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Abstract
We lift the theory of optimal reduction to a decomposition of the lambda calculus known as the
Linear Substitution Calculus (LSC). LSC decomposes β-reduction into finer steps that manip-
ulate substitutions in two distinctive ways: it uses context rules that allow substitutions to act
“at a distance” and rewrites modulo a set of equations that allow substitutions to “float” in a
term. We propose a notion of redex family obtained by adapting Lévy labels to support these
two distinctive features. This is followed by a proof of the finite family developments theorem
(FFD). We then apply FFD to prove an optimal reduction theorem for LSC. We also apply
FFD to deduce additional novel properties of LSC, namely an algorithm for standardisation by
selection and normalisation of a linear call-by-need reduction strategy. All results are proved in
the axiomatic setting of Glauert and Khashidashvili’s Deterministic Residual Structures.
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1 Introduction

The λ-calculus distills the essence of functional programming languages. Programs are
represented as syntactic terms, and execution corresponds to repeated simplification of these
terms using a reduction rule called β-reduction. The study of the λ-calculus has produced a
vast body of work, by no means limited to functional programming. It has also played a key
role in laying the foundations of modern rewriting theory. Rewriting is an abstract model
of computation in which rather than syntactic terms and their step-by-step reduction, one
considers sets of arrows over arbitrary objects. The λ-calculus is an example of a rewriting
system, but there are many other ones, such as graph rewriting systems or first-order term
rewriting systems. The impact of the λ-calculus in rewriting is that its study has suggested
generalizations of numerous properties to abstract rewriting frameworks.

There are many variants of the λ-calculus. In its simplest presentation, it consists of a
unique reduction rule β that models the application of a function to an argument. Despite the
conciseness of its definition, the study of the λ-calculus unveils surprisingly rich mathematical
structures. One example is its denotational semantics, which attempts to provide models for
the λ-calculus, and motivates the theory of domains. Another example arises from attempting
to compare derivations. Given that computation is modeled by reduction and that there are
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9:2 Optimality and the Linear Substitution Calculus

multiple ways to reduce a term, how do these choices compare? This requires analyzing the
derivation space of a term. The derivation space of a term is the set of all derivations, i.e.
sequence of (composable) β-reduction steps, starting from that term. Establishing whether a
particular choice produces derivations that are “better” than others in any reasonable sense
involves comparing the resulting derivations. This, in turn, involves tracking steps around in
order to relate the steps of one derivation to those of another one, hence determining that
they correspond to each other. Theories of residuals attempt to provide a framework for
analyzing the derivation space.

An example in the λ-calculus follows in order to provide a better intuition on what is
meant by a theory of residuals. Consider the term (I ∆) (I x), where ∆ stands for λx.x x and
I for λx.x. Below we depict the derivation space of this term. As mentioned, a study of the
structure of this space involves understanding how derivations are related and, since derivations
are built from β-steps, how β-steps from one derivation are related to those of another.
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An example of a deriva-
tion is R4; R6; R7; R8. It
consists of four β-steps
denoted R4, R6, R7, and
R8. Notice that the de-
rivation R4; R6; R7; R8 es-
sentially performs the
same steps as the deriv-

ation R4; R6; R9; R10 since the derivations R7; R8 and R9; R10 do the same computational
work, namely they reduce the two copies of (I x) in (I x) (I x), only in a different order
(reducible subterms such as (I x) are called redexes). This suggests algebraic principles over
derivations, such as R7; R8 ' R9; R10. Not all steps can be commuted. For example, R4
cannot be commuted with R6 because the former creates the latter. Note also that, we write
R7; R8 ' R9; R10 and not R7; R8 ' R8; R7 because R9 is the form that R8 adopts when it is
fired from (I x) (I x) rather than from x (I x); we say that R8 is a residual or what is left
of R9 after R7. As may be gleamed from this preliminary discussion, it soon becomes clear
that any prospective algebraic principles must arise from identifying β-steps and tracking
them along derivations. Such theories of residuals mark and track β-steps. However, this
is just the starting point of an analysis of the structure of the derivation space since, when
one attempts to prove properties of derivations, one realizes that more general principles are
required. The principles include the following, presented in increasing level of complexity:

Finite Developments: marking and tracking sets of β-steps in a term and showing that
their reduction terminates;
Finite Family Developments: marking and tracking sets of β-step that may have been
created along the way in a derivation and also showing their termination properties;
Redex Families: identifying created β-steps that are related in the sense that they could
be shared;
Optimal Reduction: the apex of residual theory.

Optimal reduction characterizes derivations in the derivation space that are shortest in a
precise sense and has close ties with Geometry of Interaction [17]. It arose with a clear
motivation in the implementation of the λ-calculus since it addresses the concern of avoiding
unnecessary β-steps. This same motivation, bridging the gap between programming languages
and their implementation, is shared by Calculi with Explicit Substitutions.

Calculi with Explicit Substitutions (ES). Substitution in the λ-calculus is a non-
trivial metalanguage operation that simultaneously replaces every occurrence of a variable by
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a given term. In contrast, in actual implementations of functional programming languages
it usually takes various steps to perform a substitution. For example, variables might be
bound to values in an environment, and looked up in the environment whenever needed.
Calculi with ES were introduced to bridge the gap between the λ-calculus and its imple-
mentations. They are characterized by the presence of an explicit operator in the object
language for modeling substitution. A paradigmatic example calculus with ES is λσ [1] which
includes, among others, rules beta1 (λx.s) t 7→ s[x/t], where s[x/t] denotes an ES, and app
(s t)[x/u] 7→ s[x/u]t[x/u], for propagating substitutions over applications. Unfortunately,
these rules produce a critical pair rendering λσ a syntactically non-orthogonal system, a
situation common to most known calculi with ES, as depicted below where →beta means
application of the beta-rule in an arbitrary context:

s[x/t][y/u] beta← ((λx.s) t)[y/u]→app (λx.s)[y/u]t[y/u]

The beta-step in the middle term has been “erased” in the right term because beta and app
overlap. It is unclear how to devise a reasonable residual theory in such a situation2. The
λ-calculus is thus set apart from traditional calculi with ES since in the latter the lack of
orthogonality makes it impossible to address a proper theory of residuals, let alone optimality.

The Linear Substitution Calculus (LSC). The LSC is a calculus with ES introduced
rather recently [6]. It is based on a contextual approach: rewriting rules are expressed using
contexts, which allows for non-local interactions between subterms, and obviates the need to
propagate explicit substitutions. It is also equipped with a relation of structural equivalence
between terms, which reflects the exact correspondence between terms and their encoding as
proof nets (which are graphs), linear logic being the domain in which the LSC was originally
conceived.

The fact that the LSC encodes a graph-rewriting system based on proof nets, rather
than ad hoc syntactic machinery for implementing explicit substitutions, is one of the reasons
for it being relatively well-behaved. In particular, the LSC does not suffer from the above
mentioned problems of other calculi with ES. Recent work has shown that, even though
the LSC is not syntactically orthogonal, it enjoys semantical orthogonality, which means
that it can be given a sensible theory of residuals [4]. On the other hand, not all expected
properties of residuals that hold for the λ-calculus turn out to hold for LSC (e.g. enclave
and stability fail [4]). Besides, the very same fact that the LSC encodes a graph-rewriting
system is the source of some technical challenges, especially because the encoding is based on
two distinctive features: the use of context rules and a notion of structural equivalence. One
complication is that the usual tree-like representation of terms and nesting of redexes that
guide our intuition in the λ-calculus and first-order term rewriting no longer applies. E.g., in
the term (xx)[x/y] either of the two occurrences of x might be replaced by y, so there are
two redexes (xx)[x/y] → (y x)[x/y] and (xx)[x/y] → (x y)[x/y]. These redexes overlap in
the standard tree reading of terms, yet they should by all means be considered “independent”
redexes. Another complication is that redex creation may take place at a distance, such as
in the step (x y)[x/I]→ (I y)[x/I], in which the substitution of x by the identity creates a
beta-redex. Anyhow, enough properties are satisfied by LSC’s residual theory for it to be a
reasonable starting point for following the path set by the λ-calculus: finite developments,
finite family developments, redex families and optimal reduction.

1 λσ is actually based on de Bruijn indices, we use variable names for expository purposes.
2 There are some attempts at addressing residual theories for syntactically non-orthogonal systems [14, 24].
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9:4 Optimality and the Linear Substitution Calculus

Goal and value of the paper. This paper attempts to reclaim, for the LSC, the
status of the λ-calculus by providing a theory of optimality for it. The key technical result
on which it builds is a Finite Family Developments (FFD) theorem (Thm. 4 on page 9).
FFD is used as a tool to develop various novel results, including optimal reduction itself,
termination of standardisation procedures, and normalisation strategies. All results in this
paper are proved in an axiomatic setting, namely Deterministic Residual Structures [16],

Optimal	reduction	
result

(this	paper,	Prop.14)

Standardisation
algorithm	and	its	
termination	(this	
paper,	Cor.	20)

Normalisation of	
Linear	Call-by-Need	
(this	paper,	Cor.	22)

FFD	(this	paper)

Residual	Theory	[3]

whose axioms LSC is shown to comply with.
The reader will no doubt realize the tech-
nical nature of this paper. Standardisation,
normalisation and, most notably, optimal
reduction are known to be technical in them-
selves. The LSC is not much of an aid in
this sense, its use of context rules and re-
writing modulo a set of equations only seem to make matters yet more technical. We are
well aware of this fact and have strived to present the material in such a way that the reader
is able to see through the technicalities and perceive the value of this paper, namely how it
manages to lift the theory of optimal reduction to refinements of the λ-calculus.

Structure of this paper. Sec. 2 defines LSC. We also review the definition of residuals
for LSC and present Deterministic Residual Structures [16]. The Lévy labeled LSC is
presented in Sec. 3. The Finite Family Developments Theorem is addressed in Sec. 4, its
proof broken down into three principles. Sec. 5 addresses optimal reduction: we recall the
notion of Deterministic Residual Structure from [16] and then prove that our labeled LSC is
an instance of such structure. Sec. 6 introduces standardisation by selection (of multi-redexes)
and proves termination. Sec. 7 studies a linear call-by-need strategy and proves that it
normalizes. We conclude in Sec. 8. Proofs of all results are included in the extended version.

Related Work. The literature on FD is quite extensive; the reader is invited to
consult [26, Ch. 4]. Some abstract notions of rewriting establish FD as an axiom [25, 22, 16].
For classical references to FFD there is [19, 12]. FFD generalizes Hyland-Wadsworth labels
which records the depth of the labels [26, 8.4.4]. Also, it is referred to as Generalized
Finite Developments in [20]. FFD was extended to higher-order rewriting [27, 15]. LSC was
introduced by Milner [?] and then adopted by Accattoli and Kesner [6, 4] although similar
ideas were also developed by de Bruijn and Nederpelt (see [8] for additional references). LSC
has somewhat revived the explicit substitutions community given its success in explaining
results in the classical λ-calculus (e.g. cost models, call-by-value solvability, call-by-value
on open terms, linear head reduction and abstract machines, etc.) [9, 3, 7, 5, 8]. Regarding
standardisation for LSC, [4] proves the existence and uniqueness of standard derivations.
However, standardisation algorithms are not studied. Residuals for calculi with ES have also
been studied by Melliès [22, 23] where he developed a general theory of rewriting and applied
it, among others, to λσ [1]. Regarding labels, ES and sharing there is some work [21, 13],
however it all addresses weak reduction. We should also mention [28] which uses a calculus
of ES and suggests an optimal reduction result for it. However, no proofs are supplied.

2 The Linear Substitution Calculus

Given variables x, y, z, . . ., the set T of terms is defined by the grammar:

t, s ::= x | t s | λx.t | t[x/s]

A term of the form t[x/s] is called a substitution. The notion of free and bound variables
is defined as usual, in particular λx.t and t[x/s] bind all free occurrences of x in t. We write
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fv(s) (resp. bv(s)) for the set of free (resp. bound) variables of s. A context is a term with
a unique occurrence of a singled-out variable � called a hole. If C is a context, then C〈t〉 is
the term resulting from replacing the hole in C with t (possibly resulting in the capture of
free variables of t in C). We write C〈〈t〉〉 when the free variables of t are not captured by C.

Terms are considered up to a set of structural equations that allow commuting some
substitutions around, in order to quotient out the order imposed by the fact that terms
are trees rather than graphs, and to reflect more closely their correspondence with proof-
nets. Structural equivalence, written t ∼ s, is the reflexive, symmetric, transitive, and
contextual closure of the following axioms:

(λx.t)[y/s] ∼λ λx.t[y/s] if x 6= y and x 6∈ fv(s)
(t s)[x/u] ∼@ t[x/u] s if x 6∈ fv(s)
t[x/s][y/u] ∼com t[y/u][x/s] if x 6= y, x 6∈ fv(u), and y 6∈ fv(s)

I Definition 1. The LSC is the pair 〈T ,→〉 where→ is defined by the rules {db, ls} modulo
the equations {∼λ,∼@,∼com}, i.e. t→ u if and only if t ∼ t′(→db ∪ → ls )u′ ∼ u. Here →db
is C〈7→db〉 (i.e. the contextual closure of 7→db) and → ls is C〈7→ls〉, 7→db and 7→ls being3:

(λx.t)L s 7→db t[x/s]L C〈〈x〉〉[x/t] 7→ls C〈t〉[x/t]

I Remark. Originally LSC includes→gc , defined as the contextual closure of: t[x/s] 7→gc t, if
x 6∈ fv(t). However, in the literature it is often ignored: dropping it simplifies the metatheory
(e.g. LSC with → gc does not enjoy stability [4]; cf. Rem. 4) at no loss of generality since
→gc can be postponed past →db and → ls .

A LSC-step (R, S, . . .) is either a pair of the form 〈C, (λx.t)L s〉 (a db-step) or a triple of
the form 〈D, C〈〈x〉〉[x/t], C〉 (an ls-step). Steps, as defined here, are often also called redexes.
We write src(R) and tgt(R) for the source and target of R, respectively. Two redexes are
said to be coinitial (resp. cofinal) if their sources (resp. targets) coincide. A derivation
(ρ, σ, . . .) is a sequence of steps R1 . . .Rn s.t. src(Ri) = tgt(Ri−1) for i ∈ 2..n. We write ε for
the empty derivation and t� s if there is a derivation from t to s and say that t is its source
and s its target (empty derivations are assumed to be indexed by terms). E.g.:

(λx.λy.xyx)II →db (λy.xyx)[x/I]I → ls (λy.Iyx)[x/I]I
→db (λy.z[z/y]x)[x/I]I ∼ ((λy.z[z/y]x)I)[x/I] →db (z[z/y]x)[y/I][x/I]

Residuals for LSC [4]. Given markers a,b, c, . . ., marked terms4 are defined as
follows, where α ranges over markers: t, s ::= x | xα | t s | λx.t | λxα.t | t[x/s]. Since markers
are intended to mark redexes, we consider only well-marked terms: terms where marks are
only placed on redexes (cf. [4]). For example, λxa.x and λx.xa are not well-marked. Marked
reduction α→ on well-marked terms is defined as the contextual closure of the following
rewriting rules, where the contexts below are also well-marked:

(λxa.t)Ls a7→dB t[x/s]L C〈〈xa〉〉[x/t] a7→ls C〈〈t〉〉[x/t]

We write Red(s) (resp. Reda(s)) for the set of redexes (resp. marked a) in s. The set
of residuals of R after S is given by R/S := {Reda(u′) | mark(t,R,a) S→ u′}, where

3 For the 7→db rule we have opted to use the more familiar tL rather than L〈t〉.
4 [4] speaks of labeled terms, we use “marked” to stress that they are not to be confused with Lévy labels

introduced in Sec. 3.

