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Abstract. We extend the λ-calculus with constructs suitable for rela-
tional and functional–logic programming: non-deterministic choice, fresh
variable introduction, and unification of expressions. In order to be able
to unify λ-expressions and still obtain a confluent theory, we depart from
related approaches, such as λProlog, in that we do not attempt to solve
higher-order unification. Instead, abstractions are decorated with a loca-
tion, which intuitively may be understood as its memory address, and we
impose a simple coherence invariant: abstractions in the same location
must be equal. This allows us to formulate a confluent small-step oper-
ational semantics which only performs first-order unification and does
not require strong evaluation (below lambdas). We study a simply typed
version of the system. Moreover, a denotational semantics for the calcu-
lus is proposed and reduction is shown to be sound with respect to the
denotational semantics.
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1 Introduction

Declarative programming is defined by the ideal that programs should resemble
abstract specifications rather than concrete implementations. One of the most
significant declarative paradigms is functional programming, represented by lan-
guages such as Haskell. Some of its salient features are the presence of first-class
functions and inductive datatypes manipulated through pattern matching. The
fact that the underlying model of computation—the λ-calculus—is confluent
allows one to reason equationally about the behavior of functional programs.

Another declarative paradigm is logic programming, represented by languages
such as Prolog. Some of its salient features are the ability to define relations
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rather than functions, and the presence of existentially quantified symbolic vari-
ables that become instantiated upon querying. This sometimes allows to use
n-ary relations with various patterns of instantiation, e.g. add(3, 2, X) com-
putes X := 3 + 2 whereas add(X, 2, 5) computes X := 5 - 2. The under-
lying model of computation is based on unification and refutation search with
backtracking.

The idea to marry functional and logic programming has been around for a
long time, and there have been many attempts to combine their features grace-
fully. For example, λProlog (Miller and Nadathur [24,22]) takes Prolog as a
starting point, generalizing first-order terms to λ-terms and the mechanism of
first-order unification to that of higher-order unification. Another example is
Curry (Hanus et al. [13,12]) in which programs are defined by equations, quite
like in functional languages, but evaluation is non-deterministic and evaluation
is based on narrowing, i.e. variables become instantiated in such a way as to
fulfill the constraints imposed by equations.

One of the interests of combining functional and logic programming is the
fact that the increased expressivity aids declarative programming. For instance,
if one writes a parser as a function parser : String −→ AST, it should be
possible, under the right conditions, to invert this function to obtain a pretty-
printer pprint : AST −→ String:

pprint ast = ν source . ((ast
•
= parse source) ; source)

In this hypothetical functional–logic language, intuitively speaking, the expres-
sion (νx. t) creates a fresh symbolic variable x and proceeds to evaluate t; the

expression (t
•
= s) unifies t with s; and the expression (t; s) returns the result of

evaluating s whenever the evaluation of t succeeds.
Given that unification is a generalization of pattern matching, a functional

language with explicit unification should in some sense generalize λ-calculi with
patterns, such as the Pure Pattern Calculus [16]. For example, by relying on uni-
fication one may build dynamic or functional patterns, i.e. patterns that include
operations other than constructors. A typical instance is the following function
last : [a] −→ a, which returns the last element of a non-empty cons-list:

last (xs ++ [x]) = x

Note that ++ is not a constructor. This definition may be desugared similarly as
for the pprint example above:

last lst = ν xs . ν x. (lst
•
= (xs ++ [x])); x

Still another interest comes from the point of view of the proposition-as-types
correspondence. Terms of a λ-calculus with types can be understood as encoding
proofs, so for instance the identity function (λx : A. x) may be understood as
a proof of the implication A → A. From this point of view, a functional–logic
program may be understood as a tactic, as can be found in proof assistants such
as Isabelle or Coq (see e.g. [31]). A term of type A should then be understood as a
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non-deterministic procedure which attempts to find a proof of A and it may leave
holes in the proof or even fail. For instance if P is a property on natural numbers,
p is a proof of P (0) and q is a proof of P (1), then λn. ((n

•
= 0); p)� ((n

•
= 1); q)

is a tactic that given a natural number n produces a proof of P (n) whenever
n ∈ {0, 1}, and otherwise it fails. Here (t � s) denotes the non-deterministic
alternative between t and s.

The goal of this paper is to provide a foundation for functional–logic
programming by extending the λ-calculus with relational constructs.
Recall that the syntactic elements of the λ-calculus are λ-terms (t, s, . . .), which
inductively may be variables (x, y, . . .), abstractions (λx. t), and applications (t s).
Relational programming may be understood as the purest form of logic pro-
gramming, chiefly represented by the family of miniKanren languages (Byrd et
al. [10,7]). The core syntactic elements of miniKanren, following for instance
Rozplokhas et al. [27] are goals (G,G′, . . .) which are inductively given by: rela-
tion symbol invocations, of the form R(T1, . . . , Tn), where R is a relation symbol
and T1, . . . , Tn are terms of a first-order language, unification of first-order terms
(T1

•
= T2), conjunction of goals (G;G′), disjunction of goals (G�G′), and fresh

variable introduction (νx.G).
Our starting point is a “chimeric creature”—a functional–logic language re-

sulting from cross breeding the λ-calculus and miniKanren, given by the following
abstract syntax:

t, s ::= x variable | c constructor
| λx. t abstraction | t s application
| νx. t fresh variable introduction | t� s non-deterministic choice

| t; s guarded expression | t •= s unification

Its informal semantics has been described above. Variables (x, y, . . .) may be in-
stantiated by unification, while constructors (c,d, . . .) are constants. For exam-

ple, if coin
def
= (true � false) is a non-deterministic boolean with two possible

values and not
def
= λx. ((x

•
= true); false) � ((x

•
= false); true) is the usual

boolean negation, the following non-deterministic computation:

(λx. λy. (x
•
= not y); pair x y) coin coin

should have two results, namely pair true false and pair false true.

Structure of this paper. In Section 2, we discuss some technical difficul-
ties that arise as one intends to provide a formal operational semantics for the
informal functional–logic calculus sketched above. In Section 3, we refine this
rough proposal into a calculus we call the λU-calculus, with a formal small-step
operational semantics (Def. 3.1). To do so, we distinguish terms, which represent
a single choice, from programs, which represent a non-deterministic alternative
between zero or more terms. Moreover, we adapt the standard first-order unifica-
tion algorithm to our setting by imposing a coherence invariant on programs. In
Section 4, we study the operational properties of the λU-calculus: we provide an
inductive characterization of the set of normal forms (Prop. 4.1), and we prove
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that it is confluent (Thm. 4.4) (up to a notion of structural equivalence). In Sec-
tion 5, we propose a straightforward system of simple types and we show that
it enjoys subject reduction (Prop. 5.2). In Section 6, we define a (naive) denota-
tional semantics, and we show that the operational semantics is sound (although
it is not complete) with respect to this denotational semantics (Thm. 6.2). In
Section 7, we conclude and we lay out avenues of further research.

Note. Most proofs have been left out from the body of the paper. Detailed
proofs that can be found in the technical appendix have been marked with ♣.

2 Technical Challenges

This section is devoted to discussing technical stumbling blocks that we encoun-
tered as we attempted to define an operational semantics for the functional–logic
calculus incorporating all the constructs mentioned in the introduction. These
technical issues motivate the design decisions behind the actual λU-calculus de-
fined in Sec. 3. The discussion in this section is thus informal. Examples are
carried out with their hypothetical or intended semantics.

Locality of symbolic variables. The following program introduces a fresh
variable x and then there are two alternatives: either x unifies with c and the
result is x, or x unifies with d and the result is x. The expected reduction se-
mantics is the following. The constant ok is the result obtained after a successful
unification:

νx.
(

((x
•
= c);x)� ((x

•
= d);x)

)
→ ((x

•
= c);x)� ((x

•
= d);x) with x fresh

→ (ok; c)� ((x
•
= d);x) (F)

→ (ok; c)� (ok; d)
� c� d

Note that in the step marked with (F), the variable x becomes instantiated to
c, but only to the left of the choice operator (�). This suggests that programs
should consist of different threads fenced by choice operators. Symbolic variables
should be local to each thread.

Need of commutative conversions. Redexes may be blocked by the choice
operator—for example in the application ((t � λx. s)u), there is a potential β-
redex ((λx. s)u) which is blocked. This suggests that commutative conversions
that distribute the choice operator should be incorporated, allowing for instance
a reduction step (t � λx. s)u → t u � (λx. s)u. In our proposal, we force in the
syntax that a program is always written, canonically, in the form t1 � . . . � tn,
where each ti is a deterministic program (i.e. choice operators may only appear
inside lambdas). This avoids the need to introduce commutative rules.
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Confluence only holds up to associativity and commutativity. There are
two ways to distribute the choice operators in the following example:

t1(s1 � s2)� t2(s1 � s2)

��

(t1 � t2) (s1 � s2)oo // (t1 � t2) s1 � (t1 � t2) s2

��
(t1 s1 � t1 s2)� (t2 s1 � t2 s2) ≡ (t1 s1 � t2 s1)� (t1 s2 � t2 s2)

The resulting programs cannot be equated unless one works up to an equivalence
relation that takes into account the associativity and commutativity of the choice
operator. As we mentioned, the λU-calculus works with programs in canonical
form t1� . . .� tn, so there is no need to work modulo associativity. However, we
do need commutativity. As a matter of fact, we shall define a notion of structural
equivalence (≡) between programs, allowing the arbitrary reordering of threads.
This relation will be shown to be well-behaved, namely, a strong bisimulation
with respect to the reduction relation, cf. Lem. 3.3.

Non-deterministic choice is an effect. Consider the program (λx. x x)(c�d),
which chooses between c and d and then it produces two copies of the chosen
value. Its expected reduction semantics is:

(λx. x x)(c� d)→ (λx. x x)c� (λx. x x)d� c c� d d

This means that the first step in the following reduction, which produces two
copies of (c� d) cannot be allowed, as it would break confluence:

(λx. x x)(c� d) 6→ (c� d) (c� d)� c c� c d� d c� d d

The deeper reason is that non-deterministic choice is a side-effect rather than a
value. Our design decision, consistent with this remark, is to follow a call-by-
value discipline. Another consequence of this remark is that the choice operator
should not commute with abstraction, given that λx. (t� s) and (λx. t)� (λx. s)
are not observationally equivalent. In particular, λx. (t � s) is a value, which
may be copied, while (λx. t) � (λx. s) is not a value. On the other hand, if W
is any weak context, i.e. a term with a hole which does not lie below a binder,
and we write W〈t〉 for the result of plugging a term t into the hole of W, then
W〈t� s〉 = W〈t〉�W〈s〉 should hold.

Evaluation should be weak. Consider the term F
def
= λy. ((y

•
= x);x). In-

tuitively, it unifies its argument with a (global) symbolic variable x and then
returns x. This poses two problems. First, when x becomes instantiated to y,
it may be outside the scope of the abstraction binding y, for instance, the step
F x = (λy. ((y

•
= x);x))x → (λy. (ok; y)) y produces a meaningless free occur-

rence of y. Second, consider the following example in which two copies of F are
used with different arguments. If we do not allow evaluation under lambdas,
this example fails due to a unification clash, i.e. it produces no outputs:

(λf. (f c) (f d))F → (F c) (F d)

→ ((c
•
= x);x) ((d

•
= x);x)

→ (ok; c) ((d
•
= c); c) (F)

→ fail
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Note that in the step marked with (F), the symbolic variable x has become

instantiated to c, leaving us with the unification goal d
•
= c which fails. On the

other hand, if we were to allow reduction under lambdas, given that there are no
other occurrences of x anywhere in the term, in one step F becomes λy. (ok; y),
which then behaves as the identity:

(λf. (f c) (f d))F 6→ (λf. (f c) (f d)) (λy.ok; y)
→ ((λy.ok; y) c) ((λy.ok; y) d)
� c d

Thus allowing reduction below abstractions in this example would break conflu-
ence. This suggests that evaluation should be weak, i.e. it should not proceed
below binders.

Avoiding higher-order unification. The calculus proposed in this paper rests
on the design choice to avoid attempting to solve higher-order unification prob-
lems. Higher-order unification problems can be expressed in the syntax: for ex-
ample in (fc

•
= c) the variable f represents an unknown value which should

fulfill the given constraint. From our point of view, however, this program is
stuck and its evaluation cannot proceed—it is a normal form. However, note
that we do want to allow pattern matching against functions; for example the
following should succeed, instantiating f to the identity:

(c f
•
= c(λx. x)); (f

•
= f)→ (λx. x)

•
= (λx. x)→ ok

The decision to sidestep higher-order unification is a debatable one, as it severely
restricts the expressivity of the language. But there are various reasons to explore
alternatives. First, higher-order unification is undecidable [14], and even second
order unification is known to be undecidable [18]. Huet’s semi-decision proce-
dure [15] does find a solution should it exist, but even then higher-order unifica-
tion problems do not necessarily possess most general unifiers [11], which turns
confluence hopeless4. Second, there are decidable restrictions of higher-order uni-
fication which do have most general unifiers, such as higher-order pattern unifi-
cation [21] used in λProlog, and nominal unification [32] used in αProlog. But
these mechanisms require strong evaluation, i.e. evaluation below abstractions,
departing from the traditional execution model of eager applicative languages
such as in the Lisp and ML families, in which closures are opaque values whose
bodies cannot be examined. Moreover, they are formulated in a necessarily typed
setting.

The calculus studied in this paper relies on a standard first-order unification
algorithm, with the only exception that abstractions are deemed to be equal
if and only if they have the same “identity”. Intuitively speaking, this means
that they are stored in the same memory location, i.e. they are represented by
the same pointer. This is compatible with the usual implementation techniques

4 Key in our proof of confluence is the fact that if σ and σ′ are most general unifiers for
unification problems G and G′ respectively, then the most general unifier for (G∪G′)
is an instance of both σ and σ′. See Ex. 4.5.
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of eager applicative languages, so it should allow to use standard compilation
techniques for λ-abstractions. Also note that the operational semantics does not
require to work with typed terms—in fact the system presented in Sec. 3 is
untyped, even though we study a typed system in Sec. 5.

3 The λU-Calculus — Operational Semantics

In this section we describe the operational semantics of our proposed calculus,
including its syntax, reduction rules (Def. 3.1), an invariant (coherence) which is
preserved by reduction (Lem. 3.2), and a notion of structural equivalence which
is a strong bisimulation with respect to reduction (Lem. 3.3).

Syntax of terms and programs. Suppose given denumerably infinite sets
of variables Var = {x, y, z, . . .}, constructors Con = {c,d, e, . . .}, and locations
Loc = {`, `′, `′′, . . .}. We assume that there is a distinguished constructor ok.
The sets of terms t, s, . . . and programs P,Q, . . . are defined mutually inductively
as follows:

t ::= x variable | c constructor
| λx. P abstraction | λ`x. P allocated abstraction
| t t application | νx. t fresh variable introduction

| t; t guarded expression | t •= t unification

P ::= fail empty program
| t⊕ P non-deterministic choice

The set of values Val = {v, w, . . .} is a subset of the set of terms, given by the
grammar v ::= x | λ`x. P | c v1 . . . vn. Values of the form c v1 . . . vn are called
structures.

Intuitively, an (unallocated) abstraction λx. P represents the static code to
create a closure, while λ`x. P represents the closure created in runtime, stored
in the memory cell `. When the abstraction is evaluated, it becomes decorated
with a location (allocated). We will have a rewriting rule like λx. P → λ`x. P
where ` is fresh.

Notational conventions. We write C,C′, . . . for arbitrary contexts, i.e.
terms with a single free occurrence of a hole �. We write W,W′, . . . for weak
contexts, which do not enter below abstractions nor fresh variable declarations,
i.e. W ::= � | W t | tW | W; t | t;W | W •

= t | t •= W. We write ⊕ni=1ti or also
t1⊕t2 . . .⊕tn to stand for the program t1⊕(t2⊕ . . . (tn⊕fail)). In particular, if
t is a term, sometimes we write t for the singleton program t⊕ fail. The set of
free variables fv(t) (resp. fv(P )) of a term (resp. program) is defined as expected,
noting that fresh variable declarations νx. t and both kinds of abstractions λx. P
and λ`x. P bind the free occurrences of x in the body. Expressions are consid-
ered up to α-equivalence, i.e. renaming of all bound variables. Given a context
or weak context C and a term t, we write C〈t〉 for the (capturing) substitution of
� by t in C. The set of locations locs(t) (resp. fv(P )) of a term (resp. program)
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is defined as the set of all locations ` decorating any abstraction on t. We write
t{` := `′} for the term that results from replacing all occurrences of the location
` in t by `′. The program being evaluated is called the toplevel program. The
toplevel program is always of the form t1⊕ t2 . . .⊕ tn, and each of the ti is called
a thread.

Operations with programs. We define the operations P ⊕Q and W〈P 〉 by
induction on the structure of P as follows; note that the notation “⊕” is over-
loaded both for consing a term onto a program and for concatenating programs:

fail⊕Q def
= Q

(t⊕ P )⊕Q def
= t⊕ (P ⊕Q)

W〈fail〉 def= fail

W〈t⊕ P 〉 def= W〈t〉 ⊕W〈P 〉

Substitutions. A substitution is a function σ : Var→ Val with finite support,

i.e. such that the set supp(σ)
def
= {x | σ(x) 6= x} is finite. We write {x1 7→

v1, . . . , xn 7→ vn} for the substitution σ such that supp(σ) = {x1, . . . , xn} and
σ(xi) = vi for all i ∈ 1..n. A renaming is a substitution mapping each variable
to a variable, i.e. a substitution of the form {x1 7→ y1, . . . , xn 7→ yn}.

