
Distilling Abstract Machines

Beniamino Accattoli
Carnegie Mellon University & Università

di Bologna
beniamino.accattoli@gmail.com

Pablo Barenbaum
University of Buenos Aires – CONICET

pbarenbaum@dc.uba.ar

Damiano Mazza
CNRS, UMR 7030, LIPN, Université

Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

Abstract
It is well-known that many environment-based abstract machines
can be seen as strategies in lambda calculi with explicit substi-
tutions (ES). Recently, graphical syntaxes and linear logic led
to the linear substitution calculus (LSC), a new approach to ES
that is halfway between small-step calculi and traditional calculi
with ES. This paper studies the relationship between the LSC
and environment-based abstract machines. While traditional cal-
culi with ES simulate abstract machines, the LSC rather distills
them: some transitions are simulated while others vanish, as they
map to a notion of structural congruence. The distillation process
unveils that abstract machines in fact implement weak linear head
reduction, a notion of evaluation having a central role in the theory
of linear logic. We show that such a pattern applies uniformly in
call-by-name, call-by-value, and call-by-need, catching many ma-
chines in the literature. We start by distilling the KAM, the CEK,
and a sketch of the ZINC, and then provide simplified versions of
the SECD, the lazy KAM, and Sestoft’s machine. Along the way
we also introduce some new machines with global environments.
Moreover, we show that distillation preserves the time complexity
of the executions, i.e. the LSC is a complexity-preserving abstrac-
tion of abstract machines.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]]: Functional Programming; F.1.1 [Computation by Ab-
stract Devices]: Models of Computation; F.3.2 [Logics and Mean-
ing of Programs]: Semantics of Programming Languages — Oper-
ational Semantics.; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic — Lambda Calculus and Related
Systems.; I.1.3 [Symbolic and Algebraic Manipulation]: Lan-
guages and Systems — Evaluation Strategies

Keywords Lambda-calculus, abstract machines, explicit substitu-
tions, linear logic, call-by-need, linear head reduction.

1. Introduction
In the theory of higher-order programming languages, abstract ma-
chines and explicit substitutions are two tools used to model the
execution of programs on real machines while omitting many de-
tails of the actual implementation. Abstract machines can usually

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2873-9/14/09. . . $15.00.
http://dx.doi.org/10.1145/2628136.2628154

be seen as evaluation strategies in calculi of explicit substitutions
(see at least [16, 19, 30, 36]), that can in turn be interpreted as cut-
elimination strategies in sequent calculi [14].

Another tool providing a fine analysis of higher-order evalu-
ation is linear logic, especially via the new perspectives on cut-
elimination provided by proof nets, its graphical syntax. Explicit
substitutions (ES) have been connected to linear logic by Kesner
and co-authors in a sequence of works [26, 32, 33], culminating
in the linear substitution calculus (LSC), a new formalism with
ES behaviorally isomorphic to proof nets (introduced in [6], de-
veloped in [1, 3, 4, 7, 10], and bearing similarities with calculi
by De Bruijn [25], Nederpelt [42], and Milner [41]). Since linear
logic can model all evaluation schemes (call-by-name/value/need)
[39], the LSC can express them modularly, by minor variations on
rewriting rules and evaluation contexts. In this paper we revisit the
relationship between environment-based abstract machines and ES.
Traditionally, calculi with ES simulate machines. The LSC, instead,
distills them.

A Bird’s Eye View. In a simulation, every machine transition is
simulated by some steps in the calculus with ES. In a distillation—
a concept which we will formally define in the paper—only some of
the machine transitions are simulated, while the others are mapped
to the structural equivalence of the calculus, a specific trait of the
LSC. Such an equivalence has a useful property: it commutes with
evaluation, i.e. it can be postponed. Thus, the transitions mapped to
the structural congruence fade away, without compromising the re-
sult of evaluation. Additionally, we show that machine executions
and their distilled representation in the LSC have the same asymp-
totic length, i.e. the distillation process preserves the complexity of
evaluation. The main point is that the LSC is arguably simpler than
abstract machines, and also—as we will show—it can uniformly
represent and decompose many different machines in the literature.

Traditional vs Contextual ES. Traditional calculi with ES (see
[31] for a survey) implement β-reduction (λx.t)u →β t{x�u}
introducing an annotation (the explicit substitution [x�u]),

(λx.t)u →B t[x�u]

and percolating it through the term structure,

(tw)[x�u] →@ t[x�u]w[x�u]
(λx.t)[y�u] →λ λx.t[y�u] (1)

until they reach variable occurrences on which they finally substi-
tute or get garbage collected,

x[x�u] →var u
y[x�u] →≠ y

The LSC, instead, is based on a contextual view of evaluation
and substitution, also known as substitution at a distance. The idea
is that one can get rid of the rules percolating through the term
structure—i.e. @ and λ—by introducing contextsC (i.e. terms with

a hole ⟨⋅⟩) and generalizing the base cases, obtaining just two rules,
linear substitution (ls) and garbage collection (gc):

C⟨x⟩[x�u] →ls C⟨u⟩[x�u]
t[x�u] →gc t if x ∉ fv(t)

Dually, the rule creating substitutions (B) is generalized to act up
to a context of substitutions [. . .�. . .] ∶= [x1�w1] . . . [xk�wk]
obtaining rule dB (B at a distance):

(λx.t)[. . .�. . .]u →dB t[x�u][. . .�. . .]

Logical Perspective on the LSC. From a sequent calculus point
of view, rules @ and λ, corresponding to commutative cut-
elimination cases, are removed and integrated—via the use of
contexts—directly in the definition of the principal cases B, var
and ≠, obtaining the contextual rules dB, ls, and gc. This is anal-
ogous, at the level of terms, to the removal of commutative cases
provided by proof nets (see [2] for a discussion about commutative
cases and proof nets). From a linear logic point of view, →dB can
be identified with the multiplicative cut-elimination case→m, while
→ls and →gc correspond to exponential cut-elimination. Actually,
garbage collection has a special status, as it can always be post-
poned. We will then identify exponential cut-elimination →e with
linear substitution→ls alone.

The LSC has a simple meta-theory, and is halfway between
traditional calculi with ES—with whom it shares the micro-step
dynamics—and λ-calculus—of which it retains most of the sim-
plicity.

Distilling Abstract Machines. Abstract machines implement the
traditional approach to ES, by

1. Weak Evaluation: forbidding reduction under abstraction (no
rule→λ in (1)),

2. Evaluation Strategy: looking for redexes according to some
notion of weak evaluation context E,

3. Context Representation: using environments e (aka lists of sub-
stitutions) and stacks π (lists of terms) to keep track of the cur-
rent evaluation context.

The LSC factorizes abstract machines. The idea is that one
can represent the strategy of a machine by directly plugging the
evaluation context in the contextual substitution/exponential rule:

E⟨x⟩[x�u] E
→e E⟨u⟩[x�u]

factoring out the parts of the machine that just look for the next
redex to reduce. By defining ⊸ as the closure of

E
→e and →m

by evaluation contexts E, one gets a clean representation of the
machine strategy.

The mismatch between the two frameworks is in rule →@, that
contextually—by nature—cannot be captured. In order to get out of
this cul-de-sac, the very idea of simulation of an abstract machine
must be refined. The crucial observation is that the equivalence ≡
induced by→@ ∪→gc has the same special status of→gc, i.e. it can
be postponed without affecting reduction lengths. More abstractly,
≡ is a strong bisimulation with respect to ⊸, i.e. it verifies (note
one step to one step, and vice versa)

t

u

r

≡ ⇒ ∃q s.t.
t

u

r

q

≡ ≡

and

t

u q

≡ ⇒ ∃r s.t.
t

u

r

q

≡ ≡

These diagrams allow us to take ≡ as a structural equivalence
on the language. Indeed, the strong bisimulation property states that
the transformation expressed by ≡ is irrelevant with respect to ⊸,
in particular ≡-equivalent terms have ⊸-evaluations of the same
length ending in ≡-equivalent terms (and this holds even locally).

Abstract machines then are distilled: the logically relevant part
of the substitution process is retained by⊸while both the search of
the redex→@ and garbage collection→≠ are isolated into the equiv-
alence ≡. Essentially,⊸ captures principal cases of cut-elimination
while ≡ encapsulate the commutative ones (plus garbage collection,
corresponding to principal cut-elimination involving weakenings).

Case Studies. We will analyze along these lines many abstract
machines. Some are standard (KAM [34], CEK [28], a sketch of the
ZINC [37]), some are new (MAM, MAD), and of others we provide
simpler versions (SECD [35], Lazy KAM [19, 24], Sestoft’s [44]).
The previous explanation is a sketch of the distillation of the KAM,
but the approach applies mutatis mutandis to all the other machines,
encompassing most incarnations of call-by-name, call-by-value,
and call-by need evaluation. The main contribution of the paper is
indeed a modular contextual theory of abstract machines. We start
by distilling some standard cases, and then show how the contextual
view allows to understand and simplify non-trivial machines as the
SECD, the lazy KAM, and Sestoft’s abstract machine for call-by-
need (deemed SAM). Our analysis enlightens their mechanisms
as different and modular encodings of evaluation contexts for the
LSC.

Call-by-Need. Along the way, we show that the contextual (or at
a distance) approach of the LSC naturally leads to simple machines
with just one global environment, as the newly introduced MAM
(M for Milner). Such a feature is then showed to be a key ingredient
of call-by-need machines, by using it to introduce a new and simple
call-by-need machine, the MAD (the MAM by-neeD), and then
showing how to obtain (simplifications of) the Lazy KAM and the
SAM by simple tweaks. Morally, the global environment is a store.
The contextual character of the LSC, however, models it naturally,
without the need of extending the language with references.

Distillation Preserves Complexity. It is natural to wonder what
is lost in the distillation process. What is the asymptotic impact of
distilling machine executions into⊸? Does it affect in any way the
complexity of evaluation? We will show that nothing is lost, as ma-
chine executions are only linearly longer than ⊸. More precisely,
they are bilinear, i.e. they are linear in 1) the length of ⊸, and
in 2) the size ∣t∣ of the starting term t. In other words, the search
of redexes and garbage collection can be safely ignored in quanti-
tative (time) analyses, i.e. the LSC and ⊸ provide a complexity-
preserving abstraction of abstract machines. While in call-by-name
and call-by-value such an analysis follows from an easy local prop-
erty of machine executions, the call-by-need case is subtler, as such
a local property does not hold and bilinearity can be established
only via a global analysis.

Linear Logic and Weak Linear Head Reduction. Beyond the
contextual view, our work also unveils a deep connection between
abstract machines and linear logic. The strategies modularly en-
coding the various machines (generically noted ⊸ and paramet-
ric in a fixed notion of evaluation contexts) are in fact call-by-
name/value/need versions of weak linear head reduction (WLHR),
a fundamental notion in the theory of linear logic [3, 18, 21, 27, 40].
This insight is originally due to Danos and Regnier, who worked it
out for the KAM [20]. Here, we develop it in a simpler and tighter
way, modularly lifting it to many other abstract machines.

Call-by-Name. The call-by-name case (catching the KAM and
the newly introduced MAM) is in fact special, as our distillation

theorem has three immediate corollaries, following from results
about WLHR in the literature:

1. Invariance: it implies that the length of a KAM/MAM execu-
tion is an invariant time cost model (i.e. polynomially related
to, say, Turing machines, in both directions), given that in [4]
the same is shown for WLHR.

