E-AppTL
s t 7→ s ′ t

t 7→ t ′

E-AppTR
s t 7→ s t ′

ρ : s ▷ t 7→ ρ ′ : s ▷ t ′

E-BangT
!(ρ, s, t) 7→ !(ρ ′, s, t ′)

s 7→ s ′

E-LetTL
let u ⊜s in t 7→ let u ⊜s ′ in t

t 7→ t ′

E-LetTR
let u ⊜s in t 7→ let u ⊜s in t ′

E-β
ρ : s ▷ (λa.t1) t2 7→ ρ; ba(a.t1, t2) : s ▷ t1{a/t2}

E-β□
ρ : s ▷ let u ⊜ !(σ ,p,q) in t 7→ ρ; bb(!(σ ,p,q),u .t) : s ▷ t {u/tgtσqp }

ρ : s ▷ t 7→ ρ : s ▷ t ′

E-AbsR
λa.ρ : λa.s ▷ λa.t 7→ λa.ρ ′ : λa.s ▷ λa.t ′

σ : s ▷ t 7→ σ ′
: s ▷ t ′

E-BangR
⟨ρ |rσ ⟩ : !(ρ, r , s) ▷ !(ρ;σ , r , t) 7→ ⟨ρ |rσ

′⟩ : !(ρ, r , s) ▷ !(ρ;σ ′, r , t ′)

σ : s ▷ t 7→ σ ′
: s ▷ t ′

E-Trans
ρ;σ : r ▷ t 7→ ρ;σ ′

: r ▷ t ′

ρ : s ▷ t 7→ ρ ′ : s ▷ t ′

E-AppRL
ρ σ : s p ▷ t q 7→ ρ ′ σ : s p ▷ t ′ q

σ : s ▷ t 7→ σ ′
: s ▷ t ′

E-AppRR
ρ σ : p s ▷ q t 7→ ρ σ ′

: p s ▷ q t ′

ρ : s ▷ t 7→ ρ ′ : s ▷ t ′

E-LetRL
let u ⊜ ρ inσ : let u ⊜s inp ▷ let u ⊜ t inq 7→ let u ⊜ ρ ′ inσ : let u ⊜s inp ▷ let u ⊜ t ′ inq

σ : s ▷ t 7→ σ ′
: s ▷ t ′

E-LetRR
let u ⊜ ρ inσ : let u ⊜p in s ▷ let u ⊜q in t 7→ let u ⊜ ρ inσ ′

: let u ⊜p in s ▷ let u ⊜q in t ′

Figure 5: Rewrite Extension

□[t]src ::= t
(C s)[t]src ::= C[t]src s
(sC)[t]src ::= s C[t]src

(λa.C)[t]src ::= λa.C[t]src

(let u⊜C in s)[t]src ::= let u ⊜C[t]src in s
(let u⊜s inC)[t]src ::= let u ⊜s inC[t]src

⟨ρ |sC⟩[t]src ::= !(ρ, s,C[t]src)

□[ρ,p,q]tgt ::= q
(C s)[ρ,p,q]tgt ::= C[ρ,p,q]tgt s
(sC)[ρ,p,q]tgt ::= s C[ρ,p,q]tgt

(λa.C)[ρ,p,q]tgt ::= λa.C[ρ,p,q]tgt

(let u⊜C in s)[ρ,p,q]tgt ::= let u ⊜C[ρ,p,q]tgt in s
(let u⊜s inC)[ρ,p,q]tgt ::= let u ⊜s inC[ρ,p,q]tgt

⟨σ |sC⟩[ρ,p,q]tgt ::= !(σ ;C⟨ρ⟩, s,C[ρ,p,q]tgt)

The interesting clause in the filling operations above is when the

step context is ⟨σ |sC⟩. In particular, in the case of target filling,

note how, in addition to actually inserting the target term q (as

may be seen from the case for □), it suffixes a copy of the argument

step itself: σ ;C⟨ρ⟩. For example, if C = ⟨σ |s□⟩, then the source of

C⟨ba(a.p,q)⟩ will be C[(λa.p)q]src =!(σ , s, (λa.p)q) and its target

C[ba(a.p,q), (λa.p)q,p{a/q}]tgt =!(σ ; ba(a.p,q), s,p{a/q}).