FSCD 2017



9:6 Optimality and the Linear Substitution Calculus

mark(t,R,a) denotes the result of marking redex R in t with a. Given steps S and T such that
tgt(S) = src(T), we say that S creates T if there is no R such that R/S = T. A multistep
is a non-empty finite set M of coinitial steps. The residual relation may be extended to
multisteps as expected: M/S def=

⋃
R∈M R/S. Also, we may define the residual of a set of

steps after a derivation: M/ε
def= M, andM/Sσ def= (M/S)/σ. Examples of the residual

relation follow [4]: let v = (xbxbxcyc)[x/y][y/w], S = 〈�[y/w], (xbxbxcyc)[x/y], xb�xcyc〉
(so that v S→ (xby xcyc)[x/y][y/w]), and R = 〈�[y/w], (xbxbxcyc)[x/y],�xbxcyc〉. Observe
that mark(v,R,a) = (xaxbxcyc)[x/y][y/w] S→ (xayxcxc)[x/y][y/w]. Therefore, ifM = {R},
then M/S = {R′} where R′ = 〈� [y/w], (xby xcyc)[x/y],� y xcyc〉. Suppose now that
M = Redc(v). Then a similar analysis for each R ∈ M yields M/S = {R1,R2} where
R1 = 〈� [y/w], (xby xcyc)[x/y], xby� yc〉 and R2 = 〈� , v, (xby xc�)[x/y]〉.

I Remark. Structural equivalence ∼ can be lifted to well-marked terms and the residual
relation on steps shown to pass the equations in the sense that they induce a bijection
between the steps they relate. Moreover, ∼ is a strong bisimulation with respect to → [4].

Marks are useful to study developments. For any M ⊆ Red(t), a (possibly infinite)
derivation from t, ρ = R1R2 . . ., is a development ofM iff Ri ∈M/R1 . . .Ri−1 for all i. A
development ρ ofM is said to be complete if it is maximal, i.e. if there is no non-empty
derivation σ s.t. ρσ is also a development ofM. Note that if ρ is finite, thenM/ρ = ∅. E.g.
t0 = (xx)[x/t]→ (xt)[x/t]→ (tt)[x/t] is a complete development of the set containing the
two ls-steps of t0.

An Abstract Framework: Deterministic Residual Structures
Abstract rewriting frameworks, such as Orthogonal Axiomatic Rewrite Systems [22] and
Deterministic Residual Structures (DRS) [16], single out properties that well-behaved residuals
should enjoy. LSC with the above defined notion of residual satisfies the properties of both5
of these frameworks. Here we briefly describe DRS since they shall be used when we address
the applications of FFD to LSC.

An Abstract Rewrite System (ARS) is a tuple 〈Obj, Stp, src, tgt〉 of objects, steps and
functions src and tgt that return the source and target, resp., of a step. Moreover, we assume
that ARSs are finitely branching, i.e. that there is only a finite number of steps having the
same object as source.

I Definition 2 (Deterministic Residual Structure). A DRS is an ARS endowed with a residual
relation _/_ satisfying the following axioms:
1. Unique ancestor. If R ∈ R1/S and R ∈ R2/S then R1 = R2.
2. Acyclicity. If R 6= S and R/S = ∅ then S/R 6= ∅.
3. Finite Developments (FD). Let ρ, σ be derivations andM be a set of coinitial steps.

a. Finite. If ρ a development ofM, then ρ is finite.
b. Cofinal. If ρ, σ are complete developments ofM, then ρ and σ end in the same term.
c. Equivalent. If ρ, σ are complete developments of M then they induce the same

residual relation, i.e. R/ρ = R/σ for every step R coinitial with ρ.
In the case of LSC: Acyclicity is immediate; Unique ancestor and Finite Develop-
ments are proved in [4]. We next introduce some definitions proper to any DRS.

5 Although, see comment on enclave and stability in the introduction.
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Each multistep determines a “super-step” by taking (any) complete development of that
set. Its target is well-defined by axiom Cofinal. A multistep reduction D is a sequence
of multistepsM1 . . .Mn s.t. src(Mi) = tgt(Mi−1) for i ∈ 2..n.

Define τ1 Rσ τ2 ≡1 τ1 S ρ τ2, where σ is a complete development of S/R and ρ is a complete
development of R/S. We define permutation equivalence, ≡, as the reflexive and transitive
closure of ≡1. Note that ρ ≡ σ implies /ρ = /σ (i.e. they induce the same residual relation).

Let X be a set of objects in a DRS. An object s is X -normalizing if there is a derivation
from s to an object in X . We call a step R ∈ Red(s) X -needed if at least one residual of it
is contracted in any reduction from s to an object in X . E.g. for X the set of normal forms,
the underlined step is needed in λx.II, but not if X is the set of abstractions.

A redex with history in a DRS is a non-empty derivation, usually written ρR to
single out the last step. We write Hist(t) def= {ρR | src(ρ) = t} for the set of redexes with
history whose source is the object t. The copy relation between coinitial redexes with
history, written ρR ≤ σS is defined to hold if and only if there is a derivation τ such that
ρ τ ≡ σ and S ∈ R/τ . The reflexive, symmetric and transitive closure of ≤, written !,
is called the family relation. Its equivalence classes are called redex families. E.g.. if
ρ : ∆(III) → ∆(II) and σ : ∆(III) −→ (III)(III) −→ (II)(III), then σ(II)(III) is in the
family of ρ∆(II ) since σ(II)(III)! ρ∆(II ).

Let F be a set of redex families {Fam!(ρi)}i∈I such that ρi ∈ Hist(t), for some fixed t. A
family development of F is a pair τ |ρ where the first component is a “history” τ : t� t′

and the second component is a (possibly infinite) derivation ρ = R1R2 . . . from t′ such that for
every index i ≥ 1, we have Fam!(τR1 . . .Ri) ∈ F . Usually the history τ is empty, ρ starts
from t, and we identify ε|ρ with ρ. A family development τ |ρ ofM is said to be complete if
it is maximal, i.e. if there is no non-empty derivation σ s.t. τ |ρσ is also a family development
of F .

3 The Labeled LSC

Given initial labels a,b, c, . . . including a distinguished one “ • ”, we define labels L as:

α, β ::= a | dαe | bαc | db(α) | αβ

We assume juxtaposition αβ to be associative. Labels that are not of the form αβ are called
atomic labels. Labels of the form db(α) will be used to leave a trace indicating that a
db-step was contracted (cf. Rem. 3). Similarly, “ • ” will be used to leave a trace indicating
the place in which an ls-step was contracted. The remaining labels play a similar rôle to that
of Lévy labels for λ-calculus.

The set of labeled terms (T `), labeled contexts and labeled substitution contexts
are defined by the following grammar:

t, s, u, r, q ::= xα | λαx.t | @α(t, s) | t[x/s]
C ::= � | λαx.C | @α(C, t) | @α(t, C) | C[x/t] | t[x/C]
L ::= � | L[x/t]

Note that substitutions are not labeled. The external label of a term t, written `(t), is the
label decorating the outermost node of t, jumping over substitutions:

`(xα) def= α `(λαx.t) def= α

`(@α(t, s)) def= α `(t[x/s]) def= `(t)

FSCD 2017



9:8 Optimality and the Linear Substitution Calculus

We also define the following operation α : t for adding a label to an (already labeled) term,
jumping over substitutions:

α : xβ def= xαβ α : (λβx.t) def= λαβx.t

α : @β(t, s) def= @αβ(t, s) α : (t[x/s]) def= (α : t)[x/s]

Note that we have `(tL) = `(t) and α : (tL) = (α : t)L.
We shall require one more operation on labels. The outermost (resp. innermost)

atomic label of a label α is written ↑ (α) (resp. ↓ (α)) and defined as:

↑ (α) def=
{
↑ (α1) if α = α1α2

α otherwise
↓ (α) def=

{
↓ (α2) if α = α1α2

α otherwise

These functions are well-defined modulo associativity of juxtaposition. We also write ↑ (t)
for ↑ (`(t)).

A labeled term is initially labeled if all its labels are initial and pairwise distinct. A
labeled term t ∈ T ` is a variant of an (unlabeled) term t0 ∈ T if erasing all the labels from
t yields t0. We say that two labeled terms t, s ∈ T ` are variants of each other if they are
variants of the same unlabeled term. Similarly, we may say that two labeled steps (resp.
derivations) are variants of an unlabeled step (resp. derivation), or of each other. Sometimes
we write t` to stand for a labeled variant of an unlabeled term t, and similarly for labeled
steps and labeled derivations.

Redex names RN are defined as follows, where α′ stands for the sort of atomic labels
µ, ν, ξ ::= db(α) | α′ •α′. Note that, although we often identify redex names with the labels
that represent them, they should be regarded as being of different sorts.

I Definition 3 (Labeled LSC). LLSC is the pair 〈T `,→`〉, where →`
def= →` db ∪ →` ls , and

→` db
def= C〈7→db〉 and →` ls

def= C〈7→ls〉. Relations 7→db and 7→ls are defined as:

@α((λβx.t)L, s) 7→db αddb(β)e : t[x/bdb(β)c : s]L
C〈〈xα〉〉[x/t] 7→ls C〈α • : t〉[x/t]

The name of the db-step above is db(β) and that of the ls-step is ↓ (α) • ↑ (t). We write
t
µ−→` s whenever there is a step t →` s such that name of the contracted step is µ. An

example of a reduction in LLSC follows, it shows how a db redex can create a db-step:

@a(@b(λcx.λdy.xe, zf ), zg)
db(c)−−−→` @a((λbddb(c)edy.xe)[x/zbdb(c)cf ], zg)

db(bddb(c)ed)−−−−−−−−−→` xaddb(bddb(c)ed)e[y/zbdb(bddb(c)ed)cg][x/zbdb(c)cf ]

The other two forms of redex creation in LSC are when a db-step creates an ls-step (e.g.
(λx.x)y →db x[x/y]) and when an ls-step creates a db-step (e.g. (xy)[x/I]→ ls (Iy)[x/I]).

Structural equivalence (Sec. 2) can be lifted to labeled terms as expected. The resulting
labeled structural equivalence, also called ∼, is a strong bisimulation with respect to
labeled reduction. LLSC is thus well-defined over ∼-equivalence classes. Furthermore, given
two equivalent terms t1 ∼ t2 there is a bijection f between the set of steps of t1 and the set
of steps of t2 such that tgt(R) ∼ tgt(f(R)). The resulting system LLSC/ ∼ will also enjoy
Church-Rosser and Finite Family Developments that LLSC will be shown to enjoy in Sec. 4.
I Remark. Labels of the form db(α) (not present in Lévy labeling for λ-calculus) are included
for technical reasons. Consider the following example in which an ls-step creates a db-step:

@a(xb, t)[x/λcy.s] b • c−−−→` @a(λb • cy.s, t)[x/λcy.s]
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If the name of the db-step at the right hand side was declared to be the label decorating the
λ-node, namely b • c, it would coincide with the name of the ls-step we have just fired.

4 Finite Family Developments

FFD relies on the following properties of LLSC:
Property 1: Labeled reduction (→`) is weak Church–Rosser.
Property 2: Residuals of a step have the same name: S′ ∈ S/ρ implies S and S′ have the
same name in any labeling of any LLSC derivation ρ.
Property 3: Creation implies name contribution: if R creates S then µ

Name
↪→ ν, where µ

denotes the name of R and ν denotes the name of S. The latter relation is called name
contribution and is defined as the transitive closure of the following rules:
1. db(β) Name

↪→ db(α ddb(β)e γ)
2. db(β) Name

↪→ α • bdb(β)c where α is any atomic label.
3. ↓ (α) • ↑ (β) Name

↪→ db(α •β)
We next set out to prove FFD. Its precise statement is:

I Theorem 4 (FFD). Let F be a finite set of redex families in Hist(t) for some term t.
1. (Finite) there is no infinite family development of F ;
2. (Cofinal) the complete family developments of F all end in the same term; and
3. (Equivalent) any two complete family developments ρ and σ of F satisfy ρ ≡ σ, i.e.

they are permutation equivalent.

(Finite). Labeled reduction is clearly not SN since it can simulate β-reduction. How-
ever, if we restrict redex names to those that verify a bounded predicate [19], then we do
obtain SN. A predicate on redex names P : RN → Bool is said to be bounded if the set
{h(µ) | P (µ) holds} is bounded, where the height h(µ) of a redex name µ is the height of µ
interpreted as a label, and the height of a label is defined as follows6:

h(a) def= 1 h(αβ) def= max{h(α), h(β)} h(f(α)) def= 1 + h(α) if f ∈ {d · e, b · c, db(·)}

We write →P
` for labeled reduction restricted to contracting steps whose names verify the

predicate P . SN for→P
` relies on the abstract termination result7: WCR ∧ WN ∧ Inc =⇒

SN. WCR follows from Property 1, and the local confluence diagram for a pair of coinitial
steps R, S is closed with their relative residuals, which have the same name as their ancestors
(Property 2). WN is attained by picking, at each step, a non-duplicating redex R. This
implies that R itself has no residual, every other →P

` -step S 6= R has exactly one residual
with the same name (Property 2) and steps created by R will have height strictly greater
than that of R since creation implies name contribution (Property 3). Finally, Inc is rather
easy given that we have a bound on P .
I Proposition 5 (Bounded reduction is SN). Let P be a bounded predicate. Then →P

` is SN.
We may now conclude with a proof of (Finite): it follows from Prop. 5, the fact that all

names in a redex family are identical, and that we only have a finite set of families. The
axiom (Cofinal) follows from confluence of LLSC, a consequence of Property 1, Finite
and Newman’s Lemma (WCR+SN ⇒ CR). The axiom (Equivalent) follows from the fact

6 This operation is well-defined modulo associativity of juxtaposition.
7 Due to Klop and Nederpelt (see for instance [26, Theorem 1.2.3 (iii)]).
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9:10 Optimality and the Linear Substitution Calculus

that LLSC enjoys algebraic confluence: the confluence diagram for two coinitial derivations
ρ and σ can be closed by tiling it with elementary permutation diagrams. This concludes
the proof of FFD.
I Remark. We end the section with a remark on stability, stated as follows. Let R 6= S
be coinitial steps and let T1,T2,T3 be steps such that T3 ∈ T1/(R/S) and T3 ∈ T2/(S/R).
Then there exists a step T0 such that T1 ∈ T0/R and T2 ∈ T0/S. Stability is known to fail if
→gc is added to LSC (indeed, it suffices to consider the two ways in which a gc-step can be
created in a term such as x[y/z][z/t]). Stability for LSC is an easy consequence8 of the fact
that residuals of steps have the same name as their ancestors (Property 2).

5 Optimal Reduction for LSC

An optimal reduction [19, 10] computes a value, assuming it exists, in the least number
of steps. More precisely, if A and B are ARSs, we say that B is a sub-ARS of A if (1)
they have the same objects, i.e. Obj(A) = Obj(B), (2) all the steps of B are also in A, i.e.
Stp(B) ⊆ Stp(A), and (3) the source (resp. target) of a step in B coincides with its source
(resp. target) in A. A strategy in an ARS A is a sub-ARS of A having the same set of objects
and normal forms (cf. [26, Def. 9.1.1]). If X is a set of objects, a strategy is X -optimal if
for any object t the length of any reduction from t to an object s ∈ X is minimal among all
the possible reductions from t to s. Strategies such as call-by-name and call-by-value are not
optimal: the former duplicates arguments and the latter evaluates unnecessary arguments.
Call-by-need evaluates only arguments that are needed and stores their value for subsequent
lookup and is indeed optimal [11]. However, all these are strategies in the ARS of closed
λ-terms with weak reduction, in the sense that β-steps are not performed under lambdas:
the set of normal forms are the abstractions. It is relatively easy to implement call-by-need
in this case since it suffices to share subterms by labeling them [11]. Optimal reduction for
the ARS of λ-terms with strong (i.e. unrestricted) reduction is more complicated since it
involves reducing under lambdas: the set of normal forms is the usual set of β-normal forms.
As a consequence, it requires sharing contexts, which notably complicates its implementation.
Here we concentrate on a characterization of which of these steps should be shared, leaving
implementation concerns, such as how to share contexts, for future work.