If σ : Var → Val is a substitution and t is a term, tσ denotes the capture-
avoiding substitution of each occurrence of a free variable x in t by σ(x). Capture-
avoiding substitution of a single variable x by a value v in a term t is written
t{x := v} and defined by t{x 7→v}. Subsitutions ρ, σ may be composed as follows:

(ρ · σ)(x)
def
= ρ(x)σ. Substitutions can also be applied to weak contexts, taking

�σ
def
= �. A substitution σ is idempotent if σ · σ = σ. A substitution σ is more

general than a substitution ρ, written σ . ρ if there is a substitution τ such that
ρ = σ · τ .

Unification. We describe how to adapt the standard first-order unification
algorithm to our setting, in order to deal with unification of λ-abstractions. As
mentioned before, our aim is to solve only first-order unification problems. This
means that the unification algorithm should only deal with equations involv-
ing terms which are already values. Note that unallocated abstractions (λx. P )
are not considered values; abstractions are only values when they are allocated
(λ`x. P ). Allocated abstractions are to be considered equal if and only if they
are decorated with the same location. Note that terms of the form x t1 . . . tn
are not considered values if n > 0, as this would pose a higher-order unification
problem, possibly requiring to instantiate x as a function of its arguments.

We expand briefly on why a naive approach to first-order unification would
not work. Suppose that we did not have locations and we declared that two
abstractions λx. P and λy.Q are equal whenever their bodies are equal, up to
α-renaming (i.e. P{x := y} = Q). The problem is that this notion of equality
is not preserved by substitution, for example, the unification problem given by
the equation λx. y

•
= λx. z would fail, as y 6= z. However, the variable y may

become instantiated into z, and the equation would become λx. z
•
= λx. z, which

succeeds. This corresponds to the following critical pair in the calculus, which
cannot be closed:

fail← (λx. y
•
= λx. z); (y

•
= z)→ (λx. z

•
= λx. z); ok→ ok; ok
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This is where the notion of allocated abstraction plays an important role. We
will work with the invariant that if λ`x. P and λ`

′
y.Q are two allocated ab-

stractions in the same location (` = `′) then their bodies will be equal, up to
α-renaming. This ensures that different allocated abstractions are still different
after substitution, as they must be decorated with different locations.

Unification goals and unifiers. A goal is a term of the form v
•
= w. A

unification problem is a finite set of goals G = {v1
•
= w1, . . . , vn

•
= wn}. If σ

is a substitution we write Gσ for {v1σ
•
= w1

σ, . . . , vn
σ •

= wn
σ}. A unifier for

G = {v1
•
= w1, . . . , vn

•
= wn} is a substitution σ such that vi

σ = wi
σ for all

1 ≤ i ≤ n. A unifier σ for G is most general if for any other unifier ρ one has
σ . ρ.

Coherence invariant. As mentioned before, we impose an invariant on
programs forcing that allocated abstractions decorated with the same location
must be syntactically equal. Moreover, we require that allocated abstractions
do not refer to variables bound outside of their scope, i.e. that they are in fact
closures. Note that the source program trivially satisfies this invariant, as it is
expected that allocated abstractions are not written by the user but generated
at runtime.

More precisely, a set X of terms is coherent if the two following conditions
hold. (1) Consider any allocated abstraction under a context C, i.e. let t ∈ X
such that t = C〈λ`x. P 〉. Then the context C does not bind any of the free
variables of λ`x. P . (2) Consider any two allocated abstractions in t and s with
the same location, i.e. let t, s ∈ X be such that t = C〈λ`x. P 〉 and s = C′〈λ`y.Q〉,
Then P{x := y} = Q.

We extend the notion of coherence to other syntactic categories as follows.
A term t is coherent if {t} is coherent. A program P = t1 ⊕ . . .⊕ tn is coherent
if each thread ti is coherent. A unification problem G is coherent if it is coherent
seen as a set. Note that a program may be coherent even if different abstractions
in different threads have the same location. For example, (λ`x. x x

•
= λ`y. c) ⊕

(λ`
′
y. y) is not coherent, whereas (λ`x. x x

•
= λ`y. y y)⊕ (λ`y. c) is coherent.

Unification algorithm. The standard Martelli–Montanari [19] unification
algorithm can be adapted to our setting. In particular, there is a computable
function mgu(−) such that if G is a coherent unification problem then either
mgu(G) = σ, i.e. mgu(G) returns a substitution σ which is an idempotent most
general unifier for G, or mgu(G) = ⊥, i.e. mgu(G) fails and G has no unifier.
Moreover, it can be shown that if the algorithm succeeds, the set Gσ∪{σ(x) | x ∈
Var} is coherent. The algorithm, formal statement and proofs are detailed in the
appendix ♣ Sec. A.1.

Operational semantics. The λU-calculus is the rewriting system whose
objects are programs, and whose reduction relation is given by the union of the
following six rules:
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Definition 3.1 (Reduction rules).

P1 ⊕W〈λx. P 〉 ⊕ P2
alloc−−−→ P1 ⊕W〈λ`x. P 〉 ⊕ P2 if ` 6∈ locs(W〈λx. P 〉)

P1 ⊕W〈(λ`x. P ) v〉 ⊕ P2
beta−−→ P1 ⊕W〈P{x := v}〉 ⊕ P2

P1 ⊕W〈v; t〉 ⊕ P2
guard−−−→ P1 ⊕W〈t〉 ⊕ P2

P1 ⊕W〈νx. t〉 ⊕ P2
fresh−−−→ P1 ⊕W〈t{x := y}〉 ⊕ P2 if y 6∈ fv(W)

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−→ P1 ⊕W〈ok〉σ ⊕ P2 if mgu({v •= w}) = σ

P1 ⊕W〈v •= w〉 ⊕ P2
fail−−→ P1 ⊕ P2 if mgu({v •= w}) fails

Note that all rules operate on a single thread and they are not closed under any
kind of evaluation contexts. The alloc rule allocates a closure, i.e. whenever a
λ-abstraction is found below an evaluation context, it may be assigned a fresh
location `. The beta rule applies a function to a value. The guard rule proceeds
with the evaluation of the right part of a guarded expression when the left part
is already a value. The fresh rule introduces a fresh symbolic variable. The
unif and fail rules solve a unification problem, corresponding to the success
and failure cases respectively. If there is a unifier, the substitution is applied to
the affected thread. For example:

(λx. x⊕ (νy. ((x
•
= c y); y))) (cd)

alloc−−−→ (λ`x. x⊕ (νy. ((x
•
= c y); y))) (cd)

beta−−→ cd⊕ νy. ((cd •= c y); y)
fresh−−−→ cd⊕ ((cd

•
= c z); z)

unif−−→ cd⊕ (ok;d)
guard−−−→ cd⊕ d

Structural equivalence. As already remarked in Sec. 2, we will not be
able to prove that confluence holds strictly speaking, but only up to reordering
of threads in the toplevel program. Moreover the alloc and fresh rules introduce
fresh names, and, as usual the most general unifier is unique only up to renaming.
These conditions are expressed formally by means of the following relation of
structural equivalence.

Formally, structural equivalence between programs is written P ≡ Q and
defined as the reflexive, symmetric, and transitive closure of the three following
axioms:

1. ≡-swap: P ⊕ t⊕ s⊕Q ≡ P ⊕ s⊕ t⊕Q.
2. ≡-var: If y 6∈ fv(t) then P ⊕ t⊕Q ≡ P ⊕ t{x := y} ⊕Q.
3. ≡-loc: If `′ 6∈ locs(t), then P ⊕ t⊕Q ≡ P ⊕ t{` := `′} ⊕Q.

In short, ≡-swap means that threads may be reordered arbitrarily, ≡-var means
that symbolic variables are local to each thread, and ≡-loc means that locations
are local to each thread.

The following lemma establishes that the coherence invariant is closed by
reduction and structural equivalence, which means that the λU-calculus is well-
defined if restricted to coherent programs. In the rest of this paper, we always
assume that all programs enjoy the coherence invariant.
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Lemma 3.2. Let P be a coherent program. If P ≡ Q or P → Q, then Q is also
coherent. ♣ Sec. A.3

The following lemma establishes that reduction is well-defined modulo struc-
tural equivalence (i.e. it lifts to ≡-equivalence classes):

Lemma 3.3. Structural equivalence is a strong bisimulation with respect to →.
Precisely, let P ≡ P ′

x−→ Q with x ∈ {alloc, beta, guard, fresh, unif, fail}.
Then there exists a program Q′ such that P

x−→ Q′ ≡ Q. ♣ Sec. A.4

Example 3.4 (Type inference algorithm). As an illustrative example, the follow-
ing translation W[−] converts an untyped λ-term t into a λU-term that calculates
the principal type of t according to the usual Hindley–Milner [23] type inference
algorithm, or fails if it has no type. Note that an arrow type (A→ B) is encoded
as (f AB):

W[x]
def
= ax W[λx. t]

def
= νax. f axW[t] W[t s]

def
= νa. ((W[t]

•
= f W[s] a); a)

For instance, W[λx. λy. y x] = νa. f a (νb. f b (νc. (b
•
= f a c); c))� f a (f (f a c) c).

4 Operational Properties

In this section we study some properties of the operational semantics. First, we
characterize the set of normal forms of the λU-calculus syntactically, by means
of an inductive definition (Prop. 4.1). Then we turn to the main result of this
section, proving that it enjoys confluence up to structural equivalence (Thm. 4.4).

Characterization of normal forms. The set of normal terms t?, s?, . . .
and stuck terms S, S′, . . . are defined mutually inductively as follows. A normal
term is either a value or a stuck term, i.e. t? ::= v | S. A term is stuck if the
judgment t5 is derivable with the following rules:

n > 0
stuck-var

x t?1 . . . t
?
n5

t?i 5 for some i ∈ {1, 2, . . . , n}
stuck-cons

c t?1 . . . t
?
n5

t?1 5 n ≥ 0
stuck-guard

(t?1; t?2) s?1 . . . s
?
n5

t?i 5 for some i ∈ {1, 2} n ≥ 0
stuck-unif

(t?1
•
= t?2) s?1 . . . s

?
n5

t? 5 n ≥ 0
stuck-lam

(λ`x. P ) t? s?1 . . . s
?
n5

The set of normal programs P ?, Q?, . . . is given by the following grammar:
P ? ::= fail | t? ⊕ P ?. For example, the program (λ`x. x

•
= x)⊕ ((y c

•
= d); e)⊕

z (z c) is normal, being the non-deterministic alternative of a value and two stuck
terms. Normal programs capture the notion of normal form:

Proposition 4.1. The set of normal programs is exactly the set of →-normal
forms. ♣ Sec. A.5
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Confluence. In order to prove that the λU-calculus has the Church–Rosser
property, we adapt the method due to Tait and Martin-Löf [5, Sec. 3.2] by
defining a simultaneous reduction relation ⇒, and showing that it verifies the
diamond property (i.e. ⇐⇒⊆⇒⇐) and the inclusions →⊆⇒⊆�, where �
denotes the reflexive–transitive closure of →. Actually, these properties only
hold up to structural equivalence, so our confluence result, rather than the usual
inclusion ��⊆��, expresses the weakened inclusion ��⊆�≡�.

To define the relation of simultaneous reduction, we use the following nota-
tion, to lift the binary operations of unification (t

•
= s), guarded expression (t; s),

and application (t s) from the sort of terms to the sort of programs. Let ? denote
a binary term constructor (e.g. unification, guarded expression, or application).

Then we write (
⊕n

i=1 ti) ? (
⊕m

j=1 sj)
def
=
⊕n

i=1

⊕m
j=1(ti ? sj).

First, we define a judgment t
G
=⇒ P of simultaneous reduction, relating a

term and a program, parameterized by a set G of unification goals representing
pending constraints:

Var

x
∅
=⇒ x

Cons

c
∅
=⇒ c

Fresh1
νx. t

∅
=⇒ νx. t

t
G
=⇒ P x fresh

Fresh2
νx. t

G
=⇒ P

AbsC1
λx. P

∅
=⇒ λx. P

` fresh
AbsC2

λx. P
∅
=⇒ λ`x. P

AbsA

λ`x. P
∅
=⇒ λ`x. P

t
G
=⇒ P s

H
=⇒ Q

App1
t s

G∪H
==⇒ P Q

App2
(λ`x. P ) v

∅
=⇒ P{x := v}

t
G
=⇒ P s

H
=⇒ Q

Guard1
t; s

G∪H
==⇒ P ;Q

t
G
=⇒ P

Guard2
v; t

G
=⇒ P

t
G
=⇒ P s

H
=⇒ Q

Unif1
t
•
= s

G∪H
==⇒ P

•
= Q

Unif2

v
•
= w

{v•=w}
====⇒ ok

As usual, most term constructors have two rules, the rule decorated with “1” is
a congruence rule which chooses not to perform any evaluation on the root of
the term, while the rule decorated with “2” requires that there is a redex at the
root of the term, and contracts it. Note that rule Unif2 does not perform the
unification of v and w immediately; it merely has the effect of propagating the
unification constraint.

Using the relation defined above, we are now able to define the relation of
simultaneous reduction between programs:

Fail

fail⇒ fail

t
G
=⇒ P Q⇒ Q′ P ′ =

{
Pσ if σ = mgu(G)

fail if mgu(G) fails
Alt

t⊕Q⇒ P ′ ⊕Q′

The following lemma summarizes some of the key properties of simultaneous
reduction. Most are straightforward proofs by induction, except for item 3.:

Lemma 4.2 (Properties of simultaneous reduction).

1. Reflexivity. t
∅
=⇒ t and P ⇒ P .
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2. Context closure. If t
G
=⇒ P then W〈t〉 G

=⇒W〈P 〉.
3. Strong bisimulation. Structural equivalence is a strong bisimulation with

respect to ⇒, i.e. if P ≡ P ′ ⇒ Q then there is a program Q′ such that
P ⇒ Q′ ≡ Q. ♣ Sec. A.6

4. Substitution. If t
G
=⇒ P then tσ

Gσ
==⇒ Pσ.

The core argument is the following adaptation of Tait–Martin-Löf’s tech-
nique, from which confluence comes out as an easy corollary. See ♣ Sec. A.7 in
the appendix for details.

Proposition 4.3 (Tait–Martin-Löf ’s technique, up to ≡).
1. → ⊆ ⇒≡
2. ⇒⊆ �≡
3. ⇒ has the diamond property, up to ≡, that is:

If P1 ⇒ P2 and P1 ⇒ P3 then P2 ⇒≡ P4 and P3 ⇒≡ P4 for some P4.

Theorem 4.4 (Confluence). The reduction relation → is confluent, up to ≡.
More precisely, if P1 � P2 and P1 � P3 then there is a program P4 such that
P2 �≡ P4 and P3 �≡ P4.

Example 4.5. Suppose that σ = mgu(v1
•
= v2) and τ = mgu(w1

•
= w2). Consider:

(v1
τ •= v2

τ ) ok tτ ← (v1
•
= v2) (w1

•
= w2) t→ ok (w1

σ •= w2
σ) tσ

Then both σ′ = mgu(v1
τ •= v2

τ ) and τ ′ = mgu(w1
σ •= w2

σ) must exist, and the
peak may be closed as follows:

(v1
τ •= v2

τ ) ok tτ → ok ok (tτ )σ
′
≡ ok ok (tσ)τ

′
← ok (w1

σ •= w2
σ) tσ

the equivalence relies on the fact that τ ′ ◦ σ and σ′ ◦ τ are both most general
unifiers of {v1

•
= v2, w1

•
= w2}, hence (tτ )σ

′ ≡ (tσ)τ
′
, up to renaming.

5 Simple Types for λU

In this section we discuss a simply typed system for the λU-calculus. The system
does not present any essential difficulty, but it is a necessary prerequisite to
be able to define the denotational semantics of Sec. 6. The main result in this
section is subject reduction (Prop. 5.2).

Note that, unlike in the simply typed λ-calculus, reduction may create free
variables, due to fresh variable introduction. For instance, in the reduction step
c(νx. x)→ cx, a new variable x appears free on the right-hand side. Therefore
the subject reduction lemma has to extend the typing context in order to ac-
count for freshly created variables. This may be understood only as a matter of
notation, e.g. in a different presentation of the λU-calculus the step above could
be written as c(νx. x) → νx. (cx), using a scope extrusion rule reminiscent of
the rule to create new channels in process calculi (e.g. π-calculus), avoiding the
creation of free variables.
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Types and typing contexts. Suppose given a denumerable set of base types
α, β, γ, . . .. The sets of types Type = {A,B, . . .} and typing contexts Γ,∆, . . . are
given by:

A,B, . . . ::= α | A→ B Γ ::= ∅ | Γ, x : A

we assume that no variable occurs twice in a typing context. Typing contexts
are to be regarded as finite sets of assumptions of the form (x : A), i.e. we work
implicitly modulo contraction and exchange. We assume that each constructor
c has an associated type Tc.

Typing rules. Judgments are of the form. “Γ ` X : A” where X may be a
term or a program, meaning that X has type A under Γ . The typing rules are
the following:

(x : A) ∈ Γ
t-var

Γ ` x : A

t-cons

Γ ` c : Tc
Γ, x : A ` P : B

t-lam(l)

Γ ` λ(`)x. P : A→ B

Γ ` t : A Γ ` s : A
t-unif

Γ ` t •= s : Tok

Γ ` t : Tok Γ ` s : A
t-guard

Γ ` t; s : A

Γ, x : A ` t : B
t-fresh

Γ ` νx. t : B
t-fail

Γ ` fail : A

Γ ` t : A Γ ` P : A
t-alt

Γ ` t⊕ P : A

Note that all abstractions are typed in the same way, regardless of whether
they are allocated or not. A unification has the same type as the constructor
ok, as does t in the guarded expression (t; s). A freshly introduced variable of
type A represents, from the logical point of view, an unjustified assumption of
A. The empty program fail can also be given any type. All the threads in a
program must have the same type. The following properties of the type system
are routine:

Lemma 5.1. Let X stand for either a term or a program. Then:

1. Weakening. If Γ ` X : A then Γ, x : B ` X : A.
2. Strengthening. If Γ, x : A ` X : B and x 6∈ fv(X), then Γ ` X : B.
3. Substitution. If Γ, x : A ` X : B and Γ ` s : A then Γ ` X{x := s} : B.
4. Contextual substitution. Γ `W〈t〉 : A holds if and only if there is a type

B such that Γ,� : B `W : A and Γ ` t : B hold.
5. Program composition/decomposition. Γ ` P ⊕Q : A holds if and only

if Γ ` P : A and Γ ` Q : A hold.

