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Abstract. In typical non-idempotent intersection type systems, proof
normalization is not confluent. In this paper we introduce a conflu-
ent non-idempotent intersection type system for the λ-calculus. Typing
derivations are presented using proof term syntax. The system enjoys
good properties: subject reduction, strong normalization, and a very reg-
ular theory of residuals. A correspondence with the λ-calculus is estab-
lished by simulation theorems. The machinery of non-idempotent inter-
section types allows us to track the usage of resources required to obtain
an answer. In particular, it induces a notion of garbage: a computation
is garbage if it does not contribute to obtaining an answer. Using these
notions, we show that the derivation space of a λ-term may be factor-
ized using a variant of the Grothendieck construction for semilattices.
This means, in particular, that any derivation in the λ-calculus can be
uniquely written as a garbage-free prefix followed by garbage.

Keywords: Lambda calculus · Intersection types · Derivation space.

1 Introduction

Our goal in this paper is attempting to understand the spaces of computations
of programs. Consider a hypothetical functional programming language with
arithmetic expressions and tuples. All the possible computations starting from
the tuple (1 + 1, 2 ∗ 3 + 1) can be arranged to form its “space of computations”:

(1 + 1, 2 ∗ 3 + 1)

��

// (1 + 1, 6 + 1)

��

// (1 + 1, 7)

��
(2, 2 ∗ 3 + 1) // (2, 6 + 1) // (2, 7)

In this case, the space of computations is quite easy to understand, because the
subexpressions (1+1) and (2∗3+1) cannot interact with each other. Indeed, the
space of computations of a tuple (A,B) can always be understood as the product
of the spaces of A and B. In the general case, however, the space of computations

? Work partially supported by CONICET.
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of a program may have a much more complex structure. For example, it is not
easy to characterize the space of computations of a function application f(A).
The difficulty is that f may use the value of A zero, one, or possibly many times.

The quintessential functional programming language is the pure λ-calculus.
Computations in the λ-calculus have been thoroughly studied since its concep-
tion in the 1930s. The well-known theorem by Church and Rosser [10] states
that β-reduction in the λ-calculus is confluent, which means, in particular, that
terminating programs have unique normal forms. Another result by Curry and
Feys [12] states that computations in the λ-calculus may be standardized, mean-
ing that they may be converted into a computation in canonical form. A refine-
ment of this theorem by Lévy [25] asserts that the canonical computation thus
obtained is equivalent to the original one in a strong sense, namely that they are
permutation equivalent. In a series of papers [29,30,31,32], Melliès generalized
many of these results to the abstract setting of axiomatic rewrite systems.

Let us discuss “spaces of computations” more precisely. The derivation space
of an object x in some rewriting system is the set of all derivations, i.e. sequences
of rewrite steps, starting from x. In this paper, we will be interested in the pure
λ-calculus, and we will study finite derivations only. In the λ-calculus, a transi-
tive relation between derivations may be defined, the prefix order. A derivation
ρ is a prefix of a derivation σ, written ρ v σ, whenever ρ performs less computa-
tional work than σ. Formally, ρ v σ is defined to hold whenever the projection
ρ/σ is empty3. For example, if K = λx.λy.x, the derivation space of the term
(λx.xx)(Kz) can be depicted with the reduction graph below. Derivations are
directed paths in the reduction graph, and ρ is a prefix of σ if there is a directed
path from the target of ρ to the target of σ. For instance, SR2 is a prefix of
RS′T ′:

(λx.xx)(Kz)
R //

S

))

(λx.xx)(λy.z) S′

''
(Kz)(λy.z)

R′
2 // (λy.z)(λy.z) T ′

$$
(Kz)(Kz)

R1 00

R2 // (λy.z)(Kz)
R′

1
55

T // z

Remark that v is reflexive and transitive but not antisymmetric, i.e. it is a quasi-
order but not an order. For example RS′ v SR1R

′
2 v RS′ but RS′ 6= SR1R

′
2.

Antisymmetry may be recovered as usual when in presence of a quasi-order,
by working modulo permutation equivalence: two derivations ρ and σ are said
to be permutation equivalent, written ρ ≡ σ, if ρ v σ and σ v ρ. Working
modulo permutation equivalence is reasonable because Lévy’s formulation of
the standardization theorem ensures that permutation equivalence is decidable.

Derivation spaces are known to exhibit various regularities [25,35,24,28,26,2].
In his PhD thesis, Lévy [25] showed that the derivation space of a term is an up-
per semilattice: any two derivations ρ, σ from a term t have a least upper bound
ρ t σ, defined as ρ(σ/ρ), unique up to permutation equivalence. On the other

3 The notion of projection defined by means of residuals is the standard one, see e.g.
[4, Chapter 12] or [33, Section 8.7].
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hand, the derivation space of a term t is not an easy structure to understand in
general4. For example, relating the derivation space of an application ts with the
derivation spaces of t and s appears to be a hard problem. Lévy also noted that
the greatest lower bound of two derivations does not necessarily exist, meaning
that the derivation space of a term does not form a lattice in general. Even when
it forms a lattice, it may not necessarily be a distributive lattice, as observed
for example by Laneve [24]. In [29], Melliès showed that derivation spaces in any
rewriting system satisfying certain axioms may be factorized using two spaces,
one of external and one of internal derivations.

The difficulty to understand derivation spaces is due to three pervasive phe-
nomena of interaction between computations. The first phenomenon is duplica-
tion: in the reduction graph of above, the step S duplicates the step R, resulting
in two copies of R: the steps R1 and R2. In such situation, one says that R1 and
R2 are residuals of R, and, conversely, R is an ancestor of R1 and R2. The second
phenomenon is erasure: in the diagram above, the step T erases the step R′1,
resulting in no copies of R′1. The third phenomenon is creation: in the diagram
above, the step R2 creates the step T , meaning that T is not a residual of a step
that existed prior to executing R2; that is, T has no ancestor.

These three interaction phenomena, especially duplication and erasure, are
intimately related with the management of resources. In this work, we aim to
explore the hypothesis that having an explicit representation of resource
management may provide insight on the structure of derivation spaces.

There are many existing λ-calculi that deal with resource management explic-
itly [6,15,20,21], most of which draw inspiration from Girard’s Linear Logic [18].
Recently, calculi endowed with non-idempotent intersection type systems, have
received some attention [14,5,7,8,19,34,22]. These type systems are able to stat-
ically capture non-trivial dynamic properties of terms, particularly normaliza-
tion, while at the same time being amenable to elementary proof techniques by
induction. Intersection types were originally proposed by Coppo and Dezani-
Ciancaglini [11] to study termination in the λ-calculus. They are characterized
by the presence of an intersection type constructor A∩B. Non-idempotent inter-
section type systems are distinguished from their usual idempotent counterparts
by the fact that intersection is not declared to be idempotent, i.e. A and A∩A
are not equivalent types. Rather, intersection behaves like a multiplicative con-
nective in linear logic. Arguments to functions are typed many times, typically
once per each time that the argument will be used. Non-idempotent intersection
types were originally formulated by Gardner [17], and later reintroduced by de
Carvalho [9].

In this paper, we will use a non-idempotent intersection type system based
on system W of [8] (called system H in [7]). Let us recall its definition. Terms
are as usual in the λ-calculus (t ::= x | λx.t | t t). Types A,B, C, . . . are defined
by the grammar:

A ::= α | M → A M ::= [Ai]ni=1 with n ≥ 0

4 Problem 2 in the RTA List of Open Problems [13] poses the open-ended question of
investigating the properties of “spectra”, i.e. derivation spaces.
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where α ranges over one of denumerably many base types, and M represents a
multiset of types. Here [Ai]ni=1 denotes the multiset A1, . . . ,An with their respec-
tive multiplicities. A multiset [Ai]ni=1 intuitively stands for the (non-idempotent)
intersection A1∩ . . .∩An. The sum of multisetsM+N is defined as their union
(adding multiplicities). A typing context Γ is a partial function mapping vari-
ables to multisets of types. The domain of Γ is the set of variables x such that
Γ (x) is defined. We assume that typing contexts always have finite domain and
hence they may be written as x1 :M1, . . . , xn :Mn. The sum of contexts Γ +∆
is their pointwise sum, i.e. (Γ + ∆)(x) := Γ (x) + ∆(x) if Γ (x) and ∆(x) are
both defined, (Γ +∆)(x) := Γ (x) if ∆(x) is undefined, and (Γ +∆)(x) := ∆(x)
if Γ (x) is undefined. We write Γ +n

i=1 ∆i to abbreviate Γ +∆1 + . . .+∆n. The
disjoint sum of contexts Γ ⊕∆ stands for Γ +∆, provided that the domains of
Γ and ∆ are disjoint. A typing judgment is a triple Γ ` t : A, representing the
knowledge that the term t has type A in the context Γ . Type assignment rules
for system W are as follows.

Definition 1.1 (System W).

var
x : [A] ` A

Γ ⊕ (x :M) ` t : A
lam

Γ ` λx.t :M→A

Γ ` t : [Bi]ni=1 → A (∆i ` s : Bi)ni=1
app

Γ +n
i=1 ∆i ` t s : A

Observe that the app rule has n + 1 premises, where n ≥ 0. System W enjoys
various properties, nicely summarized in [8].

There are two obstacles to adopting systemW for studying derivation spaces.
The first obstacle is mostly a matter of presentation—typing derivations use a
tree-like notation, which is cumbersome. One would like to have an alternative
notation based on proof terms. For example, one may define proof terms for the
typing rules above using the syntax π ::= xA | λx.π | π[π, . . . , π], in such a way
that xA encodes an application of the var axiom, λx.π encodes an application of
the lam rule to the typing derivation encoded by π, and π1[π2, . . . , πn] encodes an
application of the app rule to the typing derivations encoded by π1, π2, . . . , πn.
For example, using this notation λx.x[α,α]→β [xα, xα] would represent the follow-
ing typing derivation:

var
x : [α, α]→ β ` x : [α, α]→ β

var
x : [α] ` x : α

var
x : [α] ` x : α

app
x : [[α, α]→ β, α, α] ` xx : β

lam
` λx.xx : [[α, α]→ β, α, α]→ β

The second obstacle is a major one for our purposes: proof normalization in this
system is not confluent. The reason is that applications take multiple arguments,
and a β-reduction step must choose a way to distribute these arguments among
the occurrences of the formal parameters. For instance, the following critical pair
cannot be closed:

(λx.y[α]→[α]→β [xα][xα])[z[γ]→α[zγ ], z[]→α[]]

ss ++
y[α]→[α]→β [z[γ]→α[zγ ]][z[]→α[]] y[α]→[α]→β [z[]→α[]][z[γ]→α[zγ ]]
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The remainder of this paper is organized as follows:

– In Sec. 2, we review some standard notions of order and rewriting theory.
– In Sec. 3, we introduce a confluent calculus λ# based on system W. The

desirable properties of system W of [8] still hold in λ#. Moreover, λ# is con-
fluent. We impose confluence forcibly, by decorating subtrees with distinct
labels, so that a β-reduction step may distribute the arguments in a unique
way. Derivation spaces in λ# have very regular structure, namely they are
distributive lattices.

– In Sec. 4, we establish a correspondence between derivation spaces in the
λ-calculus and the λ#-calculus via simulation theorems, which defines a mor-
phism of upper semilattices.

– In Sec. 5, we introduce the notion of a garbage derivation. Roughly, a deriva-
tion in the λ-calculus is garbage if it maps to an empty derivation in the λ#-
calculus. This gives rise to an orthogonal notion of garbage-free derivation.
The notion of garbage-free derivation is closely related with the notions of
needed step [33, Section 8.6], typed occurrence of a redex [8], and external
derivation [29]. Using this notion of garbage we prove a factorization theorem
reminiscent of Melliès’ [29]. The upper semilattice of derivations of a term in
the λ-calculus is factorized using a variant of the Grothendieck construction.
Every derivation is uniquely decomposed as a garbage-free prefix followed
by a garbage suffix.

– In Sec. 6, we conclude.

Note. Proofs including a ♣ symbol are spelled out in detail in the appendix.
You may also refer to the second author’s master’s thesis [?] for the full details.

2 Preliminaries

We recall some standard definitions. An upper semilattice is a poset (A,≤) with
a least element or bottom ⊥ ∈ A, and such that for every two elements a, b ∈ A
there is a least upper bound or join (a∨ b) ∈ A. A lattice is an upper semilattice
with a greatest element or top > ∈ A, and such that for every two elements a, b ∈
A there is a greatest lower bound or meet (a∧ b) ∈ A. A lattice is distributive if
∧ distributes over ∨ and vice versa. A morphism of upper semilattices is given
by a monotonic function f : A → B, i.e. a ≤ b implies f(a) ≤ f(b), preserving
the bottom element, i.e. f(⊥) = ⊥, and joins, i.e. f(a ∨ b) = f(a) ∨ f(b) for all
a, b ∈ A. Similarly for morphisms of lattices. Any poset (A,≤) forms a category
whose objects are the elements of A and morphisms are of the form a ↪→ b for
all a ≤ b. The category of posets with monotonic functions is denoted by Poset.
In fact, we regard it as a 2-category: given morphisms f, g : A → B of posets,
we have that f ≤ g whenever f(a) ≤ g(a) for all a ∈ A.

An axiomatic rewrite system (cf. [28, Def. 2.1]) is given by a set of objects
Obj, a set of steps Stp, two functions src, tgt : Stp → Obj indicating the source
and target of each step, and a residual function (/) such that given any two steps
R,S ∈ Stp with the same source, yields a set of steps R/S such that src(R′) =
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tgt(S) for all R′ ∈ R/S. Steps are ranged over by R,S, T, . . .. A step R′ ∈ R/S
is called a residual of R after S, and R is called an ancestor of R′. Steps are
coinitial (resp. cofinal) if they have the same source (resp. target). A derivation
is a possibly empty sequence of composable steps R1 . . . Rn. Derivations are
ranged over by ρ, σ, τ, . . .. The functions src and tgt are extended to derivations.
Composition of derivations is defined when tgt(ρ) = src(σ) and written ρ σ.
Residuals after a derivation can be defined by Rn ∈ R0/S1 . . . Sn if and only if
there exist R1, . . . , Rn−1 such that Ri+1 ∈ Ri/Si+1 for all 0 ≤ i ≤ n− 1. LetM
be a set of coinitial steps. A development ofM is a (possibly infinite) derivation
R1 . . . Rn . . . such that for every index i there exists a step S ∈ M such that
Ri ∈ S/R1 . . . Ri−1. A development is complete if it is maximal.

An orthogonal axiomatic rewrite system (cf. [28, Sec. 2.3]) has four additional
axioms5:

1. Autoerasure. R/R = ∅ for all R ∈ Stp.
2. Finite Residuals. The set R/S is finite for all coinitial R,S ∈ Stp.
3. Finite Developments. IfM is a set of coinitial steps, all developments ofM

are finite.
4. Semantic Orthogonality. Let R,S ∈ Stp be coinitial steps. Then there exist a

complete development ρ of R/S and a complete development σ of S/R such
that ρ and σ are cofinal. Moreover, for every step T ∈ Stp such that T is
coinitial to R, the following equality between sets holds: T/(Rσ) = T/(Sρ).

In [28], Melliès develops the theory of orthogonal axiomatic rewrite systems. A
notion of projection ρ/σ may be defined between coinitial derivations, essentially

by setting ε/σ
def
= ε and Rρ′/σ

def
= (R/σ)(ρ′/(σ/R)) where, by abuse of notation,

R/σ stands for a (canonical) complete development of the set R/σ. Using this
notion, one may define a transitive relation of prefix (ρ v σ), a permutation
equivalence relation (ρ ≡ σ), and the join of derivations (ρ t σ). Some of their
properties are summed up in the figure below:

Summary of properties of orthogonal axiomatic rewrite systems

ε ρ = ρ
ρ ε = ρ
ε/ρ = ε
ρ/ε = ρ

ρ/στ = (ρ/σ)/τ
ρσ/τ = (ρ/τ)(σ/(τ/ρ))
ρ/ρ = ε

ρ v σ def⇐⇒ ρ/σ = ε

ρ ≡ σ def⇐⇒ ρ v σ ∧ σ v ρ
ρ t σ def

= ρ(σ/ρ)
ρ ≡ σ =⇒ τ/ρ = τ/σ
ρ v σ ⇐⇒ ∃τ. ρτ ≡ σ
ρ v σ ⇐⇒ ρ t σ ≡ σ

ρ v σ =⇒ ρ/τ v σ/τ
ρ v σ ⇐⇒ τρ v τσ
ρ t σ ≡ σ t ρ

(ρ t σ) t τ = ρ t (σ t τ)
ρ v ρ t σ

(ρ t σ)/τ = (ρ/τ) t (σ/τ)

Let [ρ] = {σ | ρ ≡ σ} denote the permutation equivalence class of ρ. In an
orthogonal axiomatic rewrite system, the set D(x) = {[ρ] | src(ρ) = x} forms an
upper semilattice [28, Thm. 2.2,Thm. 2.3]. The order [ρ] v [σ] is declared to hold
if ρ v σ, the join is [ρ]t[σ] = [ρ t σ], and the bottom is ⊥ = [ε]. The λ-calculus is
an example of an orthogonal axiomatic rewrite system. Our structures of interest

5 In [28], Autoerasure is called Axiom A, Finite Residuals is called Axiom B, and
Semantic Orthogonality is called PERM. We follow the nomenclature of [1].
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are the semilattices of derivations of the λ-calculus, written Dλ(t) for any given
λ-term t. As usual, β-reduction in the λ-calculus is written t →β s and defined
by the contextual closure of the axiom (λx.t)s→β t{x := s}.

3 The Distributive λ-Calculus

In this section we introduce the distributive λ-calculus (λ#), and we prove some
basic results. Terms of the λ#-calculus are typing derivations of a non-idempotent
intersection type system, written using proof term syntax. The underlying type
system is a variant of system W of [7,8], the main difference being that λ# uses
labels and a suitable invariant on terms, to ensure that the formal parameters
of all functions are in 1–1 correspondence with the actual arguments that they
receive.

Definition 3.1 (Syntax of the λ#-calculus). Let L = {`, `′, `′′, . . .} be a
denumerable set of labels. The set of types is ranged over by A,B, C, . . ., and
defined inductively as follows:

A ::= α` | M `→ A M ::= [Ai]ni=1 with n ≥ 0

where α ranges over one of denumerably many base types, and M represents

a multiset of types. In a type like α` and M `→ A, the label ` is called the
external label. The typing contexts are defined as in Sec. 1 for system W.
We write domΓ for the domain of Γ . A type A is said to occur inside another
type B, written A � B, if A is a subformula of B. This is extended to say that
a type A occurs in a multiset [B1, . . . ,Bn], declaring that A � [B1, . . . ,Bn] if
A � Bi for some i = 1..n, and that a type A occurs in a typing context Γ ,
declaring that A � Γ if A � Γ (x) for some x ∈ domΓ .

The set of terms, ranged over by t, s, u, . . ., is given by the grammar t ::=
xA | λ`x.t | t t̄, where t̄ represents a (possibly empty) finite list of terms. The
notations [xi]

n
i=1, [x1, . . . , xn], and x̄ all stand simultaneously for multisets and

for lists of elements. Note that there is no confusion since we only work with
multisets of types, and with lists of terms. The concatenation of the lists
x̄, ȳ is denoted by x̄ + ȳ. A sequence of n lists (x̄1, . . . , x̄n) is a partition of x̄
if x̄1 + . . . + x̄n is a permutation of x̄. The set of free variables of a term t
is written fv(t) and defined as expected. We also write fv([ti]

n
i=1) for ∪ni=1fv(ti).

A context is a term C with an occurrence of a distinguished hole �. We write
C〈t〉 for the capturing substitution of � by t. Typing judgments are triples
Γ ` t : A representing the knowledge that the term t has type A in the context
Γ . Type assignment rules are:

var
x : [A] ` xA : A

Γ ⊕ (x :M) ` t : B
lam

Γ ` λ`x.t :M `→ B

Γ ` t : [B1, . . . ,Bn]
`→ A (∆i ` si : Bi)ni=1

app
Γ +n

i=1 ∆i ` t[s1, . . . , sn] : A
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For example ` λ1x.x[α2,α3]
4→β5

[xα
3

, xα
2

] : [[α2, α3]
4→ β5, α2, α3]

1→ β5 is a deriv-
able judgment (using integer labels).

Remark 3.2 (Unique typing). Let Γ ` t : A and ∆ ` t : B be derivable judg-
ments. Then Γ = ∆ and A = B. Moreover, the derivation trees coincide.

This can be checked by induction on t. It means that λ# is an à la Church type
system, that is, types are an intrinsic property of the syntax of terms, as opposed
to an à la Curry type system likeW, in which types are extrinsic properties that
a given term might or might not have.

To define a confluent rewriting rule, we impose a further constraint on the
syntax of terms, called correctness. The λ#-calculus will be defined over the set
of correct terms.

Definition 3.3 (Correct terms). A multiset of types [A1, . . . ,An] is sequen-
tial if the external labels of Ai and Aj are different for all i 6= j. A typing context
Γ is sequential if Γ (x) is sequential for every x ∈ domΓ . A term t is correct if
it is typable and it verifies the following three conditions:

1. Uniquely labeled lambdas. If λ`x.s and λ`
′
y.u are subterms of t at dif-

ferent positions, then ` and `′ must be different labels.
2. Sequential contexts. If s is a subterm of t and Γ ` s : A is derivable, then
Γ must be sequential.

3. Sequential types. If s is a subterm of t, the judgment Γ ` s : A is derivable,

and there exists a type such that (M `→ B � Γ ) ∨ (M `→ B � A), then M
must be sequential.

The set of correct terms is denoted by T #.

For example, x[α1]
2→β3

[xα
1

] is a correct term, λ1x.λ1y.yα
2

is not a correct term

since labels for lambdas are not unique, and λ1x.xα
2 3→[β4,β4]

5→γ6

is not a correct
term since [β4, β4] is not sequential.

Substitution is defined explicitly below. If t is typable, Tx(t) stands for
the multiset of types of the free occurrences of x in t. If t1, . . . , tn are ty-
pable, T([t1, . . . , tn]) stands for the multiset of types of t1, . . . , tn. For example,

Tx(x[α1]
2→β3

[xα
1

]) = T([yα
1

, z[α1]
2→β3

]) = [[α1]
2→ β3, α1]. To perform a substitu-

tion t{x := [s1, . . . , sn]} we will require that Tx(t) = T([s1, . . . , sn]).

Definition 3.4 (Substitution). Let t and s1, . . . , sn be correct terms such
that Tx(t) = T([s1, . . . , sn]). The capture-avoiding substitution of x in t by s̄ =
[s1, . . . , sn] is denoted by t{x := s̄} and defined as follows:

xA{x := [s]} def
= s

yA{x := []} def
= yA if x 6= y

(λ`y.u){x := s̄} def
= λ`y.u{x := s̄} if x 6= y and y 6∈ fv(s̄)

u0[uj ]
m
j=1{x := s̄} def

= u0{x := s̄0}[uj{x := s̄j}]mj=1

In the last case, (s̄0, . . . , s̄m) is a partition of s̄ such that Tx(uj) = T(s̄j) for all
j = 0..m.
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Remark 3.5. Substitution is type-directed: the arguments [s1, . . . , sn] are prop-
agated throughout the term so that si reaches the free occurrence of x that
has the same type as si. Note that the definition of substitution requires that
Tx(t) = T([s1, . . . , sn]), which means that the types of the terms s1, . . . , sn are in
1–1 correspondence with the types of the free occurrences of x. Moreover, since
t is a correct term, the multiset Tx(t) is sequential, which implies in particular
that each free occurrence of x has a different type. Hence there is a unique cor-
respondence matching the free occurrences of x with the arguments s1, . . . , sn
that respects their types. As a consequence, in the definition of substitution for
an application u0[uj ]

m
j=1{x := s̄} there is essentially a unique way to split s̄ into

n + 1 lists (s̄0, s̄1, . . . , s̄n) in such a way that Tx(ui) = T(s̄i). More precisely, if
(s̄0, s̄1, . . . , s̄n) and (ū0, ū1, . . . , ūn) are two partitions of s̄ with the stated prop-
erty, then s̄i is a permutation of ūi for all i = 0..n. Using this argument, it is easy
to check by induction on t that the value of t{x := s̄} is uniquely determined
and does not depend on this choice.

For example, (x[α1]
2→β3

[xα
1

]){x := [y[α1]
2→β3

, zα
1

]} = y[α1]
2→β3

zα
1

while, on

the other hand, (x[α1]
2→β3

[xα
1

]){x := [yα
1

, z[α1]
2→β3

]} = z[α1]
2→β3

yα
1

.
The operation of substitution preserves term correctness and typability:

Lemma 3.6 (Subject Reduction). If C〈(λ`x.t)s̄〉 is a correct term such that
the judgment Γ ` C〈(λ`x.t)s̄〉 : A is derivable, then C〈t{x := s̄}〉 is correct and
Γ ` C〈t{x := s̄}〉 : A is derivable.

Proof. ♣ By induction on C.

Definition 3.7 (The λ#-calculus). The λ#-calculus is the rewriting system
whose objects are the set of correct terms T #. The rewrite relation →# is the
closure under arbitrary contexts of the rule (λ`x.t)s̄ →# t{x := s̄}. Lem. 3.6
justifies that →# is well-defined, i.e. that the right-hand side is a correct term.
The label of a step is the label ` decorating the contracted lambda. We write

t
`−→# s whenever t→# s and the label of the step is `.

Example 3.8. Let I3 def
= λ3x.xα

2

and I4 def
= λ4x.xα

2

. The reduction graph of the

term (λ1x.x[α2]
3→α2

[xα
2

])[I3, I4[zα
2

]] is:

(λ1x.x[α
2]

3→α2

[xα
2

])[I3, I4[zα
2

]]
1

S
//

4 R��

I3[I4[zα
2

]]
3

T
//

4 R′
��

I4[zα
2

]

4 R′′
��

(λ1x.x[α
2]

3→α2

[xα
2

])[I3, zα
2

]
1

S′
// I3[zα

2

]
3

T ′
// zα

2

Note that numbers over arrows are the labels of the steps, while R,R′, S, ... are
metalanguage names to refer to the steps. Next, we state and prove some basic
properties of λ#.