Lemma 3.5 (Form of a Step). Let ξ be a well-formed step rewrite.
Then one of the two following hold.
(a) ξ = C⟨ba(a.s, t)⟩ and

C⟨ba(a.s, t)⟩ : C[(λa.s) t]src ▷ C[ba(a.s, t), (λa.s) t, s{a/t }]tgt

(b) ξ = C⟨bb(!(ρ,p,q),u .r )⟩ and

C⟨bb(!(ρ,p,q),u .r )⟩ : C[let u ⊜ !(ρ,p,q) in r ]src ▷
C[bb(!(ρ,p,q),u .r ), let u ⊜ !(ρ,p,q) in r , r {u/tgtρqp }]tgt

The proof is by induction on ξ . The only interesting case is when

ξ = ⟨σ |mξ ′⟩. Since ξ is well-formed we know σ : m ▷ n and

ξ ′ : n ▷ o for somem,n,o. By the IH on ξ ′ either case (a) or (b)
holds. Assume it is (a) (the case for (b) is similar and hence omitted)

then ξ ′ = C′⟨ba(a.s, t)⟩, for some C′,a, s, t and

ξ ′ : C′[(λa.s) t]src ▷ C′[ba(a.s, t), (λa.s) t, s{a/t }]tgt

Since also ξ ′ : n ▷ o, by Lem. 1.2, n ≃ C′[(λa.s) t]src and o ≃

C′[ba(a.s, t), (λa.s) t, s{a/t }]tgt. Then σ : m ▷ C′[(λa.s) t]src. But
then

⟨σ |mC′⟨ba(a.s, t)⟩⟩ : p ▷ q

where

p :=!(σ ,m, C′[(λa .s) t ]src)
q :=!(σ ;C′ ⟨ba(a .s , t )⟩,m, C′[ba(a .s , t ), (λa .s) t , s {a/t }]tgt)

Which concludes the case.

Finally, for our Subject Extension result, it will not suffice to break

down a step rewrite into its components, as described above, but

also to ensure typability. Typability of the source of a step suffices

to type the step itself; this may be proved by induction on the

derivation of the step ξ : s ▷ t .
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Lemma 3.6 (Step Typability). ξ : s ▷ t and ⊩ ∆; Γ ⊢ s : A implies
⊩ ∆; Γ ⊢ ξ : s ▷ t : A.

We are now in condition to prove the main result of this section,

namely that extension preserves types for both terms and rewrites.

Proposition 3.7 (Subject Extension).

(a) ⊩π ∆; Γ ⊢ s : A and s ↣ s ′ implies ⊩ ∆; Γ ⊢ s ′ : A.
(b) ⊩π ∆; Γ ⊢ ρ : s ▷ t : A and ρ : s ▷ t ↣ ρ ′ : s ▷ t ′ implies ⊩

∆; Γ ⊢ ρ ′ : s ▷ t ′ : A.

We first prove (by induction on π ) that

(a) ⊩π ∆; Γ ⊢ s : A and s 7→ s ′ implies ⊩ ∆; Γ ⊢ s ′ : A.
(b) ⊩π ∆; Γ ⊢ ρ : s ▷ t : A and ρ : s ▷ t 7→ ρ ′ : s ▷ t ′ implies ⊩

∆; Γ ⊢ ρ ′ : s ▷ t ′ : A.