Proposition 5.2 (Subject reduction). Let Γ ` P : A and P → Q. Then
Γ ′ ` Q : A, where Γ ′ = Γ if the step is derived using any reduction rule other
than fresh, and Γ ′ = (Γ, x : B) if the step introduces a fresh variable (x : B).

Proof. By case analysis on the transition P → Q, using Lem. 5.1. The interesting
case is the unif case, which requires proving that the substitution σ returned
by mgu(G) preserves the types of the instantiated variables. ♣ Sec. A.8
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6 Denotational Semantics

In this section we propose a naive denotational semantics for the λU-calculus. The
semantics is naive in at least three senses: first, types are interpreted merely as
sets, rather than as richer structures (e.g. complete partial orders) or in a more
abstract (e.g. categorical) framework. Second, since types are interpreted as
sets, the multiplicities of results are not taken into account, so for example
[[x ⊕ x]] = [[x]] ∪ [[x]] = [[x]]. Third, and most importantly, the denotation of
abstractions (λx. P ) is conflated with the denotation of allocated abstractions
(λ`x. P ). This means that the operational semantics cannot be complete with
respect to the denotational one, given that for example λ`x. x and λ`

′
x. x have

the same denotation but they are not observationally equivalent5. Nevertheless,
studying this simple denotational semantics already presents some technical chal-
lenges, and we regard it as a first necessary step towards formulating a better
behaved semantics6.

Roughly speaking, the idea is that a type A shall be interpreted as a set
[[A]], while a program P of type A shall be interpreted as a subset [[P ]] ⊆ [[A]].
For example, if [[Nat]] = N, then given constructors 1 : Nat, 2 : Nat with their
obvious interpretations, and if add : Nat → Nat → Nat denotes addition, we
expect that:

[[(λf : Nat→ Nat. νy. ((y
•
= 1); add y (f y)))(λx. x⊕2)]] = {1 + 1, 1 + 2} = {2, 3}

The soundness result that we shall prove states that if P � Q then [[P ]] ⊇ [[Q]].
Intuitively, the possible behaviors of Q are among the possible behaviors of P .

To formulate the denotational semantics, for ease of notation, we work with
an à la Church variant of the type system7. That is, we suppose that the set of
variables is partitioned in such a way that each variable has an intrinsic type.
More precisely, for each type A there is a denumerably infinite set of variables
xA, yA, zA, . . . of that type. We also decorate each occurrence of fail with its
type, i.e. we write failA for the empty program of type A. Sometimes we omit
the type decoration if it is clear from the context. Under this assumption, it is
easy to show that the system enjoys a strong form of unique typing, i.e. that if
X is a typable term or program then there is a unique derivation Γ ` X : A, up
to weakening of Γ with variables not in fv(X). This justifies that we may write
` X : A omitting the context.

Domain of interpretation. We suppose given a non-empty set Sα for
each base type α. The interpretation of a type A is a set written [[A]] and defined

5 E.g. λ`x. x
•
= λ`x. x succeeds but λ`x. x

•
= λ`

′
x. x fails.

6 We expect that a less naive semantics should be stateful, involving a memory, in
such a way that abstractions (λx. P ) allocate a memory cell and store a closure,
whereas allocated abstractions (λ`x. P ) denote a memory location in which a closure
is already stored.

7 Transitioning between Church vs. Curry style variants of this system is a straight-
forward exercise, following for instance [6, Prop. 1.2.19].
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recursively as follows, where P(X) is the usual set-theoretic power set, and Y X

is the set of functions with domain X and codomain Y :

[[α]]
def
= Sα [[A→ B]]

def
= P([[B]])[[A]]

Note that, for every type A, the set [[A]] is non-empty, given that we require
that Sα be non-empty. This decision is not arbitrary; rather it is necessary for

soundness to hold. For instance, operationally we have that xA; yB
guard−−−→ yB , so

denotationally we would expect [[xA; yB ]] ⊇ [[yB ]]. This would not hold if [[A]] = ∅
and [[B]] 6= ∅, as then [[xA; yB ]] = ∅ whereas [[yB ]] would be a non-empty set.

Another technical constraint that we must impose is that the interpretation
of a value should always be a singleton. For example, operationally we have
that (λx : Nat. x + x) v � v + v, so denotationally, by soundness, we would
expect that [[(λx : Nat. x + x) v]] ⊇ [[v + v]]. If we had that [[v]] = {1, 2} is not
a singleton, then we would have that [[(λx. x + x) v]] = {1 + 1, 2 + 2} whereas
[[v + v]] = {1 + 1, 1 + 2, 2 + 1, 2 + 2}.

Following this principle, given that terms of the form c v1 . . . vn are values,
their denotation [[c v1 . . . vn]] must always be a singleton. This means that con-
structors must be interpreted as singletons, and constructors of function type
should always return singletons (which in turn should return singletons if they
are functions, and so on, recursively). Formally, any element a ∈ [[α]] is declared
to be α-unitary, and a function f ∈ [[A → B]] is (A → B)-unitary if for each
a ∈ [[A]] the set f(a) = {b} ⊆ [[B]] is a singleton and b is B-unitary. Sometimes
we say that an element a is unitary if the type is clear from the context. If f is
(A → B)-unitary, and a ∈ [[A]] sometimes, by abuse of notation, we may write
f(a) for the unique element b ∈ f(a).

Interpretation of terms. For each constructor c, we suppose given a Tc-
unitary element c ∈ [[Tc]]. Moreover, we suppose that the interpretation of con-
structors is injective, i.e. that c(a1) . . . (an) = c(b1) . . . (bn) implies ai = bi for
all i = 1..n.

An environment is a function ρ : Var →
⋃
A∈Type[[A]] such that ρ(xA) ∈ [[A]]

for each variable xA of each type A. If ρ is an environment and a ∈ [[A]], we write
ρ[xA 7→ a] for the environment that maps xA to a and agrees with ρ on every
other variable. We write Env for the set of all environments.

Let ` t : A (resp. ` P : A) be a typable term (resp. program) and let ρ be an
environment. If ` X : A is a typable term or program, we define its denotation
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under the environment ρ, written [[X]]ρ as a subset of [[A]] as follows:

[[xA]]ρ
def
= {ρ(xA)}

[[c]]ρ
def
= {c}

[[λxA. P ]]ρ
def
= {f} where f : [[A]]→ P([[B]]) is given by f(a) = [[P ]]ρ[xA 7→a]

[[λ`xA. P ]]ρ
def
= {f} where f : [[A]]→ P([[B]]) is given by f(a) = [[P ]]ρ[xA 7→a]

[[t s]]ρ
def
= {b | ∃f ∈ [[t]]ρ, ∃a ∈ [[s]]ρ, b ∈ f(a)}

[[t
•
= s]]ρ

def
= {ok | ∃a ∈ [[t]]ρ, ∃b ∈ [[s]]ρ, a = b}

[[t; s]]ρ
def
= {a | ∃b ∈ [[t]]ρ, a ∈ [[s]]ρ}

[[νxA. t]]ρ
def
= {b | ∃a ∈ [[A]], b ∈ [[t]]ρ[xA 7→a]}

[[failA]]ρ
def
= ∅

[[t⊕ P ]]ρ
def
= [[t]]ρ ∪ [[P ]]ρ

The denotation of a toplevel program is written [[P ]] and defined as the union of

its denotations under all possible environments, i.e. [[P ]]
def
=
⋃
ρ∈Env[[P ]]ρ.

Proposition 6.1 (Properties of the denotational semantics).

1. Irrelevance. If ρ and ρ′ agree on fv(X), then [[X]]ρ = [[X]]ρ′ . Here X stands
for either a program or a term. ♣Lem. A.1

2. Compositionality. ♣Lem. A.2

2.1 [[P ⊕Q]]ρ = [[P ]]ρ ∪ [[Q]]ρ.
2.2 If W is a context whose hole is of type A, then [[W〈t〉]]ρ = {b | a ∈ [[t]]ρ, b ∈

[[W]]ρ[�A 7→a]}.
3. Interpretation of values. If v is a value then [[v]]ρ is a singleton. ♣Lem. A.4
4. Interpretation of substitution. ♣Lem. A.5

Let σ = {xA1
1 7→ v1, . . . , x

An
n 7→ vn} be a substitution such that xi /∈ fv(vj) for

all i, j. Let [[vi]]ρ = {ai} for each i = 1..n (noting that values are singletons,
by the previous item of this lemma). Then for any program or term X we
have that [[Xσ]]ρ = [[X]]ρ[x1 7→a1]...[xn 7→an].

To conclude this section, the following theorem shows that the operational
semantics is sound with respect to the denotational semantics.

Theorem 6.2 (Soundness). Let Γ ` P : A and P → Q. Then [[P ]] ⊇ [[Q]].
The inclusion is an equality for all reduction rules other than the fail rule.

Proof. The proof (♣Thm. A.10.3) is technical by exhaustive case analysis of
all possible reduction steps, using Prop. 6.1 throughout. The unif rule is non-
trivial, as it requires to formulate an invariant for the unification algorithm. The
core of the argument is an auxiliary lemma essentially stating that if G H is a
step of the unification algorithm that does not fail, then the set of environments
that fulfill the equality constraints imposed by G are the same environments that
fulfill the equality constraints imposed by H.
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Example 6.3. Consider the reduction νx.
(

(λz. νy. ((z
•
= t 1 y); (t y x))) (tx2)

)
�

t 2 1. If [[Tuple]] = [[Nat]]× [[Nat]] = N× N, the constructors 1 : Nat, 2 : Nat are
given their obvious interpretations and t : Nat → Nat → Tuple is the pairing
function8, then for any environment ρ, if we abbreviate ρ′ := ρ[x 7→ n][z 7→
p][y 7→ m], we have:

[[νx.
(

(λz. νy. ((z
•
= t 1 y); (t y x))) (tx2)

)
]]ρ

= {[[(λz. νy. ((z •= t 1 y); (t y x))) (tx2)]]ρ[x 7→n] | n ∈ N}
= {r | n ∈ N, f ∈ [[λz. νy. ((z

•
= t 1 y); (t y x))]]ρ[x 7→n], p ∈ [[tx2]]ρ[x 7→n], r ∈ f(p)}

= {r | n,m ∈ N, p ∈ [[tx2]]ρ[x7→n], r ∈ [[(z
•
= t 1 y); (t y x)]]ρ′}

= {r | n,m ∈ N, p ∈ {(n, 2)}, r ∈ [[(z
•
= t 1 y); (t y x)]]ρ′}

= {r | n,m ∈ N, p ∈ {(n, 2)}, b ∈ [[z
•
= t 1 y]]ρ′ , r ∈ [[t y x]]ρ′}

= {r | n,m ∈ N, p ∈ {(n, 2)}, p = (1,m), r ∈ [[t y x]]ρ′}
= {r | n ∈ {1},m ∈ {2}, p ∈ {(1, 2)}, r ∈ [[t y x]]ρ′}
= {(2, 1)}
= [[t 2 1]]ρ

An example in which the inclusion is proper is the reduction step λ`x. x
•
=

λ`
′
x. x

fail−−−→ fail. Note that [[λ`x. x
•
= λ`

′
x. x]] = {ok} ) ∅ = [[fail]],

given that our naive semantics equates the denotations of the abstractions, i.e.
[[λ`x. x]]=[[λ`

′
x. x]], in spite of the fact that their locations differ.

7 Conclusion

In this work, we have proposed the λU-calculus (Def. 3.1) an extension of the
λ-calculus with relational features, including non-deterministic choice and first-
order unification. We have studied some of its operational properties, providing
an inductive characterization of normal forms (Prop. 4.1), and proving
that it is confluent (Thm. 4.4) up to structural equivalence, by adapting the
technique by Tait and Martin-Löf. We have proposed a system of simple types
enjoying subject reduction (Prop. 5.2). We have also proposed a naive de-
notational semantics, in which a program of type A is interpreted as a set of
elements of a set [[A]], for which we have proven soundness (Thm. 6.2). The
denotational semantics is not complete.

As of the writing of this paper, we are attempting to formulate a refined deno-
tational semantics involving a notion of memory, following the ideas mentioned
in footnote 6. One difficulty is that in a term like ((x

•
= λz. z); y)((y

•
= λz. z);x),

there seems to be a cyclic dependency between the denotation of the subterm
on the left and denotation of the subterm on the right, so it is not clear how to
formulate the semantics compositionally.

We have attempted to prove normalization results for the simply typed sys-
tem, until now unsuccessfully. Given a constructor c : (A → A) → A, a self-

looping term ω(cω) with ω
def
= λxA. νyA→A. ((cy

•
= x); y x) can be built, so

8 Precisely, t(n) = {fn} with fn(m) = {(n,m)}.
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some form of positivity condition should be imposed. Other possible lines for
future work include studying the relationship between calculi with patterns and
λU by means of translations, and formulating richer type systems. For instance,
one would like to be able to express instantiation restrictions, in such a way that
a fresh variable representing a natural number is of type Nat− while a term of
type Nat+ represents a fully instantiated natural number.

Related Work. On functional–logic programming, we have mentioned
λProlog [24,22] and Curry [13,12]. Other languages combining functional and
logic features are Mercury [30] and Mozart/Oz [33]. There is a vast amount
of literature on functional–logic programming. We mention a few works which
most resemble our own. Miller [20] proposes a language with lambda-abstraction
and a decidable extension of first-order unification which admits most general
unifiers. Chakravarty et al. [8] and Smolka [29] propose languages in which the
functional–logic paradigm is modeled as a concurrent process with communica-
tion. Albert et al. [1] formulate a big-step semantics for a functional–logic calcu-
lus with narrowing. On pure relational programming (without λ-abstractions),
recently Rozhplokas et al. [27] have studied the operational and denotational se-
mantics of miniKanren. On λ-calculi with patterns (without full unification),
there have been many different approaches to their formulation [16,2,17,25,3].
On λ-calculi with non-deterministic choice (without unification), we should
mention works on the λ-calculus extended with erratic [28] as well as with prob-
abilistic choice [26,9].
Acknowledgements. To Alejandro Dı́az-Caro for supporting our interactions.
To Eduardo Bonelli, Delia Kesner, and the anonymous reviewers for their feed-
back and suggestions.
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A Technical Appendix

The following lemma summarizes some expected properties of substitution that
we use throughout the appendix. We omit the proofs, which are routine:

Lemma A.1 (Properties of substitution). Let σ be an arbitrary substitu-
tion. Then:

1. W〈t〉σ = Wσ〈tσ〉. Note that there cannot be capture, given that W is a weak
context, and it does not bind variables.

2. (tσ)ρ = tσ·ρ

3. t{x := v}σ = tσ{x := vσ} as long as there is no capture, i.e. x 6∈ suppσ and
for all y ∈ fv(t) we have that x 6∈ fv(σ(y)).

4. If v is a value then vσ is a value.
5. The relation . is a preorder, i.e. reflexive and transitive.

A.1 Unification Algorithm

We define the free variables (fv(G)), locations (locs(G)), and capture-avoiding
substitution (G{x := t}) for goals as follows:

fv({v1
•
= w1, . . . , vn

•
= wn})

def
= fv(v1

•
= w1) ∪ . . . ∪ fv(vn

•
= wn)

locs({v1
•
= w1, . . . , vn

•
= wn})

def
= locs(v1

•
= w1) ∪ . . . ∪ locs(vn

•
= wn)

{v1
•
= w1, . . . , vn

•
= wn}{x := t} def

= {(v1
•
= w1){x := t}, . . . , (vn

•
= wn){x := t}}

Definition A.1 (Unification algorithm). The following is a variant of Martelli–
Montanari’s unification algorithm. We say that two values v, w clash if any of
the following conditions holds:

1. Constructor clash: v = c v1 . . . vn and w = d w1 . . . wm with c 6= d.
2. Arity clash: v = c v1 . . . vn and w = c w1 . . . wm with n 6= m.
3. Type clash: v = c v1 . . . vn and w = λ`x. P or vice-versa.
4. Location clash: v = λ`x. P and w = λ`

′
y.Q with ` 6= `′.

We define a rewriting system whose objects are unification problems G, and the
symbol ⊥. The binary rewriting relation  is given by the union of the following
rules. Note that “]” stands for the disjoint union of sets:

{x •= x} ] G u-delete G

{v •= x} ] G u-orient {x •= v} ] G if v /∈ Var

{λ`x. P •
= λ`x. P} ] G u-match-lam G

{c v1 . . . vn
•
= c w1 . . . wn} ] G u-match-cons {v1

•
= w1, . . . , vn

•
= wn} ] G

{v •= w} ] G u-clash ⊥ if v and w clash

{x •= v} ] G u-eliminate {x •= v} ] G{x := v} if x ∈ fv(G) \ fv(v)

{x •= v} ] G u-occurs-check ⊥ if x 6= v and x ∈ fv(v)

Lemma A.2 (Coherence is invariant by unification). If G is a coherent
unification problem and G H then H is coherent.
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Proof. By inspection of the unification rules. The only interesting case is the
u-eliminate rule:

{x •= v} ∪ G  u-eliminate {x •= v} ∪ G{x := v}

Consider two abstractions λ`y. t and λ`
′
z. s in G such that, after performing the

substitution (λ`y. t){x := v} = (λ`
′
z. s){x := v} they have the same location,

i.e. ` = `′. Then since G is coherent we have that λ`y. t = λ`
′
z. s, and this means

that (λ`y. t){x := v} = (λ`
′
z. s){x := v}, as required.