Proposition 3.9 (Strong Normalization). There is no infinite reduction
t0 →# t1 →# . . ..
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Proof. Observe that a reduction step C〈(λ`x.t)s̄〉 →# C〈t{x := s̄}〉 decreases the
number of lambdas in a term by exactly 1, because substitution is linear, i.e. the
term t{x := [s1, . . . , sn]} uses si exactly once for all i = 1..n. Note: this is an
adaptation of [8, Theorem 4.1].

The substitution operator may be extended to work on lists, by defining

[ti]
n
i=1{x := s̄} def

= [ti{x := s̄i}]ni=1 where (s̄1, . . . , s̄n) is a partition of s̄ such that
Tx(ti) = T(s̄i) for all i = 1..n.

Lemma 3.10 (Substitution Lemma). Let x 6= y and x 6∈ fv(ū). If (ū1, ū2)
is a partition of ū then t{x := s̄}{y := ū} = t{y := ū1}{x := s̄{y := ū2}},
provided that both sides of the equation are defined. Note: there exists a list ū
that makes the left-hand side defined if and only if there exist lists ū1, ū2 that
make the right-hand side defined.

Proof. ♣ By induction on t.

Proposition 3.11 (Permutation). If t0
`1−→# t1 and t0

`2−→# t2 are different

steps, then there exists a term t3 ∈ T # such that t1
`2−→# t3 and t2

`1−→# t3.

Proof. ♣ By exhaustive case analysis of permutation diagrams. Two representa-
tive cases are depicted below. The proof uses the Substitution Lemma (Lem. 3.10).

(λ`x.(λ`
′
y.u)r̄)s̄

`′ ��

` // ((λ`
′
y.u)r̄){x := s̄}

`′ ��
(λ`x.u{y := r̄})s̄ ` // u{y := r̄}{x := s̄}

(λ`x.t)[s̄1, (λ
`′y.u)r̄, s̄2]

`′ ��

` // t{x := [s̄1, (λ
`′y.u)r̄, s̄2]}

`′ ��
(λ`x.t)[s̄1, u{y := r̄}, s̄2]

` // t{x := [s̄1, u{y := r̄}, s̄2]}

As a consequence of Prop. 3.11, reduction is subcommutative, i.e. (←# ◦ →#) ⊆
(→#

= ◦ ←#
=) where←# denotes (→#)

−1 and R= denotes the reflexive closure of
R. Moreover, it is well-known that subcommutativity implies confluence, i.e.
(←#

∗ ◦ →#
∗) ⊆ (→#

∗ ◦ ←#
∗); see [33, Prop. 1.1.10] for a proof of this fact.

Proposition 3.12 (Orthogonality). λ# is an orthogonal axiomatic rewrite
system.

Proof. Let R : t→# s and S : t→# u. Define the set of residuals R/S as the set
of steps starting on u that have the same label as R. Note that R/S is empty if
R = S, and it is a singleton if R 6= S, since terms are correct so their lambdas
are uniquely labeled. Then it is immediate to observe that axioms Autoerasure
and Finite Residuals hold. The Finite Developments axiom is a consequence of
Strong Normalization (Prop. 3.9). The Semantic Orthogonality axiom is a
consequence of Permutation (Prop. 3.11).
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For instance, in the reduction graph of Ex. 3.8, ST/RS′ = T ′, S tR = SR′,
and SR′T ′ ≡ RS′T ′. Observe that in Ex. 3.8 there is no duplication or erasure of
steps. This is a general phenomenon. Indeed, Permutation (Prop. 3.11) ensures
that all non-trivial permutation diagrams are closed with exactly one step on
each side.

Let us write D#(t) for the set of derivations of t in the λ#-calculus, modulo
permutation equivalence. As a consequence of Orthogonality (Prop. 3.12) and
axiomatic results [28], the set D#(t) is an upper semilattice. Actually, we show
that moreover the space D#(t) is a distributive lattice. To prove this, let us start
by mentioning the property that we call Full Stability. This is a strong version
of stability in the sense of Lévy [26]. It means that steps are created in an
essentially unique way. In what follows, we write lab(R) for the label of a step,
and labs(R1 . . . Rn) = {lab(Ri) | 1 ≤ i ≤ n} for the set of labels of a derivation.

Lemma 3.13 (Full Stability). Let ρ, σ be coinitial derivations with disjoint la-
bels, i.e. labs(ρ)∩ labs(σ) = ∅. Let T1, T2, T3 be steps such that T3 = T1/(σ/ρ) =
T2/(ρ/σ). Then there is a step T0 such that T1 = T0/ρ and T2 = T0/σ.

Proof. ♣ The proof is easily reduced to a Basic Stability result: a particular
case of Full Stability when ρ and σ consist of single steps. Basic Stability is
proved by exhaustive case analysis.

Proposition 3.14. D#(t) is a lattice.

Proof. ♣ The missing components are the top and the meet. The top element is
given by > := [ρ] where ρ : t→#

∗ s is a derivation to normal form, which exists
by Strong Normalization (Prop. 3.9). The meet of {[ρ], [σ]} is constructed
using Full Stability (Lem. A.12). If labs(ρ) ∩ labs(σ) = ∅, define (ρ u σ) := ε.
Otherwise, the stability result ensures that there is a step R coinitial to ρ and
σ such that lab(R) ∈ labs(ρ) ∩ labs(σ). Let R be one such step, and, recursively,
define (ρuσ) := R((ρ/R)u (σ/R)). It can be checked that recursion terminates,
because labs(ρ/R) ⊂ labs(ρ) is a strict inclusion. Moreover, ρ u σ is the greatest
lower bound of {ρ, σ}, up to permutation equivalence.

For instance, in Ex. 3.8 we have that STuR = ε, STuRS′ = S, and STuRS′T ′ =
ST .

Proposition 3.15. There is a monomorphism of lattices D#(t) → P(X) for
some set X. The lattice (P(X),⊆,∅,∪, X,∩) consists of the subsets of X, or-
dered by inclusion.

Proof. ♣ The morphism is the function labs, mapping each derivation to its set
of labels.

This means that a derivation in λ# is characterized, up to permutation equiv-
alence, by the set of labels of its steps. Since P(X) is a distributive lattice, in
particular we have:

Corollary 3.16. D#(t) is a distributive lattice.
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4 Simulation of the λ-Calculus in the λ#-Calculus

In this section we establish a precise relationship between derivations in the λ-
calculus and derivations in λ#. To begin, we need a way to relate λ-terms and
correct terms (T #):

Definition 4.1 (Refinement). A correct term t′ ∈ T # refines a λ-term t,
written t′ n t, according to the following inductive definition:

r-var
xA n x

t′ n t
r-lam

λ`x.t′ n λx.t

t′ n t s′i n s for all i = 1..n
r-app

t′[s′i]
n
i=1 n ts

A λ-term may have many refinements. For example, the following terms refine
(λx.xx)y:

(λ1x.x[ ]
2→α3

[ ])[y[ ]
2→α3

] (λ1x.x[α2]
3→β4

[xα
2

])[y[α2]
3→β4

, yα
2

]

(λ1x.x[α2,β3]
4→γ5

[xα
2

, xβ
3

])[y[α2,β3]
4→γ5

, yα
2

, yβ
3

]

The refinement relation establishes a relation of simulation between the λ-
calculus and λ#.

Proposition 4.2 (Simulation). Let t′ n t. Then:

1. If t→β s, there exists s′ such that t′ →#
∗ s′ and s′ n s.

2. If t′ →# s
′, there exist s and s′′ such that t→β s, s

′ →#
∗ s′′, and s′′ n s.

Proof. ♣ By case analysis. The proof is constructive. Moreover, in item 1, the
derivation t′ →#

∗ s′ is shown to be a multistep, i.e. the complete development
of a set {R1, . . . , Rn}.

The following example illustrates that a β-step in the λ-calculus may be simu-
lated by zero, one, or possibly many steps in λ#, depending on the refinement
chosen.

Example 4.3. The following are simulations of the step x ((λx.x)y)→β x y using
→#-steps:

x ((λx.x)y)
β //

o

x y

o

x[]
1→α2

[] x[]
1→α2

[]

x ((λx.x)y)
β //

o

x y

o

x[α
1]

2→β3

[(λ4x.xα
1

)[yα
1

]]
# // x[α

1]
2→β3

[yα
1

]

x ((λx.x)y)
β //

o

x y

o

x[α
1,β2]

3→γ4 [(λ5x.xα
1

)[yα
1

], (λ6x.xβ
2

)[yβ
2

]]
# // // x[α

1,β2]
3→γ4 [yα

1

, yβ
2

]

The next result relates typability and normalization. This is an adaptation of
existing results from non-idempotent intersection types, e.g. [8, Lemma 5.1].
Recall that a head normal form is a term of the form λx1. . . . λxn.y t1 . . . tm.
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Proposition 4.4 (Typability characterizes head normalization). The fol-
lowing are equivalent:

1. There exists t′ ∈ T # such that t′ n t.
2. There exists a head normal form s such that t→β

∗ s.

Proof. ♣ The implication (1 =⇒ 2) relies on Simulation (Prop. 4.2). The
implication (2 =⇒ 1) relies on the fact that head normal forms are typable,
plus an auxiliary result of Subject Expansion.

The first item of Simulation (Prop. 4.2) ensures that every step t →β s
can be simulated in λ# starting from a term t′ n t. Actually, a finer relationship
can be established between the derivation spaces Dλ(t) and D#(t′). For this, we
introduce the notion of simulation residual.

Definition 4.5 (Simulation residuals). Let t′ n t and let R : t →β s be a
step. The constructive proof of Simulation (Prop. 4.2) associates the →β-step
R to a possibly empty set of→#-steps {R1, . . . , Rn} all of which start from t′. We

write R/t′
def
= {R1, . . . , Rn}, and we call R1, . . . , Rn the simulation residuals

of R after t′. All the complete developments of R/t′ have a common target,
which we denote by t′/R, called the simulation residual of t′ after R.

Recall that, by abuse of notation, R/t′ stands for some complete development
of the set R/t′. By Simulation (Prop. 4.2), the following diagram always holds
given t′ n t→β s:

t
β

R
//

o

s

o

t′
#

R/t′
// // t′/R

Example 4.6 (Simulation residuals). Let R : x ((λx.x)y) →β x y and consider
the terms:

t′0 = (x[α1,β2]
3→γ4

[(λ5x.xα
1

)[yα
1

], (λ6x.xβ
2

)[yβ
2

]])

t′1 = x[α1,β2]
3→γ4

[yα
1

, (λ6x.xβ
2

)[yβ
2

]

t′2 = x[α1,β2]
3→γ4

[(λ5x.xα
1

)[yα
1

], yβ
2

]

t′3 = x[α1,β2]
3→γ4

[yα
1

, yβ
2

]

Then t′0/R = t′3 and R/t′0 = {R1, R2}, where R1 : t′0 →# t
′
1 and R2 : t′0 →# t

′
2.

The notion of simulation residual can be extended for many-step derivations.

Definition 4.7 (Simulation residuals of/after derivations). If t′ n t and
ρ : t→β

∗ s is a derivation, then ρ/t′ and t′/ρ are defined as follows by induction
on ρ:

ε/t′
def
= ε Rσ/t′

def
= (R/t′)(σ/(t′/R)) t′/ε

def
= t′ t′/Rσ

def
= (t′/R)/σ
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It is then easy to check that ρ/t′ : t′ →#
∗ t′/ρ and t′/ρ n s, by induction on ρ.

Moreover, simulation residuals are well-defined modulo permutation equivalence:

Proposition 4.8 (Compatibility). If ρ ≡ σ and t n src(ρ) then ρ/t ≡ σ/t
and t/ρ = t/σ.

Proof. ♣ By case analysis, studying how permutation diagrams in the λ-calculus
are transported to permutation diagrams in λ# via simulation.

The following result resembles the usual Cube Lemma [4, Lemma 12.2.6]:

Lemma 4.9 (Cube). If t n src(ρ) = src(σ), then (ρ/σ)/(t/σ) ≡ (ρ/t)/(σ/t).

Proof. ♣ By induction on ρ and σ, relying on an auxiliary result, the Basic Cube
Lemma, when ρ and σ are single steps, proved by exhaustive case analysis.

As a result, (ρ t σ)/t = ρ(σ/ρ)/t = (ρ/t)((σ/ρ)/(t/ρ)) ≡ (ρ/t)((σ/t)/(σ/ρ)) =
(ρ/t) t (σ/t). Moreover, if ρ v σ then ρτ ≡ σ for some τ . So we have that
ρ/t v (ρ/t)(τ/(t/ρ)) = ρτ/t ≡ σ/t by Compatibility (Prop. 4.8). Hence we
may formulate a stronger simulation result:

Corollary 4.10 (Algebraic Simulation). Let t′ n t. Then the mapping
Dλ(t)→ D#(t′) given by [ρ] 7→ [ρ/t′] is a morphism of upper semilattices.

Example 4.11. Let I = λx.x and ∆ = (λ5x.xα
2

)[zα
2

] and let ŷ = y[α2]
3→[ ]

4→β5

.

The refinement t′ := (λ1x.ŷ[xα
2

][ ])[∆] n (λx.yxx)(Iz) induces a morphism be-
tween the upper semilattices represented by the following reduction graphs:

(λx.yxx)(Iz)R1

||
S

##
y(Iz)(Iz)
S11 ��

S21 // y(Iz)z
S12��

(λx.yxx)z

R2
ppyz(Iz)

S22

// yzz

(λ1x.ŷ[xα
2

][ ])[∆]
R′

1

||
S′

%%
ŷ[∆][ ]

S′
1

,,

(λ1x.ŷ[xα
2

][ ])[zα
2

]

R′
2

qqŷ[zα
2

][ ]

For example (R1tS)/t′ = (R1S11S22)/t′ = R′1S
′
1 = R′1tS′ = R1/t

′tS/t′. Note

that the step S22 is erased by the simulation: S22/(ŷ[zα
2

][ ]) = ∅. Intuitively,

S22 is “garbage” with respect to the refinement ŷ[zα
2

][ ], because it lies inside
an untyped argument.

5 Factoring Derivation Spaces

In this section we prove that the upper semilattice Dλ(t) may be factorized using
a variant of the Grothendieck construction. We start by formally defining the
notion of garbage.

Definition 5.1 (Garbage). Let t′ n t. A derivation ρ : t→β
∗ s is t′-garbage

if ρ/t′ = ε.
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The informal idea is that each refinement t′ n t specifies that some subterms of t
are “useless”. A subterm u is useless if it lies inside the argument of an application
s(...u...) in such a way that the argument is not typed, i.e. the refinement is of the
form s′[ ] n s(...u...). A single step R is t′-garbage if the pattern of the contracted
redex lies inside a useless subterm. A sequence of steps R1R2 . . . Rn is t′-garbage
if R1 is t′-garbage, R2 is (t′/R1)-garbage, . . ., Ri is (t′/R1 . . . Ri−1)-garbage, . . .,
and so on.

Usually we say that ρ is just garbage, when t′ is clear from the context. For
instance, in Ex. 4.11, S21 is garbage, since S21/(ŷ[∆][ ]) = ε. Similarly, S22 is

garbage, since S22/(ŷ[zα
2

][ ]) = ε. On the other hand, R1S21 is not garbage,

since R1S21/((λ
1x.ŷ[xα

2

][ ])[∆]) = R′1 6= ε. For each t′ n t, the set of t′-garbage
derivations forms an ideal of the upper semilattice Dλ(t). More precisely:

Proposition 5.2 (Properties of garbage). Let t′ n t. Then:

1. If ρ is t′-garbage and σ v ρ, then σ is t′-garbage.
2. The composition ρσ is t′-garbage if and only if ρ is t′-garbage and σ is

(t′/ρ)-garbage.
3. If ρ is t′-garbage then ρ/σ is (t′/σ)-garbage.
4. The join ρ t σ is t′-garbage if and only if ρ and σ are t′-garbage.

Proof. ♣ The proof is easy using Prop. 4.8 and Lem. 4.9.

Our aim is to show that given ρ : t →β
∗ s and t′ n t, there is a unique way of

decomposing ρ as στ , where τ is t′-garbage and σ “has no t′-garbage”. Garbage
is well-defined modulo permutation equivalence, i.e. given ρ ≡ σ, we have that ρ
is garbage if and only if σ is garbage. In contrast, it is not immediate to give a
well-defined notion of “having no garbage”. For example, in Ex. 4.11, SR2 has
no garbage steps, so it appears to have no garbage; however, it is permutation
equivalent to R1S11S22, which does contain a garbage step (S22). The following
definition seems to capture the right notion of having no garbage:

Definition 5.3 (Garbage-free derivation). Let t′ n t. A derivation ρ : t→β
∗

s is t′-garbage-free if for any derivation σ such that σ v ρ and ρ/σ is (t′/σ)-
garbage, then ρ/σ = ε.

Again, we omit the t′ if clear from the context. Going back to Ex. 4.11, the
derivation SR2 is not garbage-free, because R1S11 v SR2 and SR2/R1S11 = S22

is garbage but non-empty. Note that Def. 5.3 is defined in terms of the prefix
order (v), so:

Remark 5.4. If ρ ≡ σ, then ρ is t′-garbage-free if and only if σ is t′-garbage-free.

Next, we define an effective procedure (sieving) to erase all the garbage from
a derivation. The idea is that if ρ : t→β

? s is a derivation in the λ-calculus and
t′ n t is any refinement, we may constructively build a t′-garbage-free derivation
(ρ ⇓ t′) : t→β

? u by erasing all the t′-garbage from ρ. Our goal will then be to
show that ρ ≡ (ρ ⇓ t′)σ where σ is garbage.
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Definition 5.5 (Sieving). Let t′ n t and ρ : t→β
? s. A step R is coarse for

(ρ, t′) if R v ρ and R/t′ 6= ∅. The sieve of ρ with respect to t′, written ρ ⇓ t′,
is defined as follows.

– If there are no coarse steps for (ρ, t′), then (ρ ⇓ t′) def
= ε.

– If there is a coarse step for (ρ, t′), then (ρ ⇓ t′) def
= R0((ρ/R0) ⇓ (t′/R0))

where R0 is the leftmost such step.

Lemma 5.6. The sieving operation ρ ⇓ t′ is well-defined.

Proof. ♣ To see that recursion terminates, consider the measure M given by
M(ρ, t′) := #labs(ρ/t′), and note that M(ρ, t′) > M(ρ/R0, t

′/R0).

For example, in Ex. 4.11, we have that S ⇓ t′ = S and SR2 ⇓ t′ = R1S11.

Proposition 5.7 (Properties of sieving). Let t′ n t and ρ : t→β
∗ s. Then:

1. ρ ⇓ t′ is t′-garbage-free and ρ ⇓ t′ v ρ.
2. ρ/(ρ ⇓ t′) is (t′/(ρ ⇓ t′))-garbage.
3. ρ is t′-garbage if and only if ρ ⇓ t′ = ε.
4. ρ is t′-garbage-free if and only if ρ ⇓ t′ ≡ ρ.

Proof. ♣ By induction on the length of ρ ⇓ t′, using various technical lemmas.

As a consequence of the definition of the sieving construction and its prop-
erties, given any derivation ρ : t→β

∗ s and any refinement t′ n t, we can always
write ρ, modulo permutation equivalence, as of the form ρ ≡ στ in such a way
that σ is garbage-free and τ is garbage. To prove this take σ := ρ ⇓ t′ and
τ := ρ/(ρ ⇓ t′), and note that σ is garbage-free by item 1. of Prop. 5.7, τ is
garbage by item 2. of Prop. 5.7, and ρ ≡ σ(ρ/σ) = στ because σ v ρ by item 1.
of Prop. 5.7.

In the following we give a stronger version of this result. The Factorization
theorem below (Thm. 5.10) states that this decomposition is actually an isomor-
phism of upper semilattices. This means, on one hand, that given any derivation
ρ : t →β

∗ s and any refinement t′ n t there is a unique way to factor ρ as of
the form ρ ≡ στ where σ is garbage-free and τ is garbage. On the other hand, it
means that the decomposition ρ 7→ (ρ ⇓ t′, ρ/(ρ ⇓ t′)) mapping each derivation
to a of a garbage-free plus a garbage derivation is functorial. This means, essen-
tially, that the set of pairs (σ, τ) such that σ is garbage-free and τ is garbage
can be given the structure of an upper semilattice in such a way that:

– If ρ 7→ (σ, τ) and ρ′ 7→ (σ′, τ ′) then ρ v ρ′ ⇐⇒ (σ, τ) ≤ (σ′, τ ′).
– If ρ 7→ (σ, τ) and ρ′ 7→ (σ′, τ ′) then (ρ t ρ′) 7→ (σ, τ) ∨ (σ′, τ ′).

The upper semilattice structure of the set of pairs (σ, τ) is given using a variant
of the Grothendieck construction:

Definition 5.8 (Grothendieck construction for partially ordered sets).
Let A be a poset, and let B : A → Poset be a mapping associating each object
a ∈ A to a poset B(a). Suppose moreover that B is a lax 2-functor. More
precisely, for each a ≤ b in A, the function B(a ↪→ b) : B(a)→ B(b) is monotonic
and such that:
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1. B(a ↪→ a) = idB(a) for all a ∈ A,
2. B((b ↪→ c) ◦ (a ↪→ b)) ≤ B(b ↪→ c) ◦B(a ↪→ b) for all a ≤ b ≤ c in A.

The Grothendieck construction
∫
A
B is defined as the poset given by the set

of objects {(a, b) | a ∈ A, b ∈ B(a)} and such that (a, b) ≤ (a′, b′) is declared to
hold if and only if A ≤ a′ and B(a ↪→ a′)(b) ≤ b′.

The following proposition states that garbage-free derivations form a finite
lattice, while garbage derivations form an upper semilattice.

Proposition 5.9 (Garbage-free and garbage semilattices). Let t′ n t.

1. The set F = {[ρ] | src(ρ) = t and ρ is t′-garbage-free} of t′-garbage-free
derivations forms a finite lattice F(t′, t) = (F,E,⊥,O,>,M), with:

– Partial order: [ρ]E [σ]
def⇐⇒ ρ/σ is (t′/σ)-garbage.

– Bottom: ⊥ := [ε].

– Join: [ρ]O[σ]
def
= [(ρ t σ) ⇓ t′].

– Top: >, defined as the join of all the [τ ] such that τ is t′-garbage-free.
– Meet: [ρ]M [σ], defined as the join of all the [τ ] such that [τ ] E [ρ] and

[τ ]E [σ].
2. The set G = {[ρ] | src(ρ) = t and ρ is t′-garbage} of t′-garbage derivations

forms an upper semilattice G(t′, t) = (G,v,⊥,t), with the structure inher-
ited from Dλ(t).

Proof. ♣ The proof relies on the properties of garbage and sieving (Prop. 5.2,
Prop. 5.7).

Suppose that t′ n t, and let F def
= F(t′, t) denote the lattice of t′-garbage-free

derivations. Let G : F → Poset be the lax 2-functor G([ρ])
def
= G(t′/ρ, tgt(ρ))

with the following action on morphisms:

G([ρ] ↪→ [σ]) : G([ρ])→ G([σ])
[α] 7→ [ρα/σ]

Using the previous proposition (Prop. 5.9) it can be checked that G is indeed
a lax 2-functor, and that the Grothendieck construction

∫
F G forms an upper

semilattice. The join is given by (a, b)∨(a′, b′) = (aOa′,G(a ↪→ aOa′)(b)tG(a′ ↪→
aOa′)(b′)). Finally we can state the main theorem:

Theorem 5.10 (Factorization). The following maps form an isomorphism of
upper semilattices:

Dλ(t)→
∫
F G

[ρ] 7→ ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)]

∫
F G → Dλ(t)

([ρ], [σ]) 7→ [ρσ]

Proof. ♣ The proof consists in checking that both maps are morphisms of up-
per semilattices and that they are mutual inverses, resorting to Prop. 5.2 and
Prop. 5.7.
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Example 5.11. Let t = (λx.yxx)(Iz) and t′ be as in Ex. 4.11. The upper semi-
lattice Dλ(t) can be factorized as

∫
F G as follows. Here posets are represented

by their Hasse diagrams:

[ε]

�� ��
[R1]

��

// [R1S21]

��

[S]

xx
[R1S11] // [R1 t S]

'

([ε], [ε])

yy ##
([R1], [ε])

��

// ([R1], [S21])

��

([S], [ε])

uu
([R1S11], [ε]) // ([R1S11], [S22])

For example ([S], [ε]) ≤ ([R1S11], [S22]) because [S]E[R1S11], that is, S/R1S11 =
S22 is garbage, and G([S] ↪→ [R1S11])([ε]) = [S/R1S11] = [S22] v [S22].

6 Conclusions

We have defined a calculus (λ#) based on non-idempotent intersection types.
Its syntax and semantics are complex due to the presence of an admittedly ad
hoc correctness invariant for terms, enforced so that reduction is confluent. In
contrast, derivation spaces in this calculus turn out to be very simple struc-
tures: they are representable as rings of sets (Prop. 3.15) and as a consequence
they are distributive lattices (Coro. 3.16). Derivation spaces in the λ-calculus
can be mapped to these much simpler spaces using a strong notion of simula-
tion (Coro. 4.10) inspired by residual theory. Building on this, we showed how the
derivation space of any typable λ-term may be factorized as a “twisted product”
of garbage-free and garbage derivations (Thm. 5.10).

We believe that this validates the (soft) hypothesis that explicitly repre-
senting resource management can provide insight on the structure of derivation
spaces.

Related work. The Factorization theorem (Thm. 5.10) is reminiscent
of Melliès’ abstract factorization result [29]. Given an axiomatic rewriting sys-
tem fulfilling a number of axioms, Melliès proves that every derivation can be
uniquely factorized as an external prefix followed by an internal suffix. We con-
jecture that each refinement t′ n t should provide an instantiation of Melliès’
axioms, in such a way that our t′-garbage-free/t′-garbage factorization coincides
with his external/internal factorization. Melliès notes that any evaluation strat-
egy that always selects external steps is hypernormalizing. A similar result should
hold for evaluation strategies that always select non-garbage steps.

The notion of garbage-free derivation is closely related with the notion of
X-neededness [3]. A step R is X-needed if every reduction to a term t ∈ X
contracts a residual of R. Recently, Kesner et al. [22] have related typability in
a non-idempotent intersection type system V and weak-head neededness. Using
similar techniques, it should be possible to prove that t′-garbage-free steps are
X-needed, where X = {s | s′ n s} and s′ is the →#-normal form of t′.