Then we conclude from the fact that ⊩ ∆; Γ ⊢ s : A and s ≃ s ′

implies ⊩ ∆; Γ ⊢ s ′ : A via SEq-T. Similarly, ⊩ ∆; Γ ⊢ ρ : s ▷ t : A
and ρ ≃ ρ ′ : s ▷ t implies ⊩ ∆; Γ ⊢ ρ ′ : s ▷ t : A via SEq-R. We

focus on three interesting cases:

• The derivation ends in:

∆; ∅ ⊢ r , s : A ∆; ∅ ⊢ ρ1 : r ▷ s : A
Bang

∆; Γ ⊢ !(ρ1, r , s) : ⟦r⟧A
Then ρ1 : r ▷ s 7→ ρ ′

1
: r ▷ s ′. By the IH we have

∆; ∅ ⊢ ρ ′
1
: r ▷ s ′ : A (3)

By Lem. 2.5 on (3) ∆; ∅ ⊢ s ′ : A. Thus we can use Bang to deduce
∆; Γ ⊢ !(ρ ′

1
, r , s ′) : ⟦r⟧A.

• The derivation ends in:

∆; ∅ ⊢ s, r , t : A ∆; ∅ ⊢ ρ1 : s ▷ r : A ∆; ∅ ⊢ ρ2 : r ▷ p : A
R-Bang

∆; Γ ⊢ ⟨ρ1 |sρ2⟩ : !(ρ1, s, r ) ▷ !(ρ1; ρ2, s,p) : ⟦s⟧A
Then ρ ′ = ⟨ρ1 |sρ

′
2
⟩ and ⟨ρ1 |sρ2⟩ 7→ ⟨ρ1 |sρ

′
2
⟩ follows from

ρ2 : r ▷ p 7→ ρ ′
2
: r ▷ p′. By the IH ∆; ∅ ⊢ ρ ′

2
: r ▷ p′ : A. By

Lem. 2.5 ∆; ∅ ⊢ p′ : A. Using R-Bang we deduce

∆; Γ ⊢ ⟨ρ1 |sρ
′
2
⟩ : !(ρ1, s, r ) ▷ !(ρ1; ρ

′
2
, s,p′) : ⟦s⟧A

• The derivation ends in:

∆; Γ,a : B ⊢ p : A ∆; Γ ⊢ q : B
R-β

∆; Γ ⊢ ba(a.p,q) : (λa.p)q ▷ p{a/q} : A
Suppose ba(a.p,q) : (λa.p)q ▷ p{a/q} 7→ ρ ′ : (λa.p)q ▷ t ′. By
Lem. 3.3 ( 7→ ⊆ ↣ ), ρ ′ ≃ ba(a.p,q); ξ : (λa.p)q ▷ t ′ for
some step ξ . By Lem. 1.4, ba(a.p,q); ξ : (λa.p)q ▷ t ′. By a

simple generation lemma, there exists t ′′ such that ba(a.p,q) :
(λa.p)q ▷ t ′′ and ξ : t ′′ ▷ t ′. By Lem. 3.5 on ξ , one of the two
following hold.

(a) ξ = C⟨ba(b .m,n)⟩ and
C⟨ba(b .m,n)⟩ : C[(λb .m)n]src ▷
C[ba(b .m,n), (λb .m)n,m{b/n}]tgt

(b) or ξ = C⟨bb(!(σ , r1, r2),u .n)⟩ and
C⟨bb(!(σ , r1, r2),u .n)⟩ : C[let u ⊜ !(σ , r1, r2) inn]src ▷

C[bb(!(σ , r1, r2),u .n), let u ⊜ !(σ , r1, r2) inn,n{u/tgtσ r2r1 }]
tgt

We assume that case (a) holds, case (b) is dealt with simi-

larly and omitted. By Lem. 1.2, t ′′ ≃ C[(λb .m)n]src and t ′ ≃
C[ba(b .m,n), (λb .m)n,m{b/n}]tgt. By Lem. 1.2, on ba(a.p,q) :
(λa.p)q ▷ t ′′ and the hypothesis, t ′′ ≃ p{a/q}. By Lem. 2.5

p{a/q} is typable. That is, ⊩ ∆; Γ ⊢ p{a/q} : A. Then the term

C[(λb .m)n]src is typable too by SEq-T. By Lem. 3.6, we obtain

∆; Γ ⊢ C⟨ba(b .m,n)⟩ : o1 ▷ o2 : A

where

o1 := C[(λb .m)n]src

o2 := C[ba(b .m,n), (λb .m)n,m{b/n}]tgt

We conclude from Trans and SEq-R.