2. Evaluation as Communication: we implicitly establish a link
between the KAM/MAM and the π-calculus, given that the
evaluation of a term via WLHR is isomorphic to evaluation via
Milner’s encoding in the π-calculus [3].

3. Plotkin’s Approach: our study complements the recent [10],
where it is shown that WLHR is a standard strategy of the LSC.
The two works together provide the lifting to explicit substi-
tutions of Plotkin’s approach of relating a machine (the SECD
machine in that case, the KAM/MAM in ours) and a calculus
(the call-by-value λ-calculus and the LSC, respectively) via a
standardization theorem and a standard strategy [43].

Beyond Abstract Machines. This paper is just an episode—about
abstract machines—in a recent feuilleton about complexity anal-
ysis of functional languages via linear logic and rewriting the-
ory, starring the LSC. The story continues in [5] and [8]. In [5],
the LSC is used to prove that the length of leftmost-outermost β-
reduction is an invariant cost-model for λ-calculus (i.e. it is a mea-
sure polynomially related to evaluation in classic computational
models like Turing machines or random access machines), solv-
ing a long-standing open problem in the theory of λ-calculus. In-
stead, [8] studies the asymptotic number of exponential steps (for
⊸) in terms of the number of multiplicative steps, in the call-by-
name/value/need LSC (that is quadratic for call-by-name and linear
for call-by-value/need). Via the results presented here, [8] estab-
lishes a polynomial relationship between the exponential and the
multiplicative transitions of abstract machines, complementing our
work.

Related Work. Beyond the already cited works, Danvy and coau-
thors have studied abstract machines in a number of works. In some
of them, they show how to extract an abstract machine from a func-
tional evaluator via a sequence of transformations (closure conver-
sion, CPS, and defunctionalization) [11, 12, 22]. Such a study is
orthogonal in spirit to what we do here. The only point of contact is
the rational deconstruction of the SECD in [22], that is something
that we also do, but in an orthogonal and less accurate way. An-
other sequence of works studies the relationship between abstract
machines and calculi with ES [15, 16, 24], and it is clearly closer to
our topic, except that: 1) [15, 16] follow the traditional (rather than
the contextual) approach to ES; 2) none of these works deals with
complexity analysis nor with linear logic. On the other hand, [16]
provides a deeper analysis of Leroy’s ZINC machine, as ours does
not account for the avoidance of needless closure creations that is
a distinct feature of the ZINC, and [24] focuses on the distinction
between store-based and storeless call-by-need, a distinction that
we address only implicitly (the calculus is storeless, but—as it will
be discussed along the paper—it is meant to be implemented with a
store). Last, what here we call commutative transitions essentially
corresponds to what Danvy and Nielsen call decompose phase in
[23].

The call-by-need calculus we use—that is a contextual re-
formulation of Maraist, Odersky, and Wadler’s calculus [38]—is a
novelty of this paper. It is simpler than both Ariola and Felleisen’s
[13] and Maraist, Odersky, and Wadler’s calculi because it does
not need any re-association axioms. A similar calculus is used by
Danvy and Zerny in [24]. Morally, it is a version with let-bindings
(avatars of ES) of Chang and Felleisen’s calculus [17]. In [29], Gar-

cia, Lumsdaine and Sabry present a further call-by-need machine,
with whom we do not deal with.

Proofs. Some proofs have been omitted for lack of space. They
can be found in the longer version [9].

2. Preliminaries on the Linear Substitution
Calculus

Terms and Contexts. The language of the weak linear substitution
calculus (WLSC) is generated by the following grammar:

t, u,w, r, q, p ∶∶= x ∣ v ∣ tu ∣ t[x�u] v ∶∶= λx.t

The constructor t[x�u] is called an explicit substitution (of u for
x in t). The usual (implicit) substitution is instead denoted by
t{x�u}. Both λx.t and t[x�u] bind x in t, with the usual notion
of α-equivalence. Values, noted v, do not include variables: this is
a standard choice in the study of abstract machines, whose impact
is analyzed in the companion paper [8].

Contexts are terms with one occurrence of the hole ⟨⋅⟩, an
additional constant. We will use many different contexts. The most
general ones will be weak contexts W (i.e. not under abstractions),
which are defined by:

W,W ′
∶∶= ⟨⋅⟩ ∣Wu ∣ tW ∣W [x�u] ∣ t[x�W]

The plugging W ⟨t⟩ (resp. W ⟨W ′
⟩) of a term t (resp. context

W ′) in a context W is defined as ⟨t⟩ ∶= t (resp. ⟨W ′
⟩ ∶= W ′),

(Wt)⟨u⟩ ∶=W ⟨u⟩t (resp. (Wt)⟨W ′
⟩ ∶=W ⟨W ′

⟩t), and so on. The
set of free variables of a term t (or context W) is denoted by fv(t)
(resp. fv(W)). Plugging in a context may capture free variables
(replacing holes on the left of substitutions). These notions will be
silently extended to all the contexts used in the paper.

Rewriting Rules. On the above terms, one may define several
variants of the LSC by considering two elementary rewriting rules,
distance-β (dB) and linear substitution (ls), each one coming in
two variants, call-by-name and call-by-value (the latter variants
being abbreviated by dBv and lsv), and pairing them in different
ways and with respect to different evaluation contexts.

The rewriting rules rely in multiple ways on contexts. We start
by defining substitution contexts, generated by

L ∶∶= ⟨⋅⟩ ∣ L[x�t].

A term of the form L⟨v⟩ is an answer. Given a family of contexts
C, the two variants of the elementary rewriting rules, also called
root rules, are defined as follows:

L⟨λx.t⟩u ↦dB L⟨t[x�u]⟩
L⟨λx.t⟩L′⟨v⟩ ↦dBv L⟨t[x�L′⟨v⟩]⟩
C⟨x⟩[x�u] ↦ls C⟨u⟩[x�u]

C⟨x⟩[x�L⟨v⟩] ↦lsv L⟨C⟨v⟩[x�v]⟩

In the linear substitution rules, we assume that x ∈ fv(C⟨x⟩),
i.e., the context C does not capture the variable x, and we also
silently work modulo α-equivalence to avoid variable capture in
the rewriting rules. Moreover, we use the notations

C
↦ls and

C
↦lsv

to specify the family of contexts used by the rules, with C being
the meta-variable ranging over such contexts.

All of the above rules are at a distance (or contextual) because
their definition involves contexts. Distance-β and linear substitu-
tion correspond, respectively, to the so-called multiplicative and
exponential rules for cut-elimination in proof nets. The presence
of contexts is how locality on proof nets is reflected on terms.

The rewriting rules decompose the usual small-step semantics
for λ-calculi, by substituting one occurrence at the time, and only
when such an occurrence is in evaluation position. We emphasize
this fact saying that we adopt a micro-step semantics.

Calculus Evaluation contexts ↦m ↦e ⊸m ⊸e

Name H ∶∶= ⟨⋅⟩ ∣Ht ∣H[x�t] ↦dB
H
↦ls H⟨↦dB⟩ H⟨

H
↦ls⟩

ValueLR V ∶∶= ⟨⋅⟩ ∣ V t ∣ L⟨v⟩V ∣ V [x�t] ↦dBv
V
↦lsv V ⟨↦dB⟩ V ⟨

V
↦ls⟩

ValueRL S ∶∶= ⟨⋅⟩ ∣ SL⟨v⟩ ∣ tS ∣ S[x�t] ↦dBv
S
↦lsv S⟨↦dB⟩ S⟨

S
↦ls⟩

Need N ∶∶= ⟨⋅⟩ ∣ Nt ∣ N[x�t] ∣ N ′
⟨x⟩[x�N] ↦dB

N
↦lsv N⟨↦dB⟩ N⟨

N
↦ls⟩

Table 1. The four linear substitution calculi.

A linear substitution calculus is defined by a choice of root
rules, i.e., one of dB/dBv and one of ls/lsv, and a family of eval-
uation contexts. The chosen distance-β (resp. linear substitution)
root rule is generically denoted by↦m (resp.↦e). If E ranges over
a fixed notion of evaluation context, the context-closures of the
root rules are denoted by ⊸m∶= E⟨↦m⟩ and ⊸e∶= E⟨↦e⟩, where
m (resp. e) stands for multiplicative (exponential). The rewriting
relation defining the calculus is then⊸∶=⊸m ∪⊸e.

2.1 Calculi
We consider four calculi, noted Name, ValueLR, ValueRL, and Need,
and defined in Tab. 1. They correspond to four standard evaluation
strategies for functional languages. We are actually slightly abusing
the terminology, because—as we will show—they are deterministic
calculi and thus should be considered as strategies. Our abuse
is motivated by the fact that they are not strategies in the same
calculus. The essential property of all these four calculi is that they
are deterministic, because they implement a reduction strategy.

Proposition 2.1 (Determinism). The reduction relations of the four
calculi of Tab. 1 are deterministic: in each calculus, if E1,E2 are
evaluation contexts and if r1, r2 are redexes (i.e., terms matching
the left hand side of the root rules defining the calculus), E1⟨r1⟩ =
E2⟨r2⟩ implies E1 = E2 and r1 = r2, so that there is at most one
way to reduce a term, if any.

Proof. See [9].

Call-by-Name (CBN). The evaluation contexts H for Name (de-
fined in Tab. 1) are called weak head contexts and—when paired
with micro-step evaluation—implement a strategy known as weak
linear head reduction. The original presentation of this strategy
does not use explicit substitutions [20, 40]. The presentation in use
here has already appeared in [3, 10] (see also [1, 4]) as the weak
head strategy of the linear substitution calculus (which is obtained
by considering all contexts as evaluation contexts), and it avoids
many technicalities of the original one. In particular, its relation-
ship with the KAM is extremely natural, as we will show.

Let us give some examples of evaluation. Let δ ∶= λx.(xx) and
consider the usual diverging term Ω ∶= δδ. In Name it evaluates—
diverging—as follows:

δδ = (λx.(xx))δ ⊸m (xx)[x�δ] ⊸e

(δx)[x�δ] ⊸m

(yy)[y�x][x�δ] ⊸e

(xy)[y�x][x�δ] ⊸e

(δy)[y�x][x�δ] ⊸m

(zz)[z�y][y�x][x�δ] ⊸e . . .

Observe that according to our definitions both λx.Ω and xΩ
are ⊸-normal for Name, because evaluation does not go under
abstractions, nor on the right of a variable (but terms like xΩ will
be forbidden, as we will limit ourselves to closed terms). Now let
us show the use of the context L in rule ⊸m. Let I ∶= λy.y and
τ ∶= (λz.δ)I , and consider the following variation over Ω, where

rule⊸m is applied with L ∶= ⟨⋅⟩[z�I]:

ττ = ((λz.δ)I)τ ⊸m δ[z�I]τ =

(λx.(xx))[z�I]τ ⊸m

(xx)[x�τ][z�I] ⊸e . . .

Call-by-Value (CBV). For CBV calculi (again see Tab. 1), left-to-
right (ValueLR) and right-to-left (ValueRL) refer to the evaluation
order of applications, i.e. they correspond to operator first and ar-
gument first, respectively (note the dual notions evaluation contexts
V and S). The calculi ValueLR and ValueRL can be seen as strate-
gies of a micro-step variant of the value substitution calculus, the
(small-step) CBV calculus at a distance introduced in [7].