Theorem A.1.3. Consider the relation  restricted to coherent unification
problems (Lem. A.2). Then:

1. The relation  is strongly normalizing.
2. The normal forms of are ⊥ and sets of goals of the form {x1

•
= v1, . . . , xn

•
=

vn} where xi 6= xj and xi /∈ fv(vj) for every i, j ∈ 1..n.

If the normal form of G is {x1
•
= v1, . . . , xn

•
= vn}, we say that mgu(G)

exists, and mgu(G) = {x1 7→ v1, . . . , xn 7→ vn}. If the normal form is ⊥, we
say that mgu(G) fails.

3. The substitution σ = mgu(G) exists if and only if there exists a unifier for
G. When it exists, mgu(G) is an idempotent most general unifier. Moreover:
3.1 The set Gσ ∪ {σ(x) | x ∈ Var} is coherent.
3.2 For any x ∈ Var and any allocated abstraction λ`y. P in σ(x), the location

` decorates an allocated abstraction in G.

Proof. A straightforward adaptation of standard results, see for example [4, Sec-
tion 4.6]. We only focus in the interesting differences, namely the two subitems
of item 3.:

1. Let us write G  ∗ρ G′ if there is a sequence of unification steps from G to
G′ such that ρ is the composition of all the substitutions performed in the
u-eliminate steps.
We claim that if G  ∗ρ G′ then Gρ ∪ G′ is coherent. By induction on the
length of the sequence. The empty case is immediate, so let us suppose that
G ∗τ G′′  G′. By i.h., Gτ ∪ G′′ is coherent. Consider two cases, depending
on whether the step G′′  G′ is an u-eliminate step or not.
1.1 If it is an u-eliminate step, substituting a variable x for a value v, then

we also have a step Gτ ∪ G′′  u-eliminate G
τ ·(x 7→v) ∪ G′ and by Lem. A.2

we have that Gτ ·(x 7→v) ∪ G′ is coherent, as required.
1.2 If it is not an u-eliminate step, then we also have a step Gτ ∪ G′′  

Gτ ∪ G′ and by Lem. A.2 we have that Gτ ∪ G′ is coherent, as required.
From this claim we have that if G  ∗ {x1

•
= v1, . . . , xn

•
= vn} and σ :=

{x1 7→ v1, . . . , xn 7→ vn} then Gσ ∪ {x1
•
= v1, . . . , xn

•
= vn} is coherent,

which entails the required property.
2. We claim that if G ∗ G′ then for any allocated abstraction λ`x. P in G′, the

location ` decorates an allocated abstraction in G. This is straightforward
to prove by induction on the length of the reduction sequence, and it entails
the required property.
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A.2 Properties of Most General Unifiers

Lemma A.1 (Properties of most general unifiers).

1. If σ, σ′ are idempotent most general unifiers of G, there is a renaming, i.e.
a substitution of the form ρ = {x1 7→ y1, . . . , xn 7→ yn}, such that σ′ = σ · ρ.

2. If σ is an idempotent most general unifier of G and y 6∈ fv(G), then σ′ :=
(y 7→ x) · σ is an idempotent most general unifier of G{x := y}.

3. If σ is an idempotent most general unifier of G and `′ 6∈ locs(G) then the
substitution σ′ given by σ′(x) = σ(x){` := `′} is an idempotent most general
unifier of G{` := `′}.

Proof. We prove each item:

1. A standard result, see for example [4, Section 4.6].
2. Indeed:

2.1 Unifier: For each goal (v
•
= w) ∈ G, we have that v{x := y}σ′ = vσ =

wσ = w{x := y}σ′ since y 6∈ fv(G) and σ is a unifier of G.
2.2 Most general: Let ρ be a unifier of G{x := y}, i.e. such that v{x :=

y}ρ = w{x := y}ρ for every goal (v
•
= w) ∈ G. Then it is easily checked

(x 7→ y) · ρ is a unifier of G. Since σ is a most general unifier of G, we
have that (x 7→ y) ·ρ = σ ·τ for some τ . Hence ρ = (y 7→ x) ·(x 7→ y) ·ρ =
(y 7→ x) · σ · τ = σ′ · τ as required.

3. It suffices to observe that if G  G′ then G{` := `′}  G′{` := `′}. This
is easy to check for each rule. The only noteworthy remark is that in the
u-clash we have that if v and w have a location clash, then v{` := `′} and
w{` := `′} also have a location clash, because `′ 6∈ locs(G).
Then by induction on the number of  steps, we have that if the normal
form of G is {x1

•
= v1, . . . , xn

•
= vn}, then the normal form of G{` := `′} is

{x1
•
= v1{` := `′}, . . . , xn

•
= vn{` := `′}}.

Lemma A.2 (Compositionality of most general unifiers). The following
are equivalent:

1. σ = mgu(G ∪ H) exists.
2. σ1 = mgu(G) and σ2 = mgu(Hσ1) both exist.

Moreover, if σ, σ1, σ2 exist, then σ = σ1 · σ2 · ρ for some renaming ρ.

Proof.

(1 =⇒ 2) Let σ = mgu(G ∪ H). Note in particular that σ is a unifier for G,
so σ1 = mgu(G) exists by Thm. A.1.3. On the other hand, note that σ1 is
more general than σ, so σ = σ1 ·τ for some substitution τ . Since σ is a unifier
for H, we have that τ is a unifier for Hσ1 . This means that σ2 = mgu(Hσ1)
exists by Thm. A.1.3.
(2 =⇒ 1) We claim that σ1 ·σ2 is a unifier of G∪H. Indeed, note if v

•
= w is a

goal in G we have that σ1 is a unifier for G, so vσ1 = wσ1 and vσ1·σ2 = wσ1·σ2 .
Moreover, if v

•
= w is a goal in H, then vσ1

•
= wσ1 is a goal in Hσ1 , and since

σ2 is a unifier for Hσ1 we conclude that vσ1·σ2
•
= wσ1·σ2 , as required.
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For the final property in the statement, by Lem. A.1, it suffices to show that
σ1 · σ2 is more general than σ. Indeed, since σ is a unifier of G, we have that
σ = σ1 · τ for some substitution τ , and since τ is a unifier of Hσ1 , we have that
τ = σ2 · τ ′ for some substitution τ ′, then σ = σ1 ·σ2 · τ , which means that σ1 ·σ2
is more general than σ.

A.3 Proof of Lem. 3.2 — Coherence Invariant

Proof. Item 1. is immediate by inspection of all the possible rules defining ≡.
For item 2., rules guard, fresh, and fail are immediate. Let us analyze the
remaining cases:

1. alloc: W〈λx. t〉 → W〈λ`x. t〉. Immediate, as evaluation is under a weak
context W, so the newly allocated abstraction has no variables bound by W.
Moreover the new location is fresh so there are no other abstractions in the
same location, and the rest of the program remains unmodified.

2. beta: W〈(λ`x. P )v〉 → W〈P{x := v}〉. First consider an allocated abstrac-
tion λ`

′
y.Q in W〈P{x := v}〉 and let us show that it has no variables bound

by the context. If it is disjoint from the contracted redex, it is immediate.
If it is in P , i.e. P = C〈λ`′y.Q′〉 then λ`

′
y.Q′ has no variables bound by

C, so λ`
′
y.Q = λ`

′
y.Q′{x := v} also has no variables bound by C. If it is

inside one of the copies of v, then it also has no variables bound by C, as
substitution is capture-avoiding.
Consider any two abstractions λ`

′
y.Q and λ`

′
y.R in W〈P{x := v}〉 such

that they have the same location, and consider three cases, depending on
the positions of the lambdas:

2.1 If each lambda lies inside W or inside one of the copies of v, then they
can be traced back to abstractions in the term on the left-hand side, so
Q = R by hypothesis.

2.2 If the lambdas are both in P , i.e. P = C〈λ`′y.Q || λ`′y.R〉 then Q = R
by hypothesis. Moreover, note that by the invariant x 6∈ fv(Q) ∪ fv(R),
so the lambdas in the reduct are equal.

2.3 If one lambda is in P , i.e. P = C〈λ`′y.Q〉, and the other one in W or in
a copy of v, note that by the invariant x 6∈ fv(Q), so (λ`

′
y.Q){x := v} =

λ`
′
y.Q, so the lambdas in the reduct are equal.

3. unif: W〈v •= w〉 → W〈ok〉σ. First consider an allocated abstraction λ`x. P
in W〈ok〉σ. Then W〈ok〉 = C〈λ`x. P ′〉 such that P ′σ = P . Note that P ′ has
no variables bound by C, so P ′σ also has no variables bound by C, given that
substitution is capture-avoiding, and σ is coherent.
Consider moreover any two allocated abstractions λ`x. P and λ`x.Q, in
W〈ok〉σ such that they have the same location, and consider three cases
depending on the positions of the lambdas:

3.1 If the lambdas are both in W, then their bodies trace back to the term
on the left-hand side, λ`x. P0 and λ`x.Q0, so P0 = Q0 are equal by
hypothesis, and moreover P = P0

σ = Q0
σ = Q, as required.
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3.2 If one lambda is in W and the other one in σ(y) for some variable y ∈
fv(W〈ok〉), suppose without loss of generality that the position of the
lambda of λ`x. P is inside W. Then there is an abstraction λ`x. P0 in
the term of the left-hand side of the rule such that P = P0

σ. Moreover,
λ`x.Q is an abstraction of the term σ(y). By Thm. A.1.3, there must

be an abstraction λ`x.Q0 of v
•
= w such that, moreover, Q0

σ = Q. Then
since λ`x. P0 and λ`x.Q0 are abstractions on the left-hand side, we have
by hypothesis that P0 = Q0, hence P = P0

σ = Q0
σ = Q, as required.

3.3 If the lambdas are in the terms σ(y) and σ(z), for certain variables
y, z ∈ fv(W〈ok〉), then by Thm. A.1.3, there must terms λ`x. P0 and

λ`x.Q0 each of which is an abstraction of v
•
= w, and such that moreover

P0
σ = P and Q0

σ = Q. Then since λ`x. P0 and λ`x.Q0 are abstractions
on the left-hand side, we have by hypothesis that P0 = Q0, hence P =
P0

σ = Q0
σ = Q, as required.

A.4 Proof of Lem. 3.3 — Reduction modulo structural equivalence

Lemma A.1. Basic properties of structural equivalence The following properties
hold:

1. P ⊕Q ≡ Q⊕ P
2. If P ≡ P ′ then Q1 ⊕ P ⊕Q2 ≡ Q1 ⊕ P ′ ⊕Q2

Proof. Straightforward, by induction on the derivation of the corresponding
equivalences.

We turn to the proof of Lem. 3.3:

Proof. By induction on the derivation of P ≡ P ′. The reflexivity and transitivity
cases are immediate. Moreover, it is easy to check that the axioms are symmetric.
So it suffices to show that the property holds when P ≡ P ′ is derived using one
of the axioms:

1. ≡-swap: Let t→ Q. The situation is:

P1 ⊕ t⊕ s⊕ P2

��

≡ P1 ⊕ s⊕ t⊕ P2

��
P1 ⊕Q⊕ s⊕ P2 ≡ P1 ⊕ s⊕Q⊕ P2

The equivalence at the bottom is justified by Lem. A.1.
2. ≡-var: Let t→ Q, z 6∈ fv(t). Then we argue that t{y := z} → Q{y := z} ≡
Q. By case analysis on the reduction rule applied.
2.1 alloc: The situation is:

P1 ⊕W〈λx. P 〉 ⊕ P2

��

≡ P1 ⊕W{y := z}〈λx. P{y := z}〉 ⊕ P2

��
P1 ⊕W〈λ`x. P 〉 ⊕ P2 ≡ P1 ⊕W{y := z}〈λ`′x. P{y := z}〉 ⊕ P2

For the equivalence at the bottom is justified using ≡-var to rename y
to z, and ≡-loc if necessary to rename ` to `′.
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2.2 beta: The situation is:

P1 ⊕W〈(λ`x. P ) v〉 ⊕ P2

��

≡ P1 ⊕W{y := z}〈(λ`x. P{y := z}) v{y := z}〉 ⊕ P2

��
P1 ⊕W〈P{x := v}〉 ⊕ P2 ≡ P1 ⊕W{y := z}〈P{x := v}{y := z}〉 ⊕ P2

For the equivalence at the bottom, note that by Lem. A.1, P{x :=
v}{y := z} = P{y := z}{x := v{y := z}}.

2.3 guard: This case is straightforward.
2.4 fresh: The situation is:

P1 ⊕W〈νx. t〉 ⊕ P2

��

≡ P1 ⊕W{y := z}〈νx. t{y := z}〉 ⊕ P2

��
P1 ⊕W〈t〉 ⊕ P2 ≡ P1 ⊕W{y := z}〈t{y := z}〉 ⊕ P2

Note that assume x 6= y by Barendregt’s variable convention.
2.5 unif: Let mgu(v

•
= w) = σ. Then σ′ := (z 7→ y) ·σ is an idempotent most

general unifier of the single goal v{y := z} •= w{y := z} by Lem. A.1. So

σ′′ = mgu(v{y := z} •= w{y := z}) exists and σ′′ = σ′ · ρ = (z 7→ y) · σ · ρ
for some renaming ρ.

P1 ⊕W〈v •= w〉 ⊕ P2

��

≡ P1 ⊕W{y := z}〈v{y := z} •= w{y := z}〉 ⊕ P2

��
P1 ⊕W{y := z}〈ok〉σ

′′
⊕ P2

P1 ⊕W〈ok〉σ ⊕ P2 ≡ P1 ⊕W〈ok〉σ·ρ ⊕ P2

The equivalence at the bottom may be deduced by repeatedly applying
the ≡-var rule to perform the renaming ρ.

2.6 fail: Suppose that mgu(v
•
= w) fails. Then mgu(v{y := z} •= w{y := z})

must also fail, for if σ were a unifier of (v{y := z} •= w{y := z}) then

(y 7→ z) · σ would be a unifier of v
•
= w by Lem. A.1. So we have:

P1 ⊕W〈v •= w〉 ⊕ P2

��

≡ P1 ⊕W{y := z}〈v{y := z} •= w{y := z}〉 ⊕ P2

��
P1 ⊕ P2 ≡ P1 ⊕ P2

3. ≡-loc: If the ≡-loc rule and the rewriting rule are applied on different
threads, it is straightforward. Otherwise we proceed by case analysis on the
reduction rule applied:
3.1 alloc: Let us write W′ := W{`1 := `2} and Q′ := Q{`1 := `2}. Then:

P1 ⊕W〈λx.Q〉 ⊕ P2

��

≡ P1 ⊕W′〈λx.Q′〉 ⊕ P2

��
P1 ⊕W〈λ`x.Q〉 ⊕ P2 ≡ P1 ⊕W′〈λ`′x.Q′〉 ⊕ P2
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The equivalence on the bottom may be deduced by applying the ≡-loc
rule to rename `1 to `2, and possibly the ≡-loc again to rename ` to `′.
Note that there is no possibility of conflict because ` and `′ are fresh.

3.2 beta: Let us write W′ := W{`1 := `2}, Q′ := Q{`1 := `2}, and v′ :=
v{`1 := `2}. Then we have:

P1 ⊕W〈(λ`x.Q) v〉 ⊕ P2

��

≡ P1 ⊕W′〈(λ`{`1:=`2}x.Q′) v′〉 ⊕ P2

��
P1 ⊕W〈Q{x := v}〉 ⊕ P2 ≡ P1 ⊕W′〈Q′{x := v′}〉 ⊕ P2

The equivalence on the bottom may be deduced by repeatedly applying
the ≡-loc rule.

3.3 guard: This case is straightforward.
3.4 fresh: This case is straightforward.
3.5 unif: Consider a thread of the form W〈v •= w〉, and suppose that σ =

mgu(v
•
= w) exists. Let us write W′ := W{` := `′}, v′ := v{` := `′},

and w′ := w{` := `′}. By Lem. A.1, the substitution σ′ given by σ′(x) =

σ(x){` := `′} is an idempotent most general unifier of {v′ •= w′} so

σ′′ = mgu(v′
•
= w′) exists and moreover, by Lem. A.1, we have σ′′ = σ′ ·ρ

for some renaming ρ. Note that W′〈ok〉σ′ = W〈ok〉σ{` := `′}; so:

P1 ⊕W〈v •= w〉 ⊕ P2

��

≡ P1 ⊕W′〈v′ •= w′〉 ⊕ P2

��
P1 ⊕W′〈ok〉σ′·ρ ⊕ P2

P1 ⊕W〈ok〉σ ⊕ P2 ≡ P1 ⊕W〈ok〉σ{` := `′}ρ ⊕ P2

The equivalence at the bottom may be deduced applying the ≡-loc
rule to rename ` to `′ and then repeatedly applying the ≡-var rule to
perform the renaming ρ.

3.6 fail: Consider a thread of the form W〈v •= w〉, and let us write W′ :=
W{` := `′}, v′ := v{` := `′}, and w′ := w{` := `′}. Suppose moreover

that mgu(v
•
= w) fails. Then mgu(v′

•
= w′) must also fail, for if σ were

a unifier of v′
•
= w′, the substitution σ′ given by σ′(x) = σ(x){`′ := `}

would be a unifier of v
•
= w. Hence:

P1 ⊕W〈v •= w〉 ⊕ P2

��

≡ P1 ⊕W′〈v′ •= w′〉 ⊕ P2

��
P1 ⊕ P2 ≡ P1 ⊕ P2

A.5 Proof of Prop. 4.1 — Characterization of Normal Forms

Lemma A.1 (Values are irreducible). If v is a value, then it is a normal
form.
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Proof. Straightforward by induction on v.

Lemma A.2 (Application of a stuck term). If S is stuck and t? is a normal
term, then S t? is stuck.

Proof. Straightforward by case analysis on the derivation of the judgment “S5”.

Lemma A.3 (Values and stuck terms are disjoint). A stuck term S is not
a value.