Confluence and Strong Normalization. Rewrite extension is certainly
not confluent. For example, the rewrite I (Ia) : I (Ia) ▷ I (Ia) from
above, in addition to be extended as depicted in (2), can also be

extended as follows:

I (Ia) : I (Ia) ▷ I (Ia)
↣ ba(b .b, Ia) : I (Ia) ▷ Ia
↣ ba(b .b, Ia); ba(b .b,a) : I (Ia) ▷ a

Clearly I (ba(b .b,a)); ba(b .b,a) ; ba(b .b, Ia); ba(b .b,a). This is ex-
pected since structural equivalence does not include permutation of

redexes as in Lévy permutation equivalence [20]. However, rewrite

extension is strongly normalizing. This is proved by a simple map-

ping, called the target mapping, of rewrite extension steps to β-steps
in the simply typed lambda calculus (λ→).

U (a) := a
U (u) := u

U (λa.s) := λa.U (s)
U (s t) := U (s)U (t)

U (!(ρ, s, t)) := U (t)
U (let u ⊜s in t) := (λu .U (t))U (s)

U (ρ : s ▷ t) := U (t)

U (P) := P
U (A ⊃ B) := U (A) ⊃ U (B)
U (⟦s⟧A) := U (A)

First two simple results, both proved by induction, relate the target

mapping, substitution and structural equivalence.

Lemma 3.8.

(a) U (r {a/s}) = U (r ){a := U (s)} for any term r .
(b) U (r {u/tgtρts }) = U (r ){u := U (t)}
(c) U (A) = U (A{u/t }) for any type A.

Lemma 3.9. (a) If r ≃ r ′ thenU (r ) = U (r ′).
(b) If ρ ≃ σ : r ▷ s thenU (ρ : r ▷ s) = U (s) = U (σ : r ▷ s).

Rewrite extension steps map to β-reduction steps. The proof is by

induction using Lem. 3.9 and Lem. 3.8.

Lemma 3.10. (a) r ↣ s impliesU (r ) →β U (s)
(b) ρ : r ▷ s ↣ σ : r ▷ q impliesU (ρ : r ▷ s) →β U (σ : p ▷ q)

Finally, we address preservation of typability. If∆ = {u1 : A1, . . . ,un :

An } is a set of rewrite hypotheses and Γ = {a1 : B1, . . . ,am : Bm }

is a set of term hypotheses, let us writeU (∆; Γ) for the typing con-

text {u1 : U (A1), . . . ,un : U (An ),a1 : U (B1), . . . ,an : U (Bn )} in
λ→.

Lemma 3.11.

(a) ⊩π ∆; Γ ⊢ s : A implies ⊩ U (∆; Γ) ⊢ U (s) : U (A) in λ→.
(b) ⊩π ∆; Γ ⊢ ρ : s ▷ t : A implies ⊩ U (∆; Γ) ⊢ U (ρ : s ▷ t) : U (A)

in λ→.
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Proof. The proof is by simultaneous induction on the derivation

π . Most cases are straightforward by resorting to the IH when ap-

propriate. Some of the interesting cases are:

• Bang: Let ∆; Γ ⊢ !(ρ, r , s) : ⟦r⟧A be derived from ∆; ∅ ⊢ r , s : A
and ∆; ∅ ⊢ ρ : r ▷ s : A. By IH on the last premise we have that

U (∆; ∅) ⊢ U (ρ : r ▷ s) : U (A). Moreover, U (ρ : r ▷ s) = U (s) and
U (⟦r⟧A) = U (A), so we may conclude by weakening.