As an example, we consider again the evaluation of Ω. In
ValueLR it goes as follows:

δδ = (λx.(xx))δ ⊸m (xx)[x�δ] ⊸e

(δx)[x�δ] ⊸e

(δδ)[x�δ] ⊸m

(yy)[y�δ][x�δ] ⊸e

(δy)[y�δ][x�δ] ⊸e . . .

While in ValueRL it takes the following form:

δδ = (λx.(xx))δ ⊸m (xx)[x�δ] ⊸e

(xδ)[x�δ] ⊸e

(δδ)[x�δ] ⊸m

(yy)[y�δ][x�δ] ⊸e

(yδ)[y�δ][x�δ] ⊸e . . .

Note that the CBV version of ⊸m and ⊸e employ substitution
contexts L in a new way. An example of their use is given by the
term ττ consider before for CBN. For instance, in ValueLR:

ττ = ((λz.δ)I)τ ⊸m δ[z�I]τ ⊸m

δ[z�I](δ[z�I]) ⊸m

(xx)[x�δ[z�I]][z�I] ⊸e

(δx)[x�δ[z�I]][z�I] . . .

Call-by-Need (CBNeed). The call-by-need calculus Need
(Tab. 1) is a novelty of this paper, and can be seen either as a
version at a distance of the calculi of [13, 38] or as a version with
explicit substitution of the one in [17]. It fully exploits the fact
that the two variants of the root rules may be combined: the β-rule
is CBN, which reflects the fact that, operationally, the strategy is
by name, but substitution is CBV, which forces arguments to be
evaluated before being substituted, reflecting the by need content
of the strategy. Please note the definition of CBNeed evaluation
contextsN in Tab. 1. They extend the weak head contexts for CBN
with a clause (N ′

⟨x⟩[x�N]) turning them into hereditarily weak
head contexts. This new clause is how sharing is implemented by
the reduction strategy. The general (non-deterministic) calculus is
obtained by closing the root rules by all contexts, but its study is
omitted. What we deal with here can be thought as its standard
strategy (stopping on a sort of weak head normal form).

t[x�u] ≡gc t if x ∉ fv(t) t[x�u] ≡dup t[y]x[x�u][y�u]
t[x�u][y�w] ≡com t[y�w][x�u] if y ∉ fv(u) and x ∉ fv(w) (tw)[x�u] ≡@ t[x�u]w[x�u]
t[x�u][y�w] ≡[⋅] t[x�u[y�w]] if y /∈ fv(t) (tw)[x�u] ≡@l t[x�u]w if x /∈ fv(w)

Figure 1. Axioms for structural equivalences. In ≡dup, t[y]x denotes a term obtained from t by renaming some (possibly none) occurrences
of x as y.

Let us show, once again, the evaluation of Ω an the impact of
hereditarily head contexts. Consider:

δδ = (λx.(xx))δ ⊸m (xx)[x�δ] ⊸e

(δx)[x�δ] ⊸m

(yy)[y�x][x�δ] ⊸e

(yy)[y�δ][x�δ] ⊸e

(δy)[y�δ][x�δ] ⊸m

(zz)[z�y][y�δ][x�δ] ⊸e . . .

Note the difference with CBN in the second and fourth ⊸e

steps: the substitution rule replaces variable occurrences in explicit
substitutions thanks to hereditarily weak evaluation contexts.

Structural equivalence. Another common feature of the four cal-
culi is that they come with a notion of structural equivalence, de-
noted by ≡. Consider Fig. 1. For CBN and CBV calculi, ≡ is de-
fined as the smallest equivalence relation containing the closure
by weak contexts of =α ∪ ≡gc ∪ ≡dup ∪ ≡@ ∪ ≡com ∪ ≡[⋅]
where =α is α-equivalence. Call-by-need evaluates inside some
substitutions (those hereditarily substituting on the head) and thus
axioms as ≡dup and ≡@ are too strong. Therefore, the structural
equivalence for call-by-need, noted ≡Need, is the one generated by
≡@l ∪ ≡com ∪ ≡[⋅].

Structural equivalence represents the fact that certain manipula-
tions on explicit substitutions are computationally irrelevant, in the
sense that they yield behaviorally equivalent terms. Technically, it
is a strong bisimulation (the proof is in [9]):

Proposition 2.2 (≡ is a Strong Bisimulation). Let ⊸m, ⊸e and ≡

be the reduction relations and the structural equivalence relation
of any of the calculi of Tab. 1, and let x ∈ {m,e}. Then, t ≡ u and
t⊸x t

′ implies that there exists u′ such that u⊸x u
′ and t′ ≡ u′.

The essential property of strong bisimulations is that they can
be postponed. In fact, it is immediate to prove the following, which
holds for all four calculi:

Lemma 2.3 (≡ Postponement). If t (⊸m ∪⊸e ∪ ≡)
∗ u then

t (⊸m ∪⊸e)
∗
≡ u and the number of ⊸m and ⊸e steps in the

two reduction sequences is exactly the same.

In the simulation theorems for machines with a global environ-
ment (see Sect. 7.2 and Sect. 8) we will also use the following com-
mutation property between substitutions and evaluation contexts
via the structural equivalence of every evaluation scheme, proved
by an easy induction on the actual definition of evaluation contexts.

Lemma 2.4 (ES Commute with Evaluation Contexts via ≡). For
every evaluation scheme let C denote an evaluation context s.t.
x ∉ fv(C) and ≡ be its structural equivalence. Then C⟨t⟩[x�u] ≡
C⟨t[x�u]⟩.

3. Preliminaries on Abstract Machines
Codes. All the abstract machines we will consider execute pure
λ-terms. In our syntax, these are nothing but terms without ex-
plicit substitutions. Moreover, while for calculi we work implic-
itly modulo α, for machines we will not consider terms up to α, as
the handling of α-equivalence characterizes different approaches to
abstract machines. To stress these facts, we use the metavariables
t, u,w, r for pure λ-terms (not up to α) and v for pure values.

States. A machine state s will have various components, of
which the first will always be the code, i.e. a pure λ-term t. The oth-
ers (environment, stack, dump,...) are all considered as lists, whose
constructors are the empty list ε and the concatenation operator ∶∶.
In fact, even if these components are formalized as lists, they may
be intended to be implemented differently, as it will be the case for
the machines with global environments (i.e. the MAM, the MAD,
and its variants).

A state s of a machine is initial if its code t is closed (i.e.,
fv(t) = ∅) and all other components are empty. An execution ρ
is a sequence of transitions of the machine s0 →∗ s from an initial
state s0. In that case, we say that s is a reachable state, and if t is
the code of s0 then t is the initial code of s.

Invariants. For every machine our study will rely on a lemma
about some dynamic invariants, i.e. some properties of the reach-
able states that are stable by executions. The lemma is always
proved by a straightforward induction on the length of the execu-
tion and the proof is omitted.

Environments and Closures. There will be two types of ma-
chines, those with many local environments and those with just one
global environment. Machines with local environments are based
on the mutually recursive definition of closure (ranged over by c)
and environment (e):

c ∶∶= (t, e) e ∶∶= ε ∣ [x�c] ∶∶ e

Global environments are defined byE ∶∶= ε ∣ [x�t] ∶∶ E, and global
environment machines will have just one global closure (t,E).

Well-Named and Closed Closures. The explicit treatment of α-
equivalence, is based on particular representatives of α-classes de-
fined via the notion of support. The support ∆ of codes, environ-
ments, and closures is defined by:

• ∆(t) is the multiset of its bound names (e.g.
∆(λx.λy.λx.(zx)) = [x,x, y]).

• ∆(e) is the multiset of names captured by e (for exam-
ple ∆([x�c1][y�c2][x�c3]) = [x,x, y]), and similarly for
∆(E).

• ∆(t, e) ∶= ∆(t) +∆(e) and ∆(t,E) ∶= ∆(t) +∆(E).

A code/environment/closure (t, e) (resp. (t,E)) is well-named
if its support ∆(t, e) (resp. ∆(t,E)) is a set (i.e. a multiset with
no repetitions). Moreover, a closure (t, e) (resp. (t,E)) is closed if
fv(t) ⊆ ∆(e) (resp. fv(t) ⊆ ∆(E)).

4. Distilleries
This section presents an abstract, high-level view of the relationship
between abstract machines and linear substitution calculi, via the
notion of distillery (see Tab. 2 for our pairs calculus/machine).

Definition 4.1. A distillery D = (M,C,≡, ⋅) is given by:

1. An abstract machine M, given by
(a) a deterministic labeled transition system→ on states s;
(b) a distinguished class of states deemed initial, in bijection

with closed λ-terms and from which one obtains the reach-
able states by applying→∗;

(c) a partition of the labels of the transition system→ as:

• commutative transitions, noted→c;
• principal transitions, in turn partitioned into

multiplicative transitions, denoted by→m;
exponential transitions, denoted by→e;

2. a linear substitution calculus C given by a pair (⊸m,⊸e) of
rewriting relations on terms with ES;

3. a structural equivalence ≡ on terms s.t. it is a strong bisimula-
tion with respect to⊸m and⊸e;

4. a distillation ⋅ , i.e. a decoding function from states to terms, s.t.
on reachable states:

• Commutative: s→c s
′ implies s ≡ s′.

• Multiplicative: s→m s
′ implies s⊸m≡ s

′;
• Exponential: s→e s

′ implies s⊸e≡ s
′;

Given a distillery, the simulation theorem holds abstractly. Let
∣ρ∣ (resp. ∣d∣), ∣ρ∣m (resp. ∣d∣m), ∣ρ∣e (resp. ∣d∣e), and ∣ρ∣p denote the
number of unspecified, multiplicative, exponential, and principal
steps in an execution (resp. derivation).

Theorem 4.2 (Simulation). Let D be a distillery. Then for every
execution ρ ∶ s →∗ s′ there is a derivation d ∶ s ⊸∗

≡ s′ s.t.
∣ρ∣m = ∣d∣m, ∣ρ∣e = ∣d∣e, and ∣ρ∣p = ∣d∣.

Proof. By induction on ∣ρ∣ and by the properties of the decoding,
it follows that there is a derivation e ∶ s(⊸≡)

∗s′ s.t. the number
∣ρ∣p = ∣e∣. The witness d for the statement is obtained by applying
the postponement of strong bisimulations (Lemma 2.3) to e.

Reflection. Given a distillery, one would also expect that reduc-
tion in the calculus is reflected in the machine. This result in fact
requires two additional abstract properties.

Definition 4.3 (Reflective Distillery). A distillery is reflective
when:

Termination: →c terminates (on reachable states); hence, by de-
terminism, every state s has a unique commutative normal form
nfc(s);

Progress: if s is reachable, nfc(s) = s and s⊸x t with x ∈ {m,e},
then there exists s′ such that s→x s

′, i.e., s is not final.

Then, we may prove the following reflection of steps in full
generality:

Proposition 4.4 (Reflection). Let D be a reflective distillery, s be
a reachable state, and x ∈ {m,e}. Then, s⊸x u implies that there
exists a state s′ s.t. nfc(s)→x s

′ and s′ ≡ u.

In other words, every rewriting step on the calculus can be also
performed on the machine, up to commutative transitions.

Proof. The proof is by induction on the number n of transitions
leading from s to nfc(s).