Proof. By induction on the derivation of the judgment “S5”. First, note that
if S = x t?1 . . . t

?
n is stuck, it cannot be value because n > 0. Second, note that if

S = c t?1 . . . t
?
n is stuck, it cannot be value because by i.h. there is an i such that

t?i is not a value. In the remaining cases, we have either S = (t?1; t?2) s?1 . . . s
?
n,

S = (t?1
•
= t?2) s?1 . . . s

?
n or S = (λ`x. P ) t? s?1 . . . s

?
n, so the term S is clearly not a

value.

We turn to the proof of Prop. 4.1. We prove the two inclusions. For the
(⊆) inclusion, by induction on a given normal program, it suffices to show that
any normal term t? is a →-normal form, which can be seen by induction on
the derivation that t? is a normal term. Recall that values are →-normal forms
(Lem. A.1) so we are left to check that any stuck term is a →-normal form. If
t? is stuck, it is straightforward to check, in each case of the definition of the
judgment t?5, that the resulting term has no →-redexes. Using the fact that a
stuck term S cannot be a value (Lem. A.3), the key remarks are that:

1. stuck-guard: t?1; t?2 cannot be a
guard−−−→-redex because t?1 is stuck (hence not

a value);

2. stuck-unif: t?1
•
= t?2 cannot be a

unif−−−→-redex nor a
fail−−−→-redex because for

some i ∈ {1, 2} the term t?i is stuck (hence not a value);

3. stuck-lam: (λ`x. P ) t? cannot be a
beta−−−→-redex because the term t? is stuck

(hence not a value).

For the (⊇) inclusion, by induction on a given program, it suffices to show
that any term t in →-normal form is actually a normal term. By induction on t:

1. Variable, t = x. Then t is a value.
2. Constructor, t = c. Then t is a value.
3. Fresh variable declaration, t = νx. s. Impossible, as it is not a →-normal

form.
4. Abstraction code, t = λx. s. Impossible, as it is not a →-normal form.
5. Allocated abstraction, t = λ`x. s. Then t is a value.
6. Application, t = s u. Note that s and u are→-normal forms. By i.h., s and u

are normal terms, that is they are either a value or a stuck term. We consider
the following four cases, depending on the shape of s:
6.1 If s = x, then xu is stuck by stuck-var.
6.2 If s = cv1 . . . vn, then:

6.2.1 If u is a value, c v1 . . . vn u is a value.
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6.2.2 If u is stuck, c v1 . . . vn u is stuck by stuck-cons.
6.3 If s = λ`x. P then:

6.3.1 If u is a value, this case is impossible because (λ`x. P )u has a
beta−−−→-

redex.
6.3.2 If u is stuck, then (λ`x. P )u is stuck by stuck-lam.

6.4 If s is stuck, then s u is stuck by Lem. A.2.
7. Guarded expression, t = (s;u). Note that s and u are →-normal forms. By

i.h., s and u are normal terms, that is they are either a value or a stuck

term. Note that s cannot be a value, because s;u would have a
guard−−−→-redex,

so s is stuck and s;u is stuck by stuck-guard.

8. Unification, t = (s
•
= u). Note that s and u are →-normal forms. By i.h.,

s and u are normal terms, that is they are either a value or a stuck term.
Note that s and u cannot both be values, because s

•
= u would have either

a
unif−−−→-redex (if mgu(s

•
= u) exists) or a

unif−−−→-redex (if mgu(s
•
= u) fails). So

either s is stuck or u is stuck, so we have that s
•
= u is stuck by stuck-unif.

A.6 Proof of Lem. 4.2, item 3. — Simultaneous reduction modulo
structural equivalence

Lemma A.1 (Goals in a simultaneous reduction are in the term). Let

t
G
=⇒ P . Then G is a subset of the set:

{v •= w | ∃W. t = W〈v •= w〉}

In particular, fv(G) ⊆ fv(t) and locs(G) ⊆ locs(t).

Proof. Straightforward by induction on the derivation of t
G
=⇒ P .

Lemma A.2 (Simultaneous evaluation of an alternative). The following
are equivalent:

1. P ⊕Q⇒ R
2. R can be written as P ′ ⊕Q′, where P ⇒ P ′ and Q⇒ Q′.

Proof. Straightforward, by induction on P .

Lemma A.3 (Action of renaming on simultaneous evaluation).

1. If t
G
=⇒ P then t{x := y} G{x:=y}

=====⇒ P{x := y}.
2. If t

G
=⇒ P then t{` := `′} G{`:=`′}

=====⇒ P{` := `′}.

Proof. Straightforward by induction on the derivation of t
G
=⇒ P .

We turn to the proof of Lem. 4.2, item 3:

Proof. By induction on the derivation of P ≡ P ′. It suffices to show that the
property holds when P ≡ P ′ is derived using one of the axioms:
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1. ≡-swap: The situation is

P1 ⊕ t1 ⊕ t2 ⊕ P2

��

≡ P1 ⊕ t2 ⊕ t1 ⊕ P2

��
P ′1 ⊕Q1 ⊕Q2 ⊕ P ′2 ≡ P ′1 ⊕Q2 ⊕Q1 ⊕ P ′2

where by Lem. A.2 we have that P1 ⇒ P ′1, t1 ⇒ Q1, t2 ⇒ Q2, and P2 ⇒ P ′2.
The equivalence at the bottom is justified by Lem. A.1.

2. ≡-var: Consider a program of the form P1 ⊕ t ⊕ P2, and let y 6∈ fv(t).
Moreover, suppose that P1 ⊕ t ⊕ P2 ⇒ R. By Lem. A.2 we have that R =
P ′1 ⊕ Q ⊕ P ′2 where P1 ⇒ P ′1, t ⇒ Q, and P2 ⇒ P ′2. The simultaneous

reduction step t ⇒ Q is deduced from t
G
=⇒ Q′ for some set of goals G, in

such a way that:

Q =

{
Q′σ if σ = mgu(G)

fail if mgu(G) fails

By Lem. A.3, this means that t{x := y} G{x:=y}
=====⇒ Q′{x := y}. Note that

fv(G) ⊆ fv(t) by Lem. A.1, so in particular y 6∈ fv(G). This implies by
Lem. A.1 that σ = mgu(G) exists if and only if σ′ = mgu(G{x := y})
exists.

If σ = mgu(G) exists, moreover by Lem. A.1 we have that σ′ = (y 7→ x) ·σ ·ρ
for some renaming ρ, and the situation is:

P1 ⊕ t⊕ P2

��

≡ P1 ⊕ t{x := y} ⊕ P2

��
P1 ⊕Q′{x := y}(y 7→x)·σ·ρ ⊕ P2

P1 ⊕Q′σ ⊕ P2 ≡ P1 ⊕ (Q′σ)ρ ⊕ P2

The equivalence at the bottom is justified using ≡-var to apply the renaming
ρ. If mgu(G) fails, the situation is:

P1 ⊕ t⊕ P2

��

≡ P1 ⊕ t{x := y} ⊕ P2

��
P1 ⊕ P2 ≡ P1 ⊕ P2

3. ≡-loc: Similar as the previous case. Let `′ 6∈ locs(t). By Lem. A.3 we may

conclude that if t
G
=⇒ Q′ then t{` := `′} G{`:=`′}

=====⇒ Q′{` := `′}. Note that
locs(G) ⊆ locs(t) by Lem. A.1, so in particular `′ 6∈ fv(G). This implies by
Lem. A.1 that σ = mgu(G) exists if and only if σ′ = mgu(G{` := `′}) exists.

If σ = mgu(G) exists, moreover by Lem. A.1 we have that σ′ = σ′′ · ρ where
ρ is a renaming, and σ′′ is a substitution such that σ′′(x) = σ(x){` := `′}.



30 P. Barenbaum, F. Lochbaum, M. Milicich

Hence the situation is:

P1 ⊕ t⊕ P2

��

≡ P1 ⊕ t{` := `′} ⊕ P2

��
P1 ⊕Q′{` := `′}σ′′·ρ ⊕ P2

P1 ⊕Q′σ ⊕ P2 ≡ P1 ⊕Q′σ{` := `′}ρ ⊕ P2

The equivalence at the bottom is justified using ≡-loc to rename ` to `′,
and ≡-var to apply the renaming ρ. If mgu(G) fails, the situation is:

P1 ⊕ t⊕ P2

��

≡ P1 ⊕ t{x := y} ⊕ P2

��
P1 ⊕ P2 ≡ P1 ⊕ P2

A.7 Proof of Prop. 4.3 — Tait–Martin-Löf ’s Technique

For the proofs, we work with the following Thread rule and the following variant
of the Alt rule, which is obviously equivalent to the one in the main body of the
paper:

t
G
=⇒ P P ′ =

{
Pσ if σ = mgu(G)

fail if mgu(G) fails
Thread

t⇒ P ′

t⇒ P Q⇒ Q′

Alt’

t⊕Q⇒ P ⊕Q′

Lemma A.1 (“→ ⊆ ⇒≡”). If t→ P then t⇒≡ P .

Proof. By case analysis on the rule used to conclude t→ P .

1. alloc: W〈λx. P 〉 → W〈λ`x. P 〉 for some location ` 6∈ locs(W〈λx. P 〉). Note

that λx. P
∅
=⇒ λ`

′
x. P for an (a priori different) fresh location `′ by rule AbsC2.

By context closure (Lem. 4.2), applying the Thread rule once, we have that
W〈λx. P 〉 ⇒ W〈λ`′x. P 〉 ≡ W〈λ`x. P 〉 as required. The last equivalence is
justified renaming `′ to `.

2. beta: W〈(λ`x. P ) v〉 → W〈P{x := v}〉. Note that (λ`x. P ) v
∅
=⇒ P{x := v}

by rule App2, so by context closure (Lem. 4.2), applying the Thread rule
once, we conclude.

3. fresh: W〈νx. t〉 → W〈t{x := y1}〉 for some variable y1 6∈ fv(W). Note that

νx. t
∅
=⇒ t{x := y2} for an (a priori different) fresh variable y2 by rule Fresh2.

By context closure (Lem. 4.2), applying the Thread rule once, we have that
W〈νx. t〉 ⇒W〈t{x := y2}〉 ≡W〈t{x := y1}〉 The last equivalence is justified
renaming y2 to y1.

4. guard: W〈v; t〉 → W〈t〉. Note that v; t
∅
=⇒ t by rule Guard2. By context

closure (Lem. 4.2), applying the Thread rule once, we have that W〈v; t〉 ⇒
W〈t〉 as required.
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5. unif: Suppose that σ = mgu(v
•
= w), and let W〈v •= w〉 → W〈ok〉σ. Note

that v
•
= w

{v •=w}
====⇒ ok by rule Unif2, so by context closure and applying the

Thread rule once we have that W〈v •= w〉 ⇒W〈ok〉σ, as required.

6. fail: Suppose that mgu(v
•
= w) fails, and let W〈v •= w〉 → W〈ok〉σ. Note

that v
•
= w

{v •=w}
====⇒ ok by rule Unif2, so by context closure and applying the

Thread rule once we have that W〈v •= w〉 ⇒ fail, as required.

Lemma A.2 (“⇒ ⊆ �≡”). Let t
G
=⇒ P . Given any weak context W and any

substitution α we have:

1. If σ = mgu(Gα), then W〈t〉α �≡W〈P 〉α·σ.
2. If mgu(Gα) fails, then W〈t〉α �≡ fail.

Proof. By induction on the derivation of t
G
=⇒ P :

1. Var: Note that mgu(∅) is the identity substitution, so W〈x〉α � W〈x〉α in
zero steps.

2. Cons: Immediate, similar to the Var case.
3. Fresh1: Immediate, similar to the Var case.

4. Fresh2: Let νx. t
G
=⇒ P be derived from t

G
=⇒ P , where x is a fresh variable.

Moreover, let x′ 6∈ fv(Wα). Then we have that:

W〈νx. t〉α = Wα〈νx′. t{x := x′}α〉 fresh−−−→Wα〈t{x := x′}α〉 = W〈t{x := x′}〉α ≡W〈t〉α

There are two subcases, depending on whether mgu(Gα) exists:

4.1 If σ = mgu(Gα), then by i.h., W〈t〉α �≡W〈P 〉α·σ, so since ≡ is a strong
bisimulation (Lem. 3.3), W〈νx. t〉α �≡W〈P 〉α·σ as required.

4.2 If mgu(Gα) fails, then by i.h., W〈t〉α �≡ fail, so since ≡ is a strong
bisimulation (Lem. 3.3), W〈νx. t〉α �≡ fail as required.

5. AbsC1: Immediate, similar to the Var case.

6. AbsC2: Let λx. P
∅
=⇒ λ`x. P , where ` is a fresh location. Moreover, let `′ 6∈

locs(W〈λx. P 〉α). Then:

W〈λx. P 〉α = Wα〈λx. Pα〉 alloc−−−→Wα〈λ`
′
x. Pα〉 ≡Wα〈λ`x. Pα〉 = W〈λ`x. P 〉α

so W〈λx. P 〉α �≡ W〈λ`x. P 〉α. Note that mgu(∅) is the identity substitu-
tion, so we are done.

7. AbsA: Immediate, similar to the Var case.

8. App1: Let t s
G∪H
===⇒ P Q be derived from t

G
=⇒ P and s

H
=⇒ Q. We consider two

subcases, depending on whether mgu(Gα) exists:

8.1 If σ = mgu(Gα) exists. Let us write P =
⊕n

i=1 ti. Then applying the i.h.
for the term t under the weak context W〈� s〉, we have that W〈t s〉α �≡
W〈P s〉α·σ =

⊕n
i=1 W〈ti s〉α·σ. We consider two further subcases, de-

pending on whether mgu(Hα·σ) exists:
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8.1.1 If ρ = mgu(Hα·σ) exists, then applying the i.h. for each 1 ≤ i ≤
n, for the term s under the weak context W〈ti�〉, we have that
W〈ti s〉α·σ �≡W〈tiQ〉α·σ·ρ. Moreover, by the compositionality prop-
erty (Lem. A.2) we have that τ = mgu(Gα ∪ Hα) exists, and it is a
renaming of σ · ρ. In summary, we have:

W〈t s〉α �≡W〈P s〉α·σ by i.h. on t
=
⊕n

i=1 W〈ti s〉α·σ
�≡

⊕n
i=1 W〈tiQ〉α·σ·ρ by i.h. on s

= W〈P Q〉α·σ·ρ
≡W〈P Q〉α·τ

so since≡ is a strong bisimulation (Lem. 3.3), W〈t s〉α �≡W〈P Q〉α·τ ,
as required.

8.1.2 If mgu(Hα·σ) fails, then applying the i.h. for each 1 ≤ i ≤ n, for the
term s under the weak context W〈ti s〉, we have that W〈ti s〉α·σ �≡
fail. Moreover, by the compositionality property (Lem. A.2) we
have that mgu(Gα ∪ Hα) also fails, so we have:

W〈t s〉α �≡W〈P s〉α·σ by i.h. on t
=
⊕n

i=1 W〈ti s〉α·σ
�≡

⊕n
i=1 fail by i.h. on s

= fail

so since ≡ is a strong bisimulation (Lem. 3.3), W〈t s〉α �≡ fail, as
required.

8.2 If mgu(Gα) fails, then applying the i.h. for the term t under the weak
context W〈� s〉 we have that W〈t s〉α �≡ fail. Moreover, by the com-
positionality property (Lem. A.2) we have that mgu(Gα ∪Hα) also fails,
so we are done.

9. App2: Let (λx. P ) v
∅
=⇒ P{x := v}. Then since mgu(∅) is the identity substi-

tution we have:

W〈(λx. P ) v〉α = Wα〈(λx. Pα) vα〉 beta−−−→Wα〈Pα{x := vα}〉 = W〈P{x := v}〉α

This concludes this case. The fact that vα is indeed a value (required to be
able to apply the beta rule), and the last equality are justified by Lem. A.1.

10. Guard1: Similar to the App1 case.

11. Guard2: Let v; t
G
=⇒ P be derived from t

G
=⇒ P . Let us write P =

⊕n
i=1 ti. We

consider two cases, depending on whether mgu(Gα) exists:
11.1 If σ = mgu(Gα) exists, then applying the i.h. on the term t under the

context W〈v;�〉 we have that W〈v; t〉α �≡ W〈v;P 〉α·σ. Moreover, by
Lem. A.1, vα·σ is a value so we may apply the guard rule:

W〈v; t〉α �≡W〈v;P 〉α·σ by i.h. on t
= Wα·σ〈vα·σ;Pα·σ〉
=
⊕n

i=1 W
α·σ〈vα·σ; ti

α·σ〉
guard−−−→−→

⊕n
i=1 W

α·σ〈tiα·σ〉
=
⊕n

i=1 W〈ti〉α·σ
= W〈P 〉α·σ
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so since ≡ is a strong bisimulation (Lem. 3.3), we have that W〈v; t〉α �≡
W〈P 〉α·σ as required.

11.2 If mgu(Gα) fails, then applying the i.h. on the term t under the context
W〈v;�〉 we have that W〈v; t〉α �≡ fail, as required.

12. Unif1: Similar to the App1 case.

13. Unif2: Let v
•
= w

{v •=w}
====⇒ ok. We consider two cases, depending on whether

mgu({vα •= wα}) exists:

13.1 If σ = mgu({vα •= wα}) exists, note that by Lem. A.1, vα·σ and wα·σ are
values and we may apply the unif rule:

W〈v •= w〉α = Wα〈vα •= wα〉
unif−−−→Wα〈ok〉σ

= W〈ok〉α·σ

so W〈v •= w〉α �≡W〈ok〉α·σ as required.

13.2 If mgu({vα •= wα}) fails, note that by Lem. A.1, vα·σ and wα·σ are values
and we may apply the fail rule:

W〈v •= w〉α = Wα〈vα •= wα〉
fail−−−→ fail

so W〈v •= w〉α �≡ fail as required.

Lemma A.3 (Values are irreducible). Let v
G
=⇒ P with v a value. Then

G = ∅ and P = v.

Proof. Straightforward by induction on v. Note that the only rules that may be
applied are Var, Cons, AbsA, and App1.