• Let: Let ∆; Γ ⊢ let u ⊜s in t : C{u/p} be derived from ∆; Γ ⊢ s :

⟦p⟧A and ∆,u : A; Γ ⊢ t : C . By IH we have that U (∆; Γ) ⊢ U (s) :
U (⟦p⟧A) = U (A) and that U (∆; Γ),u : U (A) ⊢ U (t) : U (C). So
U (∆; Γ) ⊢ U (let u ⊜s in t) = (λu .U (t))U (s) : U (C). We conclude by

Lem. 3.8, given thatU (C) = U (C{u/p}).
• R-Bang: Let ∆; Γ ⊢ ⟨ρ |sσ ⟩ : !(ρ, s, r ) ▷ !(ρ;σ , s, t) : ⟦s⟧A be de-

rived from ∆; ∅ ⊢ s, r , t : A and ∆; ∅ ⊢ ρ : s ▷ r : A and ∆; ∅ ⊢

σ : r ▷ t : A. By IH we have that U (∆; ∅) ⊢ U (t) : U (A). More-

over,U (⟨ρ |sσ ⟩ : !(ρ, s, r ) ▷ !(ρ;σ , s, t)) = U (!(ρ;σ , s, t)) = U (t) and
U (⟦s⟧A) = U (A), so we may conclude by weakening.

• R-β : Let ∆; Γ ⊢ ba(a.s, t) : (λa.s) t ▷ s{a/t } : B be derived from

∆; Γ,a : A ⊢ s : B and ∆; Γ ⊢ t : A. By IH, U (∆; Γ),a : U (A) ⊢

U (s) : U (B) and U (∆; Γ) ⊢ U (t) : U (A). So by the (standard)

substitution lemma U (∆; Γ) ⊢ U (s){a := U (t)} : U (B). Moreover

U (ba(a.s, t) : (λa.s) t ▷ s{a/t }) = U (s{a/t }) = U (s){a := U (t)} by
Lem. 3.8, which concludes this case.

• R-β□: Let

∆; Γ ⊢ bb(!(ρ, s, t),u .r ) : let u ⊜ !(ρ, s, t) in r ▷ r {u/tgtρts } : C{u/s}
be derived from ∆; ∅ ⊢ ρ : s ▷ t : A and ∆,u : A; Γ ⊢ r : C . By IH

U (∆; ∅) ⊢ U (ρ : s ▷ t) : U (A) and U (∆; ∅),u : U (A) ⊢ U (r ) : U (C).
From the first condition we have thatU (∆; ∅) ⊢ U (t) : U (A) holds
by definition. By the (standard) substitution lemma we have that

U (∆; ∅) ⊢ U (r ){u := U (t)} : U (C). Moreover,

U (bb(!(ρ, s, t),u .r ) : let u ⊜ !(ρ, s, t) in r ▷ r {u/tgtρts })
= U (r {u/tgtρts })
= U (r ){u := U (t)} by Lem. 3.8

andU (C) = U (C{u/s}) by Lem. 3.8, so by weakening we conclude

this case.

□

The following is an immediate consequence of Lem. 3.11, Lem. 3.10,

and strong normalization of the simply typed lambda calculus [6].

Corollary 3.12. Rewrite extension is strongly normalizing.

4 RELATEDWORK
Propositions-as-types for modal logic has an extensive body of

literature which would be impossible to summarize here. We refer

the reader to [15, 18] for further references. We focus instead on

Justification Logic and the Logic of Proofs. Artemov introduced LP
in [1, 2]. It was presented as the missing link between the prov-

ability interpretation of classical S4 and provability in PA (Peano

Arithmetic). The more general setting of Justification Logic was

presented in [4]. A recent survey is [16] and recent texts [3, 19].

For Natural Deduction and Sequent Calculus presentations con-

sult [2, 5, 11]. Computational interpretation of proofs in JL is studied
in [5, 7, 9, 26–28]. The first-order logic of proofs is studied in [29].

Regarding rewrites, as mentioned, they are studied in [30, 31] for

first-order rewriting and are dubbed proof terms. See Rem. 8.3.25

in [30] for additional references. They are related to Meseguer’s

Rewriting Logic [23]. Proof terms are used as a tool to prove vari-

ous properties of first-order term rewriting systems (such as that

various notions of equivalence of reductions coincide). A theory

of proof terms for the typed lambda calculus was developed by

Hilken [17]; however proof terms themselves are not reified as

terms. An extension to arbitrary higher-order term rewriting sys-

tems was given by Bruggink in [12] with the drawbacks discussed

in the introduction. A notion of proof term was also developed for

infinitary (first-order) rewriting [21] and used for studying equiva-

lence of infinitary reductions [22].