• Base case n = 0: by the progress property, we have s →x′ s
′

for some state s′ and x′ ∈ {m,e}. By Theorem 4.2, we have
s⊸x′ u

′
≡ s′ and we may conclude because x′ = x and u′ = u

by determinism of the calculus (Proposition 2.1).
• Inductive case n > 0: by hypothesis, we have s→c s1. By The-

orem 4.2, s ≡ s1. The hypothesis and the strong bisimulation
property (Proposition 2.2) then give us s1 ⊸x u1 ≡ u. But the
induction hypothesis holds for s1, giving us a state s′ such that
nfc(s1)→x s

′ and s′ ≡ u1 ≡ u. We may now conclude because
nfc(s) = nfc(s1).

The reflection can then be extended to a reverse simulation.

Corollary 4.5 (Reverse Simulation). Let D be a reflective distillery
and s an initial state. Given a derivation d ∶ s ⊸∗ t there is an

Calculus Abstract Machine
Name KAM, MAM
ValueLR CEK, Split CEK
ValueRL LAM
Need (Merged/Pointing) MAD

Table 2. Correspondence between calculi of Tab. 1 and abstract
machines.

execution ρ ∶ s →∗ s′ s.t. t ≡ s′ and ∣ρ∣m = ∣d∣m, ∣ρ∣e = ∣d∣e, and
∣ρ∣p = ∣d∣.

Proof. By induction on the length of d, using Proposition 4.4.

In the following sections we will introduce abstract machines
and distillations for which we will prove that they form reflective
distilleries with respect to the calculi of Sect. 2. For each machine
we will prove: 1) that the decoding is in fact a distillation, and 2) the
progress property. We will instead assume the termination property,
whose proof is delayed to the quantitative study of the second part
of the paper, where we will actually prove stronger results, giving
explicit bounds.

5. Call-by-Name: the KAM
The Krivine Abstract Machine (KAM) is the simplest machine
studied in the paper. A KAM state (s) is made out of a closure
and of a stack (π):

π ∶∶= ε ∣ c ∶∶ π s ∶∶= (c, π)

For readability, we will use the notation t ∣ e ∣ π for a state (c, π)
where c = (t, e). The transitions of the KAM then are:

tu e π →c t e (u, e) ∶∶ π
λx.t e c ∶∶ π →m t [x�c] ∶∶ e π
x e π →e t e′ π

where→e takes place only if e = e′′ ∶∶ [x�(t, e′)] ∶∶ e′′′.
A key point of our study is that environments and stacks rather

immediately become contexts of the LSC, through the following
decoding:

ε ∶= ⟨⋅⟩ [x�c] ∶∶ e ∶= e⟨⟨⋅⟩[x�c]⟩
(t, e) ∶= e⟨t⟩ c ∶∶ π ∶= π⟨⟨⋅⟩c⟩

t ∣ e ∣ π ∶= π⟨e⟨t⟩⟩

The decoding satisfies the following static properties, shown by
easy inductions on the definition.

Lemma 5.1 (Contextual Decoding). Let e be an environment and
π be a stack of the KAM. Then e is a substitution context, and both
π and π⟨e⟩ are evaluation contexts.

Next, we need the dynamic invariants of the machine.

Lemma 5.2 (KAM Invariants). Let s = u ∣ e ∣ π be a KAM
reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;
2. Subterm: any code in s is a literal subterm of t.
3. Name: any closure c in s is well-named and its names are

names of t (i.e. ∆(c) ⊆ fv(t)).
4. Environment Size: the length of any environment in s is bound

by ∣t∣.

Abstract Considerations on Concrete Implementations. The
name invariant is the abstract property that allows to avoid both α-
equivalence and name generation in KAM executions. Note that, by
definition of well-named closure, there cannot be repetitions in the
support of an environment. Then the length of any environment in
any reachable state is bound by the number of distinct names in the
initial code t, i.e. with ∣t∣. This fact is important, as the static bound
on the size of environments guarantees that→e and→c—the transi-
tions looking-up and copying environments—can be implemented
(independently of the chosen concrete representation of terms) in at
worst linear time in ∣t∣, so that an execution ρ can be implemented
in O(∣ρ∣ ⋅ ∣t∣). The same will hold for every machine with local en-
vironments. In fact, we may turn this into a definition: an abstract
machine is reasonable if its implementation enjoys the above bilin-
ear bound. In this way, the length of an execution of a reasonable
machine provides an accurate estimate of its implementation cost.

The previous considerations are based on the name and environ-
ment size invariants. The closure invariant is used in the progress
part of the next theorem, and the subterm invariant is used in the
quantitative analysis in Sect. 11 (Theorem 11.3), subsuming the
termination condition of reflective distilleries.

Theorem 5.3 (KAM Distillation). (KAM,Name,≡, ⋅) is a reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative: if s→c s
′ then s ≡ s′.

2. Multiplicative: if s→m s
′ then s⊸m s

′;
3. Exponential: if s→e s

′ then s⊸e≡ s
′;

Proof. Properties of the decoding:

1. Commutative. We have tu ∣ e ∣ π →c t ∣ e ∣ (u, e) ∶∶ π, and:

tu ∣ e ∣ π = π⟨e⟨tu⟩⟩

≡
∗
@ π⟨e⟨t⟩e⟨u⟩⟩ = t ∣ e ∣ (u, e) ∶∶ π

2. Multiplicative. λx.t ∣ e ∣ c ∶∶ π →m t ∣ [x�c] ∶∶ e ∣ π, and

λx.t ∣ e ∣ c ∶∶ π = π⟨e⟨λx.t⟩c⟩

⊸m π⟨e⟨t[x�c]⟩⟩
= t ∣ [x�c] ∶∶ e ∣ π

The rewriting step can be applied because by contextual decod-
ing (Lemma 5.1) it takes place in an evaluation context.

3. Exponential. x ∣ e′ ∶∶ [x�(t, e)] ∶∶ e′′ ∣ π →e t ∣ e ∣ π, and

x ∣ e′ ∶∶ [x�(t, e)] ∶∶ e′′ ∣ π = π⟨e′′⟨e′⟨x⟩[x�e⟨t⟩]⟩⟩
⊸e π⟨e′′⟨e′⟨e⟨t⟩⟩[x�e⟨t⟩]⟩⟩
≡
∗
gc π⟨e⟨t⟩⟩
= t ∣ e ∣ π

Note that e′′⟨e′⟨e⟨t⟩⟩[x�e⟨t⟩]⟩ ≡∗gc e⟨t⟩ holds because e⟨t⟩ is
closed by point 1 of Lemma 5.2, and so all the substitutions
around it can be garbage collected.

Termination. Given by (forthcoming) Theorem 11.3 (future proofs
of distillery theorems will omit termination).
Progress. Let s = t ∣ e ∣ π be a commutative normal form s.t.
s⊸ u. If t is

• an application uw. Then a →c transition applies and s is not a
commutative normal form, absurd;

• an abstraction λx.u: if π = ε then s = e⟨λx.u⟩, which is ⊸-
normal, absurd. Hence, a→m transition applies;

• a variable x: by point 1 of Lemma 5.2.1, we must have e = e′ ∶∶
[x�c] ∶∶ e′′, so a→e transition applies.

6. Call-by-Value: the CEK and the LAM
Here we deal with two adaptations to CBV of the KAM, namely
Felleisen and Friedman’s CEK machine [28] (without control oper-
ators), and a variant, deemed Leroy Abstract Machine (LAM). They
differ in how they behave with respect to applications: the CEK im-
plements left-to-right CBV, i.e. it first evaluates the function part,
the LAM gives instead precedence to arguments, realizing right-to-
left CBV. The LAM owes its name to Leroy’s ZINC machine [37],
that implements right-to-left CBV evaluation. We introduce a new
name because the ZINC is a quite more sophisticated machine than
the LAM: it has a separate sets of instructions to which terms are
compiled, it handles arithmetic expressions, and it avoids needless
closure creations in a way that it is not captured by the LAM. We
deal with the LAM only to stress the modularity of our contextual
approach.

CBV States and Stacks. The states of the CEK and the LAM
have the same shape of those of the KAM, i.e. they are given by
a closure plus a stack. The difference is that they use CBV stacks,
whose elements are labelled either as functions or arguments, so
that the machine may know whether it is launching the evaluation
of an argument or it is at the end of such an evaluation. They are
re-defined and decoded as follows (c is a closure):

π ∶∶= ε ∣ f(c) ∶∶ π ∣ a(c) ∶∶ π ε ∶= ⟨⋅⟩

f(c) ∶∶ π ∶= π⟨c⟨⋅⟩⟩

a(c) ∶∶ π ∶= π⟨⟨⋅⟩c⟩

The states of both machines are decoded exactly as for the KAM,
i.e. t ∣ e ∣ π ∶= π⟨e⟨t⟩⟩.

6.1 Left-to Right Call-by-Value: the CEK machine.
The transitions of the CEK are:

tu e π →c1 t e a(u, e) ∶∶ π
v e a(u, e′) ∶∶ π →c2 u e′ f(v, e) ∶∶ π
v e f(λx.t, e′) ∶∶ π →m t [x�(v, e)] ∶∶ e′ π
x e π →e t e′ π

where→e takes place only if e = e′′ ∶∶ [x�(t, e′)] ∶∶ e′′′.
While one can still statically prove that environments decode

to substitution contexts, to prove that π and π⟨e⟩ are evaluation
contexts we need the dynamic invariants of the machine.

Lemma 6.1 (CEK Invariants). Let s = u ∣ e ∣ π be a CEK reachable
state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;
2. Subterm: any code in s is a literal subterm of t;
3. Value: any code in e is a value and, for every element of π of

the form f(u, e′), u is a value;
4. Contextual Decoding: π and π⟨e⟩ are left-to-right CBV evalu-

ation contexts.
5. Name: any closure c in s is well-named and its names are

names of t (i.e. ∆(c) ⊆ fv(t)).
6. Environment Size: the length of any environment in s is bound

by ∣t∣.

We have everything we need:

Theorem 6.2 (CEK Distillation). (CEK,ValueLR,≡, ⋅) is a reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s→c1 s
′ then s ≡ s′;

2. Commutative 2: if s→c2 s
′ then s = s′.

3. Multiplicative: if s→m s
′ then s⊸m s

′;
4. Exponential: if s→e s

′ then s⊸e≡ s
′;

tu e π D →c1 t e (u, e) ∶∶ π D
v e (t, e′) ∶∶ π D →c2 t e′ ε ((v, e), π) ∶∶D
v e ε ((λx.t, e′), π) ∶∶D →m t [x�(v, e)] ∶∶ e′ π D
x e ∶∶ [x�(v, e′)] ∶∶ e′′ π D →e v e′ π D

Figure 2. The Split CEK, aka the revisited SECD.

Proof. Properties of the decoding: in the following cases, evalua-
tion will always takes place under a context that by Lemma 6.1.4
will be a left-to-right CBV evaluation context, and similarly struc-
tural equivalence will alway be used in a weak context, as it should
be.