Lemma A.4 (Diamond property). Let t
G1=⇒

⊕n
i=1 ti and t

G2=⇒
⊕m

j=1 t
?
j .

Then there exist two sets of goals G′1 and G′2, and programs P1, . . . , Pn and
P ?1 , . . . , P

?
m such that:

1. ti
G′2=⇒≡ Pi for all 1 ≤ i ≤ n;

2. t?j
G′1=⇒≡ P ?j for all 1 ≤ j ≤ m;

3. ⊕ni=1Pi ∼ ⊕mj=1P
?
j where “∼” denotes the least equivalence generated by

the ≡-swap axiom, i.e. structural equivalence allowing only permutation of
threads;

4. G1 ∪ G′2 = G2 ∪ G′1.

Proof. By induction on t:

1. Variable, t = x. The only rule that applies is Var, i.e. x
∅
=⇒ x, so this case

is trivial. More precisely, we have that n = m = 1 and t1 = t?1 = x, with
G1 = G2 = ∅, so taking G′1 = G′2 = ∅ and P1 = P ?1 = x it is straightforward
to check that all the properties hold.
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2. Constructor, t = c. Immediate, similar to the variable case.
3. Fresh variable declaration, t = νx. s. There are four cases, depending on

whether each of the simultaneous steps is deduced by Fresh1 or Fresh2:
3.1 Fresh1/Fresh1: Immediate, similar to the variable case.

3.2 Fresh1/Fresh2: Let νx. s
∅
=⇒ νx. s be derived by rule Fresh1 (so that

n = 1, t1 = νx. s, and G1 = ∅), and let νx. s
G2=⇒

⊕m
j=1 t

?
j be derived

by rule Fresh2 from s
G2=⇒ t?j . Then taking G′1 := ∅, G′2 := G2, P1 :=⊕m

j=1 t
?
j and P ?j := t?j for each 1 ≤ j ≤ m, using reflexivity for terms

(Lem. 4.2) we have:

Fresh2

t1 = νx. s
G2=⇒

m⊕
j=1

t?j

(Lem. 4.2)

t?j
∅
=⇒ t?j

3.3 Fresh2/Fresh1: Symmetric to the previous case (Fresh1/Fresh2).

3.4 Fresh2/Fresh2: Let νx. s
G1=⇒

⊕n
i=1 ti be derived by rule Fresh2 from

s
G1=⇒
⊕n

i=1 ti, and let νx. s
G1=⇒
⊕m

j=1 tj be derived by rule Fresh2 from

s
G2=⇒

⊕n
j=1 t

?
j . Then by i.h. on s there exist sets of goals G′1,G

′
2 and

programs P1, . . . , Pn, P
?
1 , . . . , P

?
m such that:

ti
G′2=⇒≡ Pi t?i

G′1=⇒≡ Pj
n⊕
i=1

Pi ∼
m⊕
j=1

Pj G1 ∪ G′2 = G2 ∪ G′1

which concludes this subcase.
4. Abstraction code, t = λx. P . There are four cases, depending on whether

each of the simultaneous steps is deduced by AbsC1 or AbsC2:
4.1 AbsC1/AbsC1: Immediate, similar to the variable case.

4.2 AbsC1/AbsC2: Let λx. P
∅
=⇒ λx. P be derived from rule AbsC1, and let

λx. P
∅
=⇒ λ`x. P be derived from rule AbsC2, where ` is a fresh location.

Note that n = m = 1 and G1 = G2 = ∅. Taking G′1 = G′2 = ∅, for some
fresh location `′, we have that:

AbsC2
λx. P

∅
=⇒ λ`

′
x. P ≡ λ`x. P

AbsA

λ`x. P
∅
=⇒ λ`x. P

which concludes this subcase.
4.3 AbsC2/AbsC1: Symmetric to the previous case (AbsC1/AbsC2).

4.4 AbsC2/AbsC2: Let λx. P
∅
=⇒ λ`1x. P and λx. P

∅
=⇒ λ`2x. P be derived from

rule AbsC2, where `1 and `2 are fresh locations. Note that n = m = 1 and
G1 = G2 = ∅. Taking G′1 = G′2 = ∅ we have that:

AbsA

λ`1x. P
∅
=⇒ λ`1x. P ≡ λ`2x. P

AbsA

λ`2x. P
∅
=⇒ λ`2x. P

5. Allocated abstraction, t = λx. s. Immediate, similar to the variable case.
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6. Application, t = s u. There are four cases, depending on whether each of the
simultaneous steps is deduced by AppC1 or AppC2:

6.1 App1/App1: This subcase is heavy to write—we give a detailed proof—
but actually it follows directly by resorting to the inductive hypothesis.

Let s u
G1∪H1====⇒

⊕n
i=1

⊕n′

i′=1 si ui′ be derived by rule App1 from s
G1=⇒⊕n

i=1 si and u
H1=⇒
⊕n′

i′=1 ui′ . Similarly, let s u
G2∪H2====⇒

⊕m
j=1

⊕m′

j′=1 s
?
j u

?
j′

be derived by rule App1 from s
G2=⇒
⊕m

j=1 s
?
j and u

H2=⇒
⊕m′

j′=1 u
?
j′ .

By i.h. on s, we have that there are sets of goals G′1,G
′
2 and programs

P1, . . . , Pn, P
?
1 , . . . , P

?
m such that for each 1 ≤ i ≤ n and each 1 ≤ j ≤ m:

si
G′2=⇒≡ Pi s?j

G′1=⇒≡ P ?j
n⊕
i=1

Pi ∼
m⊕
j=1

P ?j G1 ∪ G′2 = G2 ∪ G′1

Similarly, by i.h. on u, we have that there are sets of goals H′1,H
′
2 and

programs Q1, . . . , Qn′ , Q
?
1, . . . , Q

?
m′ such that for each 1 ≤ i′ ≤ n′ and

each 1 ≤ j′ ≤ m′:

ui′
H′2=⇒≡ Qi′ u?j′

H′1=⇒≡ Q?j′
n′⊕
i′=1

Qi′ ∼
m′⊕
j′=1

Q?j′ H1 ∪H′2 = H2 ∪H′1

This implies that, for each 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ i′ ≤ n′, and
1 ≤ j′ ≤ m′:

App1

si ui′
G′2∪H

′
2====⇒≡ PiQi′

App1

s?j u
?
j′

G′1∪H
′
1====⇒≡ P ?j Q?j′

Moreover, note that
⊕n

i=1

⊕n′

i′=1 PiQi′ ∼
⊕m

j=1

⊕m′

j′=1 P
?
j Q

?
j′ , and that

G1 ∪ H1 ∪ G′2 ∪ H′2 = G2 ∪ H2 ∪ G′1 ∪ H′1. This concludes this subcase.
6.2 App1/App2: Note that s = λ`x.

⊕n
i=1 ri and u = v, which are both values.

Using the fact that a value only reduces to itself with an empty set of

goals (Lem. A.3), let (λ`x.
⊕n

i=1 ri) v
∅
=⇒ (λ`x.

⊕n
i=1 ri) v be derived

by App1 from λ`x.
⊕n

i=1 ri
∅
=⇒ λ`x.

⊕n
i=1 ri and v

∅
=⇒ v. Moreover, let

(λ`x.
⊕n

i=1 ri) v
∅
=⇒
⊕n

i=1 ri{x := v} be derived by App2. It is then easy
to conclude this subcase noting that, for each 1 ≤ i ≤ n, using reflexivity
for terms (Lem. 4.2), we have:

App2(
λ`x.

n⊕
i=1

ri

)
v

∅
=⇒

n⊕
i=1

ri{x := v}
(Lem. 4.2)

ri{x := v} ∅
=⇒ ri{x := v}

6.3 App2/App1: Symmetric to the previous case (App1/App2).
6.4 App2/App2: There is only one way to derive a reduction using rule App2,

namely (λx.
⊕n

i=1 si) v
∅
=⇒
⊕n

i=1 si{x := v}. It is then easy to conclude
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this subcase noting that, for each 1 ≤ i ≤ n, using reflexivity for terms
(Lem. 4.2), we have:

(Lem. 4.2)

si{x := v} ∅
=⇒ si{x := v}

7. Guarded expression, t = (s;u). There are four cases, depending on whether
each of the simultaneous steps is deduced by Guard1 or Guard2:
7.1 Guard1/Guard1: This subcase follows directly by resorting to the induc-

tive hypothesis, similar to the App1/App1 case.
7.2 Guard1/Guard2: Note that s must be a value s = v. Using the fact that

a value only reduces to itself with an empty set of goals (Lem. A.3), let

v;u
G1=⇒
⊕n

i=1 v;ui be derived by Guard1 from u
G1=⇒
⊕n

i=1 ui. Moreover,

let s;u = v;u
G2=⇒
⊕m

j=1 u
?
j be derived from u

G2=⇒
⊕m

j=1 u
?
j . By i.h. on u,

there are sets of goals G′1,G
′
2 and programs P1, . . . , Pn, P

?
1 , . . . , P

?
m such

that for each 1 ≤ i ≤ n and 1 ≤ j ≤ m:

ui
G′2=⇒≡ Pi u?j

G′1=⇒≡ P ?i
n⊕
i=1

Pi ∼
m⊕
j=1

P ?j G1 ∪ G′2 = G2 ∪ G′1

To conclude this subcase, note that moreover:

ui
G′2=⇒≡ Pi

Guard2

v;ui
G′2=⇒≡ Pi

7.3 Guard2/Guard1: Symmetric to the previous case (Guard1/Guard2).

7.4 Guard2/Guard2: Straightforward by i.h.. More precisely, let v;u
G1=⇒⊕n

i=1 ui be derived from u
G1=⇒

⊕n
i=1 ui and, similarly, let v;u

G2=⇒⊕m
j=1 u

?
j be derived from u

G2=⇒
⊕m

j=1 u
?
j . By i.h. on u, there are sets

of goals G′1,G
′
2 and programs P1, . . . , Pn, P

?
1 , . . . , P

?
m such that for each

1 ≤ i ≤ n and 1 ≤ j ≤ m:

ui
G′2=⇒≡ Pi u?j

G′1=⇒≡ P ?i
n⊕
i=1

Pi ∼
m⊕
j=1

P ?j G1 ∪ G′2 = G2 ∪ G′1

which concludes this subcase.
8. Unification, t = (s

•
= u). There are four cases, depending on whether each

of the simultaneous steps is deduced by Unif1 or Unif2:
8.1 Unif1/Unif1: This subcase follows directly by resorting to the inductive

hypothesis, similar to the App1/App1 case.
8.2 Unif1/Unif2: Note that s and u must both be values, i.e. s = v and

u = w. Using the fact that a value only reduces to itself with an empty

set of goals (Lem. A.3), let v
•
= w

∅
=⇒ v

•
= w be derived by Unif1 from
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v
∅
=⇒ v and w

∅
=⇒ w, and let v

•
= w

{v •=w}
====⇒ ok be derived by Unif2. To

conclude this subcase, note that:

Unif2

v
•
= w

{v •=w}
====⇒ ok

Cons

ok
∅
=⇒ ok

8.3 Unif2/Unif1: Symmetric to the previous case (Unif1/Unif2).
8.4 Unif2/Unif2: There is a unique way that the reduction may be derived

from rule Unif2, namely v
•
= w

{v •=w}
====⇒ ok. To conclude this case, note

that:
Cons

ok
∅
=⇒ ok

We now turn to the proof of Prop. 4.3 itself:

1. Item 1. of the proposition is precisely Lem. A.1.
2. For item 2. of the proposition, let P ⇒ Q, and proceed by induction on P .

If P = fail, then Q = fail, and indeed P � Q with the empty reduction
sequence. If P = t⊕ P ′, then Q = R ⊕Q′ where t⇒ R and P ′ ⇒ Q′. This

in turn means that t
G
=⇒ R′ in such a way that:

R
def
=

{
R′σ if σ = mgu(G)

fail if mgu(G) fails.

Then:
t⊕ P ′ �≡ R⊕ P ′ by Lem. A.2

�≡ R⊕Q′ by i.h.

Using the fact that ≡ is a strong bisimulation (Lem. 3.3), this implies that
P = t⊕ P ′ �≡ R⊕Q′ = Q, as required.

3. For item 3. of the proposition let P ⇒ P1 and P ⇒ P2, and proceed by
induction on P . If P = fail then P1 = P2 = fail and the diamond may
be closed with fail⇒ fail on each side. If P = t⊕ P ′ then P1 = Q1 ⊕ P ′1
where t ⇒ Q1 and P ′ ⇒ P ′1, and similarly P2 = Q2 ⊕ P ′2 where t ⇒ Q2

and P ′ ⇒ P ′2. By i.h. there are programs P ′3, P
′′
3 such that P ′1 ⇒ P ′3 and

P ′2 ⇒ P ′′3 ≡ P ′3. Moreover t
G1=⇒

⊕n
i=1 ti and t

G2=⇒
⊕m

j=1 t
?
j in such a way

that:

Q1 =

{⊕n
i=1 ti

σ1 if σ1 = mgu(G1)

fail if mgu(G1) fails
Q2 =

{⊕m
j=1 t

?
j
σ2 if σ2 = mgu(G2)

fail if mgu(G2) fails

By Lem. A.4, there exist sets of goals G′1,G
′
2 and programsR1, . . . , Rn, R

?
1, . . . , R

?
m

such that, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m:

ti
G′2=⇒ Ri t?j

G′1=⇒ R?j

n⊕
i=1

Ri ∼
m⊕
j=1

R?j G1 ∪ G′2 = G2 ∪ G′1

We consider two subcases, depending on whether mgu(G1) exists:
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3.1 If σ1 = mgu(G1) exists, then by Lem. 4.2 we have that ti
σ1

G′2
σ1

===⇒ Ri
σ1

for each 1 ≤ i ≤ n. We consider two further subcases, depending on
whether mgu(G′2

σ1) exists:

3.1.1 If ρ1 = mgu(G′2
σ1) exists, then by the compositionality property

(Lem. A.2) we have that mgu(G1 ∪ G′2) = mgu(G2 ∪ G′1) also ex-
ists, and it is a renaming of σ1 · ρ1. Again, by the compositionality
property (Lem. A.2), this in turn implies that σ2 = mgu(G2) and
ρ2 = mgu(G′1

σ2) both exist, and σ2 · ρ2 is a renaming of σ1 · ρ1, i.e.
σ2 ·ρ2 = σ1 ·ρ1 · τ for some renaming τ . So by Lem. 4.2 we have that

t?j
σ2

G′1
σ2

===⇒ R?i
σ2 for each 1 ≤ j ≤ m, and the situation is:

t⊕ P ′ +3

��

⊕n
i=1 ti

σ1 ⊕ P ′1

��⊕m
j=1 t

?
j
σ2 ⊕ P ′2 +3⊕m

j=1R
?
j
σ2·ρ2 ⊕ P ′′3 ≡

⊕n
i=1Ri

σ1·ρ1 ⊕ P ′3

The structural equivalence at the bottom of the diagram is justified
as follows:⊕m

j=1R
?
j
σ2·ρ2 ⊕ P ′′3 ∼

⊕n
i=1Ri

σ2·ρ2 ⊕ P ′′3 since
⊕m

j=1R
?
j ∼

⊕n
i=1Ri

≡
⊕n

i=1Ri
σ1·ρ1 ⊕ P ′′3 since σ2 · ρ2 = σ1 · ρ2 · τ

≡
⊕n

i=1Ri
σ1·ρ1 ⊕ P ′3 since P ′′3 ≡ P ′3

3.1.2 If mgu(G′2
σ1) fails, then by the compositionality property (Lem. A.2)

we have that mgu(G1 ∪G′2) = mgu(G2 ∪G′1) also fails. Again, by the
compositionality property (Lem. A.2), this in turn implies that either
σ2 = mgu(G2) fails or mgu(G′1

σ2) fails. On one hand, if mgu(G2) fails,
the situation is:

t⊕ P ′ +3

��

⊕n
i=1 ti

σ1 ⊕ P ′1

��
P ′2 +3 P ′′3 ≡ P ′3

On the other hand, if σ2 = mgu(G2) exists and mgu(G′1
σ2), the situ-

ation is:

t⊕ P ′ +3

��

⊕n
i=1 ti

σ1 ⊕ P ′1

��⊕m
j=1 t

?
j
σ2 ⊕ P ′2 +3 P ′′3 ≡ P ′3

3.2 If σ1 = mgu(G1) fails, then by the compositionality property (Lem. A.2)
we have that mgu(G1∪G′2) = mgu(G2∪G′1) also fails. Again by the com-
positionality property (Lem. A.2) this implies that either σ2 = mgu(G2)
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fails or ρ2 = mgu(G′1
σ2) fails. On one hand, if mgu(G2) fails, the situation

is:

t⊕ P ′ +3

��

P ′1

��
P ′2 +3 P ′′3 ≡ P ′3

On the other hand, if σ2 = mgu(G2) exists and mgu(G′1
σ2), the situation

is:

t⊕ P ′ +3

��

P ′1

��⊕m
j=1 t

?
j
σ2 ⊕ P ′2 +3 P ′′3 ≡ P ′3

A.8 Proof of Prop. 5.2 — Subject Reduction

Definition A.1 (Typing unification problems). We define the judgment
Γ ` G for each unification problem G as follows:

Γ ` vi
•
= wi : Tok for all i = 1..n

Γ ` {v1
•
= w1, . . . , vn

•
= wn}

Lemma A.2 (Subject reduction for the unification algorithm). Let Γ `
G and suppose that G H is a step that does not fail. Then Γ ` H.

Proof. Routine by case analysis on the transition G H, using Lem. 5.1.

We turn to the proof of Prop. 5.2 itself. The proof proceeds by case analysis,
depending on the rule applied to conclude that P → Q. Most cases are straight-
forward using using Lem. 5.1. The only interesting case is when applying the
unif rule. Then we have that:

P1 ⊕W〈v •= w〉 ⊕ P2
unif−−−→ P1 ⊕W〈ok〉σ ⊕ P2

where σ = mgu({v •= w}). Moreover, by hypothesis the program is typable, i.e.