In the case of LSC, X -optimality is not very interesting when X is the set of normal
forms: since LSC has no erasing rules, all steps are trivially X -needed. E.g. the db-step in
x[y/II] is needed to get to the normal form x[y/I[z/I]]. However, II may be considered
junk in that it is the body of a substitution whose target variable y has no occurrence in x.
Therefore, we introduce a more refined notion of result as a candidate for our set X . We are
only interested in steps in a term t that are not junk in the sense that they have residuals in
the gc-normal form. Let nfgc(t) stand for the gc-normal form of t. Our candidate X is the set
of reachable normal forms, defined as RNF def= {t | nfgc(t) is in →db∪ ls -normal form}.
Later we shall see that it has the properties required of a set of results (cf. notion of stable
set of objects below).

5.1 An Abstract Framework for Optimal Reduction.
An abstract framework for obtaining optimal reduction results was developed by Khasidashvili
and Glauert [16]. They introduce axioms on DRS that verse over steps, residuals and redex

8 Also a consequence of LSC being a Deterministic Family Structure (cf. Sec. 5 and Lem. 4.1 of [16]).



P. Barenbaum and E. Bonelli 9:11

families and show that if they are satisfied, then an optimal reduction result holds. These
axioms are collected in a structure called Deterministic Family Structures (DFS):

ARS (Sec. 2) ⊆ DRS (Def. 2) ⊆ DFS (Def. 6).

I Definition 6. A Deterministic Family Structure is a triple 〈R,', ↪→〉, where R is a
DRS, ' is an equivalence relation between coinitial redexes with history whose equivalence
classes are called families, and ↪→ is a binary relation of contribution between coinitial families.
The family of a redex with history ρR is written Fam'(ρR). Two families are coinitial if their
representatives are coinitial. Moreover, the following axioms hold:
1. Initial. If R,S are distinct coinitial steps, then Fam'(R) 6= Fam'(S).
2. Copy. ≤ ⊆ '. Recall that ≤ is the copy relation of DRS.
3. Finite Family Developments. Any derivation that contracts redexes of a finite

number of families is finite.
4. Creation. If ρR is a redex with history and R creates S, then Fam'(ρR) ↪→ Fam'(ρRS).
5. Contribution. Given any two coinitial families φ1, φ2 ∈ Hist(t)/ ', the relation

φ1 ↪→ φ2 holds, if and only if, for every redex with history σS ∈ φ2, there is a redex with
history ρR ∈ φ1 such that ρR is a prefix of σ (i.e. σ = ρRσ′).

A family reduction in a DFS is a multistep reductionM1 . . .Mn such that for each
i ∈ 1..n all the steps inMi belong to the same redex family. More precisely, for all i ∈ 1..n
and any two R,S ∈ Mi, it holds thatM1 . . .Mi−1R ' M1 . . .Mi−1S. A family reduction
is complete if eachMi is a maximal set of steps that have src(Mi) as source and belong
to the same family. Let X be a set of objects. A family reduction is X -needed if eachMi
contains at least one X -needed step (cf. Sec. 2).

For a set X of objects to be admitted as a set of results it has to satisfy the following
property. A set X of objects is stable if: 1) X is closed under parallel moves, i.e. for any
t /∈ X , any ρ : t� s ∈ X , and any σ : t� u which does not contain objects in X , the final
object of ρ/σ is in X ; and 2) X is closed under unneeded expansion, i.e. for any t R−→ s such
that t /∈ X and s ∈ X , the step R is X -needed. The set of LSC-normal forms and the set of
abstractions are stable. Less obvious is the fact that RNF is a stable set. This is non-trivial.
For item 1) we show that the set RNF is closed under reduction, which entails that it is
closed under parallel moves. For item 2) we strengthen the notion of reachable steps to that
of strongly reachable steps (reachable steps that are minimal w.r.t. the box order introduced
in [4] for the purposes of studying standardisation).

I Lemma 7. The set of reachable-normal forms RNF is stable.

The main result of this section is the following theorem. It is a corollary of Prop. 9 and
of Theorem 5.2 in [16]:

I Theorem 8. Let X be a stable set of terms of LSC. Let t be a X -normalising term. Then
any X -needed X -normalizing complete family-reduction ρ : t� t′ ∈ X is X -optimal, i.e. it
has a minimal number of family-reduction steps.

5.2 LSC is a Deterministic Family Structure.
Given two coinitial redexes with history ρR, σS, the binary relations of family equivalence
ρR Fam' σS and family contribution ρR Fam

↪→ σS are defined as follows. Consider labeled
variants ρ`R` and σ`S` of ρR and σS respectively, starting from the same initially labeled
term. Let µ be the name of R` and let ν be the name of S`. We declare ρR Fam' σS to hold if
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9:12 Optimality and the Linear Substitution Calculus

and only if µ = ν and ρR Fam
↪→ σS to hold if and only if µ Name

↪→ ν. Relation Fam
↪→ is also extended

to coinitial families, declaring φ1
Fam
↪→ φ2 to hold whenever for any ρR ∈ φ1 and σS ∈ φ2 we

have ρR Fam
↪→ σS. It is straightforward to check that this is well-defined, regardless of the

choice of representatives.

I Proposition 9. (LSC, Fam' ,
Fam
↪→ ) is a Deterministic Family Structure.

The axioms Initial, Copy, and Creation can be checked by exhaustive case analysis.
The Finite family developments axiom has already been established in Thm. 4. The
Contribution axiom is more demanding and relies on a non-trivial application of FFD.

6 Standardisation by Selection for LSC

We introduce an abstract notion of uniform multi-selection strategy, show that repeated
application of this strategy terminates using FFD in any DFS, and finally that two per-
mutation equivalent derivations produce the same multiderivation. Then we instantiate our
abstract result to LSC, obtaining an algorithm for standardizing LSC derivations by picking
multisteps according to a given parametric partial order on its steps.

Uniform Multi-Selection Strategies. A step R belongs to a derivation ρ, written
R / ρ, if and only if ρ = ρ1R′ρ2 and R′ ∈ R/ρ1. Given a DRS A, we write Stp+ for the set
of multisteps, i.e. non-empty finite sets of coinitial steps, and we let D, E, etc. range over
multiderivations, i.e. derivations in the DRS whose steps are multisteps. A multistepM
belongs to a derivation ρ, writtenM / ρ, if and only if R / ρ for all R ∈M. If D =M1 . . .Mn
is a multiderivation, we say that a derivation ρ is a complete development of D if ρ = ρ1 . . . ρn,
where each ρi is a complete development of the multistepMi. By FD a complete development
always exists and any two complete developments are permutation equivalent. We write
∂D to stand for some complete development of D, and ρ/D for ρ/∂D. A multi-selection
strategy is a function M that maps every non-empty derivation ρ to a coinitial multistep
M∈ Stp+ such thatM / ρ andM/ρ = ∅, i.e. residuals of every step appear somewhere in
the sequence, and there are no residuals of any step left after the sequence. It is, moreover,
uniform if ρ ≡ σ implies M(ρ) = M(σ) for any non-empty ρ, σ. E.g. MTriv(Rρ) def= {R} is
a (trivial) multi-selection strategy, which is not uniform.

The multiderivation induced by a multi-selection strategy M on a derivation
ρ, written M?(ρ), is a sequence of multisteps defined as follows:

M?(ε) = ε M?(ρ) = M(ρ)M?(ρ/M(ρ)) if ρ 6= ε

Successively applying a multi-selection strategy M to build a reduction sequence M?(ρ)
terminates, as long as the input ρ is finite, i.e. recursion is well-founded. This relies on FFD.

I Lemma 10 (Induced multiderivations preserve finiteness). Suppose that M is a multi-selection
strategy in a DFS. If ρ is finite, then M?(ρ) is also finite.

By definition, a uniform multi-selection strategy M, when given two permutation equival-
ent derivations, always selects the same multistep. It, in fact, yields the same multiderivation.

I Lemma 11. Let M be a uniform multi-selection strategy in a DFS, and let ρ, σ be finite
derivations. If ρ ≡ σ then M?(ρ) = M?(σ).

I Lemma 12. Let M be a multi-selection strategy in a DFS, and ρ a finite derivation. Then
ρ ≡ ∂M?(ρ).
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A multiderivation D is said to be M-compliant if and only if M?(∂D) = D.
I Proposition 13. Let M be a uniform multi-selection strategy in a DFS. For any finite
derivation ρ there exists a unique multiderivation D such that ρ ≡ ∂D and D is M-compliant.
Namely, D = M?(ρ).

Standardisation Algorithm for LSC. For each term t let Out(t) be the set of steps
whose source is t in LSC, and let <t be an arbitrary strict partial order on Out(t). The
arbitrary selector M< is defined as follows: M<(ρ) def= {R | R/ρ = ∅ and R is minimal}.
By minimal we mean that there is no step R′ such that R′/ρ = ∅ and R′ <src(ρ) R. Note that
M< is a non-empty finite set, given that the set {R | R/ρ = ∅} is non-empty and finite, so it
has at least one minimal element.

I Lemma 14. M< is a uniform multi-selection strategy.

I Corollary 15 (Standardisation by arbitrary selection for LSC). For each finite sequence ρ
in LSC, there is a unique multiderivation D such that ρ ≡ ∂D and D is M<-compliant.
Moreover, if the order <t is computable, then D is computable from ρ, namely D = M?

<(ρ).

For example, let ρ : x[x/t]→ x[x/t′]→ t′[x/t′]→ t′′[x/t′], where t→ t′ → t′′.
1. If <1 is the trivial partial order in which every step is incomparable, i.e. R <1

t S never
holds, then M?

<1(ρ) : x[x/t] ◦−→ t′[x/t′]→ t′′[x/t′]. The first step is a proper multistep.
2. Let <2 be the total left-to-right order, defined so that R <2

t S holds whenever R is to the
left of S. Then M?

<2(ρ) : x[x/t]→ t[x/t]→ t′[x/t]→ t′[x/t′]→ t′′[x/t′].
3. If <3 is the total right-to-left order, defined so that R <3

t S holds if R is to the right of S.
Then M?

<3(ρ) = ρ : x[x/t]→ x[x/t′]→ t′[x/t′]→ t′′[x/t′].

7 Normalisation of the Linear Needed Strategy in LSC

Recall that a strategy in an ARS is a sub-ARS having the same objects and normal forms.
We write NF(A) for the set of normal forms of an ARS A, and t →A s to emphasize that
a given step is in A. If X is a superset of the normal forms of A, a strategy S is said to
be X -normalizing if for every object t such that there exists a reduction t �A s ∈ X ,
every maximal reduction from t in the strategy S contains an object in X . A sub-ARS B
is residual-invariant if for any steps R and S such that R ∈ B and S 6= R, there exists
a step R′ ∈ S such that R′ ∈ R/S. A sub-ARS B is closed if the set NF(B) is closed by
reduction, i.e. t→A s and t ∈ NF(B) imply s ∈ NF(B). Observe that any sub-ARS B can
be extended to a strategy SB by adjoining the steps going out from normal forms, i.e. by
setting Stp(SB) := Stp(B)∪{R ∈ Stp(A) | src(R) ∈ NF(B)}. We will instantiate the following
normalisation result to the linear call-by-need strategy of LSC which we define below.
I Proposition 16. Let B be a closed residual-invariant sub-ARS in a DFS. Then the corres-
ponding strategy SB is NF(B)-normalizing.

Needed linear reduction for LSC is the sub-ARS NL of LSC defined as follows. Need
contexts are defined by the grammar N ::= � | N t | N[x/t] | N〈〈x〉〉[x/N]. The reduction rule
→NL is the union of the usual db rule, and the lsnl rule N〈〈x〉〉[x/vL] 7→ lsnl N〈vL〉[x/vL], both
closed by need contexts, where v stands for a value, i.e. a term of the form λy.t. Note that
it is in fact a sub-ARS for LSC, i.e. the lsnl rule is a particular case of the ls rule, and
closure by need contexts is a particular case of closure by general contexts. A similar, albeit
slightly different call-by-need calculus based on LSC has been studied in [2] to relate the
execution model of abstract machines with reduction in calculi with ES. In [18] it is shown,
via intersection types, that it is a sound and complete implementation of call-by-name.
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The set of needed linear normal forms NLNF is defined by the grammar A ::= (λx.t)L |
N〈〈x〉〉. Terms of the form (λx.t)L are called answers, and N〈〈x〉〉 are called structures. In
structures, N does not bind x, the latter called its needed variable.

I Corollary 17. The strategy SNL associated to the sub-ARS NL is NLNF-normalizing.

The proof consists in first showing that NF(NL) coincides with the set NLNF, and then
that the sub-ARS NL is closed residual-invariant. These items rely on a number of lemmata
such as the fact that the needed variable in a structure is unique and that answers cannot be
written as of the form N〈∆〉 where ∆ is a redex or a variable not bound by N.

8 Conclusions

The Linear Substitution Calculus sits between calculi with ES and the λ-calculus: it has
ES but admits a theory of residuals. We devise a theory of optimal reduction for LSC.
We start from the theory of residuals developed in [4] and use it to prove a Finite Family
Developments result. This is achieved by introducing a Lévy labeling and associated notion
of redex family which supports the two distinctive features of LSC, namely its use of context
rules that allow substitutions to act “at a distance” and also the set of equations modulo
which it rewrites which allow substitutions to “float” in a term. We then apply FFD to prove
a number of novel results for LSC including: an optimal reduction result, an algorithm for
standardisation by selection, and normalization of a linear call-by-need reduction strategy.

Perhaps the most relevant future work is devising an appropriate notion of extraction
and showing that all three characterizations (labeling, zig-zag and extraction) of redex family
coincide. This is non-trivial and has elided us for some time. Also, there is the topic of graph
based implementations, labels and virtual redexes (cf. notion of paths in Ch.6 of [10]).

Ackn. To Thibaut Balabonski and Beniamino Accattoli for helpful discussions.
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A Appendix

The appendix is organized as follows:
Sec. A.1 corresponds to Sec. 3 in the main body. It includes representative examples of
redex creation in the labeled LSC (Sec. A.1.1), and the proof that the labeled LSC is
well-defined modulo structural equivalence (Sec. A.1.2).
Sec. A.2 corresponds to Sec. 4 in the main body. It proves various properties of the
labeled LSC, the Finite Family Developments theorem (FFD), and strong versions of
confluence.
More precisely, this section includes the proof of a strong version of the WCR property for
the labeled calculus (Sec. A.2.1), the proof that redex creation implies name contribution
(Sec. A.2.2), the proof that residuals may be characterized using the labeled calculus
(Sec. A.2.3), the proof that reduction in the labeled calculus is WN (Sec .A.2.4) and SN
(Sec .A.2.5) when restricted to bounded families (which in particular implies FFD), and
a strong version of confluence, namely algebraic confluence (Sec. A.2.6).
Sec. A.3 corresponds to Sec. 5 in the main body, and it contains the proof of the optimality
result for the LSC. It includes the proof that LSC forms a Deterministic Family Structure
(Sec. A.3.1), and that reachable normal forms are a stable set (Sec. A.3.2). These entail
optimality, as has been discussed in Sec. 5.
Sec. A.4 corresponds to Sec. 6 in the main body. It includes a proof of an abstract result
of standardisation in DFSs based on multiselection strategies (Sec. A.5). Then it includes
an application of this result for the LSC (Sec. A.6).
Sec. A.7 corresponds to Sec. 7 in the main body. It includes a proof of an abstract result
of normalisation in DFSs (Sec. A.7.1). Then it includes an application of this result for
the linear call-by-need strategy (Sec. A.7.2).
Finally, Sec. A.8 describes an extraction procedure which we conjecture to be correct and
complete.

The appendix includes the outlines and interesting cases of most of the proofs, but some
auxiliary lemmas and details have been omitted in order to keep it reasonably succint. For a
detailed version of all the material please refer to the technical report.