1. Commutative 1. We have tu ∣ e ∣ π →c1 t ∣ e ∣ a(u, e) ∶∶ π:

tu ∣ e ∣ π = π⟨e⟨tu⟩⟩ ≡
∗
@

π⟨e⟨t⟩e⟨u⟩⟩ = t ∣ e ∣ a(u, e) ∶∶ π

2. Commutative 2. We have v ∣ e ∣ a(u, e′) ∶∶ π →c2 u ∣ e′ ∣

f(v, e) ∶∶ π, and:

v ∣ e ∣ a(u, e′) ∶∶ π = π⟨e⟨v⟩e′⟨u⟩⟩ =

u ∣ e′ ∣ f(v, e) ∶∶ π

3. Multiplicative. We have v ∣ e ∣ f(λx.t, e′) ∶∶ π →m u ∣

[x�(v, e)] ∶∶ e′ ∣ π, and:

v ∣ e ∣ f(λx.t, e′) ∶∶ π = π⟨e′⟨λx.t⟩e⟨v⟩⟩ ⊸m

π⟨e′⟨t[x�e⟨v⟩]⟩⟩ =

t ∣ [x�(v, e)] ∶∶ e′ ∣ π

4. Exponential. Let e = e′′ ∶∶ [x�(t, e′)] ∶∶ e′′′. We have x ∣ e ∣

π →e t ∣ e
′
∣ π, and:

x ∣ e ∣ π = π⟨e⟨x⟩⟩ =

π⟨e′′′⟨e′′⟨x⟩[x�e′⟨t⟩]⟩⟩ ⊸e

π⟨e′′′⟨e′⟨e′′⟨t⟩[x�t]⟩⟩⟩ ≡
∗
gc

π⟨e′⟨t⟩⟩ = t ∣ e′ ∣ π

We can apply ⊸e since by Lemma 6.1.3, t is a value. We also
use that by Lemma 6.1.1, e′⟨t⟩ is a closed term to ensure that
e′′ and e′′′ can be garbage collected.

Progress. Let s = t ∣ e ∣ π be a commutative normal form s.t.
s⊸ u. If t is

• an application uw. Then a→c1 transition applies and s is not a
commutative normal form, absurd;

• an abstraction v: by hypothesis, π cannot be of the form a(c) ∶∶
π′. Suppose it is equal to ε. We would then have s = e⟨v⟩, which
is a CBV normal form, because e is a substitution context. This
would contradict our hypothesis, so π must be of the form
f(u, e′) ∶∶ π′. By point 3 of Lemma 6.1, u is an abstraction,
hence a→m transition applies;

• a variable x: by point 1 of Lemma 6.1, e must be of the form
e′ ∶∶ [x�c] ∶∶ e′′, so a→e transition applies.

6.2 Right-to-Left Call-by-Value: the Leroy Abstract Machine
The transitions of the LAM are:

tu e π →c1 u e f(t, e) ∶∶ π
v e f(t, e′) ∶∶ π →c2 t e′ a(v, e) ∶∶ π
λx.t e a(c) ∶∶ π →m t [x�c] ∶∶ e π
x e π →e t e′ π

where→e takes place only if e = e′′ ∶∶ [x�(t, e′)] ∶∶ e′′′.
We omit all the proofs (that can be found in [9]) because they

are minimal variations on those for the CEK.

Lemma 6.3 (LAM Invariants). Let s = u ∣ e ∣ π be a LAM
reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;
2. Subterm: any code in s is a literal subterm of t;
3. Value: any code in e is a value and, for every element of π of

the form a(u, e′), u is a value;
4. Contexts Decoding: π and π⟨e⟩ are right-to-left CBV evalua-

tion contexts.
5. Name: any closure c in s is well-named and its names are

names of t (i.e. ∆(c) ⊆ fv(t)).
6. Environment Size: the length of any environment in s is bound

by ∣t∣.

Theorem 6.4 (LAM Distillation). (LAM,ValueRL,≡, ⋅) is a re-
flective distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s→c1 s
′ then s ≡ s′;

2. Commutative 2: if s→c2 s
′ then s = s′.

3. Multiplicative: if s→m s
′ then s⊸m s

′;
4. Exponential: if s→e s

′ then s⊸e≡ s
′;

7. Towards Call-by-Need: the Split CEK and the
MAM

In this section we study two further machines:

1. The Split CEK (SCEK), obtained disentangling the two uses of
the stack (for arguments and for functions) in the CEK. The
split CEK can be seen as a simplification of Landin’s SECD
machine [35].

2. The Milner Abstract Machine (MAM), that is a variation over
the KAM with only one global environment and with just one
global closure, what is sometimes called a heap or a store. Es-
sentially, it unveils the content of distance rules at the machine
level.

The ideas at work in these two case studies—both playing with the
use of contexts—will be combined in the next section, obtaining a
new simple CBNeed machine, the MAD.

7.1 The Split CEK, or Revisiting the SECD Machine
For the CEK machine we proved that the stack, that collects
both arguments and functions, decodes to an evaluation context
(Lemma 6.1.4). The new CBV machine in Fig. 2, deemed Split
CEK, has two stacks: one for arguments and one for functions. Both
will decode to evaluation contexts.

Note that the evaluation contexts V for the calculus ValueLR:

V ∶∶= ⟨⋅⟩ ∣ V t ∣ L⟨v⟩V ∣ V [x�t]

have two cases for application. Essentially, when dealing with V t
the machine puts t in a stack for arguments (identical to the stack of
the KAM), while in the case L⟨v⟩V the machine puts the closure
(corresponding to) L⟨v⟩ in a stack for functions, called dump.

Actually, together with the closure it also has to store the current
argument stack, to not mess things up.

Thus, an entry of the function stack is a pair (c, π), where c
is a closure (v, e), and the three components v, e, and π together
correspond to the evaluation context π⟨e⟨v⟨⋅⟩⟩⟩.

Let us explain the idea at the level of the machine. Whenever the
code is an abstraction v and the argument stack π is non-empty (i.e.
π = c ∶∶ π′), the machine saves the active closure, given by current
code v and environment e, and the tail of the stack π′ by pushing a
new entry ((v, e), π′) on the dump, and then starts evaluating the
first closure c of the stack. The syntax for dumps then is

D ∶∶= ε ∣ (c, π) ∶∶D

Every dump decodes to a context according to:

ε ∶= ⟨⋅⟩ ((v, e), π) ∶∶D ∶= D⟨π⟨e⟨v⟨⋅⟩⟩⟩⟩

Relationship with the SECD. For the acquainted reader, the
new stack morally is the dump of Landin’s SECD machine [35]
(but beware that the original definition of the SECD is quite more
technical). An in-depth analysis of the SECD machine can be found
in Danvy’s [22], where it is shown that the SECD implements right-
to-left CBV, and not left-to-right CBV as the Split CEK. However,
here we are rather interested in showing that splitting the stack is
a general transformation, modularly captured by distillation and
enlightening the dump of the SECD, which may look mysterious
at first. It is enough to apply the same transformation to the LAM,
getting a Split LAM, to get closer to the original SECD. Such an
exercise, however, is left to the reader. In Sect. 9 we will instead
apply the inverse transformation—merging two stacks into one—
to a CBNeed machine.

Distillation. The decoding of terms, environments, closures, and
stacks is as for the KAM. The decoding of states is defined as
t ∣ e ∣ π ∣D ∶= D⟨π⟨e⟨t⟩⟩⟩. The proofs for the Split CEK are in
[9].

Lemma 7.1 (Split CEK Invariants). Let s = u ∣ e ∣ π ∣D be a Split
CEK reachable state whose initial code t is well-named. Then:

1. Closure: every closure in s is closed;
2. Subterm: any code in s is a literal subterm of t;
3. Value: the code of any closure in the dump or in any environ-

ment in s is a value;
4. Contextual Decoding: D, D⟨π⟩, and D⟨π⟨e⟩⟩ are left-to-right

CBV evaluation context.
5. Name: any closure c in s is well-named and its names are

names of t (i.e. ∆(c) ⊆ fv(t)).
6. Environment Size: the length of any environment in s is bound

by ∣t∣.

Theorem 7.2 (Split CEK Distillation). (Split CEK,ValueLR,≡, ⋅)
is a reflective distillery. In particular, on a reachable state s we
have:

1. Commutative 1: if s→c1 s
′ then s ≡ s′;

2. Commutative 2: if s→c2 s
′ then s ≡ s′;

3. Multiplicative: if s→m s
′ then s⊸m s

′;
4. Exponential: if s→e s

′ then s⊸e≡ s
′.

7.2 Milner Abstract Machine
The LSC suggests the design of a simpler version of the KAM,
the Milner Abstract Machine (MAM), that avoids the concept of
closure. At the language level, the idea is that, by repeatedly apply-
ing the axioms ≡dup and ≡@ of the structural equivalence, explicit
substitutions can be folded and brought outside. At the machine
level, the local environments in the closures are replaced by just

one global environment that closes the code and the stack, as well
as the global environment itself.

Of course, naively turning to a global environment breaks the
well-named invariant of the machine. This point is addressed using
anα-renaming and name generation in the variable (or exponential)
transition, i.e. when substitution takes place.

Here we employ the global environments E of Sect. 3 and we
redefine stacks as π ∶∶= ε ∣ t ∶∶ π. A state of the MAM is given by a
code t, a stack π and a global environment E.

The transitions of the MAM are:

tu π E →c t u ∶∶ π E
λx.t u ∶∶ π E →m t π [x�u] ∶∶ E
x π E →e t

α
π E

where →e takes place only if E = E′′
⟨E′

[x�t]⟩ and tα is a well-
named code α-equivalent to t and s.t. any bound name in tα is fresh
with respect to those in π and E.

The decoding of a MAM state t ∣ π ∣ E is similar to the
decoding of a KAM state, but the stack and the environment context
are applied in reverse order (this is why stack and environment in
MAM states are swapped with respect to KAM states):

ε ∶= ⟨⋅⟩ [x�t] ∶∶ E ∶= E⟨⟨⋅⟩[x�t]⟩
t ∶∶ π ∶= π⟨⟨⋅⟩t⟩ t ∣ π ∣ E ∶= E⟨π⟨t⟩⟩

To every MAM state t ∣ π ∣ E we associate the pair (π⟨t⟩,E)

(note that π⟨t⟩ now is a code, i.e. it does not contain explicit
substitutions) and call it the global closure of the state.

As for the KAM, the decoding of contexts can be done statically,
i.e. it does not need dynamic invariants.

Lemma 7.3 (Contextual Decoding). Let E be a global environ-
ment and π be a stack of the MAM. Then E is a substitution con-
text, and both π and π⟨E⟩ are evaluation contexts.

For the dynamic invariants we need a different notion of closed
closure.

Definition 7.4. Given a global environment E and a code t,
we define by mutual induction two predicates E is closed and
(t,E) is closed as follows:

ε is closed
(t,E) is closed Ô⇒ [x�t] ∶∶ E is closed

fv(t) ⊆ ∆(E) ∧E is closed Ô⇒ (t,E) is closed

The dynamic invariants are:

Lemma 7.5 (MAM invariants). Let s = u ∣ π ∣ E be a MAM state
reached by an execution ρ of initial well-named code t. Then:

1. Global Closure: the global closure (π⟨t⟩,E) of s is closed;
2. Subterm: any code in s is a literal subterm of t;
3. Names: the global closure of s is well-named;
4. Environment Size: the length of the global environment in s is

bound by ∣ρ∣m.