Γ ` P1 ⊕W〈v •= w〉 ⊕ P2 : A

By Lem. 5.1 the following holds for some type B:

Γ ` P1 : A Γ,� : B `W : A Γ ` v •= w : B Γ ` P2 : A

The third judgment can only be derived using the t-unif rule, so necessarily
B = Tok, and in particular Γ `W〈ok〉 : A by contextual substitution (Lem. 5.1).

Note that Γ ` {v •= w}. Moreover the most general unifier exists by hypothesis,
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so the unification algorithm terminates, i.e. there is a finite sequence of n ≥ 0
steps:

{v •= w} = G0  G1  . . . Gn = {x1
•
= v′1, . . . , xn

•
= v′n}

such that for all i, j we have that xi 6= xj and xi 6∈ fv(v′j). Moreover σ =

mgu({v •= w}) = {x1 7→ v′1, . . . , xn 7→ v′n}. Recall that the unification algorithm
preserves typing (Lem. A.2) so for each i = 1..n there is a type Ci such that
Γ ` xi : Ci and Γ ` v′i : Ci hold. This means that Γ is of the form ∆,x1 :
C1, . . . , xn : Cn. By repeatedly applying the substitution property (Lem. 5.1),
we conclude that ∆ `W〈ok〉{x1 := v′1} . . . {xn := v′n} : A, that is ∆ `W〈ok〉σ :
A. Finally, applying Lem. 5.1 we obtain that the following judgment holds, as
required:

Γ ` P1 ⊕W〈ok〉σ ⊕ P2 : A

A.9 Proof of Prop. 6.1 — Properties of the denotational semantics

Let us introduce some auxiliary notation. We write Φ, Φ′, etc. for sequences of
variables (Φ = xA1

1 , . . . , xAnn ) without repetition. If A = (A1, . . . , An) is a se-
quence of types, we write [[A]] for [[A1]] × . . . × [[An]]. If x = (x1, . . . , xn) is a
sequence of variable names, we write xA for the sequence (xA1

1 , . . . , xAnn ). More-
over, if a = (a1, . . . , an) ∈ [[A]] then we write ρ[x 7→ a] for ρ[x1 7→ a1] . . . [xn 7→
an]. Sometimes we treat sequences of variables as sets, when the order is not
relevant. If X is a term or a program we define [[X]]Φρ as follows, by induction on
Φ:

[[X]]∅ρ
def
= [[X]]ρ

[[X]]x
A,Φ
ρ

def
= {b | a ∈ [[A]], b ∈ [[X]]Φρ[x 7→a]}

The following lemma generalizes the Irrelevance property of Lem. 6.1. An easy

corollary of this lemma is that [[P ]] = [[P ]]
fv(P )
ρ , whatever be the environment ρ.

Lemma A.1 (Irrelevance — proof of Lem. 6.1, point 1). Let ` X : A be
a typable term or program.

1. If ρ, ρ′ are environments that agree on fv(X) \ Φ, i.e. for any variable xB ∈
fv(X) \ Φ one has that ρ(xB) = ρ′(xB), then [[X]]Φρ = [[X]]Φρ′ .

2. Let Φ,Φ′ be sequences of variables such that fv(X) \ Φ = fv(X) \ Φ′. Then
[[X]]Φρ = [[X]]Φ

′

ρ .

Proof. 1. By induction on Φ.
1.1 Empty, i.e. Φ = ∅. By induction on X, i.e. the term or program:

1.1.1 Variable, X = xA. Immediate, as [[xA]]ρ = ρ(xA) = ρ′(xA) =
[[xA]]ρ′ .

1.1.2 Constructor, X = c. Immediate, as [[c]]ρ = {c} = [[c]]ρ′ .
1.1.3 Abstraction, X = λxA. P . Note that [[λxA. P ]]ρ = {f} where

f(a) = [[P ]]ρ[xA 7→a]. Symmetrically, [[λxA. P ]]ρ′ = {g} where g(a) =

[[P ]]ρ′[xA 7→a]. Note that, for any fixed a ∈ [[A]], we have that ρ[xA 7→ a]

and ρ′[xA 7→ a] agree on fv(λx. P ) and also on x so they agree on
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fv(P ). This allows us to apply the i.h. to conclude that [[P ]]ρ[xA 7→a] =
[[P ]]ρ′[xA 7→a], so f = g as required.

1.1.4 Allocated abstraction, X = λ`xA. P . Similar to the previous case.
1.1.5 Application, X = t s. Straightforward by i.h., as [[t s]]ρ = {b | f ∈

[[t]]ρ, a ∈ [[s]]ρ, b ∈ f(a)} = {b | f ∈ [[t]]ρ′ , a ∈ [[s]]ρ′ , b ∈ f(a)} = [[t s]]ρ′ .

1.1.6 Unification, X = (t
•
= s). Straightforward by i.h. as [[t

•
= s]]ρ =

{ok | a ∈ [[t]]ρ, b ∈ [[s]]ρ, a = b} = {ok | a ∈ [[t]]ρ′ , b ∈ [[s]]ρ′ , a = b} =

[[t
•
= s]]ρ′ .

1.1.7 Guarded expression, X = t; s. Straightforward by i.h. as [[t; s]]ρ =
{b | a ∈ [[t]]ρ, b ∈ [[s]]ρ} = {b | a ∈ [[t]]ρ′ , b ∈ [[s]]ρ′} = [[t; s]]ρ′ .

1.1.8 Fresh, X = νxA. t. Note that [[νxA. t]]ρ = {b | a ∈ [[A]], b ∈ [[t]]ρ[xA 7→a]}.
Symetrically, [[νxA. t]]ρ′ = {b | a ∈ [[A]], b ∈ [[t]]ρ′[xA 7→a]}. Note that,

for any fixed a ∈ [[A]] we have that ρ[xA 7→ a] and ρ′[xA 7→ a]
agree on fv(νxA. t) and also on x, so they agree on fv(t). This al-
lows us to apply the i.h. to conclude that [[t]]ρ[xA 7→a] = [[t]]ρ′[xA 7→a],

so [[νxA. t]]ρ = [[νxA. t]]ρ′ , as required.
1.1.9 Fail, X = failA. Immediate, as [[failA]]ρ = ∅ = [[failA]]ρ′ .

1.1.10 Alternative, X = t ⊕ P . Straightforward by i.h. as [[t ⊕ P ]]ρ =
[[t]]ρ ∪ [[P ]]ρ = [[t]]ρ′ ∪ [[P ]]ρ′ = [[t⊕ P ]]ρ.

1.2 Non-empty, i.e. Φ = xA, Ψ . Then note that ρ[x 7→ a] and ρ[x 7→ a]
agree on fv(X) \ Ψ for any a ∈ [[A]]. Then:

[[X]]x
A,Ψ
ρ = {b | a ∈ [[A]], [[X]]Ψρ[x7→a]}

= {b | a ∈ [[A]], [[X]]Ψρ′[x 7→a]} by i.h.

= [[X]]x
A,Ψ
ρ′

2. Note that, seen as sets, fv(X) ∩ Φ = fv(X) ∩ Φ′ so the sequence Φ may be
converted into the sequence Φ′ by repeatedly removing spurious variables
(not in fv(X)), adding spurious variables, and swapping variables. Indeed,
we first note that the two following properties hold:
– Add/remove spurious variable. [[X]]Φρ = [[X]]x

A,Φ
ρ if xA 6∈ fv(X).

It suffices to show that [[X]]Φρ = {b | a ∈ [[A]], b ∈ [[X]]Φρ[x 7→a]}, which

is immediate since by item 1. of this lemma, [[X]]Φρ = [[X]]Φρ[x 7→a] for all

a ∈ [[A]]. Note that here we crucially use the fact that [[A]] is a non-empty
set.

– Swap. [[X]]Φ1,x
A,Φ2

ρ = [[X]]x
A,Φ1,Φ2
ρ .

Proceed by induction on Φ1. If Φ1 is empty, it is immediate. Otherwise,
let Φ1 = yB , Φ′1. Then:

[[X]]
yB ,Φ′1,x

A,Φ2
ρ = {c | b ∈ [[B]], c ∈ [[X]]

Φ′1,x
A,Φ2

ρ[y 7→b] }
= {c | b ∈ [[B]], c ∈ [[X]]

xA,Φ′1,Φ2

ρ[y 7→b] } by i.h.

= {c | b ∈ [[B]], a ∈ [[A]], c ∈ [[X]]
Φ′1,Φ2

ρ[y 7→b][x 7→a]}
= {c | a ∈ [[A]], b ∈ [[B]], c ∈ [[X]]

Φ′1,Φ2

ρ[x7→a][y 7→b]} (?)

= [[X]]
xA,yB ,Φ′1,Φ2
ρ
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To justify the (?) step, note that ρ[y 7→ b][x 7→ a] = ρ[x 7→ a][y 7→ b]
holds by definition.

Now we proceed by induction on Φ:
2.1 Empty, i.e. Φ = ∅. Then fv(X) = fv(X) \ Φ′ so Φ′ ∩ fv(X) = ∅. By

iteratively adding spurious variables we have that [[X]]Φρ = [[X]]ρ = [[X]]Φ
′

ρ

as required.
2.2 Non-empty, i.e. Φ = xA, Ψ . We consider two subcases, depending on

whether the variable xA is spurious (i.e. xA 6∈ fv(X)) or not:
2.2.1 If xA 6∈ fv(X) then note that fv(X) \ Ψ = fv(X) \ Φ = fv(X) \ Φ′, so

removing the spurious variable and appyling the i.h. we have that

[[X]]x
A,Ψ
ρ = [[X]]Ψρ = [[X]]Φ

′

ρ .

2.2.2 If xA ∈ fv(X) then since fv(t) \ Φ = fv(t) \ Φ′ we have that xA ∈ Φ′.
Hence Φ′ must be of the form Φ′ = Φ′1, x

A, Φ′2. Then by apply-

ing the i.h. and swapping we have that [[X]]x
A,Ψ
ρ = [[X]]

xA,Φ′1,Φ
′
2

ρ =

[[X]]
Φ′1,x

A,Φ′2
ρ as required.

The following lemma generalizes the Compositionality property of Lem. 6.1.

Lemma A.2 (Compositionality — proof of Lem. 6.1, point 2).

1. [[P ⊕Q]]Φρ = [[P ]]Φρ ∪ [[Q]]Φρ .
2. If W is a context whose hole is of type A, then [[W〈t〉]]ρ = {b | a ∈ [[t]]ρ, b ∈

[[W]]ρ[�A 7→a]}.

Proof.

1. By induction on the length of Φ.
1.1 Empty, Φ = ∅. Then we proceed by induction on P :

1.1.1 If P = fail, then [[fail⊕Q]]ρ = [[Q]]ρ = [[fail]]ρ ∪ [[Q]]ρ.
1.1.2 If P = t⊕ P ′, then:

[[(t⊕ P ′)⊕Q]]ρ = [[t⊕ (P ′ ⊕Q)]]ρ
= [[t]]ρ ∪ [[P ′ ⊕Q]]ρ
= [[t]]ρ ∪ [[P ′]]ρ ∪ [[Q]]ρ by i.h.
= [[t⊕ P ′]]ρ ∪ [[Q]]ρ

1.2 Non-empty, Φ = xA, Φ′. Then:

[[P ⊕Q]]x
A,Φ′

ρ = {b | a ∈ [[A]], b ∈ [[P ⊕Q]]Φ
′

ρ[x 7→a]}
= {b | a ∈ [[A]], b ∈ ([[P ]]Φ

′

ρ[x 7→a] ∪ [[Q]]Φ
′

ρ[x 7→a])} by i.h.

= {b | a ∈ [[A]], b ∈ [[P ]]Φ
′

ρ[x 7→a]} ∪ {b | a ∈ [[A]], b ∈ [[Q]]Φ
′

ρ[x 7→a]}
= [[P ]]x

A,Φ′

ρ ∪ [[Q]]x
A,Φ′

ρ

2. By induction on the structure of the weak context W.
– Empty, W = �.

[[t]]ρ = {b | a ∈ [[t]]ρ, b ∈ {a}}
= {b | a ∈ [[t]]ρ, b ∈ [[�]]ρ[�A 7→a]}
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– Left of an application, W = W′ s.

[[W′〈t〉 s]]ρ = {b | f ∈ [[W′〈t〉]]ρ, c ∈ [[s]]ρ, b ∈ f(c)}
= {b | a ∈ [[t]]ρ, f ∈ [[W′]]ρ[�A 7→a], c ∈ [[s]]ρ, b ∈ f(c)} (By i.h.)
= {b | a ∈ [[t]]ρ, f ∈ [[W′]]ρ[�A 7→a], c ∈ [[s]]ρ[�A 7→a], b ∈ f(c)} (By Lem. 6.1)
= {b | a ∈ [[t]]ρ, b ∈ [[W′ s]]ρ[�A 7→a]}

– Right of an application, W = sW′.

[[sW′〈t〉]]ρ = {b | f ∈ [[s]]ρ, c ∈ [[W′〈t〉]]ρ, b ∈ f(c)}
= {b | f ∈ [[s]]ρ, a ∈ [[t]]ρ, c ∈ [[W′]]ρ[�A 7→a], b ∈ f(c)} (By i.h.)
= {b | a ∈ [[t]]ρ, f ∈ [[s]]ρ[�A 7→a], c ∈ [[W′]]ρ[�A 7→a], b ∈ f(c)} (By Lem. 6.1)
= {b | a ∈ [[t]]ρ, b ∈ [[sW′]]ρ[�A 7→a]}

– Left of a unification, W = W′
•
= s.

[[W′〈t〉 •= s]]ρ = {ok | c ∈ [[W′〈t〉]]ρ, d ∈ [[s]]ρ, c = d}
= {ok | a ∈ [[t]]ρ, c ∈ [[W′]]ρ[�A 7→a], d ∈ [[s]]ρ, c = d} (By i.h.)
= {ok | a ∈ [[t]]ρ, c ∈ [[W′]]ρ[�A 7→a], d ∈ [[s]]ρ[�A 7→a], c = d} (By Lem. 6.1)

= {b | a ∈ [[t]]ρ, b ∈ [[W′
•
= s]]ρ[�A 7→a]}

– Right of a unification, W = s
•
= W′.

[[s
•
= W′〈t〉]]ρ = {ok | c ∈ [[s]]ρ, d ∈ [[W′〈t〉]]ρ, c = d}

= {ok | a ∈ [[t]]ρ, c ∈ [[s]]ρ, d ∈ [[W′]]ρ[�A 7→a], c = d} (By i.h.)
= {ok | a ∈ [[t]]ρ, c ∈ [[s]]ρ[�A 7→a], d ∈ [[W′]]ρ[�A 7→a], c = d} (By Lem. 6.1)

= {b | a ∈ [[t]]ρ, b ∈ [[s
•
= W′]]ρ[�A 7→a]}

– Left of a guarded expression, W = W′; s.

[[W′〈t〉; s]]ρ = {b | c ∈ [[W′〈t〉]]ρ, b ∈ [[s]]ρ}
= {b | a ∈ [[t]]ρ, c ∈ [[W′]]ρ[�A 7→a], b ∈ [[s]]ρ} (By i.h.)
= {b | a ∈ [[t]]ρ, c ∈ [[W′]]ρ[�A 7→a], b ∈ [[s]]ρ[�A 7→a]} (By Lem. 6.1)
= {b | a ∈ [[t]]ρ, b ∈ [[W′; s]]ρ[�A 7→a]}

– Right of a guarded expression, W = s;W′.

[[s;W′〈t〉]]ρ = {b | c ∈ [[s]]ρ, b ∈ [[W′〈t〉]]ρ}
= {b | a ∈ [[t]]ρ, c ∈ [[s]]ρ, b ∈ [[W′]]ρ[�A 7→a]} (By i.h.)
= {b | a ∈ [[t]]ρ, c ∈ [[s]]ρ[�A 7→a], b ∈ [[W′]]ρ[�A 7→a]} (By Lem. 6.1)
= {b | a ∈ [[t]]ρ, b ∈ [[s;W′]]ρ[�A 7→a]}

Lemma A.3 (Free variables). The following hold:

1. fv(P ⊕Q) = fv(P ) ∪ fv(Q)
2. fv(W〈t〉) = fv(W) ∪ fv(t)
3. fv(W〈P 〉) = fv(W) ∪ fv(P )
4. fv(tσ) ⊆ (fv(t) \ suppσ) ∪

⋃
x∈suppσ fv(σ(x))
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5. fv(Pσ) ⊆ (fv(P ) \ suppσ) ∪
⋃
x∈suppσ fv(σ(x))

Proof. Routine by induction on P , W, or t, correspondingly.

Lemma A.4 (Interpretation of values — proof of Lem. A.4, point 3).
If v is a value then [[v]]ρ is a singleton.

Proof. By induction on v. If v is a variable or an allocated abstraction, it is
immediate, so let v = c v1 . . . vn. In that case, by induction on n we claim that
[[c v1 . . . vn]]ρ is a singleton of the form {a} where moreover a is unitary:

1. If n = 0. Then [[c]]ρ = {c}, which is a singleton. Moreover, recall that c is
always requested to be unitary.

2. If n > 0. Then by i.h. of the innermost induction [[c v1 . . . vn−1]]ρ is a sin-
gleton of the form {f0}, where f0 is unitary, and by i.h. of the outermost
induction [[vn]]ρ is a singleton of the form {a0}, so we have that:

[[c v1 . . . vn−1 vn]]ρ = {b | f ∈ [[c v1 . . . vn−1]]ρ, a ∈ [[vn]]ρ, b ∈ f(a)}
= f0(a0)

Since f0 is unitary, f0(a0) is a singleton of the form {b}, where b is unitary,
as required.