There are several resource calculi in the literature which perhaps could play
a similar role as λ# to recover factorization results akin to Thm. 5.10. Kfoury [23]



Factoring Derivation Spaces via Intersection Types 19

embeds the λ-calculus in a linear λ-calculus that has no duplication nor erasure.
Ehrard and Regnier prove that the Taylor expansion of λ-terms [16] commutes
with normalization, similarly as in Algebraic Simulation (Coro. 4.10). Mazza
et al. [27] study a general framework for polyadic approximations, corresponding
roughly to the notion of refinement in this paper.

Acknowledgements. To Eduardo Bonelli and Delia Kesner for introducing the
first author to these topics. To Luis Scoccola and the anonymous reviewers for
helpful suggestions.
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A Appendix

This technical appendix includes the detailed proofs of the results stated in the
main body of the paper that have been marked with the ♣ symbol.

A.1 Proof of Lem. 3.6 – Subject Reduction

We are to prove that if C〈(λ`x.t)s̄〉 is correct then C〈t{x := s̄}〉 is correct, and,
moreover, that their unique typings are under the same typing context and have
the same type. We need a few auxiliary results:

Lemma A.1. If s̄ is a permutation of ū, then t{x := s̄} = t{x := ū}.

Proof. By induction on t.

Lemma A.2. If t is correct, then any subterm of t is correct.

Proof. Note, by definition of correctness (Def. 3.3), that if t is a correct abstrac-
tion t = λ`x.s then s is correct, and if t is a correct application t = s[u1, . . . , un]
then s and u1, . . . , un are correct. This allows us to conclude by induction on t.

Lemma A.3 (Relevance). If Γ ` t : A and x ∈ domΓ then x ∈ fv(t).

Proof. By induction on t.

Definition A.4. Λ(t) stands for the multiset of labels decorating the lambdas
of t:

Λ(xA)
def
= [ ]

Λ(λ`x.t)
def
= [`] + Λ(t)

Λ(t[si]
n
i=1)

def
= Λ(t) +n

i=1 Λ(si)

For example, Λ((λ1x.x[α2]
3→α2

)[λ3x.xα
2

]) = [1, 3].

Lemma A.5. Let t, s1, . . . , sn be correct terms. Then Λ(t{x := [si]
n
i=1}) =

Λ(t) +n
i=1 Λ(si).

Proof. By induction on t.

To prove Lem. 3.6, we first show that substitution preserves typing, and then
that it preserves correctness.

Substitution preserves typing More precisely, let us show that if Γ ` C〈(λ`x.t)s̄〉 :
A is derivable, then Γ ` C〈t{x := s̄}〉 : A is derivable. By induction on the con-
text C.

1. Empty, C = �. By induction on t.
1.1 Variable (same), t = xA, s̄ = [s]. We have that x : [A] ` xA : A and

∆ ` s : B are derivable, so we are done.
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1.2 Variable (different), t = yA, y 6= x, s̄ = []. We have that y : [A] `
yA : A is derivable, so we are done.

1.3 Abstraction, t = λ`y.u. Let Γ ⊕ x : [Bi]ni=1 ` λ`x.u : M `→ A be
derivable and ∆i ` si : Bi be derivable for all i = 1..n. By inversion of
the lam rule, we have that Γ ⊕y :M⊕x : [Bi]ni=1 ` u : A is derivable, so
by i.h. (Γ ⊕ y :M) +n

i=1 ∆i ` u{x := [si]
n
i=1} : A is derivable. Observe

that y 6∈ fv(si) so y 6∈ dom∆i by Lem. A.3. Hence the previous judgment
can be written as (Γ +n

i=1 ∆i) ⊕ y :M ` u{x := [si]
n
i=1} : A. Applying

the lam rule we obtain Γ +n
i=1 ∆i ` λ`y.u{x := [si]

n
i=1} : M `→ A as

required.
1.4 Application, t = u[rj ]

m
j=1. Let Γ⊕x : [Bi]ni=1 ` u[rj ]

m
j=1 : A be derivable

and ∆i ` si : Bi be derivable for all i = 1..n. By inversion of the app rule,
the multiset of types [Bi]ni=1 may be partitioned as [Bi]ni=1 =

∑m
j=0Mj ,

and the typing context Γ may be partitioned as Γ =
∑m
j=0 Γj in such a

way that Γ0 ⊕ x :M0 ` u : [Cj ]mj=1
`→ A is derivable and Γj ⊕ x :Mj `

rj : Cj is derivable for all j = 1..m. Consider a partition (s̄0, . . . , s̄j) of
the list s̄ such that for every j = 0..m we have T(s̄j) = Mj . Observe
that this partition exists since T(s̄0 + . . . + s̄j) = T(s̄) =

∑m
j=0Mj =

[Bi]ni=1 = Tx(t).
Moreover, let Θj =

∑
i:si∈s̄j ∆i for all j = 0..m. By i.h. we have that

Γ0 + Θ0 ` u{x := s̄0} : [Cj ]mj=1
`→ A is derivable and Γj + Θj ` rj{x :=

s̄j} : Cj is derivable for all j = 1..m. Applying the app rule we obtain
that

∑m
j=0 Γj +

∑m
j=0Θj ` u[rj ]{x :=

∑m
j=0 s̄j} : A is derivable. By

definition of Γ0, . . . , Γm andΘ0, . . . , Θm this judgment equals Γ+n
i=1∆i `

u[rj ]{x :=
∑m
j=0 s̄j} : A. By definition of s̄0, . . . , s̄m and Lem. A.1 this

in turn equals Γ +n
i=1 ∆i ` u[rj ]{x := s̄} : A, as required.

2. Under an abstraction, C = λ`
′
y.C′. Straightforward by i.h..

3. Left of an application, C = C′ū. Straightforward by i.h..
4. Right of an application, C = u[r̄1, C

′, r̄2]. Straightforward by i.h..

Substitution preserves correctness More precisely, let us show that if C〈(λ`x.t)s̄〉
is correct then C〈t{x := s̄}〉 is correct. By induction on C:

1. Empty, C = �. Let s̄ = [s1, . . . , sn]. Observe that if (λ`x.t)[s1, . . . , sn] is
correct then:
– [c1] Γ ⊕x : [Bi]ni=1 ` t : A and ∆i ` si : Bi are derivable for all i = 1..n,
– [c2] t, s1, . . . , sn are correct,
– [c3] there are no free occurrences of x among s1, . . . , sn,
– [c4] all the lambdas occurring in t, s1, . . . , sn have pairwise distinct

labels,
– [c5] Γ +n

i=1 ∆i is a sequential context.
Condition [c1] holds by inversion of the typing rules, condition [c2] holds
by Lem. A.2, condition [c3] holds by Barendregt’s convention, and condi-
tions [c4] and [c5] hold because the source term is supposed to be correct.
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By induction on t, we check that if (λ`x.t)[s1, . . . , sn] is correct, then t{x :=
s̄} is correct.

1.1 Variable (same), t = xA, s̄ = [s]. Note that t{x := s̄} = s. Conclude
by [c2].

1.2 Variable (different), t = yA, s̄ = [] with x 6= y. Note that t{x :=
s̄} = yA. Conclude by [c2].

1.3 Abstraction, t = λ`
′
y.u. Then A = M `′→ C and by inversion Γ ⊕ y :

M ` u : C is derivable. Note that (λ`x.u)s̄ is correct, so by i.h. u{x := s̄}
is correct. The variable y does not occur free in s̄, so (Γ⊕y :M)+n

i=1∆i =

(Γ +n
i=1 ∆i)⊕ (y :M). Let us check that λ`

′
y.u{x := s̄} is correct:

1.3.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating
different lambdas of λ`

′
y.u{x := s̄}, and let us show that `1 6= `2.

There are two subcases, depending on whether one of the labels
decorates the outermost lambda:

1.3.1.1 If `1 or `2 decorates the outermost lambda. Suppose with-
out loss of generality that `1 = `′ is the label decorating the
outermost lambda. Then by Lem. A.5, there are two cases: ei-
ther `2 decorates a lambda of u, or `2 decorates a lambda of some
term in the list s̄. If `2 decorates a lambda of u, then `1 6= `2 since
we knew that λ`

′
y.u was a correct term by [c2]. If `2 decorates

a lambda of some term in the list s̄, then `1 6= `2 by condition
[c4].

1.3.1.2 If `1 and `2 do not decorate the outermost lambda. Then
`1 and `2 decorate different lambdas of the term u{x := s̄}, and
we conclude by i.h..

1.3.2 Sequential contexts. Let t′ be a subterm of λ`
′
x.u{x := s̄}. If t′ is a

subterm of u{x := s̄}, we conclude by i.h.. Otherwise t′ is the whole
term and the context is Γ +n

i=1∆i, which is sequential by hypothesis
[c5].

1.3.3 Sequential types. Let t′ be a subterm of λ`
′
x.u{x := s̄}. If t′ is a

subterm of u{x := s̄}, we conclude by i.h.. Otherwise t′ is the whole
term. Then Γ +n

i=1 ∆i ` t′ : A is derivable, since we have already

shown that substitution preserves typing. Let N `′′→ D be a type such

that N `′′→ D � Γ +n
i=1 ∆i or N `′′→ D � A, and let us show that

N is sequential. In the first case, i.e. if N `′′→ D � Γ +n
i=1 ∆i holds,

then either N `′′→ D � Γ or N `′′→ D � ∆i for some i = 1..n, and
we have that N is sequential because all the terms t, s1, . . . , sn are

correct by [c2]. In the second case, i.e. if N `′′→ D � A holds, then
we have that N is sequential because t is correct by [c2].

1.4 Application, t = u r̄. Let r̄ = [r1, . . . , rm]. Note that (λ`x.u)s̄0 is cor-
rect and (λ`x.rj)s̄j is correct for all j = 1..m, which means that we may
apply the i.h. in all these cases. Let us show that u[rj ]

m
j=1{x := s̄} is

correct:
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1.4.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating
different lambdas of u[rj ]

m
j=1{x := s̄}, and let us show that `1 6=

`2. Observe that the term u[rj ]
m
j=1{x := s̄} = u{x := s̄0}[rj{x :=

s̄j}]mj=1 has m + 1 immediate subterms, namely u{x := s̄0} and
rj{x := s̄j} for each j = 1..m. We consider two subcases, depending
on whether `1 and `2 decorate two lambdas in the same immediate
subterm or in different immediate subterms.

1.4.1.1 The labels `1 and `2 decorate the same immediate sub-
term. That is, `1 and `2 both decorate lambdas in u{x := s̄0} or
both decorate lambdas in some rj{x := s̄j} for some j = 1..m.
Then we conclude, since both u{x := s̄0} and the rj{x := s̄j}
are correct by i.h..

1.4.1.2 The labels `1 and `2 decorate different subterms. Let r0 :=
u. Then we have that `1 decorates a lambda in rj{x := s̄j} for
some j = 0..m and `2 decorates a lambda in rk{x := s̄k} for
some k = 0..m, j 6= k. By Lem. A.5, `1 decorates a lambda in rj
or a lambda in a term of the list s̄j , and similarly `2 decorates
a lambda in rk or a lambda in a term of the list s̄k. This leaves
four possibilities, which are all consequence of [c4].

1.4.2 Sequential contexts. Similar to item 1.3.2.
1.4.3 Sequential types. Similar to item 1.3.3.

2. Under an abstraction, C = λ`
′
y.C′. Note that Γ ` λ`′y.C′〈t{x := s̄}〉 :

M `′→ A is derivable. Let us check the three conditions to see that λ`
′
y.C′〈t{x :=

s̄}〉 is correct:
2.1 Uniquely labeled lambdas. Any two lambdas in C′〈t{x := s̄}〉 have dif-

ferent labels by i.h.. We are left to check that `′ does not decorate any
lambda in C′〈t{x := s̄}〉. Let `1 be a label that decorates a lambda in
C′〈t{x := s̄}〉. Then we have that `1 decorates a lambda in C′, or it
decorates a lambda in t{x := s̄}. By what we proved in item 1 this in
turn means that it decorates a lambda in t or a lambda in some of the
terms of the list s̄. In any of these cases we have that `1 6= `′ since
λ`

′
y.C′〈(λ`x.t)s̄〉 is correct.

2.2 Sequential contexts. Let t′ be a subterm of λ`
′
y.C′〈t{x := s̄}〉 and let us

check that its typing context is sequential. If t′ is a subterm of C′〈t{x :=
s̄}〉 we conclude by i.h.. We are left to check the property for t′ being
the whole term, i.e. that Γ is sequential. By i.h., Γ ⊕y :M is sequential,
which implies that Γ is sequential.

2.3 Sequential types. Let t′ be a subterm of λ`
′
y.C′〈t{x := s̄}〉 and let us

check that, if N `′′→ C is any type occurring in the typing context or in
the type of t′, then N is sequential. If t′ is a subterm of C′〈t{x := s̄}〉 we
conclude by i.h.. We are left to check the property for t′ being the whole
term.

If N `′′→ C � Γ , then N `′′→ C � Γ ⊕ y : N which is the type of C′〈t{x :=
s̄}〉, so by i.h. N is sequential.

If N `′′→ C �M `′′→ A, there are three subcases:
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2.3.1 If N =M, then note thatM is sequential because Γ ⊕ y :M is the
typing context of C′〈t{x := s̄}〉, which is sequential by i.h..

2.3.2 IfN `′′→ C � B where B is one of the types ofM, thenN `′′→ C �M `′′→
A which is the typing context of C′〈t{x := s̄}〉, and we conclude for
this term has sequential types by i.h..

2.3.3 If N `′′→ C � A, note that A is the type of C′〈t{x := s̄}〉, and we
conclude for this term has sequential types by i.h..

3. Left of an application, C = C′ū. Note that Γ ` C′〈t{x := s̄}〉 : [Bj ]mj=1
`′→ A

is derivable. Moreover the list of arguments is of the form ū = [u1, . . . , um]
where all the uj are correct and ∆j ` uj : Bj is derivable for all j = 1..m.
Then Γ +m

j=1 ∆j ` C′〈t{x := s̄}〉[uj ]mj=1 : A is derivable. Let us check the
three conditions to see that C′〈t{x := s̄}〉[uj ]mj=1 is correct:

3.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating differ-
ent lambdas in C′〈t{x := s̄}〉[uj ]mj=1. There are three subcases.

3.1.1 If `1 and `2 both decorate lambdas in the subterm C′〈t{x := s̄}〉 then
`1 6= `2 since C′〈t{x := s̄}〉 is correct by i.h..

3.1.2 If `1 and `2 both decorate lambdas somewhere in [u1, . . . , um] then
`1 6= `2 since C′〈t〉[u1, . . . , um] is correct by hypothesis.

3.1.3 If `1 decorates a lambda in C′〈t{x := s̄}〉 and `2 decorates a lambda
in one of the terms uj for some j = 1..m, then note that `1 must
either decorate a lambda in C′ or a lambda in t{x := s̄}. By what we
proved in item 1 this in turn means that it decorates a lambda in t or
a lambda in some of the terms of the list s̄. In any of these cases we
have that `1 6= `2 since C′〈(λ`x.t)s̄〉[uj ]mj=1 is correct by hypothesis.

3.2 Sequential contexts. Let t′ be a subterm of C′〈t{x := s̄}〉[uj ]mj=1 and let us
show that its typing context is sequential. If t′ is a subterm of C′〈t{x :=
s̄}〉 we conclude by i.h.. If t′ is a subterm of one of the uj for some
j = 1..m, we conclude using that uj is correct by hypothesis. It remains
to check that the whole term is correct, i.e. that Γ +m

j=1∆j is sequential.

Observe that Γ +m
j=1∆j is also the typing context of C′〈(λ`x.t)s̄〉[uj ]mj=1,

which is correct by hypothesis.

3.3 Sequential types. Let t′ be a subterm of C′〈t{x := s̄}〉[uj ]mj=1 and let us

show if N `′→ C is a type that occurs in the typing context or in the type
of t′, then N is sequential. If t′ is a subterm of C′〈t{x := s̄}〉 we conclude
by i.h.. If t′ is a subterm of one of the uj for some j = 1..m, we conclude
using that uj is correct by hypothesis. We are left to check the property
for t′ being the whole term.

If N `′→ C � Γ +m
j=1∆j , we conclude by observing that Γ +m

j=1∆j is also

the typing context of C′〈(λ`x.t)s̄〉[uj ]mj=1, which is correct by hypothesis,
so it has sequential types.

Similarly, if N `′→ C � A, we conclude by observing that A is also the
type of C′〈(λ`x.t)s̄〉[uj ]mj=1.

4. Right of an application, C = u[r̄1, C
′, r̄2]. Similar to item 3.
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A.2 Proof of Lem. 3.10 – Substitution Lemma

Let us prove that t{x := s̄}{y := ū} = t{y := ū1}{x := s̄{y := ū2}} by induction
on t. The interesting case is the application. Let t = r[r1, . . . , rn]. Then:

(r[r1, . . . , rn]){x := s̄}{y := ū}
= (r{x := s̄0}[ri{x := s̄i}]ni=0){y := ū}
= r{x := s̄0}{y := ū0}[ri{x := s̄i}{y := ūi}]ni=0
h.i.
= r{y := ū0,1}{x := s̄0{y := ū0,2}}[ri{y := ūi,1}{x := s̄0{y := ūi,2}}]ni=0

= (r{y := ū0,1}[ri{y := ūi,1}]ni=0){x :=
∑n
i=1 s̄i{y := ūi,2}}

Given that
∑n
i=0 s̄i is a permutation of s̄, by defining v̄2 :=

∑n
i=0 ūi,2, the

last term equals (r{y := ū0,1}[ri{y := ūi,1}]ni=0){x := s̄{y := v̄2}}. Finally, by
defining v̄1 :=

∑n
i=0 ūi,1, we obtain (r[r1, . . . , rn]){y := v̄1}{x := s̄{y := v̄2}}.

To conclude observe that v̄1 + v̄2 is indeed a permutation of ū:

v̄1 + v̄2 = (
∑n
i=0 ūi,1) + (

∑n
i=0 ūi,2)

≈
∑n
i=0 ūi,1 + ūi,2

≈
∑n
i=0 ūi by i.h. on each index i = 0..n

= ū

where x̄ ≈ ȳ is the equivalence relation on lists that holds whenever x̄ is a
permutation of ȳ.

A.3 Proof of Prop. 3.11 – Permutation

Let us extend the operation of substitution to operate on contexts by declaring
that Tx(�) = [ ] and �{x := [ ]} = �. We need two auxiliary lemmas:

Lemma A.6 (Substitution lemma for contexts). If both sides of the equa-
tion are defined and (s̄1, s̄2) is a partition of s̄ then C〈t〉{x := s̄} = C{x :=
s̄1}〈t{x := s̄2}〉.

Proof. The proof is similar to the Substitution Lemma, by induction on C.

Lemma A.7 (Reduction inside a substitution). Let 1 ≤ i ≤ n and si
`→ s′i.

Then:

t{x := [s1, . . . , si−1, si, si+1, . . . , sn]} `→ t{x := [s1, . . . , si−1, s
′
i, si+1, . . . , sn]}

.

Proof. Straightforward by induction on s.

The proof of Prop. 3.11 proceeds as follows. Let R : t0
`−→# t1 and S : t0

`′−→# t2
be coinitial steps, and let us show that the diagram may be closed. The step R

is of the form t0 = C〈(λ`x.t)s̄〉 `−→# C〈t{x := s̄}〉 = t1. Recall that R 6= S by
hypothesis. We proceed by induction on C.
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1. Empty context, C = �. Then R : t0 = (λ`x.t)s̄
`−→# t{x := s̄} = t1. There

are two subcases, depending on whether the pattern of S is inside t or inside
s̄:
1.1 The pattern of S is in t. Using Lem. A.6, the situation is:

(λ`x.C〈(λ`′y.r)ū〉)s̄
` ��

`′ // (λ`x.C〈r{y := ū}〉)s̄
`
��

C〈(λ`′y.r)ū〉{x := s̄} C〈r{y := ū}〉{x := s̄}

C{x := s̄1}〈(λ`
′
y.r{x := s̄2})ū{x := s̄3}〉

`′ ��

C{x := s̄1}〈r{y := ū}{x := s̄4}〉

C{x := s̄1}〈r{x := s̄2}{y := ū{x := s̄3}}〉

where (s̄1, s̄2, s̄3) and (s̄1, s̄4) are partitions of s̄. Note that (s̄2, s̄3) is
a partition of s̄4, so it suffices to show that r{y := ū}{x := s̄4} =
r{x := s̄2}{y := ū{x := s̄3}}, which is an immediate consequence of the
Substitution Lemma (Lem. 3.10).

1.2 The pattern of S is inside s̄. In this case, s̄ = [s̄1, C〈(λ`
′
y.r)ū〉, s̄2].

(λ`x.t)[s̄1, C〈(λ`
′
y.r)ū〉, s̄2]

` ��

`′ // (λ`x.t)[s̄1, r{y := ū}, s̄2]

`
��

t{x := [s̄1, C〈(λ`
′
y.r)ū〉, s̄2]} `′ // t{x := [s̄1, r{y := ū}, s̄2]}

The arrow of the bottom of the diagram exists as a consequence of
Lem. A.7.

2. Under an abstraction, C = λ`
′′
y.C′. Straightforward by i.h..

3. Left of an application, C = C′ū. There are three subcases, depending on
whether the redex S is at the root, to the left of the application, or to the
right of the application.
3.1 The pattern of S is at the root. Then C′〈(λ`′x.t)s̄〉 must have a

lambda at the root, so it is of the form λ`
′
y.C′′′〈(λ`x.t)s̄〉. Hence, the

starting term is (λ`
′
y.C′′′〈(λ`x.t)s̄〉)ū. The symmetric case has already

been studied in item 1.1.
3.2 The pattern of S is inside C′. Straightforward by i.h..
3.3 The pattern of S is inside ū. It is immediate to close the diagram

since the steps are at disjoint positions:

C′〈(λ`x.t)s̄〉[ū1, C
′′〈(λ`′y.r)p̄〉, ū2]

` ��

`′ // C′〈(λ`x.t)s̄〉[ū1, C
′′〈r{y := p̄}〉, ū2]

`
��

C′〈t{x := s̄}〉[ū1, C
′′〈(λ`′y.r)p̄〉, ū2]

`′ // C′〈t{x := s̄}〉[ū1, C
′′〈r{y := p̄}〉, ū2]

4. Right of an application, C = r[u1, . . . , ui−1, C
′, ui+1, . . . , un]. There are

four subcases, depending on whether the redex S is at the root, to the left
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of the application (that is, inside r), or to the right of the application (that
is, either inside C′ or uj for some j).
4.1 The pattern of S is at the root. Then r has a lambda at the root, i.e.

it is of the form λ`
′
y.u. Hence the starting term is (λ`

′
y.u)[u1:i−1, C

′〈(λ`x.t)s〉, ui+1:n].
The symmetric case has already been studied in item 1.2.

4.2 The pattern of S is inside r. The steps are disjoint, so it is immediate.
4.3 The pattern of S is inside uj for some j 6= i. The steps are disjoint,

so it is immediate.
4.4 The pattern of S is inside C′. Straightforward by i.h..

A.4 Full Stability

In this section, we state and prove a strong version of Stability in the sense of
Lévy [26], called Full Stability (Lem. A.12). This lemma is crucial in establishing
that D#(t) forms a distributive lattice (Prop. 3.14). First we need a few auxiliary
results:

Definition A.8 (Alternative Substitution). An alternative definition for
capture-avoiding substitution, written t{{x := s̄}}, may be defined as follows,
provided that Tx(t) ⊆ T(s̄) and the multiset of types of s̄ = [s1, . . . , sm] is se-
quential:

xA{{x := s̄}} def
= si where i is the unique index such that

T(si) is the external label of A
yA{{x := s̄}} def

= yA if x 6= y

(λ`y.t){{x := s̄}} def
= λ`y.t{{x := s̄}} if x 6= y and y 6∈ fv(s̄)

(t[ui]
k
i=1){{x := s̄}} def

= t{{x := s̄}}[ui{{x := s̄}}]ki=1

Moreover, [t1, . . . , tn]{{x := s̄}} stands for [t1{{x := s̄}}, . . . , tn{{x := s̄}}], whenever
each substitution ti{{x := s̄}} is well-defined.

Lemma A.9. Let t, s̄, ū be correct terms such that Tx(t) = T(s̄) and suppose
that s̄ is contained in ū, i.e. there exists a list r̄ such that (s̄, r̄) is a partition of
ū. Then t{x := s̄} = t{{x := ū}}.

Proof. Straightforward by induction on t.

Lemma A.10 (Creation). If R creates S then it is according to one of the
following cases:

1. [crI]: C〈(λ`x.xA) [λ`
′
y.t] s̄〉 →# C〈(λ`′y.t) s̄〉 →# C〈t{{y := s̄}}〉.

2. [crII]: C〈(λ`x.λ`′y.t) s̄ ū〉 →# C〈(λ`′y.t′) ū〉 →# C〈t′{{y := ū}}〉, where
t′ = t{{x := s̄}}.

3. [crIII]: C1〈(λ`x.C2〈xA t̄〉)s̄〉 →# C1〈C′2〈(λ`
′
y.u) t̄′〉〉 →# C1〈C′2〈u{{y :=

t̄′}}〉〉, where
C2{{x := s̄}} = C′2
xA{{x := s̄}} = λ`

′
y.u

t̄{{x := s̄}} = t̄′

s̄ = [s̄1, λ
`′y.u, s̄2]
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Proof. Let R : C〈(λ`x.t)s̄〉 →# C〈t{{x := s̄}}〉 be a step, and let S : C〈t{{x :=
s̄}}〉 →# p another step such that R creates S. The redex contracted by the step
S is below a context C1, so let C〈t{{x := s̄}}〉 = C1〈(λ`

′
y.u)r̄〉, where (λ`

′
y.u)r̄ is

the redex contracted by S. We consider three cases, depending on the relative
positions of the holes of C and C1, namely they may be disjoint, C may be a prefix
of C1, or C1 may be a prefix of C:

1. If the holes of C and C1 are disjoint. Then there is a two-hole context Ĉ
such that C = Ĉ〈�, (λ`′y.u)r̄〉 and C1 = Ĉ〈t{{x := s̄}},�〉. So Ĉ〈(λ`x.t)s̄, (λ`′y.u)r̄〉 →#

Ĉ〈t{{x := s̄}}, (λ`′y.u)r̄〉 →# Ĉ〈t{{x := s̄}}, u{{y := r}}〉. Observe that S has an
ancestor S0, contradicting the hypothesis that R creates S. So this case is
impossible.