Abstract Considerations on Concrete Implementations. Note the
new environment size invariant. The bound now depends on the
length of the evaluation sequence ρ, not on the size of the initial
term t. If one implements→e looking for x in E sequentially, then
each→e transition has cost O(∣ρ∣m), and the cost of implementing
ρ is easily seen to become quadratic in ∣ρ∣. Therefore—at first
sight—the MAM is not a reasonable abstract machine (in the sense
of Sect. 5). However, the MAM is meant to be implemented using
a representation of codes pointers for variables, so that looking for
x in E takes constant time. Then the global environment, even if
formalized as a list, should rather be considered as a store.

tu π D E →c1 t u ∶∶ π D E
λx.t u ∶∶ π D E →m t π D [x�u] ∶∶ E
x π D E1 ∶∶ [x�t] ∶∶ E2 →c2 t ε (E1, x, π) ∶∶D E2

v ε (E1, x, π) ∶∶D E2 →e vα π D E1 ∶∶ [x�v] ∶∶ E2

Figure 3. The Milner Abstract machine by-neeD (MAD).

The name invariant is what guarantees that variables can indeed
be taken as pointers, as there is no name clash. Note that the
cost of a →e transition is not constant, as the renaming operation
actually makes →e linear in ∣t∣ (by the subterm invariant). So,
assuming a pointer-based representation, ρ can be implemented in
time O(∣ρ∣ ⋅ ∣t∣), as for local machines. In other words, the MAM is
a reasonable abstract machine.

Theorem 7.6 (MAM Distillation). (MAM,Name,≡, ⋅) is a reflec-
tive distillery. In particular, on a reachable state s we have:

1. Commutative: if s→c s
′ then s = s′;

2. Multiplicative: if s→m s
′ then s⊸m≡ s

′;
3. Exponential: if s→e s

′ then s⊸e=α s
′.

Proof. Properties of the decoding (progress is as for the KAM):

1. Commutative. In contrast to the KAM,→c gives a true identity:

tu ∣ π ∣ E = E⟨π⟨tu⟩⟩ = t ∣ u ∶∶ π ∣ E

2. Multiplicative. Since substitutions and evaluation contexts com-
mute via ≡ (Lemma 2.4),→m maps to:

λx.t ∣ u ∶∶ π ∣ E = E⟨π⟨(λx.t)u⟩⟩ ⊸m

E⟨π⟨t[x�u]⟩⟩ ≡Lem.2.4

E⟨π⟨t⟩[x�u]⟩ =

t ∣ π ∣ [x�u] ∶∶ E

3. Exponential. The erasure of part of the environment of the
KAM is replaced by an explicit use of α-equivalence:

x ∣ π ∣ E ∶∶ [x�u] ∶∶ E′
= E′

⟨E⟨π⟨x⟩⟩[x�u]⟩ ⊸e

E′
⟨E⟨π⟨u⟩⟩[x�u]⟩ =α

E′
⟨E⟨π⟨uα⟩⟩[x�u]⟩ =

uα ∣ π ∣ E ∶∶ [x�u] ∶∶ E′

Digression about ≡. Note that in the distillation theorem struc-
tural equivalence is used only to commute with stacks. The calcu-
lus and the machine in fact form a distillery also with respect to the
following simpler notion of structural equivalence. Let ≡MAM be the
smallest equivalence relation generated by the closure by (call-by-
name) evaluation contexts of the axiom ≡@l in Fig. 1 (page 5). The
next lemma guarantees that ≡MAM is a strong bisimulation (the proof
is in [9]), and so ≡MAM provides another MAM distillery.

Lemma 7.7. ≡MAM is a strong bisimulation with respect to⊸.

8. Call-by-Need: the MAD and the Merged MAD
In this section we introduce a new abstract machine for CBNeed,
deemed Milner Abstract machine by-neeD (MAD). The MAD
arises very naturally as a reformulation of the Need calculus of
Sect. 2. The motivations behind the introduction of a new machine
are:

1. Simplicity: the MAD is arguably simpler than all other CBNeed
machines in the literature, in particular its distillation is very
natural;

2. Factorizing the Distillation of the Lazy KAM and of the SAM:
the study of the MAD will be followed by two sections showing
how to tweak the MAD in order to obtain (simplifications of)
two CBNeed machines in the literature, Cregut’s Lazy KAM
and Sestoft’s machine (here called SAM). Expressing the Lazy
KAM and the SAM as modifications of the MAD helps un-
derstanding their design, their distillation (that would otherwise
look very technical), and their relationship;

3. Simpler Reasoning: for CBNeed the proof that distillation pre-
serves complexity (in forthcoming Sect. 11) is subtle, and re-
quires a global analysis. The MAD allows to reason on a sim-
ple machine. The reasoning is then easily seen to scale up to
its modified versions, without having to deal from the start with
their complex structure.

4. Modularity of Our Contextual Theory of Abstract Machines: the
MAD is obtained by applying to the KAM the following two
tweaks:
(a) Global Environments: the MAD uses the global environ-

ment approach of the MAM to implement memoization;
(b) Dump: the MAD uses the dump-like approach of the Split

CEK/SECD to evaluate inside explicit substitutions;

8.1 The MAD
The MAD is shown in Fig. 3. Note that when the code is a vari-
able the transition is now commutative. The idea is that when-
ever the code is a variable x and the environment has the form
E1 ∶∶ [x�t] ∶∶ E2, the machine jumps to evaluate t saving the pre-
fix of the environmentE1, the variable x on which it will substitute
the result of evaluating t, and the stack π. This is how hereditarily
weak head evaluation context are implemented by the MAD.

Dumps (D) and their decoding are defined by

D ∶∶= ε ∣ (E,x, π) ∶∶D

ε ∶= ⟨⋅⟩ (E,x, π) ∶∶D ∶= E⟨D⟨π⟨x⟩⟩⟩[x�⟨⋅⟩]

The decoding of terms, environments, and stacks is defined as
for the KAM. The decoding of states is defined by t ∣ π ∣D ∣ E ∶=

E⟨D⟨π⟨t⟩⟩⟩. The decoding of contexts is static:

Lemma 8.1 (Contextual Decoding). Let D, π, and E be a dump,
a stack, and a global environment of the MAD, respectively. Then
D, D⟨π⟩, E⟨D⟩, and E⟨D⟨π⟩⟩ are CBNeed evaluation contexts.

Closed closures are defined as for the MAM. Given a state
s = t ∣ π ∣ D ∣ E0 with D = (E1, x1, π1) ∶∶ . . . ∶∶ (En, xn, πn), its
closures are (π⟨t⟩,E0) and, for i ∈ {1, . . . , n},

(πi⟨xi⟩,Ei ∶∶ [xi�πi−1⟨xi−1⟩] ∶∶ . . . ∶∶ [x1�π⟨t⟩] ∶∶ E0).

The dynamic invariants are:

Lemma 8.2 (MAD invariants). Let s = t ∣ π ∣ D ∣ E0 be a
MAD reachable state whose initial code t is well-named, and s.t.
D = (E1, x1, π1) ∶∶ . . . ∶∶ (En, xn, πn). Then:

1. Global Closure: the closures of s are closed;
2. Subterm: any code in s is a literal subterm of t;
3. Names: the closures of s are well-named.

tu π E →c1 t a(u) ∶∶ π E
λx.t a(u) ∶∶ π E →m t π [x�u] ∶∶ E
x π E1 ∶∶ [x�t] ∶∶ E2 →c2 t h(E1, x) ∶∶ π E2

v h(E1, x) ∶∶ π E2 →e vα π E1 ∶∶ [x�v] ∶∶ E2

Figure 4. The Merged MAD.

For the properties of the decoding function please note that, as
defined in Sect. 2, the structural congruence ≡Need for CBNeed is
different from before.

Theorem 8.3 (MAD Distillation). (MAD,Need,≡Need, ⋅) is a re-
flective distillery. In particular, on a reachable state s we have:

1. Commutative 1: if s→c1 s
′ then s = s′;

2. Commutative 2: if s→c2 s
′ then s = s′;

3. Multiplicative: if s→m s
′ then s⊸m≡Need s

′;
4. Exponential: if s→e s

′ then s⊸e=α s
′.

Proof. 1. Commutative 1.

t u ∣ π ∣D ∣ E = E⟨D⟨π⟨t u⟩⟩⟩ = t ∣ u ∶∶ π ∣D ∣ E

2. Commutative 2:

x ∣ π ∣D ∣ E1 ∶∶ [x�t] ∶∶ E2 = E2⟨E1⟨D⟨π⟨x⟩⟩⟩[x�t]⟩
= t ∣ ε ∣ (E1, x, π) ∶∶D ∣ E2

3. Multiplicative.

λx.t ∣ u ∶∶ π ∣D ∣ E = E⟨D⟨π⟨(λx.t)u⟩⟩⟩ ⊸m

E⟨D⟨π⟨t[x�u]⟩⟩⟩ ≡Need Lem. 2.4

E⟨D⟨π⟨t⟩⟩[x�u]⟩ =

t ∣ π ∣D ∣ [x�u] ∶∶ E

Note that to apply Lemma 2.4 we use the global closure invari-
ant, as u, being on the stack, is closed by E and so D does not
capture its free variables.

4. Exponential.

v ∣ ε ∣ (E1, x, π) ∶∶D ∣ E2 = E2⟨E1⟨D⟨π⟨x⟩⟩⟩[x�v]⟩
⊸e E2⟨E1⟨D⟨π⟨v⟩⟩⟩[x�v]⟩
=α E2⟨E1⟨D⟨π⟨vα⟩⟩⟩[x�v]⟩
= vα ∣ π ∣D ∣ E1 ∶∶ [x�v] ∶∶ E2

Progress. Let s = t ∣ π ∣ D ∣ E be a commutative normal form s.t.
s⊸ u. If t is

1. an application uw. Then a→c1 transition applies and s is not a
commutative normal form, absurd;

2. an abstraction v. The decoding s is of the form E⟨D⟨π⟨v⟩⟩⟩.
The stack π and the dump D cannot both be empty, since then
s = E⟨v⟩ would be normal. So either the stack is empty and
a →e transition applies, or the stack is not empty and a →m

transition applies;
3. a variable x. By Lemma 8.2.1 it must be bound by E, so a
→c2 transition applies, and s is not a commutative normal form,
absurd.

Abstract Considerations on Concrete Implementations. Con-
sider transition →c2 . Note that the saving of the prefix E1 in the
dump forces to have E implemented as a list, and so to go through
E sequentially. This fact goes against the intuition that E is a store
(rather than a list), and makes the MAD an unreasonable abstract
machine (see the analogous considerations for the KAM and for the
MAM). To solve this point, in Sect. 10 we will present the Pointing
MAD, a variant of the MAD (akin to Sestoft’s machine for CBNeed

[44]) that avoids saving E1 in a dump entry, and restoring the store
view of the global environment. The detour is justified as follows:

1. the Pointing MAD is more involved;
2. for the complexity analysis of distillation in Sect. 11 it is easier

to reason on the MAD;
3. this issue about concrete implementations is orthogonal to the

complexity analysis of the distillation process.

9. The Merged MAD, or Revisiting the Lazy
KAM

Splitting the stack of the CEK machine in two we obtained a
simpler form of the SECD machine. In this section we apply to the
MAD the reverse transformation. The result is a machine, deemed
Merged MAD, having only one stack and that can be seen as a
simpler version of Cregut’s lazy KAM [19] (but we are rather
inspired by Danvy and Zerny’s presentation in [24]).