A.1 The Labeled LSC
A.1.1 Redex Creation in LSC
Some examples of how redex creation in LSC is reflected as name contribution in the labeled
calculus.

I Example 18. The following are representative examples of the three redex creation cases
in LSC.

A db redex creates a db redex:

@a(@b(λcx.λdy.xe, zf ), zg)
db(c)−−−→` @a((λbddb(c)edy.xe)[x/zbdb(bddb(c)ed)cf ], zg)

db(bddb(c)ed)−−−−−−−−−→` xaddb(bddb(c)ed)e[y/zbdb(bddb(c)ed)cg][x/zbdb(bddb(c)ed)cf ]

A db redex creates an ls redex:

@a(λbx.xc, yd)
db(b)−−−→` xaddb(b)ec[x/ybdb(b)cd]

c • bdb(b)c−−−−−−→` yaddb(b)ec • bdb(b)cd[x/ybdb(b)cd]
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Two ls redexes contribute towards the creation of a db redex:

@a(xb, t)[x/yd][y/λez.zf ]
b •d−−−→` @a(yb •d, t)[x/yd][y/λez.zf ]
d • e−−−→` @a(λb •d • ez.zf , t)[x/yd][y/λez.zf ]

db(b •d • e)−−−−−−−→` zaddb(b •d • e)ef [z/bdb(b •d • e)c : t][x/yd][y/λez.zf ]

Note that, in each case, the name of the created redex contains the names of the redexes
that have contributed towards its creation.

A.1.2 Structural Equivalence and LLSC
This section shows that LLSC is well-defined with respect to the structural equivalence ∼.

I Definition 19 (Structural equivalence). Structural equivalence for LLSC is defined as the
reflexive, symmetric, transitive, and contextual closure of the following axioms:

(λαx.t)[y/s] ∼λ λαx.t[y/s] if x 6= y and x 6∈ fv(s)
@α(t, s)[x/u] ∼@ @α(t[x/u], s) if x 6∈ fv(s)
t[x/s][y/u] ∼com t[y/u][x/s] if x 6= y, x 6∈ fv(u), and y 6∈ fv(s)

Moreover, we write WV to stand for the symmetric and contextual closure of the axioms
∼λ ∪ ∼@ ∪ ∼com. Note that ∼ is the reflexive and transitive closure of WV.

I Definition 20. A context C is said to be a xα-context of t if and only if t = C〈〈xα〉〉.

I Lemma 21 (Properties of the structural equivalence). Let t1 ∼ t2. Then the following
properties hold:
1. Adding a label. α : t1 ∼ α : t2.
2. First label. ↑ (t1) =↑ (t2).
3. Free variables. fv(t1) = fv(t2).
4. Correspondence of variables. If x is a variable and α a label, the xα-contexts of t1

and the xα-contexts of t2 are in 1–1 correspondence.

Proof. All are straightforward by induction on the derivation that t1 ∼ t2. J

I Proposition 22 (Structural equivalence is a strong bisimulation). The relation ∼ is a strong
bisimulation with respect to the labelled reduction relation →`. Furthermore, given two
equivalent terms t1 ∼ t2 there is a bijection f : Red(t1)→ Red(t2) between the set of redexes
of t1 and the set of redexes of t2 such that tgt(R) ∼ tgt(f(R)), and such that the name of
the step R coincides with the name of the step f(R).

Proof. If t1 ∼ t2 we have that t1 WV . . . WV t2 with n steps of WV. By induction on n, it
suffices to show that the property holds for the case n = 1 i.e. when t1 WV t2.

Let t1 WV t2 and let us construct a bijection f as in the statement. Let R ∈ Red(t1) be
a redex of t1 Let us construct a redex f(R) ∈ Red(t2). More precisely, we will construct
diagrams of the form:

t1
R //

WV
t2
∼

t′1 f(R)
// t′2

We proceed by induction on the context C on which the step contracting R takes place and
then by case analysis on the position where the structural equation is applied. There are
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9:18 Optimality and the Linear Substitution Calculus

many uninteresting overlappings such as when the source is a db step @α((λx.t)L, s) →
αddb(β)e : t[x/bdb(β)c : s]L and the structural equation is applied inside t, or inside s, or
inside L. These cases are straightforward, resorting to the properties listed in Lem. 21 when
necessary. Following we deal with the interesting overlappings:

db vs. ∼λ:

@α((λβx.t)[y/u]L′, s)
db(β)

//

WV

αddb(β)e : t[x/bdb(β)c : s][y/u]L′
∼com

@α((λβx.t[y/u])L′, s)
db(β)

// αddb(β)e : t[y/u][x/bdb(β)c : s]L′

db vs. ∼@:

@α((λβx.t)L′[y/u], s)
db(β)

//

WV

αddb(β)e : t[x/bdb(β)c : s]L′[y/u]
=

@α((λβx.t)L′, s)[y/u]
db(β)

// αddb(β)e : t[x/bdb(β)c : s]L′[y/u]

ls vs. structural rule on the body: Let C1〈〈xα〉〉[x/s] be the source of an ls step and
suppose that C1〈〈xα〉〉 WV t′. By Lem. 21, ∼ establishes a 1–1 correspondence between
xα-contexts, so t′ is of the form t′ = C2〈〈xα〉〉. Then:

C1〈〈xα〉〉[x/s]
↓(α) • ↑(s)

//

WV

C1〈α : s〉[x/s]
∼

C2〈〈xα〉〉[x/s] ↓(α) • ↑(s)
// C2〈α : s〉[x/s]

ls vs. ∼λ:

(λβy.C2〈〈xα〉〉)[x/s]
↓(α) • ↑(s)

//

∼λ
(λβy.C2〈α : s〉)[x/s]

∼λ

λβy.C2〈〈xα〉〉[x/s] ↓(α) • ↑(s)
// λβy.C2〈α : s〉[x/s]

ls vs. ∼@:

@β(C2〈〈xα〉〉, u)[x/s]
↓(α) • ↑(s)

//

∼@

@β(C2〈α : s〉, u)[x/s]
∼@

@β(C2〈〈xα〉〉[x/s], u)
↓(α) • ↑(s)

// @β(C2〈α : s〉[x/s], u)

ls vs. ∼com:

C2〈〈xα〉〉[y/u][x/s]
↓(α) • ↑(s)

//

∼com
C2〈α : s〉[y/u][x/s]

∼com

C2〈〈xα〉〉[x/s][y/u]
↓(α) • ↑(s)

// C2〈α : s〉[x/s][y/u]

J

A.2 Finite Family Developments
We address the proof of the main properties required for FFD: (1) Labeled permutation
(Prop. 24); (2) Creation implies contribution (Prop. 26); (3) Residuals of a redex have the
same name (Prop. 27); (4) Bounded reduction is SN (Prop. 44).

To prove (4), we first show that bounded reduction is WN (Prop. 41). As an easy corollary
of (1) and (4) we obtain that reduction in LLSC is CR (Coro. 45). Moreover, we discuss a
stronger result: algebraic confluence (Prop. 46).
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A.2.1 Labeled permutation

We prove a strong version of WCR: every local peak may be closed, and each residual has
the same redex name as its ancestor in the labeled calculus.

I Lemma 23 (Properties of labels, contexts, and reduction). The following properties hold:
1. Adding labels I. If C is a substitution context, α : C〈t〉 = C〈α : t〉.
2. Adding labels II. If C is not a substitution context, α : C〈t〉 = (α : C)〈t〉.
3. Adding labels III. α : C〈xβ〉 = C〈xβ′〉 where ↓ (β) =↓ (β′).
4. Adding labels is functorial. If t µ−→` s then α : t µ−→` α : s.
5. First label I. If t→` s then ↑ (t) =↑ (s).
6. First label II. ↑ (α : t) =↑ (α).
7. First label III. ↑ (C〈xα〉) =↑ (α • : t).

Proof. The proofs are straightforward by induction; 1–3 are by induction on C; 4 and 5 are
by induction on the context under which the step takes place; 6 and 7 are by induction on
the term. J

I Proposition 24 (Labeled permutation). Let R,S be coinitial redexes in LSC, and let R` :
t
µ−→` s and S` : t ν−→` u be coinitial labeled variants in LLSC. Then the local peak can be

closed with their relative residuals, that is, if ρ is a complete development of R/S and σ is a
complete development of S/R then there exists a labeled term r such that σ` : s ν−→−→` r and
ρ` : u µ−→−→` r are labeled variants of σ and ρ respectively. Moreover, if R 6= S then closing
the diagram requires at least one step on each side.

Proof. We check all the critical pairs. If R and S lie at disjoint positions, it is straightforward
to close the diagram. So without loss of generality we may suppose that the position of R is
a prefix of the position of the redex occurrence S.

The proof goes by induction on the context C under which the redex occurrence R is
contracted. There are many uninteresting overlappings which can be closed by i.h. or simply
by closing the diagram if the steps are orthogonal, resorting to Lem. 23 whenever needed.
Following we deal with the interesting overlappings:

db vs. ls in the body: the body of the abstraction contracted by the db step is of the
form C2〈yγ〉 and y is bound by some substitution to a term u, which might be in C1, in
C2, or in L. Let u′ := γ • : u. Then:

C1〈@α((λβx.C2〈yγ〉)L, s)〉
db(β)
//

↓(γ) • ↑(u) ��

C1〈αddb(β)e : C2〈yγ〉[x/bdb(β)c : s]L〉
↓(γ) • ↑(u) ��

C1〈@α((λβx.C2〈u′〉)L, s)〉
db(β)
// C1〈αddb(β)e : C2〈u′〉[x/bdb(β)c : s]L〉

db vs. ls in the substitution: the list of substitutions L involved in the db step is of
the form L1[y/C2〈zγ〉]L2 and z is bound by some substitution to a term u, which might
be in C1, in C2, or in L2. Let u′ := γ • : u. Then: Then:

C1〈@α((λβx.t)L1[y/C2〈zγ〉]L2, s)〉
db(β)
//

↓(γ) • ↑(u) ��

C1〈αddb(β)e : t[x/bdb(β)c : s]L1[y/C2〈zγ〉]L2〉
↓(γ) • ↑(u) ��

C1〈@α((λβx.t)L1[y/C2〈u′〉]L2, s)〉
db(β)
// C1〈αddb(β)e : t[x/bdb(β)c : s]L1[y/C2〈u′〉]L2〉
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ls vs. step in the argument: let C1〈t〉
ν−→` C1〈t′〉 be a step. Then:

C1〈C2〈〈xα〉〉[x/t]〉
↓(α) • ↑(t)

//

ν
��

C1〈C2〈α • : t〉[x/t]〉
ν F����

C1〈C2〈xα〉[x/t′]〉
↓(α) • ↑(t′)

// C1〈C2〈α • : t′〉[x/t′]〉

Note that the names of the two steps marked with F are both ν, by the fact that adding
labels preserves redex names (Lem. 23). To close this diagram, note also that ↑ (t′) =↑ (t)
by the fact that reduction preserves the first label of a term (Lem. 23).
ls vs. step in the body not duplicating xα: let C2〈xα〉 be a term with an occurrence
of xα and consider a step C1〈C2〈〈xα〉〉〉

ν−→ C1〈C3〈〈xα〉〉〉 that does not duplicate xα. Then:

C1〈C2〈〈xα〉〉[x/t]〉
↓(α) • ↑(t)

//

ν
��

C1〈C2〈〈α • : t〉〉[x/t]〉
ν F
��

C1〈C3〈xα〉[x/t]〉
↓(α) • ↑(t′)

// C1〈C3〈α • : t〉[x/t]〉

We omit a more detailed analysis in which all possible forms of steps C1〈C2〈〈xα〉〉〉
ν−→

C1〈C3〈〈xα〉〉〉 are considered.
ls vs. step in the body duplicating xα:

C1〈C2〈〈C3〈yβ〉[y/C4〈〈xα〉〉]〉〉〉[x/t]
↓(α) • ↑(t)

//

↓(β) • ↑(xα)
��

C1〈C2〈〈C3〈yβ〉[y/C4〈α : t〉]〉〉〉[x/t]
↓(β) • ↑(α:t)

��
C1〈C2〈〈C3〈β : C4〈〈xα〉〉〉[y/C4〈〈xα〉〉]〉〉〉[x/t]

↓ (α) • ↑ (t)
// // C1〈C2〈〈C3〈β : C4〈α : t〉〉[y/C4〈α : t〉]〉〉〉[x/t]

Note that ↑ (xα) =↑ (α : t) by Lem. 23.
J

I Proposition 25 (Multiplicity of residuals). Let R 6= S be coinitial redexes. Then:
1. If R is a db step, S/R is a single redex.
2. If R is an ls step, S/R consists of either one or two redexes.

Proof. By analysis on the relative positions of R and S. The proof goes by inspecting all the
diagrams in the strong permutation proof (Prop. 24). J

A.2.2 Creation implies name contribution
In the following lemma it is shown that whenever a redex R creates a redex S, the name of R
contributes to the name of S.
I Proposition 26 (Creation implies name contribution). Let R and S be redexes in LLSC such
that R creates S. If µ denotes the name of R and ν denotes the name of S, then µ Name

↪→ ν.

Proof. By case analysis on the creation cases, according to [4].
1. db creates db.

C〈@α(@β((λγx.(λδy.t)L1)L2, s)L3, u)〉
db(γ)−−−→` C〈@α((λβddb(γ)eδy.t)L1[x/bdb(γ)c : s]L2L3, u)〉
db(βddb(γ)eδ)−−−−−−−−→` C〈αddb(βddb(γ)eδ)e : tL1[x/bdb(γ)c : s]L2[y/bdb(βddb(γ)eδ)c : u]L3〉

Note that db(γ) Name
↪→1 db(βddb(γ)eδ), as required.
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2. db creates ls.

C1〈@α((λβx.C2〈〈xγ〉〉)L, t)〉
db(β)−−−→` C1〈αddb(β)e : C2〈〈xγ〉〉[x/bdb(β)c : t]L〉
↓(γ) • bdb(β)c−−−−−−−−→` C1〈αddb(β)e : C2〈γ • bdb(β)c : t〉[x/bdb(β)c : t]L〉

Observe that, according to Lem. 23, if C2 is a substitution context then αddb(β)e :
C2〈〈xγ〉〉 = C2〈〈xαddb(β)eγ〉〉 whereas, if C2 involves at least one application or abstraction
node, then αddb(β)e : C2〈〈xγ〉〉 = (αddb(β)e : C2)〈〈xγ〉〉.
In any case, the name of the created ls step is ↓ (γ) • bdb(β)c.
Finally note that db(β) Name

↪→1 ↓ (γ) • bdb(β)c, as required.
3. ls creates db upwards.

C〈@α(xβL1[x/(λγy.t)L2]L3, s)〉
↓(β) • ↑(γ)−−−−−−−→` C〈@α((λβ • γy.t)L2L1[x/(λγy.t)L2]L3, s)〉
db(β • γ)−−−−−→` C〈αddb(β • γ)e : t[y/bdb(β • γ)c : s]L2L1[x/(λγy.t)L2]L3〉

Note that ↓ (β) • ↑ (γ) Name
↪→1 db(β • γ), as required.

4. ls creates db downwards. Similar to the previous case.
J

A.2.3 Equivalence of residuals and names
In this section we study the relation between the residual relation and labeling. An easy but
essential result is that redexes in the labeled calculus have the same name as their ancestors.
Moreover, we develop some technical tools, namely label morphisms and show a few results
that will be used later.
I Proposition 27 (Residuals have the same name). Let ρ be a derivation and let S′ ∈ S/ρ.
Then S and S′ have the same name in any labeling of ρ.