Lemma A.5 (Interpretation of substitution — proof of Lem. 6.1, point
4). Let σ = {xA1

1 7→ v1, . . . , x
An
n 7→ vn} be a substitution with support {xA1

1 , . . . , xAn }
and such that xi /∈ fv(vj) for any two 1 ≤ i, j ≤ n. Recall that the interpretation
of a value is always a singleton (Lem. 6.1), so let [[vi]]ρ = {ai} for each i = 1..n.
Then:

1. [[tσ]]ρ = [[t]]ρ[x1 7→a1]...[xn 7→an]
2. [[Pσ]]ρ = [[P ]]ρ[x1 7→a1]...[xn 7→an]

Proof. By simultaneous induction on the term t (resp. program P ).

1. Variable, t = xA. There are two subcases, depending on whether x ∈
{x1, . . . , xn} or not.

1.1 If x = xi for some 1 ≤ i ≤ n, then:

[[(xAi )σ]]ρ = [[vi]]ρ = {ai} = [[xAi ]]ρ[x1 7→a1]...[xn 7→an]

1.2 If x /∈ {x1, . . . , xn}, then:

[[(xA)σ]]ρ = ρ(xA) = [[xA]]ρ[x1 7→a1]...[xn 7→an]

2. Constructor, t = c. Immediate, as:

[[cσ]]ρ = [[c]]ρ = {c} = [[c]]ρ[x1 7→a1]...[xn 7→an]
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3. Abstraction code, t = λxA. P . Then:

[[(λxA. P )σ]]ρ = [[λxA. Pσ]]ρ
= {f} where f(a) = [[Pσ]]ρ[x 7→a]
= {g} where g(a) = [[P ]]ρ[x7→a][x1 7→a1]...[xn 7→an] (By i.h.)
= [[λxA. P ]]ρ[x1 7→a1]...[xn 7→an]

4. Allocated abstraction, t = λ`x. P . Similar to the previous case.
5. Application, t = s u. Then:

[[(s u)σ]]ρ = [[sσ uσ]]ρ
= {b | f ∈ [[sσ]]ρ, a ∈ [[uσ]]ρ, b ∈ f(a)}
= {b | f ∈ [[s]]ρ[x1 7→a1]...[xn 7→an], a ∈ [[u]]ρ[x1 7→a1]...[xn 7→an], b ∈ f(a)} (By i.h.)
= [[s u]]ρ[x1 7→a1]...[xn 7→an]

6. Unification, t = (s
•
= u). Then:

[[(s
•
= u)σ]]ρ = [[sσ

•
= uσ]]ρ

= {ok | a ∈ [[sσ]]ρ, b ∈ [[uσ]]ρ, a = b}
= {ok | a ∈ [[s]]ρ[x1 7→a1]...[xn 7→an], b ∈ [[u]]ρ[x1 7→a1]...[xn 7→an], a = b} (By i.h.)

= [[s
•
= u]]ρ[x1 7→a1]...[xn 7→an]

7. Guarded expression, t = s;u. Then:

[[(s;u)σ]]ρ = [[sσ;uσ]]ρ
= {a | b ∈ [[sσ]]ρ, a ∈ [[uσ]]ρ}
= {a | b ∈ [[s]]ρ[x1 7→a1]...[xn 7→an], a ∈ [[u]]ρ[x1 7→a1]...[xn 7→an]} (By i.h.)
= [[s;u]]ρ[x1 7→a1]...[xn 7→an]

8. Fresh, t = νxA. s. Then:

[[(νxA. s)σ]]ρ = [[νxA. sσ]]ρ
= {b | a ∈ [[A]], b ∈ [[sσ]]ρ[x 7→a]}
= {b | a ∈ [[A]], b ∈ [[s]]ρ[x 7→a][x1 7→a1]...[xn 7→an]} (By i.h.)
= {b | a ∈ [[A]], b ∈ [[s]]ρ[x1 7→a1]...[xn 7→an][x 7→a]} (Since x /∈ {x1, . . . , xn})
= [[νxA. s]]ρ[x1 7→a1]...[xn 7→an]

9. Fail, P = fail. Immediate, as:

[[failσ]]ρ = [[fail]]ρ = ∅ = [[fail]]ρ[x1 7→a1]...[xn 7→an]

10. Alternative, P = t⊕ P . Then:

[[(t⊕ P )σ]]ρ = [[tσ ⊕ Pσ]]ρ
= [[tσ]]ρ ∪ [[Pσ]]ρ
= [[t]]ρ[x1 7→a1]...[xn 7→an] ∪ [[P ]]ρ[x1 7→a1]...[xn 7→an] (By i.h.)
= [[t⊕ P ]]ρ[x1 7→a1]...[xn 7→an]
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A.10 Proof of Thm. 6.2 — Soundness

Definition A.1 (Goal satisfaction). Let ρ be a fixed variable assignment, and

let xA be a fixed sequence of variables. Moreover, let G = {(v1
•
= w1), . . . , (vn

•
=

wn)} be a unification problem. Given a sequence of elements a ∈ [[A]] we say that
a satisfies G (with respect to ρ,x), written a �ρ,x G, if and only if [[vi]]ρ[x 7→a] =
[[wi]]ρ[x 7→a] for all i = 1..n. We write a � G if ρ and x are clear from the context.

Lemma A.2 (Unification preserves satisfaction). Let G H be a step of
the unification algorithm that does not fail. Then for any ρ,xA we have that:

{a | a �ρ,x G} = {a | a �ρ,x H}

Proof. Note that the step does not fail so it cannot be the result of applying the
u-clash or the u-occurs-check rules. We consider the five remaining cases:

1. u-delete: Our goal is to prove that:

{a | a �ρ,x {y
•
= y} ] G′} = {a | a �ρ,x G′}

This is immediate since [[y]]ρ[x7→a] = [[y]]ρ[x7→a] always holds.

2. u-orient: Our goal is to prove that: {a | a �ρ,x {v
•
= y}]G′} = {a | a �ρ,x

{y •= v} ] G′}. Immediate by definition.
3. u-match-lam: Our goal is to prove that:

{a | a �ρ,x {λ`y. P
•
= λ`y. P} ] G′} = {a | a �ρ,x G′}

This is immediate since [[λ`y. P ]]ρ[x7→a] = [[λ`y. P ]]ρ[x7→a] always holds.
4. u-match-cons: Our goal is to prove that:

{a | a �ρ,x {c v1 . . . vn
•
= c w1 . . . wn}]G′} = {a | a �ρ,x {v1

•
= w1, . . . , vn

•
= wn}]G′}

Recall that [[c]]ρ[x 7→a] = {c} is Tc-unitary, and the interpretation of a value is
always a singleton (Lem. 6.1), so let [[vi]]ρ[x 7→a] = {bi} and [[wi]]ρ[x7→a] = {b′i}.
It suffices to note that:

a �ρ,x {c v1 . . . vn
•
= c w1 . . . wn}

⇐⇒ [[c v1 . . . vn]]ρ[x 7→a] = [[c w1 . . . wn]]ρ[x7→a]

⇐⇒ c(b1) . . . (bn) = c(b′1) . . . (b′n)
⇐⇒ bi = b′i for all i = 1..n (?)
⇐⇒ [[vi]]ρ[x 7→a] = [[wi]]ρ[x 7→a], for all i = 1..n

⇐⇒ a �ρ,x {v1
•
= w1, . . . , vn

•
= wn}

The step (?) is justified by the fact that we assume that constructors are
injective.

5. u-eliminate: Our goal is to prove that:

{a | a �ρ,x {y
•
= v} ] G′} = {a | a �ρ,x {y

•
= v} ] G′{y := v}}
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if y ∈ fv(G′) \ fv(v). Moreover, let G′ = {(v1
•
= w1), . . . , (vn

•
= wn)}. Recall

that the interpretation of a value is always a singleton (Lem. 6.1), so let
[[v]]ρ[x 7→a] = {b}. Let a ∈ [[A]]. It suffices to show that whenever ρ[x 7→
a](y) = b then the following equivalence holds:

a �ρ,x G′ ⇐⇒ a �ρ,x G′{y := v}

Note that, for each fixed i = 1..n:

[[vi]]ρ[x 7→a] = [[vi]]ρ[x7→a][y 7→b] (?)
= [[vi{y := v}]]ρ[x 7→a] (By Lem. 6.1)

The step (?) is trivial because, as we have already noted, ρ[x 7→ a](y) = b
so ρ[x 7→ a] and ρ[x 7→ a][y 7→ b] are the same variable assignment. And,
similarly, [[wi]]ρ[x 7→a] = [[wi{y := v}]]ρ[x 7→a]. Then:

a �ρ,x G′

⇐⇒ [[vi]]ρ[x7→a] = [[wi]]ρ[x7→a] for all i = 1..n
⇐⇒ [[vi{y := v}]]ρ[x 7→a] = [[wi{y := v}]]ρ[x 7→a] for all i = 1..n (Lem. 6.1)
⇐⇒ a �ρ,x G′{y := v}

The following theorem generalizes Thm. 6.2:

Theorem A.10.3 (Soundness). Let Γ ` P : A and P → Q. Let Φ = fv(P )
and Φ′ = fv(Q). Then for any variable assignment ρ:

[[P ]]Φρ ⊇ [[Q]]Φ
′

ρ

Moreover, the inclusion is an equality for all reduction rules other than the fail

rule.

Proof. Let P → Q. We consider six cases, depending on the rule applied to
conclude that P → Q:

1. alloc: Note that Φ = Φ′, and suppose that Φ = yB. Then:

[[P1 ⊕W〈λxA. Q〉 ⊕ P2]]Φρ = {a | b ∈ [[B]], a ∈ [[P1 ⊕W〈λxA. Q〉 ⊕ P2]]ρ[y 7→b]}
= {a | b ∈ [[B]], a ∈ [[P1 ⊕W〈λ`xA. Q〉 ⊕ P2]]ρ[y 7→b]} (?)
= [[P1 ⊕W〈λ`xA. Q〉 ⊕ P2]]Φρ

To justify (?), note that, by Compositionality (Lem. 6.1), it suffices to prove
that [[λxA. Q]]ρ[y 7→b] = [[λ`xA. Q]]ρ[y 7→b] for all b ∈ [[B]]. This holds by defini-
tion so we are done.

2. beta: Note that Φ = Φ′, zC where

z =

{
∅ if x /∈ fv(Q)

fv(v) \ fv(P1 ⊕W〈(λx.Q)�〉 ⊕ P2) if x ∈ fv(Q)
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Moreover, suppose that Φ′ = yB. Then:

[[P1 ⊕W〈(λ`xA. Q) v〉 ⊕ P2]]y
B ,zC

ρ

= {a | b ∈ [[B]], c ∈ [[C]], a ∈ [[P1 ⊕W〈(λ`xA. Q) v〉 ⊕ P2]]ρ[y 7→b][z 7→c]}
= {a | b ∈ [[B]], a ∈ [[P1 ⊕W〈Q{xA := v}〉 ⊕ P2]]ρ[y 7→b]} (?)

= [[P1 ⊕W〈Q{xA := v}〉 ⊕ P2]]y
B

ρ

To justify (?) we proceed as follows. Let us write ρ′ for ρ[y 7→ b]. Recall
that the interpretation of a value is always a singleton (Lem. 6.1), so let
[[v]]ρ′[z 7→c] = {a0}. By Compositionality (Lem. 6.1) it suffices to note that:

[[(λ`xA. Q) v]]ρ′[z 7→c] = {b | a ∈ [[v]]ρ′[z 7→c], b ∈ [[Q]]ρ′[z 7→c][xA 7→a]}
= [[Q]]ρ′[z 7→c][xA 7→a0]
= [[Q]]ρ′[xA 7→a0] (By Irrelevance (Lem. 6.1))
= [[Q{xA := v}]]ρ′ (By Lem. 6.1)

3. guard: Note that Φ = Φ′, zC , where zC = fv(v) \ fv(P1 ⊕ W〈�; t〉 ⊕ P2).
Suppose that Φ′ = yB. Then:

[[P1 ⊕W〈v; t〉 ⊕ P2]]y
B ,zC

ρ = {a | b ∈ [[B]],c ∈ [[C]],a ∈ [[P1 ⊕W〈v; t〉 ⊕ P2]]ρ[y 7→b][z 7→c]}
= {a | b ∈ [[B]],a ∈ [[P1 ⊕W〈t〉 ⊕ P2]]ρ[y 7→b]} (?)

= [[P1 ⊕W〈t〉 ⊕ P2]]y
B

ρ

To justify (?) we proceed as follows. Let us write ρ′ for ρ[y 7→ b]. Recall
that the interpretation of a value is always a singleton (Lem. 6.1), so let
[[v]]ρ′[z 7→c] = {b0}. By Compositionality (Lem. 6.1) it suffices to note that:

[[v; t]]ρ′[z 7→c] = {a | b ∈ [[v]]ρ′[z 7→c], a ∈ [[t]]ρ′[z 7→c]} (By Irrelevance Lem. 6.1)
= [[t]]ρ′

4. fresh: Note that Φ′ = Φ, yA where y is a fresh variable. Suppose that Φ =
zB. Then:

[[P1 ⊕W〈νxA. t〉 ⊕ P2]]Φρ = {a | b ∈ [[B]], a ∈ [[P1 ⊕W〈νxA. t〉 ⊕ P2]]ρ[z 7→b]}
= {a | b ∈ [[B]], a ∈ [[P1 ⊕W〈t{xA := yA}〉 ⊕ P2]]y

A

ρ[z 7→b]} (?)

= [[P1 ⊕W〈t{xA := yA}〉 ⊕ P2]]Φ,y
A

ρ

To justify (?) we proceed as follows. Let ρ′ stand for ρ[z 7→ b]. By Irrele-

vance (Lem. 6.1), [[P1]]ρ′ = [[P1]]y
A

ρ′ . Similarly, [[P2]]ρ′ = [[P2]]y
A

ρ′ . By Compo-

sitionality (Lem. 6.1), it suffices to show that [[W〈νxA. t〉]]ρ′ = [[W〈t{xA :=

yA}〉]]y
A

ρ′ . Indeed:

[[W〈νxA. t〉]]ρ′
= {c | b ∈ [[νxA. t]]ρ′ , c ∈ [[W]]ρ′[�7→b]} (By Lem. 6.1)
= {c | a ∈ [[A]], b ∈ [[t]]ρ′[xA 7→a], c ∈ [[W]]ρ′[� 7→b]}
= {c | a ∈ [[A]], b ∈ [[t{xA := yA}]]ρ′[yA 7→a], c ∈ [[W]]ρ′[� 7→b]} (By Lem. 6.1 and Lem. 6.1)
= {c | a ∈ [[A]], b ∈ [[t{xA := yA}]]ρ′[yA 7→a], c ∈ [[W]]ρ′[yA 7→a][� 7→b]} (By Lem. 6.1)
= {c | a ∈ [[A]], c ∈ [[W〈t{xA := yA}〉]]ρ′[yA 7→a]} (By Lem. 6.1)

= [[W〈t{xA := yA}〉]]y
A

ρ′
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5. unif: Our goal is to prove that [[P1⊕W〈v
•
= w〉⊕P2]]Φρ = [[P1⊕W〈ok〉σ⊕P2]]Φ

′

ρ ,

where σ = mgu({v •
= w}). Note that Φ′ is a subset of Φ, so suppose that

Φ = Φ′,yB and Φ′ = xA. Note also that σ = mgu(v
•
= w) exists, so {v •=

w} ∗ {x1
•
= v1, . . . , xn

•
= vn} such that xi /∈ fv(vj) for all i, j, and the most

general unifier is σ = {x1 7→ v1, . . . , xn 7→ vn}. Moreover, recall that the
interpretation of a value is always a singleton (Lem. 6.1), so for each fixed

assignment ρ′ let us write bρ
′

i for the only element in [[vi]]ρ′ . Moreover, let
zC = xA,yB. By Compositionality (Lem. 6.1) and Irrelevance (Lem. 6.1),
it suffices to note that:

[[W〈v •= w〉]]zC

ρ

= {a | c ∈ [[C]], a ∈ [[W〈v •= w〉]]ρ[z 7→c]}
= {a | c ∈ [[C]], b ∈ [[v

•
= w]]ρ[z 7→c], a ∈ [[W]]ρ[z 7→c][� 7→b]} (By Lem. 6.1)

= {a | c ∈ [[C]], b ∈ [[v
•
= w]]ρ[z 7→c], a ∈ [[W]]ρ[z 7→c][� 7→ok]}

= {a | c ∈ [[C]], c �ρ,z {v
•
= w}, a ∈ [[W]]ρ[z 7→c][� 7→ok]}

= {a | c ∈ [[C]], c �ρ,z {x1
•
= v1, . . . , xn

•
= vn}, a ∈ [[W]]ρ[z 7→c][� 7→ok]} (By Lem. A.2)

= {a | c ∈ [[C]], ρ[z 7→ c](xi) = b
ρ[z 7→c]
i for all i, a ∈ [[W〈ok〉]]ρ[z 7→c]} (By Lem. 6.1)

= {a | c ∈ [[C]], a ∈ [[W〈ok〉]]
ρ[z 7→c][x1 7→bρ[z 7→c]

1 ]...[xn 7→bρ[z 7→c]
n ]

} (?)

= {a | c ∈ [[C]], a ∈ [[W〈ok〉σ]]ρ[z 7→c]} (By Lem. 6.1)

= [[W〈ok〉σ]]z
C

ρ

= [[W〈ok〉σ]]x
A

ρ (By Lem. 6.1)

To justify (?) note that ρ[z 7→ c](xi) = {bρ[z 7→c]
i } for all i = 1..n. Therefore,

we can write ρ[z 7→ c] as ρ[z 7→ c][x1 7→ b
ρ[z 7→c]
1 ] . . . [xn 7→ b

ρ[z 7→c]
n ].

6. fail: Our goal is to prove that:

[[P1 ⊕W〈v •= w〉 ⊕ P2]]Φρ ⊇ [[P1 ⊕ P2]]Φ
′

ρ

which is immediate by definition.
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