To distinguish the two kinds of objects on the stack we use a
marker, as for the CEK and the LAM. Formally, the syntax for
stacks is:

π ∶∶= ε ∣ a(t) ∶∶ π ∣ h(E,x) ∶∶ π

where a(t) denotes a term to be used as an argument (as for the
CEK) and h(E,x, π) is morally an entry of the dump of the MAD,
where however there is no need to save the current stack. The
transitions of the Merged MAD are in Fig. 4.

The decoding is defined as follows

ε ∶= ⟨⋅⟩

[x�t] ∶∶ E ∶= E⟨⟨⋅⟩[x�t]⟩
h(E,x) ∶∶ π ∶= E⟨π⟨x⟩⟩[x�⟨⋅⟩]

a(t) ∶∶ π ∶= π⟨⟨⋅⟩t⟩

t ∣ π ∣ E ∶= E⟨π⟨t⟩⟩

Lemma 9.1 (Contextual Decoding). Let π and E be a stack and
a global environment of the Merged MAD. Then π and E⟨π⟩ are
CBNeed evaluation contexts.

The dynamic invariants of the Merged MAD are exactly the
same of the MAD, with respect to an analogous set of closures
associated to a state (whose exact definition is omitted). The proof
of the following theorem—almost identical to that of the MAD—is
in [9].

Theorem 9.2 (Merged MAD Distillation).
(Merged MAD,Need,≡Need, ⋅) is a reflective distillery. In
particular, on a reachable state s we have:

1. Commutative 1: if s→c1 s
′ then s = s′;

2. Commutative 2: if s→c2 s
′ then s = s′;

3. Multiplicative: if s→m s
′ then s⊸m≡Need s

′;
4. Exponential: if s→e s

′ then s⊸e=α s
′.

tu π D E →c1 t u ∶∶ π D E
λx.t u ∶∶ π ε E →m1 t π ε [x�u] ∶∶ E
λx.t u ∶∶ π (y, π′) ∶∶D E1 ∶∶ [y�◻] ∶∶ E2 →m2 t π (y, π′) ∶∶D E1 ∶∶ [y�◻] ∶∶ [x�u] ∶∶ E2

x π D E1 ∶∶ [x�t] ∶∶ E2 →c2 t ε (x,π) ∶∶D E1 ∶∶ [x�◻] ∶∶ E2

v ε (x,π) ∶∶D E1 ∶∶ [x�◻] ∶∶ E2 →e vα π D E1 ∶∶ [x�v] ∶∶ E2

Figure 5. The Pointing MAD.

10. The Pointing MAD, or Revisiting the SAM
In the MAD, the global environment is divided between the envi-
ronment of the machine and the entries of the dump. On the one
hand, this choice makes the decoding very natural. On the other
hand, one would like to keep the global environment in just one
place, to validate the intuition that it is a store rather than a list, and
let the dump only collect variables and stacks. This is what we do
here, exploiting the fact that variable names can be taken as pointers
(see the abstract considerations in Sect. 7.2 and Sect. 8.1).

The new machine, called Pointing MAD, is in Fig. 5, and uses
a new dummy constant ◻ for the substitutions whose variable is in
the dump. It also has two multiplicative transitions, that will both
distilled into ⊸m, depending on the content of the dump. It can be
seen as a simpler version of Sestoft’s Abstract Machine [44], here
called SAM. Dumps and environments are defined by:

D ∶∶= ε ∣ (x,π) ∶∶D
E ∶∶= ε ∣ [x�t] ∶∶ E ∣ [x�◻] ∶∶ E

A substitution of the form [x�◻] is dumped, and we also say that
x is dumped.

Note that the variables of the entries inD appear in reverse order
with respect to the corresponding substitutions in E. We will show
that fact is an invariant, called duality.

Definition 10.1 (Duality E�D). Duality E�D between environ-
ments and dumps is defined by

1. ε�ε;
2. E ∶∶ [x�t]�D if E�D;
3. E ∶∶ [x�◻]�(x,π) ∶∶D if E�D.

Note that in a dual pair the environment is always at least as long
as the dump. A dual pair E�D decodes to a context as follows:

(E, ε) ∶= E

(E ∶∶ [x�◻], (x,π) ∶∶D) ∶= (E,D)⟨π⟨x⟩⟩[x�⟨⋅⟩]

(E ∶∶ [x�t], (y, π) ∶∶D) ∶= (E, (y, π) ∶∶D)[x�t]

The analysis of the Pointing MAD is based on a complex invari-
ant that includes duality plus a generalization of the global closure
invariant. We need an auxiliary definition:

Definition 10.2. Given an environment E, we define its slice E ↿
as the sequence of substitutions after the rightmost dumped substi-
tution. Formally:

ε↿ ∶= ε
(E ∶∶ [x�t])↿ ∶= E ↿∶∶ [x�t]
(E ∶∶ [x�◻])↿ ∶= ε

Moreover, if an environmentE is of the formE1 ∶∶ [x�◻] ∶∶ E2, we
define E ↿x∶= E1 ↿∶∶ [x�◻] ∶∶ E2.

The notion of closed closure with global environment (Sect. 7.2)
is extended to dummy constants ◻ as expected.

Lemma 10.3 (Pointing MAD invariants). Let s = t ∣ E ∣ π ∣D be a
Pointing MAD reachable state whose initial code t is well-named.
Then:

1. Subterm: any code in s is a literal subterm of t;
2. Names: the global closure of s is well-named.
3. Dump-Environment Duality:

(a) (π⟨t⟩,E ↿) is closed;
(b) for every pair (x,π′) in D, (π′⟨x⟩,E ↿x) is closed;
(c) E�D holds.

4. Contextual Decoding: (E,D) is a CBNeed evaluation context.

Proof. See [9].

The decoding of a state is defined as t ∣ π ∣D ∣ E ∶=

(E,D)⟨π⟨t⟩⟩.

Theorem 10.4 (Pointing MADDistillation).
(Pointing MAD,Need,≡Need, ⋅) is a reflective distillery. In
particular, on a reachable state s we have:

1. Commutative 1 & 2: if s→c1 s
′ or s→c2 s

′ then s = s′;
2. Multiplicative 1 & 2: if s→m1 s

′ or s→m2 s
′ then s⊸m≡Need s

′;
3. Exponential: if s→e s

′ then s⊸e=α s
′;

Proof. Properties of the decoding:

1. Commutative 1. We have

t u ∣ π ∣D ∣ E = (E,D)⟨π⟨t u⟩⟩ = t ∣ u ∶∶ π ∣D ∣ E

2. Commutative 2. Note that E2 has no dumped substitutions,
since E1 ∶∶ [x�◻] ∶∶ E2�(x,π) ∶∶D. Then:

x ∣ π ∣D ∣ E1 ∶∶ [x�t] ∶∶ E2 =

E2⟨(E1,D)⟨π⟨x⟩⟩[x�t]⟩ =

t ∣ ε ∣ (x,π) ∶∶D ∣ E1 ∶∶ [x�◻] ∶∶ E2

3. Multiplicative 1, empty dump.

λx.t ∣ u ∶∶ π ∣ ε ∣ E = E⟨π⟨(λx.t)u⟩⟩ ⊸m

E⟨π⟨t[x�u]⟩⟩ ≡
∗
@l Lem. 2.4

E⟨π⟨t⟩[x�u]⟩ =

t ∣ π ∣ ε ∣ [x�u] ∶∶ E

4. Multiplicative 2, non-empty dump.

λx.t ∣ u ∶∶ π ∣ (y, π′) ∶∶D ∣ E1 ∶∶ [y�◻] ∶∶ E2 =

E2⟨(E1,D)⟨π′⟨y⟩⟩[y�π⟨(λx.t)u⟩]⟩ ⊸m

E2⟨(E1,D)⟨π′⟨y⟩⟩[y�π⟨t[x�u]⟩]⟩ ≡Need Lem. 2.4

E2⟨(E1,D)⟨π′⟨y⟩⟩[y�π⟨t⟩][x�u]⟩ =

t ∣ π ∣ (y, π′) ∶∶D ∣ E1 ∶∶ [y�◻] ∶∶ [x�u] ∶∶ E2

5. Exponential.

v ∣ ε ∣ (x,π) ∶∶D ∣ E1 ∶∶ [x�◻] ∶∶ E2 =

E2⟨(E1,D)⟨π⟨x⟩⟩[x�v]⟩ ⊸e

E2⟨(E1,D)⟨π⟨v⟩⟩[x�v]⟩ =α

E2⟨(E1,D)⟨π⟨vα⟩⟩[x�v]⟩ =

vα ∣ π ∣D ∣ E1 ∶∶ [x�v] ∶∶ E2

Progress. Let s = t ∣ π ∣ D ∣ E be a commutative normal form s.t.
s⊸ u. If t is

• an application uw. Then a→c1 transition applies and s is not a
commutative normal form, absurd.

• a variable x. By the machine invariant, xmust be bound byE ↿.
SoE = E1 ∶∶ [x�u] ∶∶ E2, a→c2 transition applies, and s is not
a commutative normal form, absurd.

• an abstraction v. Two cases:
The stack π is empty. The dumpD cannot be empty, since if
D = εwe have that s = e⟨v⟩ is normal. SoD = (x,π′) ∶∶D′.
By duality, E = E1 ∶∶ [x�◻] ∶∶ E2 and a →e transition
applies;
The stack π is non-empty. If the dump D is empty, the first
case of →m applies. If D = (x,π′) ∶∶ D′, by duality E =

E1 ∶∶ [x�◻] ∶∶ E2 and the second case of→m applies.

11. Distillation Preserves Complexity
Here, for every abstract machine we bound the number of commu-
tative steps ∣ρ∣c in an execution ρ in terms of

1. the number of principal steps ∣ρ∣p,
2. the size ∣t∣ of the initial code t.

The analysis only concerns the machines, but via the distillation
theorems it expresses the length of the machine executions as a
linear function of the length of the distilled derivations in the
calculi. For every distillery, we will prove that the relationship is
linear in both parameters, namely ∣ρ∣c = O((∣t∣ + 1) ⋅ ∣ρ∣p) holds.

Definition 11.1. Let M be a distilled abstract machine and ρ ∶ s→∗

s′ be an execution of initial code t. M is

1. Globally bilinear if ∣ρ∣c = O((∣t∣ + 1) ⋅ ∣ρ∣p).
2. Locally linear if whenever s′ →kc s

′′ then k = O(∣t∣).

The next lemma shows that local linearity is a sufficient condi-
tion for global bilinearity.

Proposition 11.2 (Locally Linear ⇒ Globally Bilinear). Let M be
a locally linear distilled abstract machine, and ρ an execution of
initial code t. Then M is globally bilinear.

Proof. The execution ρ writes uniquely as→k1c →
h1
p . . .→kmc →

hm
p .

By hypothesis ki = O(∣t∣) for every i ∈ {1, . . . ,m}. Fromm ≤ ∣ρ∣p
follows that ∣ρ∣c = O(∣t∣ ⋅ ∣ρ∣p). We conclude with ∣ρ∣ = ∣ρ∣p + ∣ρ∣c =
∣ρ∣p +O(∣t∣ ⋅ ∣ρ∣p) = O((∣t∣ + 1) ⋅ ∣ρ∣p).

CBN and CBV machines are easily seen to be locally linear, and
thus globally bilinear.