2. If C is a prefix of C1. Then there exists a context C2 such that C1 = C〈C2〉,
and we have that t{{x := s̄}} = C2〈(λ`

′
y.u)r̄〉. We consider two subcases,

depending on whether the position of the hole C2 lies inside the term t, or it
reaches a free occurrence of x in t and “jumps” to one of the arguments in
the list s̄.
2.1 If the position of the hole of C2 lies in t. More precisely, there is

a context C′2 and a term t′ such that: t = C′2〈t′〉, C2 = C′2{{x := s̄}},
and (λ`

′
y.u)r̄ = t′{{x := s̄}}. We consider three further subcases for the

term t′. It cannot be an abstraction, so it may be a variable xA, or an
application. Besides, if it is an application, the head may be a variable
xA or an abstraction.

2.1.1 Variable, i.e. t′ = xA. Then the list s̄may be split as s̄ = [s̄1, (λ
`′y.u)r̄, s̄2],

and: C〈(λ`x.C′2〈xA〉)[s̄1, (λ
`′y.u)r̄, s̄2]〉 →# C〈C2〈(λ`

′
y.u)r̄〉〉 →#

C〈C2〈u{{y := r̄}}〉〉. Observe that S has an ancestor S0, contradicting
the hypothesis that R creates S. So this case is impossible.

2.1.2 Application of a variable, i.e. t′ = xA r̄′. Given that (λ`
′
y.u)r̄ =

t′{{x := s̄}}, we have r̄ = r̄′{{x := s̄}}, and the list s̄ may be split
as s̄ = [s̄1, λ

`′y.u, s̄2]. Then C〈(λ`x.C′2〈xA r̄′〉)[s̄1, λ
`′y.u, s̄2]〉 →#

C〈C2〈(λ`
′
y.u) r̄〉〉 →# C〈C2〈u{{y := r̄}}〉〉, and we are in the situa-

tion of [crIII].
2.1.3 Application of an abstraction, i.e. t′ = (λ`y.u′) r̄′. Given that

(λ`
′
y.u)r̄ = t′{{x := s̄}}, we have ū = ū′{{x := s̄}} and r̄ = r̄′{{x := s̄}}.

Then: C〈(λ`x.C′2〈(λ`y.u′) r̄′〉)s̄〉 →# C〈C2〈(λ`y.u) r̄〉〉 →# C〈C2〈u{{z :=
r̄}}〉〉. Then S has an ancestor S0, contradicting the hypothesis that
R creates S. So this case is impossible.

2.2 If the position of the hole of C2 “jumps” through a free occur-
rence of x. More precisely, there exist C3,A, s̄1, s̄2, and C4 such that: t =
C3〈xA〉 s̄ = [s̄1, C4〈(λ`

′
y.u)r̄〉, s̄2] in such a way that T(C4〈(λ`

′
y.u)r̄〉) =

Tx(xA), and C2 = C3{{x := s̄}}〈C4〉. Then:

C〈(λ`x.C3〈xA〉)[s̄1, C4〈(λ`
′
y.u)r̄〉, s̄2]〉

→# C〈C3{{x := s̄}}〈C4〈(λ`
′
y.u)r̄〉〉〉

→# C〈C3{{x := s̄}}〈C4〈u{{y := r̄}}〉〉〉

Then S has an ancestor S0, contradicting the hypothesis that R creates
S. So this case is impossible.
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3. If C1 is a prefix of C. Then there exists a context C2 such that C = C1〈C2〉.
This means that C2〈t{{x := s̄}}〉 = (λ`

′
y.u)r̄. We consider three subcases,

depending on whether C2 is empty, or the hole of C2 lies to the left or to the
right of the application.

3.1 Empty, C2 = �. Then C = C1 so C is a prefix of C1. We have already
considered this case.

3.2 Left, C2 = C′2 r̄. Then the step R is of the form R : C1〈C′2〈(λ`x.t)s̄〉 r̄〉 →#

C1〈C′2〈t{{x := s̄}}〉 r̄〉. In particular we know that C′2〈t{{x := s̄}}〉 = λ`
′
y.u.

There are two cases, depending on whether C′2 is empty or non-empty.

3.2.1 Empty, C′2 = � Then we have that t{{x := s̄}} = λ`
′
y.u. We consider

two further subcases, depending on whether t is an occurrence of the
variable x.

3.2.1.1 If t = xA for some type A. Then the list s̄ must be of the
form [λ`

′
y.u] where the external label of A is precisely `′. Then

C1〈(λ`x.xA)[λ`
′
y.u] r̄〉 →# C1〈(λ`

′
y.u) r̄〉 →# C1〈u{{y := r̄}}〉, and

we are in the situation of [crI].
3.2.1.2 If t 6= xA for any type A. Then t must be an abstraction,

namely t = λ`
′
y.u′ where u′{{x := s̄}} = u. Then C1〈(λ`x.λ`

′
y.u′) s̄ r̄〉 →#

C1〈(λ`
′
y.u′{{x := s̄}}) r̄〉 →# C1〈u′{{x := s̄}}{{y := r̄}}〉, and we are

in the situation of [crII].
3.2.2 Non-empty, C′2 6= � Then necessarily C′2 must be an abstraction,

namely C′2 = λ`
′
y.C′′2 . Then:

C1〈(λ`
′
y.C′′2〈(λ`x.t) s̄〉) r̄〉 →# C1〈(λ`

′
y.C′′2〈t{{x := s̄}}〉) r̄〉

→# C1〈C′′2〈t{{x := s̄}}〉{{y := r̄}}〉

Then S has an ancestor S0, contradicting the hypothesis that R
creates S. So this case is impossible.

3.3 Right, C2 = (λ`
′
y.u)[r̄1, C

′
2, r̄2]. Then:

C1〈(λ`
′
y.u) [r̄1, C

′
2〈(λ`x.t)s̄〉, r̄2]〉 →# C1〈(λ`

′
y.u) [r̄1, C

′
2〈t{{x := s̄}}〉, r̄2]〉

→# C1〈u{{y := [r̄1, C
′
2〈t{{x := s̄}}〉, r̄2]}}〉

Then S has an ancestor S0, contradicting the hypothesis that R creates
S. So this case is impossible.

Lemma A.11 (Basic Stability). Let R 6= S. If T3 ∈ T1/(S/R) and T3 ∈
T2/(R/S) then there exists a step T0 such that T1 ∈ T0/R and T2 ∈ T0/S.

Proof. We prove an equivalent statement. Namely, we prove that if R,S are
different coinitial steps such that R creates a step T , then R/S creates the step
T/(S/R). It is easy to see that these are equivalent since in λ# there is no erasure
or duplication.

Let R : C〈(λ`x.t)s̄〉 →# C〈t{x := s̄}〉, let S 6= R be a step coinitial to R, and
suppose that R creates a step T . By induction on the context C we argue that
R/S creates T/(S/R).
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1. Empty context, C = �. Then R : (λ`x.t)s̄ →# t{{x := s̄}}. There are two
cases for S, depending on whether it is internal to t or internal to one of the
arguments of the list s̄.

1.1 If S is internal to t. Then t = C1〈Σ〉 where Σ is the redex contracted
by S. Let Σ′ denote the contractum of Σ. Then:

(λ`x.C1〈Σ〉) s̄
R //

S ��

C1〈Σ〉{{x := s̄}}
S/R
��

T //

(λ`x.C1〈Σ′〉) s̄
R/S // C1〈Σ′〉{{x := s̄}}

T/(S/R)//

By Creation (Lem. A.10), T must be created by [crIII], since there are
no applications surrounding the subterm contracted by R. This means
that C1〈Σ〉 = C2〈xA ū〉 where, moreover, s̄ may be split as [s̄1, λ

`′y.r, s̄2]
in such a way that `′ is the external label of A. We consider three sub-
cases, depending on whether the contexts C1 and C2 are disjoint, C1 is a
prefix of C2, or C2 is a prefix of C1.

1.1.1 If C1 and C2 are disjoint. Then there is a two-hole context Ĉ such
that Ĉ〈�, xAū〉 = C1 and Ĉ〈Σ,�〉 = C2. Given any term, context,
or list of terms X let us write X∗ to denote X{{x := s̄}}. Then R/S
creates T/(S/R):

(λ`x.Ĉ〈Σ, xAū〉) s̄ R //

S ��

Ĉ∗〈Σ∗, (λ`′y.r)ū∗〉
S/R ��

T // Ĉ∗〈Σ∗, r{{y := ū}}〉

(λ`x.Ĉ〈Σ′, xAū〉) s̄
R/S // Ĉ∗〈Σ′∗, (λ`′y.r)ū∗〉

T/(S/R)// Ĉ∗〈Σ′∗, r{{y := ū∗}}〉

1.1.2 If C1 is a prefix of C2. Then C2 = C1〈C′2〉 which means that Σ =
C′2〈xAū〉. Recall that Σ is a redex, so let us write Σ = (λ`

′′
z.p)q̄.

We consider two further subcases, depending on whether the hole of
C′2 lies to the left or to the right of the application (observe that it
cannot be at the root since λ`

′′
z.p is not a variable).

1.1.2.1 If the hole of C′2 lies to the left of (λ`
′′
z.p)q̄. More precisely,

we have that C′2 = (λ`
′′
z.C′′2)q̄ and p = C′′2〈xAū〉. Given any term,

context, or list of terms X let us write X∗ to denote X{{x := s̄}}.
Then R/S creates T/(S/R):

(λ`x.C1〈(λ`
′′
z.C′′2 〈xAū〉)q̄〉) s̄

R //

S

��

C∗1〈(λ`
′′
z.C′′2

∗〈(λ`
′
y.r)ū∗〉)q̄∗〉

S/R

��

T // C∗1〈(λ`
′′
z.C′′2

∗〈r{{y := ū∗}}〉)q̄∗〉

(λ`x.C1〈C′′2 〈xAū〉{{z := q̄}}〉) s̄
R/S // C∗1〈C′′2

∗〈(λ`
′
y.r)ū∗〉{{z := q̄∗}}〉

T/(S/R)// C∗1〈C′′2
∗〈r{{y := ū∗}}〉{{z := q̄∗}}〉

1.1.2.2 If the hole of C′2 lies to the right of (λ`
′′
z.p)q̄. More precisely,

we have that C′2 = (λ`
′′
z.p)[q̄1, C

′′
2 , q̄2] and q̄ = [q̄1, C

′′
2〈xA ū〉, q̄2].

Given any term, context, or list of terms X let us write X∗ to
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denote X{{x := s̄}}. Moreover, since parameters are in 1–1 corre-
spondence with arguments, there is exactly one free occurrence
of z in p whose type coincides with the type of C′′2〈xA ū〉. Let
p = C3〈zB〉 where the hole of C3 marks the position of such oc-
currence. Then:

C3〈zB〉{{z := q̄∗}} = C3{{z := q̄∗}}〈(C′′2〈xA ū〉)∗〉 = C3{{z := q̄∗}}〈C′′2
∗〈(λ`

′
y.r) ū∗〉)〉

Moreover, if we write C′3 for the context C3{{z := q̄}}:

(C′3)∗ = (C3{{z := q̄}})∗ = C∗3{{z := q̄∗}}

by the Substitution Lemma for contexts (Lem. A.6). Then:

(λ`x.C1〈(λ`
′′
z.C3〈zB〉)q̄〉) s̄

R //

S ��

C∗1〈(λ`
′′
z.C∗3〈zB〉)q̄∗〉

S/R ��

T //

(λ`x.C1〈C′3〈C′′2〈xA ū〉〉〉) s̄
R/S // C∗1〈(C′3)∗〈C′′2

∗〈(λ`′y.r) ū∗〉〉〉
T/(S/R)//

The labels of the steps T and T/(S/R) are both `′, which means
that R/S creates T/(S/R).

1.1.3 If C2 is a prefix of C1. Then C1 = C2〈C′1〉 which means xA ū =
C′1〈Σ〉. Since Σ is a redex, C′1 must be of the form xA [ū1, C

′′
1 , ū2] and

ū = [ū1, C
′′
1〈Σ〉, ū2]. Given any term, context, or list of terms X let us

write X∗ to denote X{{x := s̄}}. Then: R/S creates T/(S/R):

(λ`x.C2〈xA[ū1, C
′′
1 〈Σ〉, ū2]〉)s̄ R //

S
��

C∗2〈(λ`
′
y.r)[ū∗1, C

′′
1
∗〈Σ∗〉, ū∗2]〉

S/R
��

T // C∗2〈r{{y := [ū∗1, C
′′
1
∗〈Σ∗〉, ū∗2]}}〉

(λ`x.C2〈xA[ū1, C
′′
1 〈Σ′〉, ū2]〉)s̄

R/S // C∗2〈(λ`
′
y.r)[ū∗1, C

′′
1
∗〈Σ′∗〉, ū∗2]〉

T/(S/R)// C∗2〈r{{y := [ū∗1, C
′′
1
∗〈Σ′∗〉, ū∗2]}}〉

1.2 If S is internal to s̄. Then s̄ = [s̄1, C1〈Σ〉, s̄2] where Σ is the redex
contracted by S. Let Σ′ denote the contractum of Σ. Then:

(λ`x.t) [s̄1, C1〈Σ〉, s̄2]
R //

S ��

t{{x := [s̄1, C1〈Σ〉, s̄2]}}
S/R
��

T //

(λ`x.t) [s̄1, C1〈Σ′〉, s̄2]
R/S // t{{x := [s̄1, C1〈Σ′〉, s̄2]}}

T/(S/R)//

By Creation (Lem. A.10), T must be created by [crIII], since there are
no applications surrounding the subterm contracted by R. This means
that t = C2〈xA ū〉, and there is a term in the list [s̄1, C1〈Σ〉, s̄2] of the
form λ`

′
y.r such that `′ is also the external label of the type A. There

are two subcases, depending on whether such term is C1〈Σ〉 or a different
term in the list [s̄1, C1〈Σ〉, s̄2].

1.2.1 If λ`
′
y.r = C1〈Σ〉. Note that C1 cannot be empty, since this would

imply that λ`
′
y.r = Σ; however Σ is a redex, and in particular an

application, so this cannot be the case. Hence the context C1 must
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be non-empty, i.e. C1 = λ`
′
y.C′1 with r = C′1〈Σ〉. Given any term,

context, or list of terms X let us write X∗ to denote X{{x := [s̄1, s̄2]}}.
Then R/S creates T/(S/R):

(λ`x.C2〈xA ū〉)[s̄1, λ
`′y.C′1〈Σ〉, s̄2]

R //

S ��

C∗2〈(λ`
′
y.C′1〈Σ〉) ū∗〉

S/R ��

T //

(λ`x.C2〈xA ū〉)[s̄1, λ
`′y.C′1〈Σ′〉, s̄2]

R/S // C∗2〈(λ`
′
y.C′1〈Σ′〉) ū∗〉

T/(S/R)//

1.2.2 If λ`
′
y.r 6= C1〈Σ〉. Then λ`

′
y.r is either one of the terms in the list

s̄1 or one of the terms in the list s̄2. Given any term, context, or
list of terms X let X∗ denote X{{x := [s̄1, C1〈Σ〉s̄2]}} and let X† denote
X{{x := [s̄1, C1〈Σ′〉s̄2]}}. Then R/S creates T/(S/R):

(λ`x.C2〈xA ū〉) [s̄1, C1〈Σ〉, s̄2]
R //

S ��

C∗2〈(λ`
′
y.r) ū∗〉

S/R ��

T // C∗2〈r{{y := ū∗}}〉

(λ`x.C2〈xA ū〉) [s̄1, C1〈Σ′〉, s̄2]
R/S // C†2〈(λ`

′
y.r) ū†〉

T/(S/R)// C†2〈r{{y := ū†}}〉

2. Under an abstraction, C = λ`y.C′. Straightforward by i.h..
3. Left of an application, C = C′ū. Let ∆ be the redex contracted by R, and

let ∆′ denote its contractum. The step R is of the form C′〈∆〉ū→# C
′〈∆′〉ū.

We consider three subcases, according to Creation (Lem. A.10), depending
on whether T is created by [crI], [crII], or [crIII].
3.1 [crI] Then C′ is empty and ∆ has the following particular shape: ∆ =

(λ`x.xA)[λ`
′
y.r]. The step S can be either internal to the subterm r, or

internal to one of the subterms in the list ū. If S is internal to r, let r′

denote the term that results from r after the step S. Then:

(λ`x.xA)[λ`
′
y.r] ū

R //

S ��

(λ`
′
y.r) ū

S/R ��

T // r{{y := ū}}

(λ`x.xA)[λ`
′
y.r′] ū

R/S // (λ`
′
y.r′) ū

T/(S/R) // r′{{y := ū}}

Note that R/S creates T/(S/R), as required. If, on the other hand, S is
internal to ū, the situation is similar.

3.2 [crII] Then C′ is empty and ∆ has the following particular shape:
∆ = (λ`x.λ`

′
y.r) s̄. The step S can be either internal to r, internal to s̄,

or internal to ū. If S is internal to r, let r′ denote the term that results
from r after the step S. Then:

(λ`x.λ`
′
y.r) s̄ ū

R //

S ��

(λ`
′
y.r{{x := s̄}}) ū
S/R ��

T // r{{x := s̄}}{{y := ū}}

(λ`x.λ`
′
y.r′) s̄ ū

R/S // (λ`
′
y.r′{{x := s̄}}) ū

T/(S/R)// r′{{x := s̄}}{{y := ū}}

Note that R/S creates T/(S/R), as required. If, on the other hand, S is
internal to s̄ or ū, the situation is similar.



34 P. Barenbaum and G. Ciruelos

3.3 [crIII] Recall that the step R is of the form R : C′〈∆〉 ū →# C′〈∆′〉 ū.
Since the step T is created by [crIII], it does not take place at the root
of C′[∆′] ū, but rather it is internal to C′[∆′]. We consider three subcases,
depending on whether the step S takes place at the root, to the left of
the application or to the right of the application.

3.3.1 If S takes place at the root. Then C′〈∆〉 is an abstraction, so
C′ cannot be empty, i.e. we have that C′ = λ`

′
y.C′′. Moreover, since

T is created by [crIII], we have that ∆ has the following specific
shape: ∆ = (λ`x.C2〈xA r̄〉) s̄ where s̄ = [s̄1, λ

`′′z.p, s̄2] and such that
`′′ is the external label of A.
Given any term, context, or list of terms X let X∗ denote X{{x := s̄}}
and let X† denote X{{y := ū}}. Note also that by the Substitution

lemma (Lem. A.6) we have that X†{{x := s̄†}} = X∗†. Then R/S
creates T/(S/R):

(λ`
′
y.C′′〈(λ`x.C2〈xA r̄〉) s̄〉) ū

R //

S ��

(λ`
′
y.C′′〈C∗2〈(λ`

′′
z.p) r̄∗〉〉) ū

S/R
��

T // (λ`
′
y.C′′〈C∗2〈p{{z := r̄∗}}〉〉) ū

C′′
†〈(λ`x.C†2〈xA r̄†〉) s̄†〉

R/S // C′′†〈C∗2†〈(λ`
′′
z.p†) r̄∗†〉〉

T/(S/R) // C′′†〈C∗2†〈p†{{z := r̄∗†}}〉〉

3.3.2 If S is internal to C′〈∆〉. Then it is straightforward by i.h..
3.3.3 If S is internal to ū. Then:

C′〈∆〉 ū R //

S ��

C′〈∆′〉 ū
S/R ��

T // p ū

C′〈∆〉 r̄
R/S // C′〈∆′〉 r̄

T/(S/R) // p r̄

It is immediate to note in this case that R/S creates T/(S/R), since
the two-step sequencesRT and (R/S)(T/(S/R)) are both isomorphic
to C′〈∆〉 →# C

′〈∆′〉 →# p, only going below different contexts.
4. Right of an application, C = u[r̄1, C

′, r̄2]. Let ∆ be the redex contracted by
R, and let∆′ denote its contractum. The stepR is of the form u[r̄1, C

′〈∆〉, r̄2]→#

u[r̄1, C
′〈∆′〉, r̄2]. We consider three subcases, depending on whether the step

S takes place at the root, to the left of the application, or to the right of the
application.
4.1 If S takes place at the root. Then u is an abstraction u = λ`

′
y.u′.

Moreover, since parameters are in 1–1 correspondence with arguments,
there is a free occurrence of y in u′ whose type is also the type of the
argument C′〈∆〉. Let us write u′ as u′ = C1〈yA〉, where the hole of C1

marks the position of such occurrence. Given any term, context, or list
of terms X let X∗ denote X{{x := r̄1, r̄2}}. Then:

(λ`
′
y.C1〈yA〉)[r̄1, C

′〈∆〉, r̄2]
R //

S ��

(λ`
′
y.C1〈yA〉)[r̄1, C

′〈∆′〉, r̄2]

S/R
��

T // (λ`
′
y.C1〈yA〉)[r̄1, p, r̄2]

C∗1〈C′〈∆〉〉
R/S // C∗1〈C′〈∆′〉〉

T/(S/R) // C∗1〈p〉
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SoR/S creates T/(S/R), since the two-step sequencesRT and (R/S)(T/(S/R))
are both isomorphic to C′〈∆〉 →# C

′〈∆′〉 →# p, only going below different
contexts.

4.2 If S is internal to the left of the application. Then:

u[r̄1, C
′〈∆〉, r̄2]

R //

S ��

u[r̄1, C
′〈∆′〉, r̄2]

S/R ��

T // u[r̄1, p, r̄2]

u′[r̄1, C
′〈∆〉, r̄2]

R/S // u′[r̄1, C
′〈∆′〉, r̄2]

T/(S/R)// u′[r̄1, p, r̄2]

Then since RT and (R/S)(T/(S/R)) are isomorphic, it is immediate to
conclude, similarly as in item 3.3.3 of this lemma.

4.3 If S is internal to the right of the application. We consider two
further subcases, depending on whether S is internal to the argument
C′〈∆〉, or otherwise.

4.3.1 If S is internal to the argument C′〈∆〉. Then it is straightforward
by i.h..

4.3.2 If S is not internal to the argument C′〈∆〉. Then it is either
internal to r̄1 or to r̄2. If it is internal to r̄1, then:

u[r̄1, C
′〈∆〉, r̄2]

R //

S ��

u[r̄1, C
′〈∆′〉, r̄2]

S/R ��

T // u[r̄1, p, r̄2]

u[r̄′1, C
′〈∆〉, r̄2]

R/S // u[r̄′1, C
′〈∆′〉, r̄2]

T/(S/R)// u[r̄′1, p, r̄2]

Then since RT and (R/S)(T/(S/R)) are isomorphic, it is immediate
to conclude, similarly as in item 3.3.3 of this lemma.

Lemma A.12 (Full Stability). Let ρ, σ be coinitial derivations such that
labs(ρ) ∩ labs(σ) = ∅. Let T1, T2, T3 be steps such that T3 = T1/(σ/ρ) =
T2/(ρ/σ). Then there is a step T0 such that T1 = T0/ρ and T2 = T0/σ.

Proof. The proof of Full Stability (Lem. A.12) is straightforward using Basic
Stability (Lem. A.11). Consider the diagram formed by ρ = R1 . . . Rn and σ =
S1 . . . Sm. By Permutation (Prop. 3.11) the diagram can be tiled using squares,
as in λ# there is no erasure or duplication. Note that for all i 6= j we have that
Ri 6= Sj , since labs(ρ) and labs(σ) are disjoint. It suffices to apply Basic Stability
n×m times, once for each tile.

A.5 Proof of Prop. 3.14 – D#(t) is a lattice

Let [ρ] denote the permutation equivalence class of a derivation ρ, and let D#(t) =
{[ρ] | src(ρ) = t} be the set of→#-derivations starting on t, modulo permutation
equivalence. We already know that (D#(t),v) is an upper semilattice, where the

order is given by [ρ] v [σ]
def⇐⇒ ρ v σ, the bottom is ⊥ = [ε] and the join is

[ρ] t [σ] = [ρ t σ].
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Note that D#(t) has a top element: given that λ# is strongly normalizing (Prop. 3.9),
consider a derivation ρ : t�#

∗ s to normal form. Then for any other derivation
σ : t�#

∗ u we have that σ/ρ = ε, so it suffices to take > = [ρ].
To see that D#(t) is a lattice for all t ∈ T #, we are left to show that any two

coinitial derivations ρ, σ have a meet ρ u σ with respect to the prefix order v,

and define [ρ]u [σ]
def
= [ρ u σ]. To this purpose, we prove various auxiliary results.

Definition A.13. A step R belongs to a coinitial derivation ρ, written R ∈ ρ,
if and only if some residual of R is contracted along ρ. More precisely, R ∈ ρ if
there exist ρ1, R

′, ρ2 such that ρ = ρ1Rρ2 and R′ ∈ R/ρ1, We write R 6∈ ρ if it
is not the case that R ∈ ρ.

Lemma A.14 (Characterization of belonging). Let R be a step and ρ a
coinitial derivation in λ#. Then the following are equivalent:

1. R ∈ ρ,
2. R v ρ,
3. lab(R) ∈ labs(ρ).

Note: the hypothesis that R and ρ are coinitial is crucial. In particular, (1) and
(2) by definition only hold when R and ρ are coinitial, while (3) might hold even
if R and ρ are not coinitial.

Proof. (1 ⇒ 2) Let ρ = ρ1Sσ2 where S is a residual of R. Suppose moreover,
without loss of generality, that ρ1 is minimal, i.e. that R 6∈ ρ1. Since in λ# there
is no duplication or erasure, R/ρ1 is a singleton, so R/ρ1 = S. This means that
R/ρ1Sρ2 = ∅, so indeed R v ρ1Sρ2.
(2 ⇒ 3) By induction on ρ. If ρ is empty, the implication is vacuously true, so
let ρ = Sσ and consider two subcases, depending on whether R = S. If R = S,
then indeed the first step of ρ = Rσ has the same label as R. On the other hand,
if R 6= S, since in λ# there is no duplication or erasure, we have that R/S = R′,
where lab(R) = lab(R′). Note that R v Sσ so R/S = R′ v σ. By applying the
i.h. we obtain that there must be a step in σ whose label is lab(R) = lab(R′),
and we are done.
(3 ⇒ 1) By induction on ρ. If ρ is empty, the implication is vacuously true, so
let ρ = Sσ and consider two subcases, depending on whether lab(R) = lab(S).
If lab(R) = lab(S) then R and S must be the same step, since terms are correct,
which means that labels decorating lambdas are pairwise distinct. Hence R ∈
ρ = Rσ. On the other hand, if lab(R) 6= lab(S), then R 6= S so since in λ# there
is no duplication or erasure we have that R/S = R′, where lab(R) = lab(R′). By
hypothesis, there is a step in the derivation ρ = Sσ whose label is lab(R), and
it is not S, so there must be at least one step in the derivation σ whose label
is lab(R) = lab(R′). By i.h. R′ ∈ σ and then, since R′ is a residual of R, we
conclude that R ∈ Sσ, as required.