Proof. By exhaustive case analysis. It suffices to observe that this holds for residuals of S
after a single step, and this is an immediate consequence of labeled permutation Prop. 24. J

A term t is initially reachable if there is an initially labeled term t0 such that t0 �` t.
A term is correctly labeled if the labels decorating its nodes are generated by the following
grammar: α ::= a | dαe | bαc | db(α) | αα | α •α where a 6= • . We also say that a
derivation ρ is initially labeled (resp. correctly labeled) whenever the source src(ρ) is initially
labeled (resp. correctly labeled). The name is quite appropriate since such derivations may
be shown to be initial in a precise way. Define a label morphism f as a function f : L → L
homomorphic on label constructors except for initial labels:

f( • ) = • f(dαe) = df(α)e f(bαc) = bf(α)c f(db(α)) = db(f(α)) f(αβ) = f(α) f(β)

Label morphisms are extended to redex names as follows:

f(db(α)) = db(f(α)) f(α •β) =↓ (f(α)) • ↑ (f(β))

Initially reachable terms are of course not necessarily initially labeled, but they are correctly
labeled:

I Lemma 28 (Labeling invariant). Initially reachable terms are correctly labeled.
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Proof. Straightforward, observing that the invariant holds for initially labeled terms, and
that it is preserved by labeled reduction. J

The converse property is not true in general, i.e. that two redexes have the same name
does not imply that one is a residual of the other, unless one starts from an initially labeled
term.

I Lemma 29 (Label morphisms are functorial). If ρ = (t0
µ1−→` t1 . . .

µn−−→` tn) is a labeled
derivation, then f(ρ) := (f(t0) f(µ1)−−−→` f(t1) . . . f(µn)−−−−→` f(tn)) is a variant of ρ.

Proof. By induction on n. The interesting case is when n = 1, which can be checked by
straightforward case analysis on the kind of redex that is contracted. J

I Proposition 30 (Initial labeled reduction). Let ρ and σ be two variants of the same derivation,
such that ρ is initially labeled and σ is correctly labeled. Then there is a unique label
morphism f such that f(ρ) = σ. Moreover, f is determined by src(ρ) and src(σ) only.

Proof. Let t be the source of ρ and s the source of σ. Consider the label morphism f that
maps an initial label a to a label α whenever a decorates a subterm of t and α decorates the
corresponding subterm of s. Then f(t) = s. The labeling of a derivation depends only on
the labeling of its source, so we obtain that f(ρ) = σ. J

Given a fixed unlabeled derivation ρ, consider the category whose objects are correctly
labeled variants of ρ and there is an arrow σ → f(σ) for each label morphism f . The previous
proposition proves that any initially labeled variant ρ0 is an initial object. In particular, any
two initially labeled variants ρ0, ρ1 of ρ are isomorphic.

I Proposition 31 (Initially labelled redexes have unique names). Let R and S be two different
coinitial redexes in the labeled calculus such that the source is initially labelled. Then the
names of R and S are different.

Proof. Two different db redexes must involve two different abstractions, hence they must
have different names. Similarly, two different ls redexes must involve two different variables,
so their names must also be different. J

I Definition 32 (Residuals defined via the labeled calculus). Let M S−→ N . If R is a redex
from M and R′ is a redex from N , we define R//S as the following set:

Let t` →` s
` be a variant of the step M S−→ N , with t` initially labelled.

Let µ be the name of R in t`.
Then R′ ∈ R//S if and only if the name of R′ is µ.

Note that this is well-defined, in the sense that it does not depend on the initial labelling
chosen for t`, as can be seen by taking the label isomorphism f induced by the obvious
bijection between initial labels, and resorting to the fact that label morphisms lift reductions
(Lem. 29).

I Proposition 33 (Equivalence of residual notions). Let R, S ∈ Red(M) for M some unlabelled
term. Then R//S = R/S, where R//S denotes the set of residuals according to Def. 32 and
R/S is the usual notion of residuals.

Proof. We omit the technical, but straightforward proof. J
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A.2.4 Bounded reduction is WN
In this section it is shown that reduction in LLSC restricted to labels of bounded height is
WN.

Throughout this section we work with auxiliary calculi LLSCP and LLSC?
P , in which

we only allow contraction of redexes whose names verify a given predicate P .

I Definition 34 (The P -restricted LLSC). Let P be a predicate on redex names. LLSCP is
given by the set of terms T `, with the reduction relation −→ P being defined as in LLSC,
but restricted to contracting only db and ls-redexes whose names verify the predicate P . As
in LLSC, we write t µ−→ P s if t −→ P s and the redex name is µ.

I Definition 35 (Bounded predicate). A predicate P on redex names is said to be bounded
iff there exists a bound H ∈ N such that P (µ) implies h(µ) < H for every redex name µ.

I Proposition 36 (Created redexes are taller than the contracted redex). Let t α−→ P s, and let
α′ be the name of a created redex in s. Then h(α) < h(α′).

Proof. Recall that creation implies name contribution (Prop. 26), so α Name
↪→ α′. Recall also

that Name
↪→ is the transitive closure of Name

↪→1 . To conclude it suffices to show that if α Name
↪→1 β

then h(α) < h(β), which is immediate by inspecting the definition of Name
↪→1 given in Sec. 4. J

I Definition 37 (P -redex, P -normal term). A P -redex is a redex verifying the predicate P .
A term is P -normal if it is in normal form for −→ P .

I Definition 38 (Non-duplicating P -redex). A P -redex R : t→ s is said to be non-duplicating
if S/R is a singleton for every P -redex S such that S 6= R. Otherwise we say that R is
duplicating.

I Lemma 39 (Every non-P -normal term has a non-duplicating P -redex). Let t be a term not
in −→ P -normal form. Then t has a non-duplicating redex.

Proof. We resort to the following definition of anchor. Given any db redex R, of the form
(λx.t)L s, we call anchor to the underlined (binding) occurrence of x. Given any ls redex R,
of the form C〈〈x〉〉[x/t], we call anchor to the underlined (bound) occurrence of x.

Let R be the P -redex from t whose anchor is rightmost. Then we claim that R is
non-duplicating. In fact, if R is a db redex, then it is immediate, since db redexes do
not duplicate redexes (i.e. S/R is a singleton for every redex S 6= R). If R is an ls redex
C〈〈x〉〉[x/t]→ C〈t〉[x/t], then R is duplicating if there is another P -redex whose anchor lies
inside the term t. But this is impossible since the anchor of R is the rightmost one among
the anchors of P -redexes. J

Let m, n, . . . stand for multisets, and let ] stand for the union of multisets (adding
occurrences). We use the following standard extension of a well-founded ordering (A,>) to a
well-founded ordering over multi-sets of elements of A:

I Definition 40 (Well-founded ordering for multisets). Let (A,>) be a well-founded set, and
m, n two multisets of elements of A. Then:

m > n
def⇐⇒ m 6= n ∧ ∀x ∈ A, (n(x) > m(x) =⇒ ∃y ∈ A, y > x ∧ m(y) > n(y))

I Proposition 41 (Bounded reduction is WN). If P is a bounded predicate, −→ P is WN.
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Proof. We show that repeatedly contracting a non-duplicating P -redex always reaches the
−→ P -normal form. Let H ∈ N be a bound for the bounded predicate P . Consider the
following measure, which takes a term and yields a multiset of integers:

#(t) def= {H − h(α) | α is the name of a P -redex whose source is t}

If t is not P -normal it has at least one non-duplicating P -redex R : t α−→` s (by Lem. 39).
The multiset of names of P -redexes of t is of the form m ] {α} where α is the name of R
and m are the names of all the other P -redexes. Since R is non-duplicating, there is exactly
one residual S/R for each P -redex S 6= R. So the multiset of names of redexes of s is of the
form m ] n where m are the names of the residuals of all the P -redexes S 6= R, and n are the
P -redexes created by R. Recall that residuals of redexes always have the same name as their
ancestors (Prop. 27) so these are in fact the only P -redexes in s.

Note that the heights of n are all greater than the height of α, since the names of created
redexes are always taller than the name of their creator (Prop. 36). Hence #(t) = m ] {α} >
m ] n = #(s). The order on multisets is well-founded, so this proves that the normal form
is eventually reached. J

A.2.5 Bounded reduction is SN
In this section we prove that the labelled calculus LLSC restricted to bounded families of
labels is SN. It is a well-known fact that, in the LSC without gc, WN ⇐⇒ SN, so this is in
fact a corollary of Prop. 41. Here we give an alternative proof that can also be extended to
the LSC with gc.

The structure of the proof is as follows: first we prove that −→ P is increasing. Then
we note that if P is bounded then −→ P is WCR, WN, and increasing which allows us to
conclude that it is SN, resorting to an abstract result due to Klop and Nederpelt.

I Definition 42 (Measure of labels, terms, and contexts). The measure ‖α‖ of a label α is
defined as follows:

‖a‖ def= 1 ‖dαe‖ = ‖bαc‖ = ‖db(α)‖ def= 1 + ‖α‖ ‖αβ‖ def= ‖α‖+ ‖β‖

The measure ‖t‖ of a term t is the sum of the measures of all its labels:

‖xα‖ def= ‖α‖ ‖λαx.t‖ def= ‖α‖+ ‖t‖
‖@α(t, s)‖ def= ‖α‖+ ‖t‖+ ‖s‖ ‖t[x/s]‖ def= ‖t‖+ ‖s‖

The measure of a context ‖C‖ is defined similarly, taking ‖�‖ def= 0.

I Lemma 43 (Labeled reduction is increasing). t −→ P s implies ‖t‖ < ‖s‖.

Proof. By induction on the context C under which the −→ P redex in t is contracted. It is
straightforward to check that this holds by inspection of the reduction rules. J

The following proposition is Prop. 5 in the main body:
I Proposition 44 (Bounded reduction is SN). Let P be a bounded predicate. Then −→ P is SN.

Proof. We already know that −→ P is WCR (by Prop. 24), WN (by Prop. 41) and increasing
(by Lem. 43). By Klop-Nederpelt’s Lemma (see e.g. Theorem 1.2.3 (iii) in [26]), we obtain
that WCR ∧WN ∧ Inc =⇒ SN. J
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As a corollary we obtain that LLSCP is confluent, by Newman’s Lemma, since it is SN
and WCR. Finally:

I Corollary 45 (LLSC is confluent). Reduction in the labelled calculus is CR.

Proof. This is also immediate. If ρ : t�` s and σ : t�` u, define P (µ) to hold iff µ is the
name of redex contracted in ρ or σ. Since the number of such labels is finite, P is bounded.
Since LLSCP is confluent, we conclude. J

A.2.6 Algebraic confluence
I Proposition 46 (Algebraic confluence). The confluence diagram for two coinitial derivations
ρ and σ can be closed with their relative residuals ρ/σ and σ/ρ.

Proof. It suffices to check that the labeled LSC verifies the four basic axioms for orthogonal
abstract rewriting systems proposed by Melliès in [22]: Autoerasure, Finite residuals,
Finite Developments, and Semantic orthogonality9. Checking the first three axioms
for the labeled LSC is immediate by lifting them from the unlabeled LSC, which is already
known to verify all these axioms ([4]). Semantic orthogonality for the labeled calculus
has already been shown in Prop. 24. Algebraic confluence is then a corollary of Theorem 2.4
in [22]. J

A.3 Applications of FFD – Optimal Reduction
We address the proof of the properties required for optimal reduction: (1) LSC forms a
Deterministic Family Structure (Prop. 54); (2) the set of reachable normal forms RNFis
stable. In this section sometimes we write t`, s`, . . . rather than t, s, . . ., to emphasize that
we are speaking of labeled terms, and similarly for steps and derivatios.

A.3.1 LSC is a DFS
In this subsection we will show that the LSC forms a Deterministic Family Structure according
to [16]. We also follow the presentation in [11].

We begin by recalling that LSC forms a Deterministic Residual Structure (DRS), by
virtue of the properties that have already been shown in [4]. To endow the LSC with the
structure of a DFS, we need a few auxiliary definitions.

I Definition 47 (Inclusion of labels). The order relation of inclusion between labels α, β,
written α ⊆ β, is given by the reflexive and transitive closure of the following rules:

α ⊆ dαe α ⊆ bαc α ⊆ db(α) α ⊆ αβ α ⊆ βα

I Remark. If µ Name
↪→ ν then h(µ) < h(ν).

I Lemma 48 (Name contribution is preserved by morphisms). Let f be a label morphism and
let µ and ν be (non-gc) redex names. Then µ Name

↪→ ν implies f(µ) Name
↪→ f(ν).

9 We follow the nomenclature in [4]. In the original work of Melliès [22] Autoerasure is called A, Finite
residuals is called B, and Semantic orthogonality is called PERM.
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Proof. Recall that Name
↪→ is the transitive closure of Name

↪→1 , so it suffices to check that the
property holds for one step of Name

↪→1 . This is straighforward by case analysis on the rules
defining the relation Name

↪→1 . J

I Proposition 49 (Permutation equivalent derivations yield the same labellings). Let ρ1 and
ρ2 be permutation equivalent derivations. Let ρ`1 and ρ`2 be labelled variants of ρ1 and ρ2
respectively such that src(ρ`1) = src(ρ`2). Then tgt(ρ`1) = tgt(ρ`2).

Proof. Recall that ≡ is the reflexive, symmetric and transitive closure of the one-step
permutation axiom ≡1. We proceed by induction on the derivation that ρ1 ≡ ρ2. The
reflexivity, symmetry and transitivity cases are immediate. The only interesting case is the
axiom, i.e. when: ρ1 = τ1 Rσ τ2 ≡1 τ1 S ρ τ2 = ρ2. This is a consequence of the strong
permutation property (Prop. 24). J

I Definition 50 (Family relation and contribution relation). Given two coinitial steps with
history ρR, σS, we define two binary relations, written ρR Fam' σS (“ρR and σS are in the
same family”) and ρR Fam

↪→ σS (“ρR contributes to σS”) according to the following conditions:
1. Consider the labelled variants ρ`R` and σ`S` of ρR and σS respectively, whose source is

an initially labelled variant t` of t. Let µ be the name of R` and let ν be the name of S`.
2. We declare ρR Fam' σS to hold if and only if µ = ν.
3. We declare ρR Fam

↪→ σS to hold if and only if µ Name
↪→ ν.

It is straighforward to check that the relations Fam' and Fam
↪→ are well-defined, i.e. that they do

not depend on the initial labelling t`, and that Fam' is an equivalence relation. Equivalence
clases of Fam' are called families. Note that Fam

↪→ is a binary relation between steps with history.
We also extend Fam

↪→ to families as follows: φ1
Fam
↪→ φ2 whenever ρR Fam

↪→ σS for some ρR ∈ φ1
and σS ∈ φ2. It is also straighforward to check that this definition does not depend upon
the choice of representatives.

I Definition 51 (All labels in a term). Given a labelled term t`, the set of all labels decorating
nodes in t` is written labels(t`). This definition is also extended to contexts.

The following lemma collects various syntactical properties of reduction in the labelled
LSC. We omit the detailed proofs. They are all straightforward case analyses by inspection
of the reduction rules:

I Lemma 52 (Properties of redex names). The following hold:
1. Redex names that contribute to a redex must occur in the source.

If R` : t`0 → t`1 is a labelled step, ν is the name of R`, and µ is another redex name such
that µ Name

↪→ ν, then there exists a label α ∈ labels(t`0) such that µ ⊆ α.
2. All redex names that occur in a term result from contracting a redex.

Let ρ` : t`0 �` t
`
1 be a derivation in the labelled calculus, where t`0 is an initially labelled

term. Let µ be a redex name such that µ ⊆ α for some label α ∈ labels(t`1). Then ρ` has
a step whose name is µ, i.e. ρ` can be written as of the form ρ`1R`ρ`2, where the name of
R` is µ.

3. Any redex has a residual after a derivation not including its name.
Let R0 be a step and ρ be a coinitial derivation. Let t` be an initially reachable variant of
the source, and consider the labelled variants R`0 and ρ` of R0 and ρ respectively, whose
source is t`. Let µ be the name of R`0, and suppose that µ is not among the names of the
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redexes contracted by ρ`. Then there exists a step R1 ∈ R0/ρ. Moreover, the name of its
labelled variant R`1 is also µ.