Dependent types (DT) [24] includes types that depend on terms

and corresponds to the propositions-as-types interpretation of first-

order logic. DT lacks the primitive finite reflection principle from LP.

However, the Logic of Proofs is similar to DT in that the modality

also depends on terms. This leads one to ponder on the suitability of

resorting to a rule such as DT’s conversion rule to circumvent the

issue from the introduction, namely that normalisation of the proof

of ∆; ∅ ⊢ A | s in (1) will produce a proof of ∆; ∅ ⊢ A | t , for some

t different from s . The conversion rule from DT states that from

Γ ⊢ A and A ≡ B, one infers Γ ⊢ B, where A ≡ B is some notion of

equivalence of types that typically includes conversion for terms.

This seems problematic in at least two aspects. Our sequents have

the form Γ;∆ ⊢ A | s , where s keeps track of the current derivation

under construction. Conversion would replaceAwith an equivalent

type B, resulting in Γ;∆ ⊢ B | s . However s , whose role is to encode

the current derivation being constructed, would have to be updated

to reflect the application of conversion, to say eq(s, e) where e is an
encoding of the derivation of A ≡ B:

Γ;∆ ⊢ A | s A ≡ B | e
Conv

Γ;∆ ⊢ B | eq(s, e)

Since !s from (1) and eq(s, e) are distinct, the issuewith closure under
normalisation remains. Another potential issue with a conversion

like rule to address the issue with (1) discussed in the introduction is

that in hypotheses of the form ⟦s⟧A there is no assumption that s is a
proof ofA (in fact, it may not be typable at all). The reason for this is

that the Logic of Proofs is capable of realizing all IS4 theorems. Take,

for instance, the IS4 theorem □(¬□⊥) where ¬A abbreviates A ⊃⊥.

In our TRC, there are s and t such that ⟦s⟧(¬⟦t⟧⊥) is derivable.9
Note, however, that there is no proof of ⊥ given that the system is

consistent. A conversion like rule cannot assume even typability of

s in ⟦s⟧A.

5 CONCLUSION
We present a novel propositions-as-types interpretation of the Logic

of Proofs, dubbed the Typed Rewrite Calculus or TRC, in which re-

ductions between terms are reified as terms. Consider simply typed

terms s and t and a reduction from s to t . Such reductions may be

expressed as terms too, called rewrites or proof terms. An example

rewrite ρ is ba(a.a,b) Ib;b ba(a.a,b) (cf. the introduction), denoting
the reduction sequence from (Ib)(Ib) to bb. What is the type of a

rewrite? If A is the type of the source (Ib)(Ib), then we propose the

modal type ⟦(Ib)(Ib)⟧A as the type of ρ. More generally, ⟦s⟧A is

9
Take s to be λa⟦t⟧⊥ .let u ⊜a inu , for any t , where we have decorated the type of a
for clarity.
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the type of rewrites with source s . The salient term in our term

assignment for the Logic of Proofs is !(ρ, s, t) denoting a reduction

from source term s to target t via rewrite ρ. We assign it a modal

type. Reduction under a “!” is understood as extending the rewrite

ρ with further work σ , leading to the rewrite ⟨ρ |sσ ⟩. We devise

a notion of structural equivalence for our rewrites that includes

composition of rewrites of the form ⟨ρ |σ s⟩. We then introduce a

notion of “reduction” on rewrites that we call extension. Extension

is proved to preserve types and terminate.

As mentioned in the introduction, it seems worthwhile to revisit

rewrites for higher-order rewriting using the TRC as type system

for typing rewrites. Such rewrites would allow an analysis of Lévy

permutation equivalence and projection equivalence for HOR in

a fully typed setting. One would expect to prove equivalence of

both these notions, i.e. that equivalence of rewrites via permutation

equivalence and via projection coincide. Also of interest, once that

is in place, is to prove a notion of algebraic confluence: any two

reductions to normal form are Lévy permutation equivalent.
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