It is immediate to note that, when composing derivations ρ, σ, the set of
labels of ρσ results from the union of the labels of ρ and σ:
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Remark A.15. labs(ρσ) = labs(ρ) ∪ labs(σ)

Indeed, a stronger results holds. Namely, the union is disjoint:

Lemma A.16. labs(ρσ) = labs(ρ) ] labs(σ)

Proof. Let ρ : t�# s. By induction on ρ we argue that the set of labels decorating
the lambdas in s is disjoint from labs(ρ). The base case is immediate, so let
ρ = Tτ . The step T is of the form: T : t = C〈(λ`x.u)r̄〉 →# C〈u{x := r̄}〉.
Hence the target of T has no lambdas decorated with the label `. Moreover, the
derivation τ is of the form: τ : C〈u{x := r̄}〉 �# s and by i.h. the set of labels
decorating the lambdas in s is disjoint from labs(τ). As a consequence, the set
of labels decorating the lambdas in s is disjoint from both labs(τ) and {`}. This
completes the proof.

As an easy consequence:

Corollary A.17. If |ρ| denotes the length of ρ, then |ρ| = #(labs(ρ)).

Lemma A.18. Let ρ and σ be coinitial. Then labs(ρ/σ) = labs(ρ) \ labs(σ)

Proof. First we claim that labs(ρ/R) = labs(ρ) \ {lab(R)}. By induction on ρ.
The base case is immediate, so let ρ = Sσ and consider two subcases, depending
on whether R = S. If R = S, then labs(ρ/R) = labs(Rσ/R) = labs(σ) =
labs(Rσ) \ {lab(R)}. On the other hand if R 6= S, then since in λ# there is no
duplication or erasure we have that R/S = R′ where lab(R) = lab(R′) and,
similarly, S/R = S′, where lab(S) = lab(S′). Hence:

labs(ρ/R) = labs(Sσ/R)
= labs((S/R)(σ/(R/S)))
= labs(S/R) ∪ labs(σ/(R/S))
= labs(S′) ∪ labs(σ/R′)
= labs(S′) ∪ (labs(σ) \ {lab(R′)} by i.h.
= labs(S) ∪ (labs(σ) \ {lab(R)})
= (labs(S) ∪ labs(σ)) \ {lab(R)} since lab(R) 6= lab(S)
= labs(Sσ) \ {lab(R)}
= labs(ρ) \ {lab(R)}

which completes the claim. To see that labs(ρ/σ) = labs(ρ) \ labs(σ) for an
arbitrary derivation σ, proceed by induction on σ. If σ is empty it is trivial, so
consider the case in which σ = Rτ .

labs(ρ/Rτ) = labs((ρ/R)/τ)
= labs(ρ/R) \ labs(τ) by i.h.
= (labs(ρ) \ {lab(R)}) \ labs(τ) by the previous claim
= labs(ρ) \ ({lab(R)} ∪ labs(τ))
= labs(ρ) \ labs(Rτ)

Proposition A.19 (Prefixes as subsets). Let ρ, σ be coinitial derivations in
the distributive lambda-calculus. Then ρ v σ if and only if labs(ρ) ⊆ labs(σ).
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Proof. By induction on ρ. The base case is immediate since ε v σ and ∅ ⊆
labs(σ) both hold. So let ρ = Tτ . First note that the following equivalence holds:

Tτ v σ ⇐⇒ T v σ ∧ τ v σ/T (1)

Indeed:

(⇒) Suppose that Tτ v σ. Then, on one hand, T v Tτ v σ. On the other
hand, projection is monotonic, so τ = Tτ/T v σ/T .
(⇐) Since τ v σ/T we have that Tτ v T (σ/T ) ≡ σ(T/σ) = σ since T/σ = ε.

So we have that:

Tτ v σ ⇐⇒ T v σ ∧ τ v σ/T by (1)
⇐⇒ lab(T ) ∈ labs(σ) ∧ τ v σ/T by Lem. A.14
⇐⇒ lab(T ) ∈ labs(σ) ∧ labs(τ) ⊆ labs(σ/T ) by i.h.
⇐⇒ lab(T ) ∈ labs(σ) ∧ labs(τ) ⊆ labs(σ) \ {lab(T )} by Lem. A.18
⇐⇒ labs(Tτ) ⊆ labs(σ)

To justify the very last equivalence, the (⇒) direction is immediate. For the (⇐)
direction, the difficulty is ensuring that labs(τ) ⊆ labs(σ) \ {lab(T )} from the
fact that labs(Tτ) ⊆ labs(σ). To see this it suffices to observe that by Lem. A.16,
labs(Tτ) is the disjoint union labs(T )]labs(τ), which means that lab(T ) 6∈ labs(τ).

As an easy consequence:

Corollary A.20 (Permutation equivalence in terms of labels). Let ρ, σ
be coinitial derivations in λ#. Then ρ ≡ σ if and only if labs(ρ) = labs(σ).

Lemma A.21 (Projections are decreasing). Let R ∈ ρ. Then |ρ| = 1 +
|ρ/R|.

Proof. Observe that R v ρ by Lem. A.14. So ρ ≡ R(ρ/R), which gives us that:

|ρ| = #labs(ρ) by Coro. A.17
= #labs(R(ρ/R)) by Coro. A.20, since ρ ≡ R(ρ/R)
= #(labs(R) ] labs(ρ/R) by Lem. A.16
= 1 + #labs(ρ/R)
= 1 + |ρ/R| by Coro. A.17

The proof of Prop. 3.14 proceeds as follows. If ρ and σ are derivations, we
say that a step R is a common (to ρ and σ) whenever R ∈ ρ and R ∈ σ. Define
ρ u σ as follows, by induction on the length of ρ:

ρ u σ def
=

{
ε if there are no common steps to ρ and σ

R((ρ/R) u (σ/R)) if the step R is common to ρ and σ

In the second case of the definition, there might be more than one R common
to ρ and σ. Any such step may be chosen and we make no further assumptions.
To see that this recursive construction is well-defined, note that the length of
ρ/R is lesser than the length of ρ by the fact that projections are decreasing
(Lem. A.21). To conclude the construction, we show that ρ u σ is an infimum,
i.e. a greatest lower bound:
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1. Lower bound. Let us show that ρu σ v ρ by induction on the length of ρ.
There are two subcases, depending on whether there is a step common to ρ
and σ.
If there is no common step, then ρ u σ = ε trivially verifies ρ u σ v ρ.
On the other hand, if there is a common step, we have by definition that
ρ u σ = R((ρ/R) u (σ/R)) where R is common to ρ and σ. Recall that
projections are decreasing (Lem. A.21) so |ρ| > |ρ/R|. This allows us to
apply the i.h. and conclude:

ρ u σ = R((ρ/R) u (σ/R)) by definition
v R(ρ/R) since by i.h. (ρ/R) u (σ/R) v ρ/R
≡ ρ(R/ρ)
= ρ since R v ρ by Lem. A.14.

Showing that ρ u σ v σ is symmetric, by induction on the length of σ.
2. Greatest lower bound. Let τ be a lower bound for {ρ, σ}, i.e. τ v ρ and
τ v σ, and let us show that τ v ρ u σ. We proceed by induction on the
length of ρ. There are two subcases, depending on whether there is a step
common to ρ and σ.
If there is no common step, we claim that τ must be empty. Otherwise we
would have that τ = Tτ ′ v ρ so in particular T v ρ and T ∈ ρ by Lem. A.14.
Similarly, T ∈ σ so T is a step common to ρ and σ, which is a contradiction.
We obtain that τ is empty, so trivially τ = ε v ρ u σ.
On the other hand, if there is a common step, we have by definition that
ρ u σ = R((ρ/R) u (σ/R)) where R is common to ρ and σ. Moreover, since
τ v ρ and τ v σ, by projecting along R we know that τ/R v ρ/R and
τ/R v σ/R. So:

τ v τ(R/τ)
≡ R(τ/R)
v R((ρ/R) u (σ/R)) since by i.h. τ/R v (ρ/R) u (σ/R)
= ρ u σ by definition

Finally, observe that the meet of {ρ, σ} is unique modulo permutation equiva-
lence, since if τ and τ ′ both have the universal property of being a greatest lower
bound, then τ v τ ′ and τ ′ v τ .

A.6 Proof of Prop. 3.15 – The function labs is a morphism of
lattices

We need the following auxiliary result:

Lemma A.22 (Disjoint derivations). Let ρ and σ be coinitial derivations in
λ#. The following are equivalent:

1. labs(ρ) ∩ labs(σ) = ∅.
2. ρ u σ = ε.
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3. There is no step common to ρ and σ.

In this case we say that ρ and σ are disjoint.

Proof. The implication (1 =⇒ 2) is immediate since if we suppose that ρ u σ
is non-empty then the first step of ρ u σ is a step T such that T ∈ ρ and T ∈ σ.
By Lem. A.14, this means that lab(T ) ∈ labs(ρ)∩ labs(σ), contradicting the fact
that lab(T ) and labs(ρ) are disjoint.

The implication (2 =⇒ 3) is immediate by the definition of ρ u σ (defined
in Prop. 3.14).

Let us check that the implication (3 =⇒ 1) holds. By the contrapositive,
suppose that labs(ρ) and labs(σ) are not disjoint, and let us show that there
is a step common to ρ and σ. Since labs(ρ) ∩ labs(σ) 6= ∅, we know that the
derivation ρ can be written as ρ = ρ1Rρ2 where lab(R) ∈ labs(σ). Without loss
of generality we may suppose that R is the first step in ρ with that property,
i.e. that labs(ρ1) ∩ labs(σ) = ∅. Moreover, let us write σ as σ = σ1Sσ2 where
lab(R) = lab(S).

Observe that the label of R does not appear anywhere along the sequence
of steps ρ1, i.e. that lab(R) 6∈ labs(ρ1), as a consequence of the fact that no
labels are ever repeated in any sequence of steps (Lem. A.16). This implies that
lab(S) 6∈ labs(ρ1/σ1). Indeed:

lab(S) = lab(R) 6∈ labs(ρ1) ⊇ labs(ρ1) \ labs(σ1) =(Lem. A.18) labs(ρ1/σ1)

This means that S is not erased by the derivation ρ1/σ1. More precisely, S/(ρ1/σ1)
is a singleton.

Symmetrically,R/(σ1/ρ1) is a singleton. Moreover, lab(S/(ρ1/σ1)) = lab(S) =
lab(R) = lab(R/(σ1/ρ1)) so we have that S/(ρ1/σ1) = R/(σ1/ρ1). The situation
is the following, where labs(ρ1) ∩ labs(σ1) = ∅:

ρ1

����
σ1

�� ��ρ2oooo Roo

σ1/ρ1 �� �� ρ1/σ1
����

S // σ2 // //

R/(σ1/ρ1)=S/(ρ1/σ1)
��

By Full stability (Lem. A.12) this means that there exists a step T such that
T/ρ1 = R and T/σ1 = S. Then T ∈ ρ1Rρ2 = ρ and also T ∈ σ1Sσ2 = σ so T is
common to ρ and σ, by which we conclude.

Let X be the set of labels of the steps involved in some derivation to normal
form. More precisely, let ρ0 : t →#

∗ s be a derivation to normal form, which
exists by virtue of Strong Normalization (Prop. 3.9), and let X = labs(ρ0).
Then we claim that:

labs : D#(t)→ P(X)
[ρ] 7→ labs(ρ)
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is a monomorphism of lattices. Note that labs is well-defined over permutation
equivalence classes since if ρ ≡ σ then labs(ρ) = labs(σ) by Coro. A.20. We are
to show that labs is monotonic, that it preserves bottom, joins, top, and meets,
and finally that it is a monomorphism:

1. Monotonic, i.e. [ρ] v [σ] implies labs(ρ) ⊆ labs(σ). By Prop. A.19.

2. Preserves bottom. Indeed, labs([ε]) = ∅.

3. Preserves joins, i.e. labs([ρ] t [σ]) = labs(ρ) ∪ labs(σ). Indeed:

labs(ρ t σ) = labs(ρ(σ/ρ)) by definition of t
= labs(ρ) ∪ labs(σ/ρ)
= labs(ρ) ∪ (labs(σ) \ labs(ρ)) by Lem. A.18
= labs(ρ) ∪ labs(σ)

4. Preserves top. Recall that > = [ρ0] where ρ0 : t�#
∗ s is the derivation to

normal form. Note moreover that all derivations to normal form are permu-
tation equivalent in an orthogonal axiomatic rewrite system, so the choice
does not matter. To conclude, observe that labs(ρ0) = X by definition of X,
and X is indeed the top element of P(X).

5. Preserves meets, i.e. labs([ρ] u [σ]) = labs(ρ) ∩ labs(σ). We show the two
inclusions:

5.1 (⊆) It suffices to check that labs(ρ u σ) ⊆ labs(ρ) (the inclusion labs(ρ u
σ) ⊆ labs(σ) is symmetric). By induction on the length of ρuσ. If ρuσ is
empty it is immediate. If it is non-empty, ρuσ = T (ρ/T uσ/T ), where T
is a step common to ρ and σ. Then since T is common to ρ and σ, we have
that lab(T ) ∈ labs(ρ). Moreover, by i.h. labs(ρ/T u σ/T ) ⊆ labs(ρ/T ).
So:

labs(ρ ∩ σ) = {lab(T )} ∪ labs(ρ/T u σ/T )
⊆ labs(ρ) ∪ labs(ρ/T ) by i.h.
= labs(ρ) ∪ (labs(ρ) \ {lab(T )} by Lem. A.18
= labs(ρ)

5.2 (⊇) To show labs(ρ) ∩ labs(σ) ⊆ labs(ρ u σ), we first prove the following
claim:

Claim. labs(ρ/(ρ u σ)) ∩ labs(σ/(ρ u σ) = ∅.
Proof of the claim. By Lem. A.22 it suffices to show that (ρ/(ρ u σ)) u
(σ/(ρuσ)) = ε. By contradiction, suppose that there is a step T common
to the derivations ρ/(ρu σ) and σ/(ρu σ). Then the derivation (ρu σ)T
is a lower bound for {ρ, σ}, i.e. (ρuσ)T v ρ and (ρuσ)T v σ. Since ρuσ
is the greatest lower bound for {ρ, σ}, we have that (ρ u σ)T v ρ u σ.
But this implies that T v ε, which is a contradiction. End of claim.

Note that ρ u σ v ρ, so we have that ρ ≡ (ρ u σ)(ρ/(ρ u σ)), and this
in turn implies that labs(ρ) = labs((ρ u σ)(ρ/(ρ u σ))) by Coro. A.20.
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Symmetrically, labs(σ) = labs((ρ u σ)(σ/(ρ u σ))). Then:

labs(ρ) ∩ labs(σ)
= labs((ρ u σ)(ρ/(ρ u σ))) ∩ labs((ρ u σ)(σ/(ρ u σ)))
= (labs(ρ u σ) ∪ labs(ρ/(ρ u σ))) ∩ (labs(ρ u σ) ∪ labs(σ/(ρ u σ)))

by Rem. A.15
= labs(ρ u σ) ∪ (labs(ρ/(ρ u σ)) ∩ labs(σ/(ρ u σ)))

since (A ∪B) ∩ (A ∪ C) = A ∪ (B ∩ C) for arbitrary sets A,B,C
= labs(ρ u σ)

since (labs(ρ/(ρ u σ)) ∩ labs(σ/(ρ u σ))) = ∅ by the previous claim

6. Monomorphism. It suffices to show that labs is injective. Indeed, suppose
that labs([ρ]) = labs([σ]). By Coro. A.20 we have that ρ ≡ σ, so [ρ] = [σ].

A.7 Proof of Prop. 4.2 – Simulation

To prove Prop. 4.2 we need an auxiliary lemma.

Lemma A.23 (Refinement of a substitution: composition). If t′ n t and
s′i n s for all 1 ≤ i ≤ n, then t′{x := [s′1, . . . , s

′
n]} n t{x := s}.

Proof. Straightforward by induction on t.

We prove items 1 and 2 of Prop. 4.2 separately:

Item 1 of Prop. 4.2: simulation of →β with →# Let t′ n t and let t =
C〈(λx.p)q〉 →β C〈p{x := q}〉 = s. We prove that there exists a term s′ such that
t′ →#

∗ s′ and s′ n s by induction on C.

1. Empty context, C = �. Then t = (λx.p)q → p{x := q} = s and t′ is of the
form (λ`x.p′)[q′1, . . . , q

′
n]. We conclude by taking s′ = p′{x := [q′1, . . . , q

′
n]},

using Lem. A.23.
2. Under an abstraction, C = λy.C′. Immediate by i.h..
3. Left of an application, C = C′u. Immediate by i.h..
4. Right of an application, C = uC′. Then t = u C′〈(λx.p)q〉 →β u C

′〈p{x :=
q}〉 = s and t′ = u′[u′1, . . . , u

′
n], with u′ n u and u′i n C′〈(λx.p)q〉 for all

i = 1..n. Applying the i.h. on u′i for each i = 1..n, we have:

C′〈(λx.p)q〉

o

β // C′〈p{x := q}〉

o

u′i
# // // u′′i

So we may conclude as follows:

u C′〈(λx.p)q〉

o

β // u C′〈p{x := q}〉

o

u′[u′1, . . . , u
′
n]

# // // u′[u′′1 , . . . , u
′′
n]
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Item 2 of Prop. 4.2: simulation of →# with →β Let t′ n t and t′ →# s
′.

We prove that there exist terms s and s′′ such that t →β s, s′ →#
∗ s′′, and

s′′ n s by induction on t′. Moreover, s′ →#
∗ s′′ is a multistep.

1. Variable t′ = x. Impossible.
2. Abstraction, t′ = λ`y.r′ Immediate by i.h..
3. Application, t′ = u′[r′1, . . . , r

′
n] Then t = ur where u′ n u and r′i n r for all

i = 1..n. There are three subcases, depending on whether the step t′ →# s
′

takes place at the root, inside u′, or inside r′i for some i = 1..n,
3.1 Reduction at the root. In this case u′ = λ`x.s′. Then by Lem. A.23:

(λ`x.s′)[r′1, . . . , r
′
n]

#��

n (λx.s)r

β
��

s′{x := [r′1, . . . , r
′
n]} n s{x := r}

3.2 Reduction in u′. Immediate by i.h..
3.3 Reduction in r′i for some i = 1..n. We have that r′i →# r

′′
i , so by i.h.

there exist p′i and p such that:

r′i
#��

n r

β

��

r′′i
#����

p′i n p

For every j = 1..n, j 6= i, we have that r′j n r and r →β p. By item 1 of
Simulation (Prop. 4.2), which we have just proved, we have the following
diagram:

r′j

#����

n r

β

��
p′j n p

So:
u′[r′1, . . . , r

′
j−1, r

′
j , r
′
j+1, . . . , r

′
n]

#
��

n u r

β

��

u′[r′1, . . . , r
′
j−1, r

′′
j , r
′
j+1, . . . , r

′
n]

#����
u′[p′1, . . . , p

′
j−1, p

′
j , p
′
j+1, . . . , p

′
n] n u p

A.8 Proof of Prop. 4.4 – Typability characterizes head
normalization

Before proving Prop. 4.4, we need a few auxiliary results.
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Definition A.24 (Head normal forms). A λ-term t is a head normal form
if it is of the form t = λx1. . . . λxn.y t1 . . . tm where n ≥ 0 and m ≥ 0. Note that
y might be or not be among the variables x1, . . . , xn. Similarly, a correct term t ∈
T # of λ# a head normal form if it is of the form t = λ`1x1. . . . λ

`nxn.y
A t̄1 . . . t̄m

where n ≥ 0 and m ≥ 0.

Lemma A.25. If t is a head normal form, there exists t′ ∈ T # such that t′ n t.

Moreover t′ can be taken to be of the form λ`1x1. . . . λ
`nxn.y

[ ]
`′1→...[ ]

`′m→α`
′′

[ ] . . . [ ].

Proof. Let t = λx1. . . . λxn.yt1 . . . tm. Let {`1, . . . , `n, `′1, . . . , `′m, `′′} be a set
of n + m + 1 pairwise distinct labels and let α be a base type. Take t′ :=

λ`1x1. . . . λ
`nxn.y

[ ]
`′1→...[ ]

`′m→α`
′′

[ ] . . . [ ]︸ ︷︷ ︸
m times

. Observe that t′ is correct and t′ n t.

Lemma A.26 (→#-normal forms refine head normal forms). Let t′ ∈ T #

be a →#-normal form and t′ n t. Then t is a head normal form.

Proof. Observe, by induction on t′ that if t′ ∈ T # is a →#-normal form, it
must be of the form λ`1x1. . . . λ

`nxn.y
As̄1 . . . s̄m, as it cannot have a subterm

of the form (λ`
′
z.u)r̄. Then λ`1x1. . . . λ

`nxn.y
As̄1 . . . s̄m n t. So t is of the form

λx1. . . . λxn.ys1 . . . sn, that is, t is a head normal form.

The following lemma is an adaptation of Subject Expansion in [8].

Lemma A.27 (Subject Expansion). If Γ ` C〈t{x := s̄}〉 : A is derivable,
then Γ ` C〈(λ`x.t)s̄〉 : A is derivable.

Proof. The proof proceeds by induction on C, and the base case by induction
on t, similar to the proof that substitution preserves typing in the proof of
Subject Reduction (Sec. A.1).

Correctness is not necessarily preserved by→#-expansion. We need a stronger
invariant, strong sequentiality, that will be shown to be preserved by expansion
under appropiate conditions:

Definition A.28 (Subterms and free subterms). The set of subterms
sub(t) of a term t is formally defined as follows:

sub(xA)
def
= {xA}

sub(λ`x.t)
def
= {λ`x.t} ∪ sub(t)

sub(t[si]
n
i=1)

def
= {t[si]ni=1} ∪ sub(t) ∪ ∪ni=1sub(si)

The set of free subterms sub◦(t) of a term t is defined similarly, except for
the abstraction case, which requires that the subterm in question do not include
occurrences of bound variables:

sub◦(xA)
def
= {xA}

sub◦(λ`x.t)
def
= {λ`x.t} ∪ {u ∈ sub◦(t) | x 6∈ fv(u)}

sub◦(t[si]
n
i=1)

def
= {t[si]ni=1} ∪ sub◦(t) ∪ ∪ni=1sub

◦(si)
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Definition A.29 (Strong sequentiality). A term t is strongly sequential
if it is correct and, moreover, for every subterm s ∈ sub(t) and any two free
subterms s1, s2 ∈ sub◦(s) lying at disjoint positions of s, the types of s1 and s2

have different external labels.

Example A.30. The following examples illustrate the notion of strong sequen-
tiality:

1. The term t = (λ1x.yα
2

)[ ] is strongly sequential. Note that t and yα
2

have
the same type, namely α2, but they do not occur at disjoint positions.

2. The term t = (λ1x.xα
2

)[yα
2

] is strongly sequential. Note that xα
2

and yα
2

both have type α2, but they are not simultaneously free subterms of the
same subterm of t.

3. The term t = λ1y.x[α2]
3→[α2]

4→β5

[yα
2

][zα
2

] is not strongly sequential, since yα
2

and zα
2

have the same type and they are both free subterms of x[α2]
3→[α2]

4→β5

[yα
2

][zα
2

] ∈
sub(t).

Lemma A.31 (Refinement of a substitution: decomposition). If u′ n
t{x := s} and u′ is strongly sequential, then u′ is of the form t′{x := [s′i]

n
i=1}.

Moreover, given a fresh label `, the term (λ`x.t′)[s′i]
n
i=1 is strongly sequential,

t′ n t and s′i n s for all i = 1..n.

Proof. By induction on t.

1. Variable (same), t = x. Then u′ n s. Let A be the type of u′. Taking
t′ := xA n x we have that (λ`x.xA)[u′] is strongly sequential. Regarding
strong sequentiality, observe that xA and u′ have the same type, but they
are not simultaneously the free subterms of any subterm of (λ`x.xA)[u′].

2. Variable (different), t = y 6= x. Then u′ n y, so u′ is of the form yA.
Taking t′ := yA we have that (λ`x.yA)[ ] is strongly sequential.

3. Abstraction, t = λy.r. Then u′ n λy.r{x := s} so u′ is of the form λ`
′
y.u′′

where u′′ n r{x := s}. By i.h., u′′ is of the form r′{x := [s′i]
n
i=1} where

(λ`x.r′)[s′i]
n
i=1 is strongly sequential, r′ n r and s′i n s for all i = 1..n.

Taking t′ := λ`
′
y.r′, we have that t′ = λ`

′
y.r′ n λy.r = t. Moreover, the

term (λ`x.t′)[si]
n
i=1 = (λ`x.λ`

′
y.r′)[si]

n
i=1 is strongly sequential. Typability is

a consequence of Subject Expansion (Lem. A.27). The remaining properties
are:
3.1 Uniquely labeled lambdas. The multiset of labels decorating the lamb-

das of (λ`x.λ`
′
y.r′)[si]

n
i=1 is given by Λ((λ`x.λ`

′
y.r′)[si]

n
i=1) = [`, `′] +

Λ(r′) +n
i=1 Λ(si). It suffices to check that this multiset has no repeats.

The label ` is assumed to be fresh, so it occurs only once. By i.h.,
u′′ = r′{x := [s′i]

n
i=1}, so using Lem. A.5 we have Λ(u′) = Λ(λ`

′
y.u′) =

[`′]+Λ(u′′) = [`′]+Λ(r′{x := [s′i]
n
i=1}) = [`′]+Λ(r′)+n

i=1Λ(s′i). Moreover,

the term u′ = λ`
′
y.u′′ is correct, so this multiset has no repeats.