4. Any redex has an ancestor before a derivation not contributing to its name.
Let ρ be a derivation and let R1 be a composable step, i.e. tgt(ρ) = src(R1). Let t` be an
initially reachable variant of the source of ρ, consider the labelled variant ρ` of ρ whose
source is t`, and the labelled variant of R`1 of R1 whose source if tgt(ρ`). Let µ be the
name of R`1, and suppose that the names of the redexes contracted by ρ` do not contribute
to µ, i.e. every step S` in ρ` has a name ν such that ν Name

↪→ µ does not hold. Then there
exists a step R0 such that R1 ∈ R0/ρ. Moreover, the name of its labelled variant R`0 is
also µ.

Proof. We omit the technical proofs, which are by induction/case analysis, and require some
auxiliary lemmas. J

I Proposition 53 (Contribution axiom for LSC). Let φ1, φ2 ∈ Hist(t)/ Fam' be coinitial families
in LLSC. Then the following are equivalent:

φ1
Fam
↪→ φ2

For every step with history σS ∈ φ2, there is a step with history ρR ∈ φ1 such that ρR is
a prefix of σ.

Proof. Let us show each direction of the implication.
(⇒) Let σS ∈ φ2 be a step with history. Consider an initially labelled variant t`0 of t, and the

labelled variant σ`S` of σS whose source is t`0. Let t`1 = tgt(σ`) = src(S`). Moreover, let
τT ∈ φ1, and consider the labelled variant τ `T` of τT whose source is t`0.
Let ν be the name of S`, and let µ be the name of T`. Since φ1

Fam
↪→ φ2 we have, by

definition, that µ Name
↪→ ν. By the fact that names contributing to a step must occur in

the source (Lem. 52), there exists a label α ∈ labels(t`1) such that µ ⊆ α. By Lem. 52,
there must exist a step in σ` whose name is µ. This means that σ` = ρ`R`υ` where the
name of R` is µ, hence ρR Fam' τT and so σ = ρRυ where ρR ∈ φ1, as wanted.

(⇐) Let us show that φ1
Fam
↪→ φ2. Let σS ∈ φ2 be a step with history. Consider an initially

labelled variant t`0 of t, and consider the labelled variant σ`S` whose source is t`0. Let ν be
the name of S`. Let P be the predicate on redex names such that P (µ) holds if and only
if µ Name

↪→ ν. Observe that P is a bounded predicate, since by Rem. A.3.1 we have that
h(µ) < h(ν) for every µ such that P (µ) holds. Hence labelled reduction in the calculus
restricted to P is strongly normalizing (Prop. 44). Consider a maximal derivation ρ`

starting from t`0 and contracting redexes whose names verify the predicate P ; then ρ`
must be finite as we have just argued. By algebraic confluence for the labelled calculus
(Prop. 46) we may close the diagram formed by ρ` and σ` with labelled variants of the
relative projections ρ/σ and σ/ρ. Note that, by definition of the residual relation, any
step contracted along ρ/σ must be the residual of some step in ρ. Moreover, we know
that residuals of redexes have the same name as their ancestor (Prop. 27), so given any
step T` that is contracted along (ρ/σ)` its name ξ is also the name of a step T`0 that is
contracted along ρ`. Hence ξ must verify the predicate P , which means that ξ Name

↪→ ν. In
particular ξ 6= ν, since the relation Name

↪→ is a strict partial order. Then by Lem. 52 there
is a residual S1 ∈ S/(ρ/σ) and the name of its corresponding labelled variant S`1 is also ν.
We need an auxiliary claim:
Claim: the names of the redexes contracted along (σ/ρ)` do not contribute to ν.
Proof of the claim. By contradiction, suppose that (σ/ρ)` is of the form τ `1T`τ `2 where
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the name of T` is ξ and it contributes to ν, that is ξ Name
↪→ ν. Without loss of generality,

let T` be the first such step. Then the names of the redexes contracted along τ `1 do not
contribute to ξ, because if τ `1 contracts a redex T′` whose name is ξ′ Name

↪→ ξ, then by
transitivity of Name

↪→ we have ξ′ Name
↪→ ν, contradicting the hypothesis that T is the first

redex with that property. By Lem. 52 this means that T` must have an ancestor T`0, that
is a step T0 such that T ∈ T0/(σ/ρ) and such that the name of T`0 is also ξ. Thus we
obtain a derivation ρ`T`0 where the name of T0 verifies P . This contradicts the hypothesis
that ρ` was a maximal derivation contracting only redexes that verify P . (End of the
proof of the claim).
Now since redexes contracted along (σ/ρ)` do not contribute to the name of S`1, we may
apply Lem. 52 and obtain that there exists an ancestor S`2, i.e. a step S2 such that
S1 ∈ S2/(σ/ρ) and such that the name of S`2 is also ν. The situation is as follows:

t`0

ρ`

����

σ` // //

(ρ/σ)`

����

S` //

(σ/ρ)`
// //

S`2
��

S`1

��

To conclude the proof, note that ρS2
Fam' σS since S`2 and S` have the same name, namely

ν. So ρS2 ∈ φ2 since σS ∈ φ2. By hypothesis, this implies that there exists a step
with history ρ1R ∈ φ1 such that ρ can be written as of the form ρ1Rρ2. Consider the
labelled variant ρ`1R` of ρ1R whose source is t`0. The step R` is one of the redexes in
ρ`. By construction, the names of all the steps contracted along ρ` verify the predicate
P . In particular, if we let µ stand for the name of R`, we have that P (µ) holds, i.e.
that µ Name

↪→ ν. This, by definition, means that ρ1R Fam
↪→ ρS2, and this in turn means that

φ1
Fam
↪→ φ2, as required.

J

The following proposition is Prop. 9 in the main body.

I Proposition 54 (The LSC with families induced by labels is a DFS). The triple (LSC, Fam' ,
Fam
↪→ )

forms a DFS, where LSC stands, by abuse of notation, for the corresponding DRS, Fam' is
the family relation between steps with history, and Fam

↪→ is the contribution relation between
families.

Proof. Let us check each of the axioms:
1. Initial. Let R and S be distinct coinitial steps. Then we claim that R ' S does not hold.

Indeed, let t` be an initially labelled variant of the source of R and S, and let R` and S` be
their respective labelled variants. Then Lem. 31 ensures that, since R` and S` are different
coinitial steps whose source is an initially labelled term, they must have different names.
We conclude that R ∈ Fam'(R) but R 6∈ Fam'(S), which implies Fam'(R) 6= Fam'(S).

2. Copy. Let ρR ≤ σS, and let us show that ρR Fam' σS. By definition of ≤, there exists a
derivation τ such that S ∈ R/τ and ρτ ≡ σ. Let t be the source of the derivations ρ and
σ, let t` be an initially labelled variant of the term t, and let ρ`, σ`, τ `, R`, S`, S`` denote
labelled variants of ρ, σ, τ , R, S, and S respectively, in such a way that:
ρ`τ `S` is a labelled variant of ρτS whose source is t`,
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ρ`R` is a labelled variant of ρR whose source is t`,
σ`S`` is a labelled variant of σS whose source is t`.

To see that ρR Fam' σS. it suffices to check that R` and S`` have the same name. Recall
that coinitial labelled variants of permutation equivalent derivations must be cofinal
(Prop. 49). This implies that tgt(ρ`τ `) = tgt(σ`), so S` = S``. Moreover, residuals of
redexes have the same name (Prop. 27), and S ∈ R/τ so the names of R` and S` = S``
coincide, as required.

3. Finite family developments. Let ρ be a potentially infinite derivation that contracts
redexes in a finite number of families. Let t` be an initially labelled variant of the source
of ρ, and let ρ` be a labelled variant of ρ starting from t`. Let P be the predicate on redex
names such that P (µ) holds if and only if µ is one of the names of the redexes contracted
along ρ`. Then P is bounded, since only a finite number of families are contracted by ρ`,
so by Prop. 44 ρ` must be finite. Hence ρ is also finite.

4. Creation. Let ρR be a step with history such that R creates S, and let us check that
Fam'(ρR) Fam

↪→ Fam'(ρRS). By definition, it suffices to check that ρR Fam
↪→ ρRS.

Consider an initially labelled variant t` of the source of ρ, and labelled variants ρ`, R`,
and S` of ρ, R, and S respectively, such that ρ` R` S` is a labelled variant of ρRS whose
source is t`. Let µ be the name of R` and let ν be the name of S`. By applying Lem. 26,
we conclude that µ Name

↪→1 ν, as required.
5. Contribution. This has been shown in Prop. 53.

J

A.3.2 RNF is a stable set
The following definitions of X-needed redex and stable set are taken from [16].

I Definition 55 (X-needed redex). Let X be a set of terms and let R be a redex. Let
t = src(R). Then R is X-needed if any reduction ρ : t� s ∈ X contracts at least one residual
of R.

I Definition 56 (Stable set). A set of terms X is stable if:
1. X is closed under parallel moves: for any t 6∈ X, any ρ : t � s ∈ X, and any

σ : t� u which does not contain terms in X, the final term of ρ/σ is in X.
2. X is closed under unneeded expansion: for any R : t → s such that t 6∈ X and

s ∈ X, the step R is needed.

I Definition 57 (Reachable contexts). Reachable contexts are defined by the following
grammar:

R ::= � | Rt | tR | λx.R | R[x/t] | R〈〈x〉〉[x/R]

A variable x is reachable in a term t if it occurs free under a reachable context, i.e. t = R〈〈x〉〉
such that R does not bind x. We write rv(t) for the set of reachable variables of t. Given a
term t, a reachable redex is either a db redex whose application node is under a reachable
context, or an ls redex contracting a variable under a reachable context. A term t is a
reachable-normal form if it has no reachable redexes. The set of reachable-normal forms is
written RNF. If a context (resp. variable, redex) is not reachable we say that it is unreachable.

Our aim is to prove that the set of reachable normal forms is a stable set. The proof
depends on a number of technical definitions and lemmas. We state the lemmas below but
we omit their proofs.
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I Definition 58 (Nesting). We follow the definition of nesting given in [4]. Namely R
immediately nests S (written R ≺1

B S) if the anchor of S lies inside the box of R. Moreover,
R ≺B S is defined as the transitive closure of ≺1

B, and then we say that R nests S.

I Definition 59 (Strongly reachable redex). A redex R : t → db∪ ls s is said to be strongly
reachable if and only if R is reachable and it is not nested by any other redex, i.e. R is
minimal with respect to ≺B.

I Lemma 60 (Characterization of terms in RNF). A term t is a reachable normal form if and
only if nfgc(t) is in →db∪ ls -normal form.

I Lemma 61 (Unreachable redexes have no residual after gc normalization). Let R : t1 →db∪ ls t2
be an unreachable redex. Let σ : t1 �gc nfgc(t1) be a reduction to gc-normal form. Then R/σ
is empty.

I Lemma 62 (Strongly reachable redexes have reachable residuals). Let R be a strongly
reachable redex and let S 6= R be any other redex coinitial to R. Then:

The set of residuals R/S is a singleton and it is reachable.
If tgt(R) is in RNF, then R/S is strongly reachable.

Finally, the lemma below proves the result we are aiming for, corresponding to Lem. 7
in the main body.

I Lemma 63. The set of reachable-normal forms RNF is stable.

Proof. The proof goes by checking items 1. and 2. in the definition of stable set:
1. RNF is closed under parallel moves. It suffices to check that RNF is closed under

reduction. Let R : t → db∪ ls s with t ∈ RNF, and let us check that s ∈ RNF. It can be
proved as a lemma that RNFs given in Lem. 60, that t ∈ RNF if and only if nfgc(t) is in
→db∪ ls -normal form, and similarly for s.
Let σ : t�gc nfgc(t) be a sequence of gc steps to normal form. Since t ∈ RNF, by Lem. 60,
we have that nfgc(t) is in → db∪ ls -normal form. Consider the relative projections σ/R
and R/σ. Since σ/R is the projection of a sequence of gc steps, it is also sequence of gc
steps. Let σ/R : s�gc s

′. The situation is:

t

σ
����

R // s

σ/R
����

nfgc(t) R/σ
// // s′

Since nfgc(t) is in→db∪ ls -normal form, R/σ must be empty, so s′ = nfgc(t). In particular,
s′ is a gc normal form, so by confluence s′ is the gc normal form of s, i.e. nfgc(s) =
s′ = nfgc(t). Therefore nfgc(s) is in →db∪ ls -normal form which means, by Lem. 60, that
s ∈ RNF as required.

2. RNF is closed under unneeded expansion.. Let R : t → db∪ ls s with t 6∈ RNF and
s ∈ RNF, and let us show that R is RNF-needed. In fact, it suffices to show that R is a
strongly reachable redex. First we prove that R is reachable.

Claim: R is a reachable redex. By contradiction, suppose that R is unreachable,
consider a reduction from t to gc-normal form σ : t � gc nfgc(t), and the relative
projections R/σ : nfgc(t)�db∪ ls s

′ and σ/R : s�db∪ ls s
′. By the fact that unreachable

redexes have no residual after going to gc-normal form (Lem. 61) we know that R has
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no residual after σ, so R/σ is empty. Hence nfgc(t) = s′, so s′ is in gc-normal form and
by confluence we obtain that nfgc(s) = s′ = nfgc(t). The situation is:

t

σ
����

R // s

σ/R
����

nfgc(t) R/σ
// // s′

Since t ∈ RNF, by the characterization of RNFs given in Lem. 60, we have that nfgc(t)
is not a → db∪ ls -normal form. On the other hand, since s ∈ RNF, by Lem. 60, we
have that nfgc(s) = nfgc(t) is a → db∪ ls -normal form. This is a contradiction, which
concludes the proof of the claim.

To see that R is a strongly reachable redex, we are left to check that R is minimal, among
the reachable redexes, with respect to the nesting order ≺B. Indeed, by contradiction,
suppose that R is not minimal. Then since the order ≺B is well-founded (as there are
finitely many redexes in any given term) there is a reachable redex such that S ≺B R and
such that S is minimal among the reachable redexes. That is, S is a strongly reachable
redex. Then by the fact that strongly reachable redexes have reachable residuals (Lem. 62)
the redex S/R is reachable. This contradicts the fact that s is in RNF. So R must be
minimal with respect to the nesting order ≺B, as required.

J

A.4 Applications of FFD – Standardisation

A.5 Standardisation by multi-selection strategies

I Definition 64 (Multisteps and multiderivations). Given an ARS A, we define Stp+ as the
set:

Stp+ def= {M | M is a non-empty finite set of coinitial steps in Stp}

the source (resp. target) of a multistepM∈ Stp+ is defined as the source (resp. target) of any
complete development ofM. We know (e.g. by the work of Melliès, [22]) that the multisteps
of A for an orthogonal ARS AM . We write D, E, etc. for multiderivations i.e. derivations
in AM . If D = M1 . . .Mn is a multiderivation we say that ρ is a complete development
of D if ρ = ρ1 . . . ρn where ρi is a complete development of the multistep Mi. By FD a
complete development always exists and any two complete developments are permutation
equivalent. We write ∂D to stand for some complete development of D in such a way that
∂(DE) = (∂D)(∂E), and we write ρ/D for ρ/∂D. We writeM / σ if for all R ∈M we have
that R / σ.

I Definition 65 (Multi-selection strategy). Given an orthogonal ARS A, a multi-selection
strategy is a function M that associates every non-empty derivation ρ to a multistepM such
that forM / ρ andM/ρ = ∅, i.e. every redex in the multistep belongs to the derivation,
and there are no residuals of the multistep left after the derivation.