Theorem 11.3. KAM, MAM, CEK, LAM, and the Split CEK are
locally linear, and so also globally bilinear.

Proof. 1. KAM/MAM. Immediate:→c reduces the size of the code,
that is bounded by ∣t∣ by the subterm invariant.

2. CEK. Consider the following measure for states:

#(u ∣ e ∣ π) ∶= {
∣u∣ + ∣w∣ if π = a(w, e′) ∶∶ π′

∣u∣ otherwise

By direct inspection of the rules, it can be seen that both →c1

and →c2 transitions decrease the value of # for CEK states,
and so the relation→c1 ∪→c2 terminates (on reachable states).
Moreover, both ∣u∣ and ∣w∣ are bounded by ∣t∣ by the subterm
invariant (Lemma 6.1.2), and so k ≤ 2 ⋅ ∣t∣ = O(∣t∣).

3. LAM and Split CEK. Similar to Point 2, see [9].

CBNeed machines are not locally linear, because a sequence of
→c2 steps (remember→c∶=→c1 ∪→c2) can be as long as the global
environment E, that is not bound by ∣t∣ but only by the number
∣ρ∣p of preceding principal transitions (as for the MAM). Adapting
the previous reasoning to this other bound would only show that
globally ∣ρ∣c is quadratic in ∣ρ∣p, not linear. Luckily, being locally
linear is not a necessary condition for global bilinearity. We are
in fact going to show that CBNeed machines are globally bilinear.
The key observation is that ∣ρ∣c2 is not only locally but also globally
bound by ∣ρ∣p, as the next lemma formalizes.

We treat the MAD. The reasoning for the Merged/Pointing
MAD is analogous. Define ∣ε∣ ∶= 0 and ∣(E,x, π) ∶∶D∣ ∶= 1 + ∣D∣.

Lemma 11.4. Let s = t ∣ π ∣D ∣ E be a MAD state, reached by the
execution ρ. Then

1. ∣ρ∣c2 = ∣ρ∣e + ∣D∣.
2. ∣E∣ + ∣D∣ ≤ ∣ρ∣m
3. ∣ρ∣c2 ≤ ∣ρ∣e + ∣ρ∣m = ∣ρ∣p

Proof. 1. Immediate, as →c2 is the only transition that pushes
elements on D and→e is the only transition that pops them.

2. The only rule that produces substitutions is →m. Note that 1)
→c2 and →e preserve the global number of substitutions in a
state; 2)E andD are made out of substitutions, if one considers
every entry (E,x, π) of the dump as a substitution on x (and
so the statement follows); 3) the inequality is given by the fact
that an entry of the dump stocks an environment (counting for
many substitutions).

3. Substitute Point 2 in Point 1.

Theorem 11.5. The MAD has globally linear commutations.

Proof. Let ρ be an execution of initial code t. Define →¬c1 ∶=→e

∪ →m ∪ →c2 and note ∣ρ∣¬c1 the number of its steps in ρ. We
estimate →c∶=→c1 ∪ →c2 by studying its components separately.
For →c2 , Lemma 11.4.3 proves ∣ρ∣c2 ≤ ∣ρ∣p = O(∣ρ∣p). For →c1 ,
as for the KAM, the length of a maximal →c1 subsequence of ρ is
bounded by ∣t∣. The number of →c1 maximal subsequences of ρ is
bounded by ∣ρ∣¬c1 , that by Lemma 11.4.3 is linear inO(∣ρ∣p). Then
∣ρ∣c1 = O(∣t∣ ⋅ ∣ρ∣p). Summing up,

∣ρ∣c2 + ∣ρ∣c1 = O(∣ρ∣p) +O(∣t∣ ⋅ ∣ρ∣p) = O((∣t∣ + 1) ⋅ ∣ρ∣p)

The analysis presented here is complemented by the study in
[8], where the number of exponential steps ⊸e in a derivation d
is shown to be polynomial (actually quadratic in CBN and linear
in CBV and CBNeed) in terms of the number of multiplicative
steps ⊸m in d. Given our distillation theorems, the results in [8]
equivalently relate the exponential and multiplicative transitions of
the abstract machines. This derived analysis of principal transitions
is a fruitful by-product of distilling abstract machines in the LSC.

12. Conclusions
The novelty of our study is the use of the linear substitution cal-
culus (LSC) to discriminate between abstract machine transitions:
some of them—the principal ones—are simulated, and thus shown
to be logically relevant, while the others—the commutative ones—
are mapped to the structural congruence and have to be considered
as bookkeeping operations. On one hand, the LSC is a sharp tool to

study abstract machines. On the other hand, it provides an alterna-
tive to abstract machines which is simpler while being conservative
at the level of complexity analysis.

Acknowledgments
A special acknowledgment to Claudio Sacerdoti Coen, for many
useful discussions, comments and corrections to the paper. In par-
ticular, we owe him the intuition that a global analysis of call-
by-need commutative rules may provide a linear bound. This
work was partially supported by the ANR projects LOGOI (10-
BLAN-0213-02) and COQUAS (ANR-12-JS02-006-01), by the
French-Argentinian Laboratory in Computer Science INFINIS, the
French-Argentinian project ECOS-Sud A12E04, the Qatar Na-
tional Research Fund under grant NPRP 09-1107-1-168.

References
[1] B. Accattoli. An abstract factorization theorem for explicit substitu-

tions. In RTA, pages 6–21, 2012.

[2] B. Accattoli. Linear logic and strong normalization. In RTA, pages
39–54, 2013.

[3] B. Accattoli. Evaluating functions as processes. In TERMGRAPH,
pages 41–55, 2013.

[4] B. Accattoli and U. Dal Lago. On the invariance of the unitary cost
model for head reduction. In RTA, pages 22–37, 2012.

[5] B. Accattoli and U. Dal Lago. Beta Reduction is Invariant, Indeed.
Accepted to LICS/CSL 2014, 2014.

[6] B. Accattoli and D. Kesner. The structural λ-calculus. In CSL, pages
381–395, 2010.

[7] B. Accattoli and L. Paolini. Call-by-value solvability, revisited. In
FLOPS, pages 4–16, 2012.

[8] B. Accattoli and C. Sacerdoti Coen. On the Value of Variables.
Accepted to WOLLIC 2014, 2014.

[9] B. Accattoli, P. Barenbaum, and D. Mazza. Distill-
ing Abstract Ma chines (Long Version). Available at
http://arxiv.org/abs/1406.2370, 2014.

[10] B. Accattoli, E. Bonelli, D. Kesner, and C. Lombardi. A nonstandard
standardization theorem. In POPL, pages 659–670, 2014.

[11] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional
correspondence between evaluators and abstract machines. In PPDP,
pages 8–19, 2003.

[12] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence
between call-by-need evaluators and lazy abstract machines. Inf.
Process. Lett., 90(5):223–232, 2004.

[13] Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. J.
Funct. Program., 7(3):265–301, 1997.

[14] Z. M. Ariola, A. Bohannon, and A. Sabry. Sequent calculi and abstract
machines. ACM Trans. Program. Lang. Syst., 31(4), 2009.

[15] M. Biernacka and O. Danvy. A syntactic correspondence between
context-sensitive calculi and abstract machines. Theor. Comput. Sci.,
375(1-3):76–108, 2007.

[16] M. Biernacka and O. Danvy. A concrete framework for environment
machines. ACM Trans. Comput. Log., 9(1), 2007.

[17] S. Chang and M. Felleisen. The call-by-need lambda calculus,
revisited. In ESOP, pages 128–147, 2012.

[18] P. Clairambault. Estimation of the length of interactions in arena game
semantics. In FOSSACS, pages 335–349, 2011.

[19] P. Crégut. Strongly reducing variants of the Krivine abstract machine.
Higher-Order and Symbolic Computation, 20(3):209–230, 2007.

[20] V. Danos and L. Regnier. Head linear reduction. Technical report,
2004.

[21] V. Danos, H. Herbelin, and L. Regnier. Game semantics & abstract
machines. In LICS, pages 394–405, 1996.

[22] O. Danvy. A rational deconstruction of landin’s secd machine. In IFL,
pages 52–71, 2004.

[23] O. Danvy and L. R. Nielsen. Refocusing in reduction semantics.
Technical Report RS-04-26, BRICS, 2004.

[24] O. Danvy and I. Zerny. A synthetic operational account of call-by-
need evaluation. In PPDP, pages 97–108, 2013.

[25] N. G. de Bruijn. Generalizing Automath by Means of a Lambda-
Typed Lambda Calculus. In Mathematical Logic and Theoretical
Computer Science, number 106 in Lecture Notes in Pure and Applied
Mathematics, pages 71–92. Marcel Dekker, 1987.

[26] R. Di Cosmo, D. Kesner, and E. Polonovski. Proof nets and explicit
substitutions. Math. Str. in Comput. Sci., 13(3):409–450, 2003.

[27] T. Ehrhard and L. Regnier. Böhm trees, Krivine’s machine and the
Taylor expansion of lambda-terms. In CiE, pages 186–197, 2006.

[28] M. Felleisen and D. P. Friedman. Control operators, the SECD-
machine, and the lambda-calculus. In 3rd Working Conference on the
Formal Description of Programming Concepts, Aug. 1986.

[29] R. Garcia, A. Lumsdaine, and A. Sabry. Lazy evaluation and delimited
control. In POPL, pages 153–164, 2009.

[30] T. Hardin and L. Maranget. Functional runtime systems within the
lambda-sigma calculus. J. Funct. Program., 8(2):131–176, 1998.

[31] D. Kesner. A theory of explicit substitutions with safe and full
composition. Logical Methods in Computer Science, 5(3), 2009.

[32] D. Kesner and S. Lengrand. Resource operators for lambda-calculus.
Inf. Comput., 205(4):419–473, 2007.

[33] D. Kesner and F. Renaud. The prismoid of resources. In MFCS, pages
464–476, 2009.

[34] J.-L. Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

[35] P. J. Landin. The Mechanical Evaluation of Expressions.
The Computer Journal, 6(4):308–320, Jan. 1964. . URL
http://dx.doi.org/10.1093/comjnl/6.4.308.

[36] F. Lang. Explaining the lazy Krivine machine using explicit
substitution and addresses. Higher-Order and Symbolic Computation,
20(3):257–270, 2007.

[37] X. Leroy. The ZINC experiment: an economical implementation
of the ML language. Technical report 117, INRIA, 1990. URL
http://gallium.inria.fr/ xleroy/publi/ZINC.pdf.

[38] J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda
calculus. J. Funct. Program., 8(3):275–317, 1998.

[39] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name,
call-by-value, call-by-need and the linear lambda calculus. Theor.
Comput. Sci., 228(1-2):175–210, 1999.

[40] G. Mascari and M. Pedicini. Head linear reduction and pure proof net
extraction. Theor. Comput. Sci., 135(1):111–137, 1994.

[41] R. Milner. Local bigraphs and confluence: Two conjectures. Electr.
Notes Theor. Comput. Sci., 175(3):65–73, 2007.

[42] R. P. Nederpelt. The fine-structure of lambda calculus. Technical
Report CSN 92/07, Eindhoven Univ. of Technology, 1992.

[43] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
Theor. Comput. Sci., 1(2):125–159, 1975.

[44] P. Sestoft. Deriving a lazy abstract machine. J. Funct. Program, 7(3):
231–264, 1997.