3.2 Sequential contexts. Let q be a subterm of (λ`x.λ`
′
y.r′)[s′i]

n
i=1. If q is a

subterm of r′ or a subterm of s′i for some i = 1..n we conclude by i.h.
since (λ`x.r′)[s′i]

n
i=1 is known to be correct. Moreover, if Γ⊕x :M⊕y : N
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is the typing context for r′, the typing contexts of λ`
′
y.r′ and λ`x.λ`

′
y.r′

are respectively Γ ⊕ x :M and Γ , which are also sequential. Finally, if
∆i is the typing context for s′i, for each i = 1..n, the typing context for
(λ`x.r′)[s′i]

n
i=1 is of the form Γ +n

i=1 ∆i + y : N , and it is sequential by
i.h.. Hence the typing context for the whole term is Γ +n

i=1 ∆i, and it is
sequential.

3.3 Sequential types. Let q be a subterm (λ`x.λ`
′
y.r′)[s′i]

n
i=1, and let P `′′→ C

be a type that occurs in the typing context or the type of q. As in the
previous case, we have that Γ ⊕ x : [Bi]ni=1 ⊕ y : N ` r′ : A is derivable
and ∆i ` s′i : Bi is derivable for all i = 1..n. Moreover, they are correct
by i.h., so if q is a subterm of r′ or a subterm of some s′i, we are done.
There are three cases left for q:

3.3.1 Case q = λ`
′
y.r′. The typing context is Γ ⊕ x : [Bi]ni=1 and the type

N `′→ A.
3.3.2 Case q = λ`x.λ`

′
y.r′. The typing context is Γ and the type [Bi]ni=1

`→
N `′→ A.

3.3.3 Case q = (λ`x.λ`
′
y.r′)[si]

n
i=1. The typing context is Γ and the type

N `′→ A.

In all three cases, if P `′′→ C occurs in the typing context or the type of
q, then P can be shown to be sequential using the i.h..

3.4 Strong sequentiality. Let q ∈ sub((λ`x.λ`
′
y.r′)[si]

n
i=1) be a subterm, and

let q1, q2 ∈ sub◦(q) be free subterms lying at disjoint positions of q. We
argue that the types of q1 and q2 have different external labels. Consider
the following five possibilities for q1:

3.4.1 Case q1 = (λ`x.λ`
′
y.r′)[si]

n
i=1. Impossible since q2 must be at a

disjoint position.
3.4.2 Case q1 = λ`x.λ`

′
y.r′. Then the external label of the type of q1 is

the label `, which is fresh, so it cannot coincide with the type of any
other subterm.

3.4.3 Case q1 = λ`
′
y.r′. Then q2 must be a subterm of si for some i = 1..n.

Note that q must be the whole term, and n > 0, so there is at least
one free occurrence of x in λ`

′
y.r′. This means that q1 6∈ sub◦(q), so

this case is impossible.
3.4.4 Case q1 is a subterm of r′. If q2 is also a subterm of r′, we conclude

since by i.h. (λ`x.r′)[s′i]
n
i=1 is strongly sequential. Otherwise, q2 is a

subterm of si for some i = 1..n, and we also conclude by i.h..
3.4.5 Case q1 is a subterm of si for some i = 1..n. If q2 is a subterm

of sj for some j = 1..n, we conclude since by i.h. (λ`x.r′)[s′i]
n
i=1 is

strongly sequential. If q2 is any other subterm, note that the sym-
metric case has already been considered in one of the previous cases.

4. Application, t = rp. Then u′ n (rp){x := s}, so it is of the form u′0[u′j ]
m
j=1

where u′0 n r{x := s} and u′j n p{x := s} for all j = 1..m. By i.h. we have
that u′0 is of the form r′{x := s̄0} and for all j = 1..m the term u′j is of the
form p′j{x := s̄j}, where r′ n r and p′j n p for all j = 1..m. Moreover, the
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length of the list s̄j is kj and s̄j = [s
(j)
i ]

kj
i=1 for all j = 0..m, and we have

that s
(j)
i n s for all j = 0..m, i = 1..kj . By i.h. we also know that (λ`x.r′)s̄0

is strongly sequential and (λ`x.p′j)s̄j is strongly sequential for all j = 1..m.

Let t′ := r′[p′j ]
m
j=1, let n :=

∑m
j=0 kj , and let [s′1, . . . , s

′
n] :=

∑m
j=0 s̄j . Note

that t′ = r′[p′j ]
m
j=1 n rp = t and s′i n s for all i = 1..n.

Moreover, we have to check that u′ = t′{x := [s′1, . . . , s
′
n]}. To prove this,

note that t′{x := [s′1, . . . , s
′
n]} = (r′[p′j ]

m
j=1){x := [s′1, . . . , s

′
n]}. Suppose that

the multiset T([s′1, . . . , s
′
n]) were sequential. Then the list of terms [s′1, . . . , s

′
n]

would be partitioned as (ū0, . . . , ūm) where ūj is a permutation of s̄j for all
j = 0..m, and we would have indeed:

t′{x := [s′1, . . . , s
′
n]} = (r′[p′j ]

m
j=1){x := [s′1, . . . , s

′
n]}

= r′{x := ū0}[p′j{x := ūj}]mj=1) by T([s′1, . . . , s
′
n]) sequential

= r′{x := s̄0}[p′j{x := s̄j}]mj=1)
= r′{x := s̄0}[p′j{x := s̄j}]mj=1) by Lem. A.1
= u′0[u′j ]

m
j=1 = u′ by i.h.

To see that T([s′1, . . . , s
′
n]) is sequential, note that for every i 6= j, the terms

s′i and s′j are free subterms of u′ and they lie at disjoint positions of u′. Since
u′ is strongly sequential, the types of s′i and s′j have different external labels.
Hence T([s′1, . . . , s

′
n]) is sequential.

To conclude, we are left to check that (λ`x.t′)[s′1, . . . , s
′
n] is strongly sequen-

tial:

4.1 Uniquely labeled lambdas. The multiset of labels decorating the lambdas
of (λ`x.t′)[s′1, . . . , s

′
n] is given by Λ((λ`x.t′)[s′1, . . . , s

′
n]) = [`]+Λ(t′)+n

i=1

Λ(s′i). It suffices to check that this multiset has no repeats. The label `
is assumed to be fresh, so it occurs only once. We have already argued
that u′ = t′{x := [s′1, . . . , s

′
n]}, so using Lem. A.5 we have Λ(u′) =

Λ(t′) +n
i=1 Λ(s′i). Moreover u′ is correct, so this multiset has no repeats.

4.2 Sequential contexts. Suppose that Γ0 ⊕ x : M0 ` r′ : [Cj ]mj=1
`′→ A is

derivable, Γj ⊕ x : Mj ` p′j : Cj is derivable for all j = 1..m, and

∆i ` s′i : Bi is derivable for all i = 1..n. Note that
∑m
j=0Mj = [Bi]ni=1.

Let q be a subterm of (λ`x.r′[p′j ]
m
j=1)[s′1, . . . , s

′
n]. Consider four cases for

q:

4.2.1 Case q = (λ`x.r′[p′j ]
m
j=1)[s′1, . . . , s

′
n]. The typing context is

∑m
j=0 Γj+∑n

i=1∆i. By Subject Expansion (Lem. A.27) the typing context of
(r′[p′j ]

m
j=1){x := [s′1, . . . , s

′
n]} = u′ is also

∑m
j=0 Γj +

∑n
i=1∆i and u′

is correct by hypothesis. So
∑m
j=0 Γj +

∑n
i=1∆i is sequential.

4.2.2 Case q = λ`x.r′[p′j ]
m
j=1. The typing context is

∑m
j=0 Γj , which is

sequential because
∑m
j=0 Γj +

∑n
i=1∆i is sequential.

4.2.3 Case q = r′[p′j ]
m
j=1. The typing context is

∑m
j=0 Γj ⊕ x : [Bi]ni=1,

which is sequential because
∑m
j=0 Γj is sequential and, moreover,

[Bi]ni=1 = T([B′1, . . . ,B′n]) which we have already shown to be sequen-
tial.
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4.2.4 Otherwise. Then q is a subterm of r′, a subterm of p′j for some
j = 1..m, or a subterm of some s′i for some i = 1..n. Then we
conclude since by i.h. (λ`x.r′)s̄0 and all the (λ`x.p′j)s̄j are strongly
sequential.

4.3 Sequential types. Let q be a subterm of (λ`x.r′[p′j ]
m
j=1)[s′1, . . . , s

′
n]. We

claim that if N `′′→ D occurs in the context or in the type of q, then N
is sequential. The proof is similar as for subcase .

4.4 Strong sequentiality. Let q ∈ sub((λ`x.r′[p′j ]
m
j=1)[s′1, . . . , s

′
n]) be a sub-

term, and let q1, q2 ∈ sub◦(q) be free subterms lying at disjoint positions
of q. We claim that the types of q1 and q2 have different external labels.
The proof is similar as for subcase .

Lemma A.32 (Backwards Simulation). Let t, s ∈ T be λ-terms and let
s′ ∈ T # be a strongly sequential term such that t →β s and s′ n s. Then there
exists a strongly sequential term t′ ∈ T # such that:

to
β // so

t′
# // // s′

Proof. Let t = C〈(λx.u)r〉 →β C〈u{x := r}〉 = s. The proof proceeds by induc-
tion on C.

1. Empty, C = �. By Lem. A.31 we have that s′ is of the form u′{x :=
[r′1, . . . , r

′
n]} where u′ n u and r′i n r for all i = 1..n. Moreover, taking ` to be

a fresh label, (λ`x.u′)[r′1, . . . , r
′
n] is strongly sequential and (λ`x.u′)[r′1, . . . , r

′
n] n

(λx.u)r.
2. Under an abstraction, C = λx.C′. Straightforward by i.h..
3. Left of an application, C = C′ u Straightforward by i.h..
4. Right of an application, C = u C′ Then t = u r →β u p = s where r →β p

and s′ n s. Then s′ is of the form u′[p′1, . . . , p
′
n] where p′i n p for all i = 1..n.

By i.h., for all i = 1..n we have that there exist r′1, . . . , r
′
n such that:

ro

β // po

r′i
# // // p′i

So we have: u ro

β // upo

u′[r′i]
n
i=1

# // // u′[p′i]
n
i=1

Moreover, u′[r′i]
n
i=1 is strongly sequential, which can be concluded from the

facts that u′[p′i]
n
i=1 is strongly sequential by hypothesis, r′i is strongly se-

quential for all i = 1..n by i.h., and r′i and p′i have the same types by
Subject Expansion (Lem. A.27).

To prove the equivalence (1 ⇐⇒ 2) of Prop. 4.4, we claim that the following
three statements are equivalent:

1. There exists t′ ∈ T # such that t′ n t.
1’. There exists t′ ∈ T # such that t′ n t and t′ →#

∗ λ`1x1. . . . λ
`nxn.y

A[] . . . [].
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2. There exists a head normal form s such that t→β
∗ s.

Let us prove the chain of implications 1 =⇒ 2 =⇒ 1′ =⇒ 1:

– (1 =⇒ 2) Let t′ n t. By Strong Normalization (Prop. 3.9), reduce t′ →#
∗ s′

to normal form. We claim that there exists a term s such that t→β
∗ s and

s′ n s. Observe that, since λ# is strongly normalizing (Prop. 3.9) and finitely
branching, König’s lemma ensures that there is a bound for the length of
→#-derivations going out from a term t′ ∈ T #. (Alternatively, according to
the proof of Strong Normalization in Prop. 3.9, the bound may be explicitly
taken to be the number of lambdas in t′). Call this bound the weight of t′.
We proceed by induction on the weight of t′. If the derivation is empty, we are
done by taking s := t. If the derivation is non-empty, it is of the form t′ →#

u′ →#
∗ s′. By Simulation (Prop. 4.2) there exist terms u and u′′ such that

u′ →#
∗ u′′ n u and t →β u. Since the λ#-calculus is confluent (Prop. 3.11)

and s′ is a normal form, we have that u′′ �# s
′. Note that the weight of t′

is strictly larger than the weight of u′′, so by i.h. there exists s such that
u→β

∗ s and s′ n s:

t
o

β // u

o

β // // s

o

t′
# // u′

# // //

#

>> >>u′′
# // // s′

Finally, since s′ is a →#-normal form and s′ n s, Lem. A.26 ensures that s
is a head normal form, as required.

– (1′ =⇒ 1) Obvious.
– (2 =⇒ 1′) Let t→β

∗ s be a derivation to head normal form. We claim that
there exists t′ ∈ T # such that t′ is strongly sequential, and the normal form
of t′ is of the form λ`1x1. . . . λ

`nxn.y
A[] . . . []. By induction on the length of

the derivation t →β
∗ s. If the derivation is empty, t = s is a head normal

form and we conclude by Lem. A.25, observing that the constructed term
t′ n t is strongly sequential. If the derivation is non-empty, conclude using
the i.h. and Backwards Simulation (Lem. A.32).

A.9 Proof of Prop. 4.8 – Compatibility

We need a few auxiliary results.

Lemma A.33 (Simulation residuals and composition). If ρ, σ are com-
posable derivations and t′ n src(ρ), then:

1. t′/ρσ = (t′/ρ)/σ
2. ρσ/t′ = (ρ/t′)(σ/(t′/ρ))

Proof. Straightforward by induction on ρ.
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An n-hole context C′ is a term with n ocurrences of a hole �. We extend re-
finement for contexts by setting � n �. We write C〈t1, . . . , tn〉 for the capturing
substitution of the i-th occurrence of � in C by ti for all i = 1..n. If R : t→β s
is a step, we write C〈R〉 for the step C〈R〉 : C〈t〉 →β C〈s〉. Note that in general
a context C may be refined by an n-hole context, for example a 0-hole context,

x[]
1→α2

[ ] n x(y�), or a 2-hole context, x[α1,β2]
3→γ4

[�,�] n x�.

Lemma A.34 (Simulation of contexts). Let C′ n C, let t′1, . . . , t
′
n ∈ T #

and t ∈ T such that t′i n t′ for each i ∈ {1, . . . , n}, and C′〈t′1, . . . , t′n〉 n C〈t〉.
Moreover, let R : t →β s. Then C′〈t′1, . . . , t′n〉/C〈R〉 = C′〈t1/R, . . . , tn/R〉, and
labs(C〈R〉/C′〈t′1, . . . , t′n〉) =

∑n
i=1 labs(R/t

′
i).

Proof. Straightforward by induction on C.

In the proof of the following lemma (Lem. A.35), sometimes we will use the
previous lemma (Lem. A.34) implicitly.

Lemma A.35 (Basic Cube Lemma for simulation residuals). Let R :
t→β s and S : t→β u be coinitial steps, and let t′ ∈ T # be a correct term such
that t′ n t. Then the following equality between sets of coinitial steps holds:
(R/t′)/(S/t′) = (R/S)/(t′/S).

Proof. If R = S then it is easy to see that the proposition holds, so we can
assume that R 6= S. Also, note that it is enough to see that labs((R/t′)/(S/t′)) =
labs(((R/S)/(t′/S)), as we will do that in some cases. We proceed by induction
on t.

1. Variable t = x. Impossible.
2. Abstraction, t = λx.u. Immediate by i.h..
3. Application, t = pq. Three cases, depending on the position of R.

3.1 If R is at the root. Then t = (λx.r)q, and R : (λx.r)q → r{x := q}.
Then S may be inside r or inside q. In any case, the situation is:

(λx.r)q
R //

S��
r{x := q}

(λx.r◦)q◦

(λ`x.r′)q̄
R/t′ //

S/t′����
r′{x := q̄}

(λ`x.r′◦)q̄◦

Note that (R/t′)/(S/t′) has only one element R1, namely the step con-
tracting the lambda labeled with `. Note that R/S also happens to have
only one element, R2 : (λx.r◦)q◦ →β r

◦{x := q◦}. It is easy to see that
R2/((λ

`x.r′)q̄) = {R1}, as required.
3.2 If R is in p. We consider three subcases, depending on the position of

S.
3.2.1 If S is at the root. Then p = λx.C〈(λy.u)v〉 and (for appropiate

C◦, u◦, v◦):

(λx.C〈(λy.u)v〉)q R //

S��
(λx.C〈u{y := v}〉)q

C◦〈(λy.u◦)v◦〉
R/S // C◦〈u◦{y := v◦}〉
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(λ`x.C′〈(λ`1y.u1)v1, . . . , (λ
`ny.un)vn〉)q̄

R/t′ // //

S/t′��
(λ`x.C′〈u1{y := v1}, . . . , un{y := vn}〉)q̄

C′◦〈(λ`1y.u◦1)v◦1 , . . . , (λ
`ny.u◦n)v◦n〉

(R/t′)/(S/t′)// // C′◦〈u◦1{y := v◦1}, . . . , u◦n{y := v◦n}〉

Note that labs((R/t′)/(S/t′)) = {`1, . . . , `n}. Similarly, labs((R/S)/(t′/S)) =
{`1, . . . , `n}, as required.

3.2.2 If S is in p. Straightforward by i.h..
3.2.3 If S is in q. Straightforward since the steps are disjoint.

3.3 If R is in q. We consider three subcases, depending on the position of
S.

3.3.1 If S is at the root. Then p = λx.s and t = (λx.s)C〈(λy.u)v〉.

(λx.s)C〈(λy.u)v〉 R //

S��
(λx.s)C〈u{y := v}〉

s{x := C〈(λy.u)v〉}
R/S // // s{x := C〈u{y := v}〉}

(λ`x.s′)[Ci〈(λ`i,jy.ui,jvi,j)〉mij=1]ni=1

R/t′ // //

S/t′��

(λ`x.s′)[Ci〈ui,j{y := vi,j}〉mij=1]ni=1

s′{x := [Ci〈(λ`i,jy.ui,jvi,j)〉mij=1]ni=1}
(R/t′)/(S/t′) // s′{x := [Ci〈ui,j{y := vi,j}〉mij=1]ni=1}

Note that R/S has as many elements as there are free occurrences of
x in s. In particular, S may erase or multiply R. In turn s′ has a num-
ber of free occurrences of x, more precisely n free occurrences of x,
i.e. the cardinality of the argument of the application. By Lem. A.34,
each step in R/S, when projected onto t′/S yields a set of labels
{`i,1, . . . , `i,mi}. So labs((R/S)/(t′/S)) =

∑n
i=1{`i,1, . . . , `i,mi} =

labs((R/t′)/(S/t′)) as required.
3.3.2 If S is in p. Straightforward since the steps are disjoint.
3.3.3 If S is in q. Straightforward by i.h..

Lemma A.36 (Simulation residual of a development). Let M be a set
of coinitial steps in the λ-calculus, let ρ be a complete development of M, and
let t′ ∈ T # be a correct term such that t′ n src(ρ). Then ρ/t′ is a complete
development of M/t′.

Proof. Recall that developments are finite and the λ-calculus is finitely branch-
ing so, by König’s lemma, the length of a development of a set M is bounded.
This bound is called the depth of M. We proceed by induction on the depth of
M.

1. Base case. Immediate.
2. Induction. Then M must be non-empty. Let M = {R1, . . . , Rn, S} for

some n ≥ 0, and let ρ be a complete development of M. Without loss of
generality, we may assume that ρ = Sρ′, where ρ′ is a complete development
ofM′ =M/S. Note that the depth ofM′ is strictly lesser than the depth of

M. By i.h., ρ′/(t′/S) is a complete development ofM′/(t′/S) =
⋃n
i=1

Ri/S
t′/S .
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By the Basic Cube Lemma (Lem. A.35) this set is equal to
⋃n
i=1

Ri/t
′

S/t′ .

Then (S/t′)(ρ′/(t′/S)) is a complete development of M/t′ = (R1/t
′) ∪ . . . ∪

(Rn/t
′) ∪ (S/t′). To conclude, note that ρ/t′ = Sρ′/t′ = (S/t′)(ρ′/(t′/S)) so

we are done.

Lemma A.37 (Compatibility for developments). LetM be a set of coini-
tial steps, and let ρ and σ be complete developments of M, and let t′ ∈ T # be
a correct term such that t′ n src(ρ). Then ρ/t′ ≡ σ/t′.

Proof. This is an immediate consequence of Lem. A.36, since ρ/t′ and σ/t′ are
both complete developments of M/t′, hence permutation equivalent.

The proof of Prop. 4.8 proceeds as follows. Let ρ ≡ σ be permutation equiv-
alent derivations in the λ-calculus, let t′ ∈ T # be a correct term such that
t′ n src(ρ), and let us show that:

1. t′/ρ = t′/σ
2. ρ/t′ ≡ σ/t′

Recall that, in an orthogonal axiomatic rewrite system, permutation equivalence
may be defined as the reflexive and transitive closure of the permutation axiom
τ1Rστ2 ≡ τ1Sρτ2, where τ1 and τ2 are arbitrary derivations, σ is a complete
development of S/R, and ρ is a complete development of R/S. For this definition
of permutation equivalence, see for example [28, Def. 2.17], and . We prove each
item separately:

1. For the first item, we proceed by induction on the derivation that ρ ≡ σ.
Reflexivity and transitivity are trivial, so we concentrate on the permutation
axiom itself. Let τ1Rστ2 ≡ τ1Sρτ2, where τ1 and τ2 are arbitrary derivations,
σ is a complete development of S/R, and ρ is a complete development of R/S,
and let us show that t′/τ1Rστ2 = t′/τ1Sρτ2. By Lem. A.33 we have that:

t′/τ1Rστ2 = ((t′/τ1)/Rσ)/τ2 and t′/τ1Sρτ2 = ((t′/τ1)/Sρ)/τ2

so, without loss of generality, it suffices to show that for an arbitrary term
s′ ∈ T #, we have s′/Rσ = s′/Sρ. By definition of simulation residual, the
derivations below have the indicated sources and targets:

Rσ/s′ : s′ → s′/Rσ
Sρ/s′ : s′ → s′/Sρ

Moreover:

Rσ/s′ = (R/s′)(σ/(s′/R))
≡ (R/s′)((S/R)/(s′/R)) by Lem. A.37
≡ (R/s′)((S/s′)/(R/s′)) by the basic cube lemma (Lem. A.35)
≡ (S/s′)((R/s′)/(S/s′)) since A(B/A) ≡ B(A/B) holds in general
≡ (S/s′)((R/S)/(s′/S)) by the basic cube lemma (Lem. A.35)
= (S/s′)(ρ/(s′/S)) by Lem. A.37
= Sρ/s′
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So Rσ/s′ and Sρ/s′ are permutation equivalent. In particular, they have the
same target, so s′/Rσ = s′/Sρ as required.

2. The proof of the second item is also by induction on the derivation that
ρ ≡ σ. Let τ1Rστ2 ≡ τ1Sρτ2, where τ1 and τ2 are arbitrary derivations, σ is
a complete development of S/R, and ρ is a complete development of R/S,
and let us show that τ1Rστ2/t

′ = τ1Sρτ2/t
′. By Lem. A.33 we have that:

τ1Rστ2/t
′ = (τ1/t

′)(Rσ/s′)(τ2/u
′) and τ1Sρτ2/t

′ = (τ1/t
′)(Sρ/s′)(τ2/u

′′)

where s′ = t′/τ1, u′ = s′/τ1Rσ, and u′′ = s′/τ1Sρ. Similarly as before,
we can prove that Rσ/s′ ≡ Sρ/s′. By item 1 of this proposition, we have
u′ = u′′, so τ2/u

′ ≡ τ2/u′′, which finishes the proof.

A.10 Proof of Lem. 4.9 – Cube Lemma for simulation residuals

Let ρ : t �β s and σ : t �β u be coinitial derivations, and let t′ ∈ T # be
a correct term such that t′ n t. The statement of Lem. 4.9 claims that the
following equivalence holds:

(ρ/t′)/(σ/t′) ≡ (ρ/σ)/(t′/σ)

Before proving Lem. 4.9, we prove three auxiliary lemmas, all of which are par-
ticular cases of the main result.

Lemma A.38. (R/t′)/(σ/t′) ≡ (R/σ)/(t′/σ).

Proof. By induction on σ:

1. Empty, σ = ε. Immediate since R/t′ = R/t′.
2. Non-empty, σ = Sσ′. Then:

(R/t′)/(Sσ′/t′) = (R/t′)/((S/t′)(σ′/(t′/S))) by definition
= ((R/t′)/(S/t′))/(σ′/(t′/S)) by definition
≡ ((R/S)/(t′/S))/(σ′/(t′/S)) by Lem. A.35
≡ ((R/S)/σ′)/((t′/S)/σ′) by i.h.
= (R/Sσ′)/(t′/Sσ′) by definition

Lemma A.39. LetM be a set of coinitial steps in the λ-calculus. Then (M/t′)/(S/t′)
and (M/S)/(t′/S) are equal as sets.

Proof. Using Lem. A.35:

(M/t′)/(S/t′) =
⋃
R∈M

(R/t′)/(S/t′) =
⋃
R∈M

(R/S)/(t′/S) = (M/S)/(t′/S)

Lemma A.40. LetM be a set of coinitial steps in the λ-calculus, and letM also
stand for some (canonical) complete development of M. Then (ρ/t′)/(M/t′) ≡
(ρ/M)/(t′/M).
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Proof. By induction on ρ:

1. Empty, ρ = ε. Immediate since ε = ε.
2. Non-empty, ρ = Rρ′. Then:

(Rρ′/t′)/(M/t′) = (R/t′)(ρ′/(t′/R))/(M/t′) by definition
= ((R/t′)/(M/t′))((ρ′/(t′/R))/((M/t′)/(R/t′))) by definition
≡ ((R/M)/(t′/M))((ρ′/(t′/R))/((M/t′)/(R/t′))) by Lem. A.38
= ((R/M)/(t′/M))((ρ′/(t′/R))/((M/R)/(t′/R))) by Lem. A.39
= ((R/M)/(t′/M))((ρ′/(M/R))/((t′/R)/(M/R))) by i.h.
= ((R/M)/(t′/M))((ρ′/(M/R))/((t′/M)/(R/M))) by Prop. 4.8 (?)
= (R/M)(ρ′/(M/R))/(t′/M) by definition
= (Rρ′/M)/(t′/M) by definition

For the equality marked with (?), observe that (t′/R)/(M/R) = t′/(RtM)
and (t′/M)/(R/M) = t′/(MtR) by definition. Moreover RtM ≡MtR,
so by Compatibility (Prop. 4.8), (t′/R)/(M/R) = (t′/M)/(R/M).