I Definition 66 (Uniform multi-selection strategy). A multi-selection strategy M is uniform
if it is well-defined for permutation equivalence classes, i.e. for any two non-empty and
permutation equivalent derivations ρ ≡ σ we have that M(ρ) = M(σ).
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IDefinition 67 (Reduction sequence induced by a multi-selection strategy). Themultiderivation
induced by a multi-selection strategy M on a derivation ρ, written M?(ρ), is a potentially
infinite multiderivation defined as M?(ρ) def= M1M2 . . .Mn . . .. The elements Mn ∈
Stp+ ∪ {⊥} are defined by induction on n for every n ∈ N as follows:

Mn
def=

{
M(ρ/M1 . . .Mn−1) ifMi 6= ⊥ for all i < n and ρ/M1 . . .Mn−1 6= ε

⊥ otherwise

Intuitively, M?(ρ) is given by successively applying M. The next result clarifies this intuition.

I Proposition 68 (Properties of the sequence induced by a multi-selection strategy). If M is a
multi-selection strategy in any orthogonal ARS, the following property holds:

M?(ρ) =
{
ε if ρ = ε

M(ρ)M?(ρ/M(ρ)) otherwise

Proof. We omit this proof which is technical but straightforward. The proof consists in
checking, by complete induction on n, that the n-th step of the derivation at the left-hand
side of the equation coincides with the n-th step of the derivation at the right-hand side. J

I Lemma 69 (Projection does not create families in a DFS). Let F be a DFS, let φ : t� t′

be a derivation in F , and let ρ and σ be coinitial derivations in F starting from t′. Then the
set of families of redexes contracted along ρ/σ is contained in the set of families of redexes
contracted along ρ, relatively to the history φ. More precisely, if ρ/σ can be written as τ1Tτ2
then ρ can be written as υ1Uυ2 such that Fam'(φυ1U) = Fam'(φστ1T).

Proof. By induction on the length of ρ. The base case is trivial. If ρ = Rρ′ we have that
ρ/σ = (R/σ)(ρ′/(σ/R)) by definition. Let ρ/σ be written as τ1Tτ2. We consider two subcases,
depending on whether τ1 is a proper prefix of R/σ or not:
1. If τ1 is a proper prefix of R/σ. Then R/σ = τ1Tτ ′2 and τ2 = τ ′2(ρ′/(σ/R)). Note that

T ∈ (R/σ)/τ1 so R 〈στ1〉 T. Then by taking υ1 := ε, U := R and υ2 := ρ′ we have that
Fam'(φR) = Fam'(φστ1T) since T is a copy of R, and as a consequence of the Copy
axiom.

2. If τ1 is not a proper prefix of R/σ. Then ρ′/(σ/R) = τ ′1Tτ2 and τ1 = (R/σ)τ ′1. By i.h.
on the derivation ρ′ (using φR as the new history), we conclude that ρ′ can be written as
υ′1Uυ2 in such a way that:

Fam'(φRυ′1U) = Fam'(φR(σ/R)τ ′1T)
= Fam'(φσ(R/σ)τ ′1T) by the Copy axiom,

since φR(σ/R)τ ′1T ≤ φσ(R/σ)τ ′1T
since φR(σ/R)τ ′1 ≡ φσ(R/σ)τ ′1

Hence by taking υ1 := Rυ′1 we conclude.
J

The following lemma shows that the process of successively applying a multi-selection
strategy M to build an induced sequence M?(ρ) terminates, as long as the input ρ is finite.

I Lemma 70 (Induced multiderivations preserve finiteness). Suppose that M is a multi-selection
strategy in a DFS. If ρ is finite, then M?(ρ) is also finite.
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Proof. Let ρ be a finite derivation, let D = M?(ρ) be the multiderivation induced by M on
ρ, and let F be the set of redex families that are contracted along ρ, more precisely:

F def= {Fam'(ρ1R) | ∃ρ2. ρ = ρ1Rρ2}

Claim: Let us write D as a potentially infinite sequence of multisteps D =M1 . . .Mn . . ..
Suppose that σ = σ1 . . . σn is any complete development of a prefixM1 . . .Mn of D, where
each σi is a complete development ofMi. Then the set of families of the redexes contracted
along σ is contained in F .
Proof of the claim. Let σ = σ1 . . . σn and let σi = Si1 . . . Simi for each 1 ≤ i ≤ n. An arbitrary
step of σ is one of the steps Sij with 1 ≤ i ≤ n and 1 ≤ j ≤ mi. It suffices to show that the
family of each Sij is in F . More precisely, we aim to show that Fam'(σ1 . . . σi−1Si1 . . . Sij−1Sij) ∈
F holds for every i, j.

Let 1 ≤ i ≤ n and 1 ≤ j ≤ mi be arbitrary indices. Note that Sij is a redex in σi and σi is
a complete deveopment ofMi, so Sij has an ancestor S? 〈Si1 . . . Sij−1〉 Sij with S? ∈Mi. This
means that Sij is a copy of S?, hence they are in the same family:

Fam'(σ1 . . . σi−1Si1 . . . Sij) = Fam'(σ1 . . . σi−1S?)

Moreover, note that, by construction,Mi = M(ρ/M1 . . .Mi−1). Since M is a multi-selection
strategy, we have that S? / ρ/M1 . . .Mi−1. This means that ρ/M1 . . .Mi−1 can be written
as ρ1S??ρ2 where S? 〈ρ1〉 S??. This means that S?? is a copy of S?, hence they are in the
same family: Fam'(σ1 . . . σi−1S?) = Fam'(σ1 . . . σi−1ρ1S??). Moreover, since projection does
not create families in a DFS (Lem. 69) and ρ/M1 . . .Mi−1 = ρ/σ1 . . . σi−1 = ρ1S??ρ2 we
have that Fam'(σ1 . . . σi−1ρ1S??) ∈ F . To conclude the proof of the claim, collecting all the
facts we have already established above: Fam'(σ1 . . . σi−1Si1 . . . Sij) = Fam'(σ1 . . . σi−1S?) =
Fam'(σ1 . . . σi−1ρ1S??) ∈ F .

To conclude the proof, note that the set F is finite since ρ is finite. By FFD, this implies
that there cannot be infinite derivations contracting redexes whose family is in F . Therefore
D must be finite. Suppose otherwise, i.e. suppose that D is an infinite multiderivation of the
formM1 . . .Mn . . .. Construct an infinite derivation σ = σ1 . . . σn . . . where σi is a complete
development of F . By applying the previous claim on each finite prefix of D, we obtain that
the families of all the redexes in σ are in F , which is a contradiction. J

I Remark. If ρ ≡ ε then ρ = ε.
By definition, a uniform multi-selection strategy M, when given two permutation

equivalent derivations, always selects the same multistep. In the following lemma, we show
that this property can be strengthened to show that this also holds for the multiderivations
induced by the strategy.

The following lemma corresponds to Lem. 11 in the main body.

I Lemma 71 (Induced multiderivations modulo permutations). Let M be a uniform multi-
selection strategy in a DFS, and let ρ, σ be finite derivations. If ρ ≡ σ, then M?(ρ) = M?(σ).

Proof. By the fact that the process of building an induced sequence terminates (i.e. multi-
selection strategies preserve finiteness, as shown in Lem. 70) we know that M?(ρ) must be
finite. Moreover, we will use the equation Prop. 68 characterizing the shape of M?(ρ), as if it
were given as a case-by-case definition. We proceed by induction on the length of M?(ρ):
1. Empty, M?(ρ) = ε. Then by Prop. 68, we have that ρ = ε. Since ρ ≡ σ, by the Rem. A.5,

it must be the case that σ = ε. So M?(ρ) = ε = M?(σ).
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2. Non-empty. Then by Prop. 68, we have that ρ is non-empty. Since ρ ≡ σ, by the
Rem. A.5, σ must be also non-empty. By Prop. 68 we have:

M?(ρ) = M(ρ)M?(ρ/M(ρ)) M?(σ) = M(σ)M?(σ/M(σ))

Recall that we aim to show that M?(ρ) = M?(σ). First note that, since ρ ≡ σ and S is a
uniform selection strategy, we have M(ρ) = M(σ).
Note that the tail of M?(ρ) is of the form M?(ρ/M(ρ)), and it is strictly shorter than
M?(ρ). So we can apply the i.h. on the tails of M?(ρ) and M?(σ). The i.h. states:

ρ/M(ρ) ≡ σ/M(σ) =⇒ M?(ρ/M(ρ)) = M?(σ/M(σ))

To conclude, we are left to show that ρ/M(ρ) ≡ σ/M(σ) holds. This is an immediate
consequence of the fact that ρ ≡ σ, which is known by hypothesis, as we have already
argued that M(ρ) = M(σ), and the residuals of equivalent derivations are again equivalent
(cf. [22]).

J

I Definition 72 (M applied to a multiderivation). If M is a uniform multi-selection strategy,
given a multi-derivation D we write M?(D) to stand for M?(ρ), where ρ is any complete
development of D. This is well-defined by virtue of the previous lemma (Lem. 70) since any
two complete developments ρ, ρ′ of D are permutation equivalent, hence M?(ρ) = M?(ρ′).

I Definition 73 (M-compliant derivations). Let M be a multi-selection strategy. A multide-
rivation D is said to be M-compliant if and only if M?(∂D) = D.

The following lemma corresponds to Lem. 12 in the main body.

I Lemma 74 (Induced sequences are permutations of the sequences). Let M be a multi-selection
strategy in a DFS, and let ρ be a finite derivation. Then ρ ≡ ∂M?(ρ).

Proof. By Lem. 70, we have that M?(ρ) must be finite. We proceed by induction on the
length of the multiderivation M?(ρ).
1. Empty, M?(ρ) = ε. Then by Prop. 68, we have that ρ = ε, so ρ = ∂ε = ∂M?(ρ).
2. Non-empty. LetM = M(ρ) be the first multistep selected by the strategy. By Prop. 68,

we have that M?(ρ) =MM?(ρ/M). To show that ρ ≡ ∂M?(ρ), let us check that they
are projection equivalent, i.e. that ρ/∂M?(ρ) = ε and ∂M?(ρ)/ρ = ε.
a. Check that ρ v ∂M?(ρ).

ρ/∂M?(ρ)
= ρ/∂(MM?(ρ/M)) by Prop. 68
= ρ/(∂M) (∂M?(ρ/M))
= (ρ/∂M)/∂M?(ρ/M) since in general α/βγ = (α/β)/γ
= ε since by i.h. ρ/M≡ ∂M?(ρ/M)

b. Check that ∂M?(ρ) v ρ. Since M is a multi-selection strategy, we have thatM/ρ = ∅.
Hence:

(∂M?(ρ))/ρ
= (∂(MM?(ρ/M)))/ρ by Prop. 68
= (∂M) (∂M?(ρ/M))/ρ
= ((∂M)/ρ) ((∂M?(ρ/M))/(ρ/∂M)) since in general αβ/γ = (α/β)(γ/(β/α))
= (∂M?(ρ/M))/(ρ/∂M) sinceM/ρ = ∅, so (∂M)/ρ = ε

= (∂M?(ρ/M))/(ρ/M) since ρ/M stands for ρ/∂M
= ε since by i.h. ρ/M≡ ∂M?(ρ/M)
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J

The following proposition corresponds to Prop. 13 in the main body:

I Proposition 75 (Uniform selection defines a standardisation procedure). Let M be a uni-
form multi-selection strategy in a DFS. For any finite derivation ρ there exists a unique
multiderivation D such that ρ ≡ ∂D and D is M-compliant. Namely, D = M?(ρ).

Proof. We prove the result in two parts:
Existence. First note that ρ ≡ ∂M?(ρ) by Lem. 74. To see that M?(ρ) is M-compliant,

apply Lem. 71 on the fact that ∂M?(ρ) ≡ ρ to conclude that M?(∂M?(ρ)) = M?(ρ). This is
exactly the definition of M?(ρ) being M-compliant.

Uniqueness. Suppose that there is a multiderivation E such that ρ ≡ ∂E and E is
M-compliant. We claim that E = M?(ρ). By applying Lem. 71 on the fact that ∂E ≡ ρ, we
obtain that M?(∂E) = M?(ρ). Finally, since E is M-compliant, E = M?(∂E) = M?(ρ) and we
conclude. J

A.6 Standardisation by arbitrary selection in LSC
In this subsection we apply the previous standardisation result for LSC.

I Definition 76 (The arbitrary selector). For each term t let Out(t) = {R | src(R) = t} be the
set of steps outgoing from t in the LSC (without gc), and let <t be an arbitrary strict partial
order on Out(t). The arbitrary selector M< is a function that takes a non-empty sequence ρ
and yields a non-empty set of coinitial steps, defined as follows:

M<(ρ) def= {R | R/ρ = ∅ and R is minimal with respect to <t}

By minimal we mean that there is no R′ such that R′/ρ = ∅ and R′ <t R.
To see that the function M< is well defined, we must check that the set M<(ρ) is

non-empty. Consider an arbitrary reduction non-empty sequence ρ, and note that the set
Aρ = {R | R/ρ = ∅} is non-empty and finite:
1. The set Aρ is non-empty. The sequence ρ is of the form Rρ′ since it is non-empty, so

R/ρ = R/(Rρ′) = ∅, hence R ∈ Aρ.
2. The set Aρ is finite. Note that Aρ is contained in Out(src(ρ)), which is a finite set by

the fact that the LSC is finitely-branching.
Hence Aρ has at least one minimal element.

I Remark. If the order <t is computable, the arbitrary selector function M< is also comput-
able. This is because there are finitely many steps R in the set Out(src(ρ)), and checking
whether R/ρ = ∅ is a decidable property.

I Lemma 77. LetM be a multistep in the LSC without gc.
IfM/ρ = ∅ thenM / ρ.

Proof. By induction on ρ:
1. Empty, ρ = ε. Immediate, sinceM/ρ =M = ∅, henceM / ρ.
2. Non-empty, ρ = Sσ. Let R ∈M and let us show that R / ρ. Two cases, depending on

whether R = S:
a. If R = S. Then R / Sσ, so we are done.
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b. If R 6= S. Then there must be a residual R′ ∈M/S, since we are in the calculus without
gc and S cannot erase R (this is a consequence of Prop. 25). Since (M/S)/ρ = ∅ we
have by i.h. thatM/S / ρ which means that R′ / ρ. This in turn implies that R / Sσ,
as required.

J

The following lemma corresponds to Lem. 14 in the main body.

I Lemma 78 (The arbitrary selector is a uniform multi-selection strategy). Let <t be an
arbitrary strict partial order on the set Out(t) of outgoing steps for each term t.
Then M< is a uniform selection strategy.

Proof. Let us check that M< is a multi-selection strategy and that it is uniform:
1. M< is a multi-selection strategy. Let ρ be a non-empty reduction sequence. Recall

that a function M is a selection strategy if M(ρ) is a non-empty multistepM coinitial to
ρ such thatM/ρ = ∅ andM / ρ.
In our case, we have constructed M<(ρ) to be a non-empty multistep coinitial to ρ

(Def. 76). Moreover, also by construction, any step R ∈M<(ρ) verifies R/ρ = ∅, so indeed
M<(ρ)/ρ = ∅. Moreover, since we are in the LSC without gc, by Lem. 77 we have that
M<(ρ) / ρ, as required.

2. M< is uniform. Let ρ ≡ σ, and let us check that M<(ρ) = M<(σ). It suffices to show
that the set Aρ = {R | R/ρ = ∅} coincides with the set Aσ = {R | R/σ = ∅}, since M<(ρ)
is the subset of the minimal elements of Aρ and M<(σ) is the subset of the minimal
elements of Aσ.
Note that:

R ∈ Aρ ⇐⇒ R/ρ = ∅
⇐⇒ R/σ = ∅ since ρ ≡ σ
⇐⇒ R ∈ Aσ

So Aρ = Aσ, as wanted.
J

The following corollary corresponds to Coro. 15 in the main body.

I Corollary 79 (Standardisation by arbitrary selection for the LSC without gc). Let <t be an
arbitrary strict partial order on the set Out(t) of outgoing steps for each term t.
Then for each finite sequence ρ in the LSC without gc, there is a unique finite sequence σ
such that ρ ≡ σ and σ is M<-compliant.
Moreover, if the order <t is computable, then σ is computable from ρ, namely σ = M?

<(ρ).

Proof. A direct consequence of the general fact that uniform selection strategies define
a standardisation procedure for finite sequences (Prop. 75) and the particular fact that
the arbitrary selector function M< is a uniform selection strategy for the LSC without gc
(Lem. 78).

See Rem. A.6 for the remark on the computability of M<. J

A.7 Applications of FFD – Normalisation of strategies
A.7.1 Normalisation in DFSs
I Definition 80 (X-normalizing strategy). Let X be a superset of the normal forms of a
DRS A. A strategy S is said to be X-normalizing if for every term t such that there exists a
reduction t�A s ∈ X, every maximal reduction from t in the strategy S contains a term in
X.
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I Lemma 81 (Steps of residual-invariant sub-ARSs are preserved in DFSs). Let F = (A,', ↪→)
be a DFS and suppose that B is a residual-invariant sub-ARS of A. Let ρR be a redex with
history such that R is in B, and let σ be any finite reduction coinitial to R. Let us also
suppose that σ does not contract redexes in the family of ρR. More precisely, let us suppose
that whenever σ can be written as σ1Sσ2 then ρR 6' ρσ1S. Then R has a residual R′ ∈ R/σ
in B.

Proof. By induction on σ. If σ is empty it is immediate. If σ = T τ , we know that ρR 6' ρT
by hypothesis, so in particular R 6= T. Since B is residual-invariant this means that there
exists a step R′ ∈ B such that R 〈T〉 R′. Moreover, by the Copy axiom ρR ' ρTR′. By i.h.
on the derivation τ and the redex with history ρTR′ we conclude that there is a step R′′ ∈ B
such that R′ 〈τ〉 R′′. So R 〈Tτ〉 R′′ and we are done. J

The following proposition corresponds to Prop. 16 in the main body.
I Proposition 82 (Closed residual-invariant sub-ARSs are X-normalizing in a DFS). Let B be a
closed residual-invariant sub-ARS in a DFS F = (A,', ↪→). Then the corresponding strategy
SB is NF(B)-normalizing.

Proof. Let ρ1 be a derivation t�A s ∈ NF(B) and consider a maximal derivation σ starting
from t in the strategy SB. We must show that σ contains a term in NF(B). Let F be the set
of families of all the redexes contracted along ρ1. The set F is finite, so by the FFD axiom,
the derivation ρ1 can be extended to a complete family development ρ1ρ2 of F .

By contradiction, suppose that the reduction sequence σ has no terms in NF(B). Then σ
is contained in the sub-ARS B, and it is infinite. By the FFD axiom, σ cannot be a family
development of F , so there must be at least one redex whose family is not in F . Let S be
the first such step, i.e. let us write σ as σ1Sσ2 where σ1 is a family development of F and
Fam'(σ) 6∈ F . The situation is as follows, closing the square with the derivations ρ1ρ2/σ1
and σ1/ρ1ρ2:

ρ1 // //

σ1 ����

ρ2 // //

σ1/ρ1ρ2 = τ
����

ρ1ρ2/σ1

// //

S
��

σ2 ����

First we claim that the derivation τ = σ1/ρ1ρ2 is actually empty. Indeed, by the Copy
axiom the families of all the redexes contracted along σ1/ρ1ρ2 are containted in the families
of all the redexes contracted along σ1. In particular, ρ1ρ2 |τ is a family development of F . If
τ were not empty, it would mean that τ = Tτ ′, where Fam'(ρ1ρ2T) ∈ F . This contradict
the fact that ρ1ρ2 is a complete family development, as it can be extended with T, so T is
indeed empty. This means that the diagram is as follows:

ρ1 // //

σ1 ����

ρ2 // //

ρ1ρ2/σ1

44 44

S
��

σ2 ����

By the Copy axiom, we know that the families of all the redexes contracted along ρ1ρ2/σ1 are
contained in the families of all the redexes contracted along ρ1ρ2. In particular, σ1 |ρ1ρ2/σ1
is a family development of F .
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By Lem. 81, we obtain that there must exist a step S′ ∈ B such that S 〈ρ1ρ2/σ1〉 S′. To
be able to apply Lem. 81 note that:

S is a step in the sub-ARS B;
by hypothesis, the sub-ARS B is residual-invariant;
the derivation ρ1ρ2/σ1 does not contract redexes in the family of σ1S since Fam'(σ1S) 6∈ F
while σ1 |ρ1ρ2/σ1 is a family development of F .

So the situation is:
ρ1 // //

σ1 ����

ρ2 // //

S′
��ρ1ρ2/σ1

44 44

S
��

σ2 ����

Finally, recall that tgt(ρ1) ∈ NF(B), and that, by hypothesis, B is closed residual-invariant,
which means that the set NF(B) is closed by reduction. So tgt(ρ2) ∈ NF(B), contradicting
the fact that there is an outgoing step S′ in the sub-ARS B. We conclude that σ must be
have a term in NF(B), as required. J

A.7.2 Normalisation for linear call-by-need
I Definition 83 (Needed linear reduction and needed linear normal forms). Needed linear
reduction the LSC is the sub-ARS NL defined as follows. Need contexts are defined by the
grammar:

N ::= � | N t | N[x/t] | N〈〈x〉〉[x/N]

The reduction rule →NL is defined as the union of the usual db rule, and the lsnl rule
introduced below, both closed by need contexts:

(λx.t)L s→db t[x/s]L N〈〈x〉〉[x/vL]→ lsnl N〈vL〉[x/vL]

where v stands for a value, i.e. a term of the form λy.t. Note that it is in fact a sub-ARS of
LSC, i.e. the lsnl rule is a particular case of the ls rule, and closure by need contexts is a
particular case of closure by general contexts.

The set of needed linear normal forms NLNF is defined as the set of terms generated by
the grammar:

A ::= (λx.t)L | N〈〈x〉〉 where N does not bind x

Terms of the form (λx.t)L are called answers, and terms of the form N〈〈x〉〉 are called structures.
The variable x is called the needed variable of a structure N〈〈x〉〉.

I Lemma 84 (Properties of needed contexts). The following hold:
1. Answers have no redexes or variables under need contexts.

If (λx.s)L = N〈∆〉 then ∆ is not a redex nor a free occurrence of a variable.
2. Unique needed variable.

If N1〈〈x〉〉 = N2〈〈y〉〉 then N1 = N2.
3. Erasing a substitution in a need context.

If N1〈N2[x/t]〉 is a need context, then N1〈N2〉 is also a need context.
4. Replacing a term in a need context.

If Ĉ is a two-hole context, Ĉ〈�, t〉 is a need context, and t has no variables bound by Ĉ,
then Ĉ〈�, s〉 is also a need context (where s is an arbitrary term).
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Proof. Item 1 is by induction on L. Items 2 and 3 are by induction on N1. Item 4 is by
induction on the formation of the need context Ĉ〈�, t〉. J

The following corollary corresponds to Coro. 17 in the appendix.

I Corollary 85 (Needed linear reduction is NLNF-normalizing). The strategy SNL associated to
the sub-ARS NL is NLNF-normalizing.

Proof. To show that SNL is NLNF-normalizing, we will apply Prop. 82 to conclude that SNL
is NF(NL)-normalizing. We must show that:
1. The set NF(NL) coincides with the set NLNF, so being NF(NL)-normalizing is equivalent to

being NLNF-normalizing. For this we will show the two inclusions, (1a) NF(NL) ⊆ NLNF
and (1b) NLNF ⊆ NF(NL).

2. The sub-ARS NL is closed residual-invariant, to be able to apply Prop. 82. For this we
will show that (2a) the set NF(NL) is closed by reduction, and (2b) the sub-ARS NL is
residual-invariant.

Part 1a: every NL-normal form is a NLNF.
By induction on t it is straightforward to check that if t ∈ NF(NL) then t ∈ NLNF.
Part 1b: every NLNF is a NL-normal form.
Given t ∈ NLNF it can be shown that it is a NL-normal form. There are two cases, depending
on the shape of t. If t is an answer it is a direct consequence of Lem. 84. If it is a structure,
t = N〈〈x〉〉, then it is straightforward by induction on N.
Part 2a: the set NF(NL) is closed by reduction.
By items (1a) and (1b), we know that NF(NL) = NLNF. Let t1 ∈ NLNF and let t1 → t2 be
an arbitrary step (not necessarily in the strategy). We claim that t2 ∈ NLNF. There are two
cases, depending on the shape of t1: if t1 is an answer (λx.t)L, then by induction on L it can
be seen that t2 is also an answer. If t1 is a structure N〈〈x〉〉, then by induction on N it can be
seen that t2 is also of the form N′〈〈x〉〉.
Part 2b: the sub-ARS NL is residual-invariant.
Let R ∈ NL and consider R 6= S. Let us show that there is a residual R′ ∈ NL ∩ R/S. By
induction on the need context N under which the step R takes place. Most overlappings
between redexes R and S are uninteresting, and it is immediate to show that there is a
residual R′ ∈ R/S in the strategy, resorting to Lem. 84 when required. Below we deal with
the interesting cases:

lsnl vs. ls at the root: let Ĉ be a two-hole context such that Ĉ〈�, x〉 is a need context.
Then:

N〈Ĉ〈x, x〉[x/vL]〉 R //

S
��

N〈Ĉ〈vL, x〉[x/vL]〉

N〈Ĉ〈x, vL〉[x/vL]〉
R/S
// N〈Ĉ〈vL, vL〉[x/vL]〉

To conclude that R/S ∈ NL it suffices to observe that Ĉ〈�, t〉 is a need context as a
consequence of Lem. 84.
lsnl vs. db above the variable: that is, R : N1〈N2〈〈x〉〉[x/vL′]〉 → N1〈N2〈vL′〉[x/vL′]〉
and S : N1〈N′2〈(λy.s)Lu〉[x/vL′]〉 → N1〈N′2〈s[y/u]L〉[x/vL′]〉 such that the context N′2 is a
prefix of the context N2, i.e. N2 = N′2〈N′′2〉. The variable x must lie somewhere inside
the db-redex (λy.s)Lu, below the need context N′′2 . But need contexts do not go below
abstractions or to the right of applications, so this case is impossible.
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lsnl vs. ls above the variable: let Ĉ be a two-hole context such that Ĉ〈�, y〉 is a need
context. Then:

N1〈N2〈Ĉ〈x, y〉[y/s]〉[x/vL]〉 R //

S
��

N1〈N2〈Ĉ〈vL, y〉[y/s]〉[x/vL]〉

N1〈N2〈Ĉ〈x, s〉[y/s]〉[x/vL]〉
R/S
// N1〈N2〈Ĉ〈vL, s〉[y/s]〉[x/vL]〉

To conclude that R/S ∈ NL it suffices to observe that N2〈Ĉ〈�, s〉[y/s]〉 is a need context
as a consequence of Lem. 84.
lsnl vs. ls duplicating R on the needed position: let x be bound to an answer vL
either in N1 or in N3. Then:

N1〈N2〈〈y〉〉[y/N3〈x〉]〉
R //

S
��

N1〈N2〈〈y〉〉[y/N3〈vL〉]〉

N1〈N2〈N3〈x〉〉[y/N3〈x〉]〉
R1 // N1〈N2〈N3〈vL〉〉[y/N3〈x〉]〉

Note that R1 is one of the two residuals of R, and R1 ∈ NL.
lsnl vs. ls duplicating R on a non-needed position: let x be bound to an answer vL
either in N1 or in N2, and let Ĉ be a two-hole context such that Ĉ〈�, y〉 is a need context.
Then:

N1〈Ĉ〈y, y〉[y/N2〈x〉]〉
R //

S
��

N1〈Ĉ〈y, y〉[y/N2〈vL〉]〉

N1〈Ĉ〈y, N2〈x〉〉[y/N2〈x〉]〉
R1 // N1〈Ĉ〈y, N2〈x〉〉[y/N2〈vL〉]〉

To conclude that R1 ∈ NL it suffices to observe that Ĉ〈�, N2〈x〉〉 is a need context as a
consequence of Lem. 84.
lsnl vs. step internal to the argument: Let vL → t be a step. By Part 2a, the set
of SNL-normal forms is closed by reduction and, more specifically, the set of answers is
closed by reduction. So t = v′L′. Then:

N1〈N2〈〈x〉〉[x/vL]〉 R //

S
��

N1〈N2〈t〉[x/vL]〉

N1〈N2〈〈x〉〉[x/v′L′]〉
R/S
// N1〈N2〈v′L′〉[x/v′L′]〉

J

A.8 Extraction
Lévy provided three equivalent characterisations of redex families: via labels, zig-zag and
extraction. Zig-zag is easy to define since it relies on permutation equivalence. Extraction
consists in erasing redexes from the history of a redex with history that do not contribute
to it. Defining an appropriate notion of extraction for LSC is non-trivial and has elided
our attempts to fully capture it. More precisely, it is confluence of the extraction procedure
which seems non-trivial. We next briefly discuss our proposed notion of extraction.

We say ρ does not duplicate a coinitial redex S (ρ # σ), whenever #(S/ρ) = 1. We
also say ρ does not duplicate a coinitial reduction sequence σ (ρ # σ), defined by induction
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on σ where ε denotes the empty reduction: ρ # ε and ρ # Sσ whenever ρ # S and ρ/S # σ.
Note that if ρ # σ then σ/ρ has the same length as σ.

Define R to be internal to a context C (C ≺ R) whenever the source of R is of the form
C〈t〉 and, moreover:

If R is a db redex, the position of the hole of C must be a prefix of the position where the
db redex takes place.
If R is an ls redex, the position of the hole of C must be a prefix of the position where the
variable contracted by the ls redex occurs.

A derivation ρ is internal to a context C, according to the following inductive definition:
C ≺ ε and C ≺ Rρ whenever C ≺ R and C ≺ ρ. If R is an ls redex and σ is a composable
derivation, i.e. tgt(R) = src(σ), the derivation σ is said to be internal to the subject
(resp. argument) of R, written R ≺sbj σ (resp. R ≺arg σ) whenever the redex R is of the
form C1〈C2〈〈x〉〉[x/t]〉 → C1〈C2〈t〉[x/t]〉 and C1〈C2〈�〉[x/t]〉 ≺ σ (resp. C1〈C2〈t〉[x/�]〉 ≺ σ).

Note that if R ≺i Si for i ∈ {sbj, arg}, then Si has an ancestor S0, that is Si ∈ S0/R.
Moreover, S0/R consists of exactly two redexes, namely Ssbj and Sarg such that Si is internal
to i. Also note that S0 does not duplicate R. We write Si � R for S0, i.e. for the ancestor of
Si:

C1〈C2〈〈x〉〉[x/t]〉
R //

S0

��

C1〈C2〈t〉[x/t]〉
Ssbj

��

Sarg

��

The definition of “�” is also extended for derivations. If R ≺i σ for i ∈ {sbj, arg}, the
retraction of σ before R, written σ� R, is defined inductively as follows:

ε� R def= ε

Sσ� R def= S0 (σ/(S0/RS)� R/S0) where S0 = S� R

This operation is well defined as R/S0 is a single redex, since, as we have already discussed,
S0 does not duplicate R. To see that the inductive definition is in fact well-defined, it can be
checked that R/S0 ≺i σ/(S0/RS) and, moreover, that the length of σ/(S0/RS) coincides with
the length of σ, so recursion is well-founded.

The following diagram illustrates the situation:

R //

S0

��

S

��
S0/R
����

R/S0

//

σ/(S0/RS)

����

S0/RS
oo

σ

����

Finally, we may define an extraction procedure as a binary relation . between redexes
with history by the two following rules. We conjecture that it is confluent:

ρR(σ/R) . ρσ if σ 6= ε and R # σ

ρRσ . ρ(σ� R) if σ 6= ε and R ≺i σ for some i ∈ {sbj, arg}
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