Now the proof of Lem. 4.9 proceeds by induction on ρ:

1. Empty ρ = ε. Immediate since ε = ε.
2. Non-empty, ρ = Rρ′. Then:

(Rρ′/σ)/(t′/σ) = (R/σ)(ρ′/(σ/R))/(t′/σ) by definition
= ((R/σ)/(t′/σ))((ρ′/(σ/R))/((t′/σ)/(R/σ))) by definition
≡ ((R/t′)/(σ/t′))((ρ′/(σ/R))/((t′/σ)/(R/σ))) by Lem. A.38
= ((R/t′)/(σ/t′))((ρ′/(σ/R))/((t′/R)/(σ/R))) by Prop. 4.8 (?)
= ((R/t′)/(σ/t′))((ρ′/(t′/R))/((σ/R)/(t′/R))) by i.h.
= ((R/t′)/(σ/t′))((ρ′/(t′/R))/((σ/t′)/(R/t′))) by Lem. A.40
= (R/t′)(ρ′/(t′/R))/(σ/t′) by definition
= (Rρ′/t′)/(σ/t′) by definition

For the equality marked with (?), observe that (t′/σ)/(R/σ) = t′/(σ t R) and
(t′/R)/(σ/R) = t′/(R t σ) by definition. Moreover σ t R ≡ R t σ, so by Com-
patibility (Prop. 4.8), (t′/σ)/(R/σ) = (t′/R)/(σ/R).

A.11 Proof of Prop. 5.2 – Properties of garbage

1. Let σ v ρ. Then στ ≡ ρ for some τ , so σ/t′ v (σ/t′)(τ/(t′/σ)) = στ/t′ ≡ ρ/t′
by Compatibility (Prop. 4.8).

2. Note that ρσ/t′ = (ρ/t′)(σ/(t′/ρ)). So ρσ/t′ is empty if and only if ρ/t′ and
σ/(t′/ρ) are empty.

3. Suppose that ρ/t′ = ε. Then (ρ/σ)/(t′/σ) = (ρ/t′)/(σ/t′) by the Cube
Lemma (Lem. 4.9).

4. By the Cube Lemma (Lem. 4.9): (ρtσ)/t′ = ρ(σ/ρ)/t′ = (ρ/t′)((σ/ρ)/(t′/ρ) ≡
(ρ/t′)((σ/t′)/(ρ/t′)) = (ρ/t′) t (σ/t′). So (ρ t σ)/t′ is empty if and only if
ρ/t′ and σ/t′ are empty.
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A.12 Proof of Lem. 5.6 – Sieving is well-defined

Note that t′/R0 n ρ/R0 by definition of simulation residual, so the recursive call
can be made.

To see that recursion is well-founded, consider the measure given byM(ρ, t′) =
#labs(ρ/t′). Let R0 be a coarse step for (ρ, t′). Observe that R0 v ρ so R0/t

′ v
ρ/t′ by Coro. 4.10. Then labs(R0/t

′) ⊆ labs(ρ/t′) by Prop. A.19. So we have:

#labs(ρ/t′) > #(labs(ρ/t′) \ labs(R0/t
′)) since R0/t

′ 6= ∅ and labs(R0/t
′) ⊆ labs(ρ/t′)

= #labs((ρ/t′)/(R0/t
′)) by Lem. A.18

= #labs((ρ/R0)/(t′/R0))

as required.

A.13 Proof of Prop. 5.7 – Properties of sieving

To prove Prop. 5.7 we first prove various auxiliary results.

Lemma A.41 (The sieve is a prefix). Let ρ : t →β
∗ s and t′ n t. Then

ρ ⇓ t′ v ρ.

Proof. By induction on the length of ρ ⇓ t′. If there are no coarse steps for (ρ, t′),
then trivially ρ ⇓ t′ = ε v ρ. If there is a coarse step for (ρ, t′), let R0 be the
leftmost such step. Then:

ρ ⇓ t′ = R0((ρ/R0) ⇓ (t′/R0))
v R0(ρ/R0) by i.h.
≡ ρ(R0/ρ) since A(B/A) ≡ B(A/B) in general
= ρ since R0 v ρ as R0 is coarse for (ρ, t′)

We also need the following technical lemma:

Lemma A.42 (Refinement of a context). The following are equivalent:

1. t′ n C〈s〉,
2. t′ is of the form C′〈s′1, . . . , s′n〉, where C′ is an n-hole context such that C′ n C

and s′i n s for all 1 ≤ i ≤ n. Note that n might be 0, in which case C′ is a
term.

Moreover, in the implication (1 =⇒ 2), the decomposition is unique, i.e. the
context C′, the number of holes n ≥ 0, and the terms s′1, . . . , s

′
n are the unique

possible such objects.

Proof. Straightforward by induction on C.

Lemma A.43 (Garbage only interacts with garbage). The following
hold:

1. Garbage only creates garbage. Let R and S be composable steps in the
λ-calculus, and let t′ n src(R). If R creates S and R is t′-garbage, then S is
(t′/R)-garbage.
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2. Garbage only duplicates garbage. Let R and S be coinitial steps in the
λ-calculus and let t′ n src(R). If R duplicates S, i.e. #(S/R) > 1, and R is
t′-garbage, then S is (t′/R)-garbage.

Proof. We prove each item separately:

1. According to Lévy [25], there are three creation cases in the λ-calculus. We
consider the three possibilities for R creating S:

1.1 Case I, C〈(λx.x)(λy.s)u〉 R−→β C〈(λy.s)u〉 S−→β C〈s{y := u}〉. Then by
Lem. A.42, the term t′ is of the form C′〈∆1, . . . ,∆n〉 where C′ is an n-hole
context such that C′ n C〈�u〉 and ∆i n (λx.x)(λy.s) for all 1 ≤ i ≤ n.
Since R is garbage, we know that actually n = 0. So t′ n C〈�u〉 and
R/t′ : t′ �# t′ = t′/R in zero steps. Hence t′ n C〈(λy.s)u〉, so by
Lem. A.42, the term t′ can be written in a unique way as C′′〈Σ1, . . . , Σm〉,
where C′′ is an m-hole context such that C′′ n C〈�u〉 and Σi n λy.s for
all 1 ≤ i ≤ m. Since the decomposition is unique and t′ n C〈�u〉, we
conclude that m = 0. Hence S is (t′/R)-garbage.

1.2 Case II, C〈(λx.λy.s)u r〉 R−→β C〈(λy.s{x := u}) r〉 S−→β C〈s{x := u}{y :=
r}〉. Then by Lem. A.42, the term t′ is of the form C′〈∆1, . . . ,∆n〉 where
C′ is an n-hole context such that C′ n C〈� r〉 and ∆i n (λx.λy.s)u
for all 1 ≤ i ≤ n. Since R is garbage, we know that actually n = 0.
So t′ n C〈� r〉 and R/t′ : t′ �# t

′ = t′/R in zero steps. Hence t′ n
C〈(λy.s{x := u}) r〉, so by Lem. A.42, the term t′ can be written in
a unique way as C′′〈Σ1, . . . , Σn〉, where C′′ is an m-hole context such
that C′′ n C〈� r〉 and Σi n λy.s{x := u} for all 1 ≤ i ≤ m. Since the
decomposition is unique and t′ n C〈� r〉, we conclude that m = 0. Hence
S is (t′/R)-garbage.

1.3 Case III, C1〈(λx.C2〈x s〉) (λy.u)〉 R−→β C1〈Ĉ2〈(λy.u) ŝ〉〉 S−→β C1〈Ĉ2〈u{y :=
ŝ}〉〉, where Ĉ2 = C2{x := λy.u} and t̂ = t{x := λy.u}. Then by
Lem. A.42, the term t′ is of the form C′〈∆1, . . . ,∆n〉 where C′ is an n-hole
context such that C′ n C1 and ∆i n (λx.C2〈x s〉) (λy.u) for all 1 ≤ i ≤ n.
Since R is garbage, we know that actually n = 0. So t′ n C1 and
R/t′ : t′ �# t

′ = t′/R in zero steps. Hence t′ n C1〈Ĉ2〈(λy.u) ŝ〉〉, so by
Lem. A.42, the term t′ can be written in a unique way as C′′〈Σ1, . . . , Σm〉,
where C′′ n C1 and Σi n Ĉ2〈(λy.u) ŝ〉 for all 1 ≤ i ≤ m. Since the de-
composition is unique and t′ n C1, we conclude that m = 0. Hence S is
(t′/R)-garbage.

2. Since R duplicates S, the redex contracted by S lies inside the argument
of R, that is, the source term is of the form C1〈(λx.t)C2〈(λy.s)u〉〉 where
the pattern of R is (λx.t)C2〈(λy.s)u〉, and the pattern of S is (λy.s)u. By
Lem. A.42, the term t′ is of the form C′〈∆1, . . . ,∆n〉 where C′ is an n-hole
context such that C′ n C and ∆i n (λx.t)C2〈(λy.s)u〉 for all 1 ≤ i ≤ n.
Since R is garbage, we know that n = 0. By Lem. A.42, the term t′ can be
written as C′′〈Σ1, . . . , Σm〉 where C′′ n C1〈(λx.t)C2〉 and Σi n (λy.s)u for
all 1 ≤ i ≤ m. Note that t′ n C1 so t′ n C1〈(λx.t)C2〉, as can be checked by
induction on C1. Since the decomposition is unique, this means that m = 0,
and thus S is garbage.
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Proposition A.44 (Characterization of garbage). Let ρ : t�β s and t′ n
t. The following are equivalent:

1. ρ ⇓ t′ = ε.
2. There are no coarse steps for (ρ, t′).
3. The derivation ρ is t′-garbage.

Proof. It is immediate to check that items 1 and 2 are equivalent, by definition
of sieving, so let us prove 2 =⇒ 3 and 3 =⇒ 2:

– (2 =⇒ 3) We prove the contrapositive, namely that if ρ is not garbage,
there is a coarse step for (ρ, t′). Suppose that ρ is not garbage, i.e. ρ/t′ 6= ε.
Then by Prop. 5.2 we have that ρ can be written as ρ = ρ1Rρ2 where all the
steps in ρ1 are garbage and R is not garbage. By the fact that garbage only
creates garbage (Lem. A.43) the step R has an ancestor R0, i.e. R ∈ R0/ρ1.
Moreover, since garbage only duplicates garbage (Lem. A.43) we have that
R0/ρ1 = R. Given that R is not garbage, we have that:

(R0/t
′)/(ρ1/t

′) = (R0/ρ1)/(t′/ρ1) by Lem. 4.9
= R/(t′/ρ1)
6= ∅

Since (R0/t
′)/(ρ1/t

′) 6= ∅, in particular, R0/t
′ 6= ∅, which means that R0 is

not garbage. Moreover, R0 v ρ1Rρ2 = ρ. So R0 is coarse for (ρ, t′).
– (3 =⇒ 2) Let ρ be garbage, suppose that there is a coarse step R for

(ρ, t′), and let us derive a contradiction. Since R is coarse for (ρ, t′), we have
that R v ρ, so R/t′ v ρ/t′ by Coro. 4.10. But ρ/t′ is empty because ρ is
t′-garbage, that is, R/t′ v σ/t′ = ε, which means that R is also t′-garbage.
This contradicts the fact that R is coarse for (ρ, t′).

Lemma A.45 (The leftmost coarse step has at most one residual). Let
R0 be the leftmost coarse step for (ρ, t′), and let σ v ρ. Then #(R0/σ) ≤ 1.

Proof. By induction on the length of σ. The base case is immediate. For the
inductive step, let σ = Sτ v ρ. Then in particular S v ρ. We consider two cases,
depending on whether R0 = S.

1. Equal, R0 = S. Then R0/σ = R0/R0τ = ∅ and we are done.
2. Non-equal, R0 6= S. First we argue that R0/S has exactly one residual
R1 ∈ R0/S. To see this, we consider two further cases, depending on whether
S is t′-garbage or not:
2.1 If S is not t′-garbage. Then S v ρ and S/t′ = ∅, so S is coarse for

(ρ, t′). Since R0 is the leftmost coarse step, this means that R is to the
left of S. So R0 has exactly one residual R1 ∈ R0/S.

2.2 If S is t′-garbage. Let us write the term t as t = C〈(λx.s)u〉, where
(λx.s)u is the pattern of the redex S. By Lem. A.42 the term t′ is of
the form t′ = C′[∆1, . . . ,∆n], where C′ is a many-hole context such that
C′ n C and ∆i n (λx.s)u for all 1 ≤ i ≤ n. We know that S is garbage,
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so n = 0 and t′ = C′ is actually a 0-hole context (i.e. a term). On the
other hand, R0 is coarse for (ρ, t′), so in particular it is not t′-garbage.
This means that the pattern of the redex R0 cannot occur inside the
argument u of the redex S. So S does not erase or duplicate R, i.e. R0

has exactly one residual R1 ∈ R0/S.
Now we have that R0/Sτ = R1/τ . We are left to show that #(R0/Sτ) ≤ 1.
Let us show that we may apply the i.h. on R1. More precisely, observe that
τ v ρ/S since Sτ v ρ. To apply the i.h. it suffices to show that R1 is coarse
for (ρ/S, t′/S). Indeed, we may check the two conditions for the definition
that R1 is coarse for (ρ/S, t′/S).
2.1 Firstly, R1 = R0/S v ρ/S holds, as a consequence of the fact that

R0 v ρ.
2.2 Secondly, we may check that R1 is not (t′/S)-garbage. To see this, i.e.

that R1/(t
′/S) is non-empty, we check that labs(R1/(t

′/S)) is non-empty.

labs(R1/(t
′/S)) = labs((R0/S)/(t′/S)) by definition of R1

= labs((R0/t
′)/(S/t′)) by Lem. 4.9

= labs(R0/t
′) \ labs(S/t′) by Lem. A.18

= labs(R0/t
′)

For the last step, note that labs(R0/t
′) and labs(S/t′) are disjoint, since

R0 6= S.
Applying the i.h., we obtain that #(R0/Sτ) = #(R1/τ) ≤ 1.

Lemma A.46. Let R be a step, let ρ a coinitial derivation, and let t′ n src(R).
Suppose that R is not t′-garbage, and that R/ρ1 is a singleton for every prefix
ρ1 v ρ. Then R/ρ is not (t′/ρ)-garbage.

Proof. By induction on ρ. The base case, when ρ = ε, is immediate since we
know that R is not garbage. For the inductive step, suppose that ρ = Sσ.
We know that R/S is a singleton, so let R1 = R/S. Note that R1/(t

′/S) =
(R/S)/(t′/S) = (R/t′)/(S/t′) by Lem. 4.9. We know that R/t′ is non-empty,
because R is not garbage. Moreover, labs(R/t′) and labs(S/t′) are disjoint since
R 6= S. So #labs((R/t′)/(S/t′)) = labs(R/t′) by Lem. A.18. This means that
the set R1/(t

′/S) is non-empty, so R1 is not (t′/S)-garbage . By i.h. we obtain
that R1/σ is not ((t′/S)/σ)-garbage, which means that (R/Sσ)/(t′/Sσ) 6= ∅,
i.e. that R/Sσ is not garbage, as required. To be able to apply the i.h., observe
that if σ1 is a prefix of σ, then Sσ1 is a prefix of ρ, so the fact that R has a single
residual after Sσ1 implies that the step R1 = R/S has a single residual after σ1.

Proposition A.47 (Characterization of garbage-free derivations). Let
ρ : t�β s and t′ n t. The following are equivalent:

1. ρ is t′-garbage-free.
2. ρ ≡ ρ ⇓ t′.
3. ρ ≡ σ ⇓ t′ for some derivation σ.

Proof. Let us prove 1 =⇒ 2 =⇒ 3 =⇒ 1:
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– (1 =⇒ 2) Suppose that ρ is t′-garbage-free, and let us show that ρ ≡ ρ ⇓ t′
by induction on the length of ρ ⇓ t′.
If there are no coarse steps for (ρ, t′), By Prop. A.44, any derivation with
no coarse steps is garbage. So ρ is t′-garbage. Since ρ is garbage-free, this
means that ρ = ε. Hence ρ = ε = ρ ⇓ t′, as required.
If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step. Note
that ρ ≡ R0(ρ/R0) since R0 v ρ. Moreover, we claim that ρ/R0 is (t′/R0)-
garbage-free. Let σ v ρ/R0 such that (ρ/R0)/σ is garbage with respect to
the term (t′/R0)/σ = t′/R0σ, and let us show that (ρ/R0)/σ is empty. Note
that:

R0σ v R0(ρ/R0) since σ v ρ/R0

≡ ρ as already noted

Moreover, we know that the derivation ρ/R0σ = (ρ/R0)/σ is (t′/R0σ)-
garbage. So, given that ρ is t′-garbage-free, we conclude that ρ/R0σ = ε,
that is (ρ/R0)/σ = ε, which completes the proof of the claim that ρ/R0 is
(t′/R0)-garbage-free. We conclude as follows:

ρ ≡ R0(ρ/R0) as already noted
≡ R0((ρ/R0) ⇓ (t′/R0)) by i.h. since ρ/R0 is (t′/R0)-garbage-free
≡ ρ ⇓ t′ by definition of sieving

– (2 =⇒ 3) Obvious, taking σ := ρ.
– (3 =⇒ 1) Let ρ ≡ σ ⇓ t′. Let us show that ρ is garbage-free by induction

on the length of σ ⇓ t′.
If there are no coarse steps for (σ, t′), then ρ ≡ σ ⇓ t′ = ε, which means that
ρ = ε. Observe that the empty derivation is trivially garbage-free.
If there exists a coarse step for (σ, t′), let R0 be the leftmost such step. Then
ρ ≡ σ ⇓ t′ = R0((σ/R0) ⇓ (t′/R0)). To see that ρ is t′-garbage-free, let τ v ρ
such that ρ/τ is garbage, and let us show that ρ/τ is empty. We know that
ρ/τ is of the following form (modulo permutation equivalence):

ρ/τ ≡ R0((σ/R0) ⇓ (t′/R0))

τ
=

(
R0

τ

)(
(σ/R0) ⇓ (t′/R0)

τ/R0

)
That is, we know that the following derivation is (t′/τ)-garbage, and it suf-
fices to show that it is empty:(

R0

τ

)(
(σ/R0) ⇓ (t′/R0)

τ/R0

)
Recall that, in general, AB is garbage if and only if A and B are garbage
(Prop. 5.2). Similarly, AB is empty if and only if A and B are empty. So it
suffices to prove the two following implications:

(A) If R0/τ is garbage, then it is empty.
(B) If ((σ/R0) ⇓ (t′/R0))/(τ/R0) is garbage, then it is empty.

Let us check that each implication holds:
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• (A) Suppose that R0/τ is (t′/τ)-garbage, and let us show that R0/τ
is empty. Knowing that the derivation R0/τ is garbage means that
(R0/τ)/(t′/τ) = ∅. Since R0 is the leftmost step coarse for (σ, t′), by
Lem. A.45 we have that #(R0/τ) ≤ 1. If R0/τ is empty we are done,
since this is what we wanted to prove.
The remaining possibility is that R0/τ be a singleton. We argue that
this case is impossible. Note that for every prefix τ1 v τ , the set R0/τ1
is also a singleton, since otherwise it would be empty, as a consequence
of Lem. A.45. So we may apply Lem. A.46 and conclude that, since R0

is not t′-garbage then R0/τ is not (t′/τ)-garbage. This contradicts the
hypothesis.

• (B) Suppose that ((σ/R0) ⇓ (t′/R0))/(τ/R0) is garbage with respect
to the term (t′/R0)/(τ/R0), and let us show that it is empty. Since
(σ/R0) ⇓ (t′/R0) is a shorter derivation than σ ⇓ t′, we may apply the
i.h. we obtain that (σ/R0) ⇓ (t′/R0) is (t′/R0)-garbage-free. Moreover,
the following holds:

τ/R0 v ρ/R0 ≡ (σ/R0) ⇓ (t′/R0)

So, by definition of (σ/R0) ⇓ (t′/R0) being garbage-free, the fact that
the derivation ((σ/R0) ⇓ (t′/R0))/(τ/R0) is garbage implies that it is
empty, as required.

Lemma A.48 (The projection after a sieve is garbage). Let ρ : t �β s
and t′ n t. Then ρ/(ρ ⇓ t′) is (t′/(ρ ⇓ t′))-garbage.

Proof. By induction on the length of ρ ⇓ t′.
If there are no coarse steps for (ρ, t′), then ρ ⇓ t′ = ε. Moreover, by Prop. A.44,

a derivation with no coarse steps is garbage. So ρ/(ρ ⇓ t′) = ρ is garbage, as
required.

If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step, and
let σ = ρ/R0 and s′ = t′/R0. Then:

ρ/(ρ ⇓ t′) = ρ/(R0((ρ/R0) ⇓ (t′/R0)) by definition
= (ρ/R0)/((ρ/R0) ⇓ (t′/R0))
= σ/(σ ⇓ s′)

By i.h., σ/(σ ⇓ s′) is (s′/(σ ⇓ s′))-garbage. That is:

σ/(σ ⇓ s′)
s′/(σ ⇓ s′)

= ε

Unfolding the definitions of σ and s′ we have that:

(ρ/R0)/((ρ/R0) ⇓ (t′/R0))

(t′/R0)/((ρ/R0) ⇓ (t′/R0))
= ε

Equivalently:
ρ/R0((ρ/R0) ⇓ (t′/R0))

t′/R0((ρ/R0) ⇓ (t′/R0))
= ε
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Finally, by definition of sieve,

ρ/(ρ ⇓ t′)
t′/(ρ ⇓ t′)

= ε

which means that ρ/(ρ ⇓ t′) is (t′/(ρ ⇓ t′))-garbage, as required.

The proof of Prop. 5.7 is a consequence of the preceding results, namely:

1. Proof that ρ ⇓ t′ is t′-garbage-free and ρ ⇓ t′ v ρ.
Note that ρ ⇓ t′ is t′-garbage-free by Prop. A.47. Moreover, ρ ⇓ t′ v ρ
by Lem. A.41.

2. Proof that ρ/(ρ ⇓ t′) is (t′/(ρ ⇓ t′))-garbage.
This is precisely Lem. A.48.

3. Proof that ρ is t′-garbage if and only if ρ ⇓ t′ = ε.
An immediate consequence of Prop. A.44.

4. Proof that ρ is t′-garbage-free if and only if ρ ⇓ t′ ≡ ρ.
An immediate consequence of Prop. A.47.

A.14 Proof of Prop. 5.9 – Semilattices of garbage-free and garbage
derivations

To prove Prop. 5.9 we need a few auxiliary lemmas:

Lemma A.49. Let ρ ≡ σ. Then ρ ⇓ t′ = σ ⇓ t′.

Proof. Observe that, given two permutation equivalent derivations ρ and σ, a
step R is coarse for (ρ, t′) if and only if R is coarse for (σ, t′), since (R v ρ) ⇐⇒
(R/ρ = ∅) ⇐⇒ (R/σ = ∅) ⇐⇒ (R v σ). Using this observation, the proof is
straightforward by induction on the length of ρ ⇓ t′.

Lemma A.50 (Sieving trailing garbage). Let ρ and σ be composable deriva-
tions, and let t′ n src(ρ). If σ is (t′/ρ)-garbage, then ρσ ⇓ t′ = ρ ⇓ t′.

Proof. By induction on the length of ρ ⇓ t′. If there are no coarse steps for
(ρ, t′), then by Prop. A.44, the derivation ρ is t′-garbage, so ρσ is t′-garbage
by Prop. 5.2. Resorting to Prop. A.44 we obtain that ρσ ⇓ t′ = ε = ρ ⇓ t′, as
required.

If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step. Then
since R0 v ρ also R0 v ρσ, so R0 is a coarse step for (ρσ, t′). In particular, since
there exists at least one coarse step for (ρσ, t′), let S0 be the leftmost such step.
We argue that R0 = S0. We consider two cases, depending on whether S0 is
coarse for (ρ, t′):

1. If S0 is coarse for (ρ, t′). Then R0 and S0 are both simultaneously coarse
for (ρ, t′) and for (ρσ, t′). Note that R0 cannot be to the left of S0, since
then S0 would not be the leftmost coarse step for (ρσ, t′). Symmetrically, S0

cannot be to the left of R0, since then R0 would not be the leftmost coarse
step for (ρ, t′). Hence R0 = S0 as claimed.
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2. If S0 is not coarse for (ρ, t′). We argue that this case is impossible. Note
that S0 v ρσ but it is not the case that S0 v ρ, so S0/ρ is not empty. Note
also that S0/ρ v σ, so by Coro. 4.10 we have that (S0/ρ)/(t′/ρ) v σ/(t′/ρ).
Moreover, σ/(t′/ρ) = ε is empty because σ is (t′/ρ)-garbage. This means
that (S0/ρ)/(t′/ρ) = ε. Then we have the following chain of equalities:

∅ = labs((S0/ρ)/(t′/ρ))
= labs((S0/t

′)/(ρ/t′)) by Coro. A.20 and Lem. 4.9
= labs(S0/t

′) \ labs(ρ/t′) by Lem. A.18
= labs(S0/t

′)

To justify the last step, start by noting that no residual of S0 is contracted
along the derivation ρ. Indeed, if S0 had a residual, then ρ = ρ1S1ρ2 where
S1 ∈ S0/ρ. But recall that S0 is the leftmost coarse step for (ρσ, t′) and ρ1 v
ρσ, so it has at most one residual (Lem. A.45). This means that S0/ρ1 = S1,
so S0/ρ = ∅, which is a contradiction. Given that no residuals of S0 are
contracted along the derivation ρ, we have that the sets labs(S0/t

′) and
labs(ρ/t′) are disjoint which justifies the last step.
According to the chain of equalities above, we have that labs(S0/t

′) = ∅.
This means that S0 is t′-garbage. This in turn contradicts the fact that S0

is coarse for (ρσ, t′), confirming that this case is impossible.

We have just claimed that R0 = S0. Then we conclude as follows:

ρσ ⇓ t′ = R0((ρσ/R0) ⇓ (t′/R0))
= R0(((ρ/R0)(σ/(R0/ρ))) ⇓ (t′/R0))
= R0((ρ/R0) ⇓ (t′/R0)) by i.h., as σ/(R0/ρ) is garbage by Prop. 5.2
= ρ ⇓ t′

Let us check the two items of Prop. 5.9:

1. The set F(t′, t) forms a finite lattice. Let us check all the conditions:

1.1 Partial order. First let us show that E is a partial order.

1.1.1 Reflexivity. It is immediate that [ρ] E [ρ] holds since ρ/ρ = ε is
garbage.

1.1.2 Antisymmetry. Let [ρ] E [σ] E [ρ]. This means that ρ/σ and σ/ρ
are garbage. Then:

ρ ≡ ρ ⇓ t′ since ρ is garbage-free, by Prop. A.47
≡ ρ(σ/ρ) ⇓ t′ since σ/ρ is garbage, by Lem. A.50
≡ σ(ρ/σ) ⇓ t′ since A(B/A) ≡ B(A/B) in general, using Lem. A.49
≡ σ ⇓ t′ since ρ/σ is garbage, by Lem. A.50
≡ σ since σ is garbage-free, by Prop. A.47

Since ρ ≡ σ we conclude that [ρ] = [σ], as required.
1.1.3 Transitivity. Let [ρ]E[σ]E[τ ] and let us show that [ρ]E[τ ]. Note that

ρ/σ and σ/τ are garbage. By the fact that the projection of garbage is
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garbage (Prop. 5.2) the derivation (ρ/σ)/(σ/τ) is garbage. The com-
position of garbage is also garbage (Prop. 5.2), so (σ/τ)((ρ/σ)/(σ/τ))
is garbage. In general the following holds:

ρ/τ v (ρ/τ)((σ/τ)/(ρ/τ)) since A v AB in general
≡ (σ/τ)((ρ/τ)/(σ/τ)) since A(B/A) ≡ B(A/B) in general
≡ (σ/τ)((ρ/σ)/(τ/σ)) since A(B/A) ≡ B(A/B) in general

So since any prefix of a garbage derivation is garbage (Prop. 5.2) we
conclude that ρ/τ is garbage. This means that [ρ]E [τ ], as required.

1.2 Finite. Let us check that F(t′, t) is a finite lattice, i.e. that it has a finite
number of elements. Recall that F(t′, t) is the set of equivalence classes
[ρ] where ρ is t′-garbage-free.
On one hand, recall that the λ#-calculus is finitely branching and strongly
normalizing (Prop. 3.9). So by König’s lemma the set of →#-derivations
starting from t′ is bounded in length. More precisely, there is a constant
M such that for any s′ ∈ T # and any derivation ρ : t′ →#

∗ s′ we have
that the length |ρ| is bounded by M .
On the other hand, let F = {ρ | ρ is t′-garbage-free and ρ ⇓ t′ = ρ}.
Consider the mapping ϕ : F(t′, t) → F given by [ρ] 7→ ρ ⇓ t′, and note
that:
– ϕ does not depend on the choice of representative, that is, if [ρ] = [σ]

then ϕ([ρ]) = ρ ⇓ t′ = σ ⇓ t′ = ϕ([σ]). This is a consequence
of Lem. A.49.

– ϕ is a well-defined function, that is ϕ([ρ]) ∈ F . This is because
ϕ([ρ]) = ρ ⇓ t′ is t′-garbage-free by Prop. 5.7. Moreover, we have
that ϕ([ρ]) ⇓ t′ = ([ρ] ⇓ t′) ⇓ t′ = [ρ] ⇓ t′ = ϕ([ρ]), which is also a
consequence of Lem. A.49, and the fact that [ρ] ⇓ t′ ≡ ρ (Prop. 5.7).

– ϕ is injective. Indeed, suppose that ϕ([ρ]) = ϕ([σ]), that is, ρ ⇓ t′ =
σ ⇓ t′. Then ρ ≡ ρ ⇓ t′ = σ ⇓ t′ ≡ σ by Prop. 5.7 since ρ and σ are
t′-garbage-free. Hence [ρ] = [σ].

Since ϕ : F(t′, t) → F is injective, it suffices to show that F is finite
to conclude that F(t′, t) is finite. Recall that the λ-calculus is finitely
branching, so the number of derivations of a certain length is finite. To
show that F is finite, it suffices to show that the length of derivations
in F is bounded by some constant. Let ρ be a derivation in F . We have
that ρ = ρ ⇓ t′. By construction of the sieve, none of the steps of ρ ⇓ t′
are garbage. That is ρ = ρ ⇓ t′ = R1 . . . Rn where for all i we have that
Ri/(t

′/R1 . . . Ri−1) 6= ∅. So we have that the length of ρ/t′ is greater
than the length of ρ for all ρ ∈ F :

|ρ/t′| =
n∑
i=1

|R/(t′/R1 . . . Ri−1)︸ ︷︷ ︸
6=∅

| ≥ n = |ρ|

As a consequence given any →β-derivation ρ ∈ F we have that |ρ| ≤
|ρ/t′| ≤M . This concludes the proof that F(t′, t) is finite.
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1.3 Bottom element. As the bottom element take ⊥(F(t′,t)) := [ε]. Observe
that this is well-defined since ε is t′-garbage-free. Moreover, let us show
that ⊥(F(t′,t)) is the least element. Let [ρ] be an arbitrary element of
F(t′, t) and let us check that ⊥(F(t′,t)) E [ρ]. This is immediate since, by
definition, ⊥(F(t′,t)) E [ρ] if and only if ε/ρ is garbage. But ε/ρ = ε is
trivially garbage.

1.4 Join. Let [ρ], [σ] be arbitrary elements of F(t′, t), and let us check that
[ρ]O[σ] is the join. First observe that [ρ]O[σ] is well-defined i.e. that
(ρ t σ) ⇓ t′ is t′-garbage-free, which is an immediate consequence of
Prop. A.47. Moreover, it is indeed the least upper bound of {[ρ], [σ]}:

1.4.1 Upper bound. Let us show that [ρ] E [ρ]O[σ]; the proof for [σ] is
symmetrical. We must show that ρ/((ρ t σ) ⇓ t′) is garbage. Note
that ρ v ρtσ, so in particular ρ/((ρtσ) ⇓ t′) v (ρtσ)/((ρtσ) ⇓ t′).
Given that any prefix of a garbage derivation is garbage (Prop. 5.2),
it suffices to show that (ρ t σ)/((ρ t σ) ⇓ t′) is garbage. This is a
straightforward consequence of the fact that projecting after a sieve
is garbage (Lem. A.48).

1.4.2 Least upper bound. Let [ρ], [σ]E[τ ], and let us show that [ρ]O[σ]E
[τ ]. We know that ρ/τ and σ/τ are garbage, and we are to show that
((ρ t σ) ⇓ t′)/τ is garbage. Note that (ρ t σ) ⇓ t′ v ρ t σ as a
consequence of the fact that the sieve is a prefix (Lem. A.41). So
in particular ((ρ t σ) ⇓ t′)/τ v (ρ t σ)/τ . Given that any prefix of
a garbage derivation is garbage (Prop. 5.2), it suffices to show that
(ρ t σ)/τ is garbage. But (ρ t σ)/τ ≡ ρ/τ t σ/τ so we conclude by
the fact that the join of garbage is garbage (Prop. 5.2).

1.5 Top element. Since F(t′, t) is finite, its elements are {[τ1], . . . , [τn]}. It
suffices to take > := [τ1]O . . .O[τn] as the top element.

1.6 Meet. Let [ρ], [σ] ∈ F(t′, t). Note that the set L = {[τ ] ∈ F(t′, t) | [τ ] E
[ρ] and [τ ] E [σ]} is finite because, as we have already proved, the set
F(t′, t) is itself finite. Then L = {[τ1], . . . , [τn]}. Take [ρ]M [σ] := [τ1]O . . .O[τn].
It is straightforward to show that [ρ] M [σ] thus defined is the greatest
lower bound for {[ρ], [σ]}.

2. The set G(t′, t) forms an upper semilattice. The semilattice structure
of G(t′, t) is inherited from Dλ(t). More precisely, [ρ] v [σ] is declared to
hold if ρ v σ, the bottom element is [ε], and the join is [ρ] t [σ] = [ρ t σ].
Let us check that this is an upper semilattice:
2.1 Partial order. The relation (v) is a partial order on G(t′, t) because it

is already a partial order in Dλ(t).
2.2 Bottom element. It suffices to note that the empty derivation ε : t→β

∗

t is t′-garbage, so [ε] ∈ G(t′, t) is the least element.
2.3 Join. By Prop. 5.2 we know that if ρ and σ are t′-garbage then ρ t σ is

t′-garbage, so [ρ] t [σ] is indeed the least upper bound of {[ρ], [σ]}.

A.15 Proof of Thm. 5.10 – Factorization

We need a few auxiliary lemmas:
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Lemma A.51 (Garbage-free/garbage decomposition). Let ρ : t�β s and
t′ n t. Then there exist ρ1, ρ2 such that:

1. ρ ≡ ρ1ρ2

2. ρ1 is t′-garbage-free,
3. ρ2 is t′-garbage.

Moreover, ρ1 and ρ2 are unique modulo permutation equivalence, and we have
that ρ1 ≡ ρ ⇓ t′ and ρ2 ≡ ρ/(ρ ⇓ t′).

Proof. Let us prove that said decomposition exists and that it is unique:

– Existence. Take ρ1 := ρ ⇓ t′ and ρ2 := ρ/(ρ ⇓ t′). Then we may check the
three conditions in the statement:

1. Recall that ρ ⇓ t′ v ρ holds by Lem. A.41, so:

ρ1ρ2 = (ρ ⇓ t′)(ρ/(ρ ⇓ t′))
≡ ρ((ρ ⇓ t′)/ρ) since A(B/A) ≡ B(A/B) holds in general
≡ ρ since ρ ⇓ t′ v ρ

as required.
2. The derivation ρ1 = ρ ⇓ t′ is t′-garbage-free. This is as an immediate

consequence of Prop. A.47, namely the result of sieving is always garbage-
free.

3. The derivation ρ2 = ρ/(ρ ⇓ t′) is garbage. This is an immediate conse-
quence of Lem. A.48, namely projection after a sieve is always garbage.

– Uniqueness, modulo permutation equivalence. Let ρ ≡ σ1, σ2 where
σ1 is t′-garbage-free, and σ2 is t′-garbage. Then we argue that σ1 ≡ ρ1 and
σ2 ≡ ρ2.
Since ρ1ρ2 ≡ ρ ≡ σ1σ2 and sieving is compatible with permutation equiva-
lence (Lem. A.49) we have that ρ1ρ2 ⇓ t′ ≡ σ1σ2 ⇓ t′. By Lem. A.50, we know
that trailing garbage does not affect sieving, hence ρ1 ⇓ t′ ≡ σ1 ⇓ t′. More-
over, ρ1 and σ1 are garbage-free, which by Prop. A.47 means that ρ1 ≡ σ1.
This means that ρ1 is unique, modulo permutation equivalence. Finally, since
ρ1ρ2 ≡ σ1σ2 and ρ1 ≡ σ1, we have that ρ1ρ2/ρ1 ≡ σ1σ2/σ1, that is ρ2 ≡ σ2.
This means that ρ2 is unique, modulo permutation equivalence.

Lemma A.52. Let t′ n src(ρ) = src(σ). Then [(ρ t σ) ⇓ t′] = [ρ ⇓ t′]O[σ ⇓ t′].

Proof. Let:

α := ρ/(ρ ⇓ t′)
β := σ/(σ ⇓ t′)
γ := (α/((σ ⇓ t′)/(ρ ⇓ t′))) t (β/((ρ ⇓ t′)/(σ ⇓ t′)))

Note that α and β are garbage by Lem. A.48 and hence γ is also garbage,
as a consequence of the facts that the join of garbage is garbage and that the
projection of garbage is garbage (Prop. 5.2). Remark that, in general, ABtCD ≡



66 P. Barenbaum and G. Ciruelos

(AtC)(B/(C/A)tD/(A/C)). Then the statement of this lemma is a consequence
of the following chain of equalities:

[(ρ t σ) ⇓ t′] = [((ρ ⇓ t′)α t (σ ⇓ t′)β) ⇓ t′] by Lem. A.51
= [((ρ ⇓ t′) t (σ ⇓ t′))γ ⇓ t′] by the previous remark
= [((ρ ⇓ t′) t (σ ⇓ t′)) ⇓ t′] by Lem. A.50
= [ρ ⇓ t′]O[σ ⇓ t′] by definition of O

To prove Thm. 5.10, let us check that
∫
F G is well-defined, that it is an upper

semilattice, and finally that Dλ(t) '
∫
F G are isomorphic as upper semilattices.

1. The Grothendieck construction
∫
F G is well-defined. This amounts to

checking that G is indeed a lax 2-functor:

1.1 The mapping G is well-defined on objects. Note that G([ρ]) =
G(t′/ρ, tgt(ρ)), which is a poset. Moreover, the choice of the representa-
tive ρ of the equivalence class [ρ] does not matter, since if ρ and σ are
permutation equivalent derivations, then t′/ρ = t′/σ (by Prop. 4.8) and
tgt(ρ) = tgt(σ).

1.2 The mapping G is well-defined on morphisms. Let us check that
given [ρ], [σ] ∈ F such that [ρ]E [σ] then G([ρ] ↪→ [σ]) : G([ρ]) → G([σ])
is a morphism of posets, i.e. a monotonic function.

First, we can see that it is well-defined, since if [α] ∈ G([ρ]) then the
image G([ρ])([α] ↪→ [σ]) = [ρα/σ] is an element of G([σ]), since ρα/σ =
(ρ/σ)(α/(σ/ρ)) is garbage, as it is the composition of garbage deriva-
tions (Prop. 5.2): the derivation ρ/σ is garbage since [ρ]E [σ] (by defini-
tion), and the derivation α/(σ/ρ) is garbage since α is garbage (Prop. 5.2).
Moreover, the choice of representative does not matter, since if ρ1 ≡ ρ2

and σ1 ≡ σ2 and α1 ≡ α2 then ρ1α1/σ1 ≡ ρ2α2/σ2.

We are left to verify that G([ρ] ↪→ [σ]) is monotonic. Let [α], [β] ∈ G([ρ])
such that [α] v [β], and let us show that G([ρ] ↪→ [σ])([α]) v G([ρ] ↪→
[σ])([β]). Indeed, α v β, so ρα/σ = (ρ/σ)(α/(σ/ρ)) v (ρ/σ)(β/(σ/ρ)) =
ρβ/σ.

1.3 Identity. Let [ρ] ∈ F . Let us check that G([ρ] ↪→ [ρ]) = idG([ρ]) is the
identity morphism. Indeed, if [α] ∈ G([ρ]), then G([ρ] ↪→ [ρ])([α]) =
[ρα/ρ] = [α].

1.4 Composition. Let [ρ], [σ], [τ ] ∈ F such that [ρ]E [σ]E [τ ]. Let us check
that there is a 2-cell G(([σ] ↪→ [τ ])◦([ρ] ↪→ [σ])) v G([σ] ↪→ [τ ])◦G([ρ] ↪→
[σ]). Note that ([σ] ↪→ [τ ]) ◦ ([ρ] ↪→ [σ]) : [ρ] E [τ ] is a morphism in the
upper semilattice F seen as a category. Moreover, since it is a semilattice,
there a unique morphism [ρ] E [τ ], namely [ρ] ↪→ [τ ], so we have that
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([σ] ↪→ [τ ]) ◦ ([ρ] ↪→ [σ]) = [ρ] ↪→ [τ ]. Now if [α] ∈ G[ρ], then:

G(([σ] ↪→ [τ ]) ◦ ([ρ] ↪→ [σ]))([α]) = G([ρ] ↪→ [τ ])([α])
= ρα/τ
v (ρα/τ)((σ/ρα)/(τ/ρα))
= ρα(σ/ρα)/τ
≡ σ(ρα/σ)/τ since A(B/A) ≡ B(A/B)
= G([σ] ↪→ [τ ])(ρα/σ)
= (G([σ] ↪→ [τ ]) ◦ G([ρ] ↪→ [σ]))([α])

so G(([σ] ↪→ [τ ]) ◦ ([ρ] ↪→ [σ])) v G([σ] ↪→ [τ ]) ◦ G([ρ] ↪→ [σ]) as required.
2. The Grothendieck construction

∫
F G is an upper semilattice.

2.1 Partial order. Recall that
∫
F G is always poset with the order given by

(a, b) ≤ (a′, b′) if and only if aE a′ and G(a ↪→ a′)(b) v b′.
2.2 Bottom element. We argue that (⊥F ,⊥G(⊥F )) is the bottom element.

Let ([ρ], [σ]) ∈
∫
F G. Then clearly⊥FE[ρ]. Moreover, G([⊥F ] ↪→ [ρ])(⊥G) =

[ε/ρ] = [ε] v [σ].
2.3 Join. Let us show that (a, b) ∨ (a′, b′) = (aOa′,G(a ↪→ (aOa′))(b) t
G(a′ ↪→ (aOa′))(b′)). is the least upper bound of {(a, b), (a′, b′)}.

2.3.1 Upper bound. Let us show that (a, b) ≤ (a, b)∨ (a′, b′). Recall that
(a, b) ∨ (a′, b′) = (aOa,G(a ↪→ (a ∨ a′))(b) t G(a′ ↪→ (aOa′))(b′)).
First, we have a E aOa′. Moreover, G(a ↪→ (aOa′))(b) v G(a ↪→
(a ∨ a′))(b) t G(a′ ↪→ (aOa′))(b′), as required.

2.3.2 Least upper bound. Let (a, b) = ([ρ], [σ]) and (a′, b′) = ([ρ′], [σ′]).
Moreover, let ([ρ′′], [σ′′]) be an upper bound, i.e. an element such
that ([ρ], [σ]) ≤ ([ρ′′], [σ′′]) and ([ρ′], [σ′]) ≤ ([ρ′′], [σ′′]). Let us show
that ([ρ], [σ])∨ ([ρ′], [σ′]) ≤ ([ρ′′], [σ′′]). First note that [ρ]E [ρ′′] and
[ρ′]E [ρ′′] so [ρ]O[ρ′]E [ρ′′].
Moreover, we know that:

[ρσ/ρ′′] = G([ρ] ↪→ [ρ′′])([σ]) v [σ′′] and [ρ′σ′/ρ′′] = G([ρ′] ↪→ [ρ′′])([σ′]) v [σ′′]

Let α := (ρ t ρ′) ⇓ t′. First we claim that α v ρσ t ρ′σ′. Indeed,
α = (ρ t ρ′) ⇓ t′ v ρ t ρ′ by Lem. A.41, and it is easy to check that
ρtρ′ v ρσtρ′σ′. What we have to check is the following inequality:

G([α] ↪→ [ρ′′])(G([ρ] ↪→ [α])([σ]) t G([ρ′] ↪→ [α])([σ′])) v [σ′′]

Indeed:

G([α] ↪→ [ρ′′])(G([ρ] ↪→ [α])([σ]) t G([ρ′] ↪→ [α])([σ′]))
= [α((ρσ/α) t (ρ′σ′/α))/ρ′′]
= [α((ρσ t ρ′σ′)/α)/ρ′′] since A/C tB/C ≡ (A tB)/C
= [(ρσ t ρ′σ′)(α/(ρσ t ρ′σ′))/ρ′′] since A(B/A) ≡ B(A/B)
= [(ρσ t ρ′σ′)/ρ′′] since α v ρσ t ρ′σ′
= [ρσ/ρ′′ t ρ′σ′/ρ′′] since A/C tB/C ≡ (A tB)/C
v [σ′′] since [ρσ/ρ′′] v [σ′′] and [ρ′σ′/ρ′′] v [σ′′]
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3. There is an isomorphism Dλ(t) '
∫
F G of upper semilattices. As

stated, the isomorphism is given by:

ϕ : Dλ(t) →
∫
F G

[ρ] 7→ ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)])

ψ :
∫
F G → Dλ(t)

([ρ], [σ]) 7→ [ρσ]

Note that ϕ and ψ are well-defined mappings, since their value does not
depend on the choice of representative, due, in particular, to the fact that
sieving is compatible with permutation equivalence (Lem. A.49). Let us check
that ϕ and ψ are morphisms of upper semilatices, and that they are mutual
inverses:
3.1 ϕ is a morphism of upper semilattices. Let us check the three

conditions:
3.1.1 Monotonic. Let [ρ] v [σ] in Dλ(t), and let us show that the following

inequality holds:

ϕ([ρ]) = ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)]) ≤ ([σ ⇓ t′], [σ/(σ ⇓ t′)]) = ϕ([σ])

We check the two conditions (by definition of
∫
F G):

3.1.1.1 On the first hand, [ρ ⇓ t′]E [σ ⇓ t′] since

(ρ ⇓ t′)/(σ ⇓ t′) v ρ/(σ ⇓ t′) since ρ ⇓ t′ v ρ by Lem. A.41
v σ/(σ ⇓ t′) since ρ v σ by hypothesis

Note that this is garbage by Lem. A.48. So by Prop. 5.2, (ρ ⇓
t′)/(σ ⇓ t′) is also garbage, as required.

3.1.1.2 On the other hand, let us show that G([ρ ⇓ t′] ↪→ [σ ⇓ t′])([ρ/(ρ ⇓ t′)]) v
σ/(σ ⇓ t′). In fact:

G([ρ ⇓ t′] ↪→ [σ ⇓ t′])([ρ/(ρ ⇓ t′)]) = [(ρ ⇓ t′)(ρ/(ρ ⇓ t′))/(σ ⇓ t′)] by definition
= [ρ/(σ ⇓ t′)] by Lem. A.51
v [σ/(σ ⇓ t′)] since ρ v σ

3.1.2 Preserves bottom. By definition: ϕ(⊥Dλ(t)) = ([ε ⇓ t′], [ε/(ε ⇓ t′)]) =
([ε], [ε]) = (⊥F ,⊥G(⊥F )).

3.1.3 Preserves joins. Let [ρ], [σ] ∈ Dλ(t), and let us show that ϕ([ρ] t
[σ]) = ϕ([σ]) ∨ ϕ([σ]). Indeed, note that:

ϕ([ρ] t [σ]) = (α, β)

where
α = [(ρ t σ) ⇓ t′]
β = [(ρ t σ)/((ρ t σ) ⇓ t′)]

and

ϕ([ρ])∨ϕ([σ]) = ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)])∨([σ ⇓ t′], [σ/(σ ⇓ t′)]) = (α′, β′)
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where

α′ = [ρ ⇓ t′]O[σ ⇓ t′]
β′ = G([ρ ⇓ t′] ↪→ α)([ρ/(ρ ⇓ t′)]) t G([σ ⇓ t′] ↪→ α)([σ/(σ ⇓ t′)])

It suffices to show that α = α′ and β = β′. Let us show each sepa-
rately:

3.1.3.1 Proof of α = α′. The equality α = [(ρ t σ) ⇓ t′] = [ρ ⇓ t′]O[σ ⇓ t′] =
α′ is an immediate consequence of Lem. A.52.

3.1.3.2 Proof of β = β′. Note that:

β′ = G([ρ ⇓ t′] ↪→ α′)([ρ/(ρ ⇓ t′)]) t G([σ ⇓ t′] ↪→ α′)([σ/(σ ⇓ t′)])
= [(ρ ⇓ t′)(ρ/(ρ ⇓ t′))/α′ t (σ ⇓ t′)(σ/(σ ⇓ t′))/α′]
= [ρ/α′ t σ/α′] by Lem. A.51
= [(ρ t σ)/α′] since A/C tB/C ≡ (A tB)/C
= [(ρ t σ)/((ρ t σ) ⇓ t′)] since α′ = α = (ρ t σ) ⇓ t′
= β

as required.
3.2 ψ is a morphism of upper semilattices. Let us check the three

conditions:
3.2.1 Monotonic. Let ([ρ1], [σ1]) ≤ ([ρ2], [σ2]) in

∫
F G and let us show that

ψ([ρ1], [σ1]) v ψ([ρ2], [σ2]) in Dλ(t). Indeed, we know that G([ρ1] ↪→
[ρ2])([σ1]) v [σ2], that is to say ρ1σ1/ρ2 v σ2. Then:

ρ1σ1/ρ2σ2 = (ρ1σ1/ρ2)/σ2 = ε

which means that ρ1σ1 v ρ2σ2. This immediately implies that ψ([ρ1], [σ1]) v
ψ([ρ2], [σ2]).

3.2.2 Preserves bottom. Recall that the bottom element ⊥(
∫
F G) is de-

fined as (⊥F ,⊥G(⊥F )), that is ([ε], [ε]). Therefore ψ(⊥(
∫
F G)) = [ε] =

⊥Dλ(t).
3.2.3 Preserves joins. Let ([ρ1], [σ1]) and ([ρ2], [σ2]) be elements of

∫
F G,

and let us show that ψ(([ρ1], [σ1]) ∨ ([ρ2], [σ2])) = ψ([ρ1], [σ1]) t
ψ([ρ2], [σ2])).
Let:

α := (ρ1 t ρ2) ⇓ t′

First we claim that α v ρ1σ1 t ρ2σ2. This is because by Lem. A.41
we know that α = (ρ1 t ρ2) ⇓ t′ v ρ1 t ρ2. Moreover, it is easy to
check that ρ1 t ρ2 v ρ1σ1 t ρ2σ2. Using this fact we have:

ψ(([ρ1], [σ1]) ∨ ([ρ2], [σ2])) = ψ([α],G([ρ1] ↪→ [α])([σ1]) t G([ρ2] ↪→ [α])([σ2]))
= ψ([α], [(ρ1σ1/α) t (ρ2σ2/α)])
= ψ([α], [(ρ1σ1 t ρ2σ2)/α])

since A/C tB/C v (A tB)/C
= [α((ρ1σ1 t ρ2σ2)/α)]
= [(ρ1σ1 t ρ2σ2)(α/(ρ1σ1 t ρ2σ2))]
= [ρ1σ1 t ρ2σ2]

since α v ρ1σ1 t ρ2σ2, so α/(ρ1σ1 t ρ2σ2) = ε
= ψ([ρ1], [σ1]) t ψ([ρ2], [σ2]))
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as required.
3.3 Left inverse: ψ ◦ ϕ = id. Let [ρ] ∈ Dλ(t). Then by Lem. A.51:

ψ(ϕ([ρ])) = ψ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)]) = [(ρ ⇓ t′)(ρ/(ρ ⇓ t′))] = [ρ]

3.4 Right inverse: ϕ ◦ ψ = id. Let ([ρ], [σ]) ∈
∫
F G. Note that ρ is t′-

garbage-free and σ is t′-garbage, so by Lem. A.50 and Prop. A.47 we
know that ρσ ⇓ t′ = ρ ⇓ t′ ≡ ρ. Hence:

ϕ(ψ([ρ], [σ])) = ϕ([ρσ]) = ([ρσ ⇓ t′], [ρσ/(ρσ ⇓ t′)]) = ([ρ], [ρσ/ρ]) = ([ρ], [σ])
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