
UNIVERSIDAD DE BUENOS AIRES
Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Tesis de Licenciatura

Factorización de derivaciones a través de tipos intersección
Factorizing Derivations via Intersection Types

Gonzalo Ciruelos Rodríguez

Director: Pablo Barenbaum

Buenos Aires, 28 de junio de 2018

Jurado:
Dr. Alejandro Díaz-Caro
Dr. Alejandro Ríos

En sistemas de tipos intersección no idempotentes típicos, la normalización de pruebas
no es confluente. En este trabajo presentamos un sistema confluente de tipos intersec-
ción no idempotentes para el cálculo λ. Escribimos las derivaciones de tipos usando
una sintaxis concisa de términos de prueba. El sistema goza de buenas propiedades:
subject reduction, es fuertemente normalizante, y tiene una teoría de residuos muy reg-
ular. Establecemos una correspondencia con el cálculo lambda mediante teoremas de
simulación.

La maquinaria de los tipos intersección no idempotentes nos permite seguir el rastro
del uso de los recursos necesarios para obtener una respuesta. En particular, induce
una noción de basura: un cómputo es basura si no contribuye a hallar una respuesta.
Usando estas nociones, mostramos que el espacio de derivaciones de un término λ
puede ser factorizado usando una variante de la construcción de Grothendieck para
semireticulados. Esto significa, en particular, que cualquier derivación del cálculo λ
puede ser escrita de una única manera como un prefijo libre de basura, seguido de
basura.

Palabras clave: Cálculo lambda, Tipos intersección, Espacio de derivacion, Reticulado

In typical non-idempotent intersection type systems, proof normalization is not conflu-
ent. In this work we introduce a confluent non-idempotent intersection type system
for the λ-calculus. Typing derivations are presented using a concise proof term syntax.
The system enjoys good properties: subject reduction, strong normalization, and a very
regular theory of residuals. A correspondence with the λ-calculus is established by
simulation theorems.

The machinery of non-idempotent intersection types allows us to track the usage of
resources required to obtain an answer. In particular, it induces a notion of garbage: a
computation is garbage if it does not contribute to obtain an answer. Using these notions,
we show that the derivation space of a λ-term may be factorized using a variant of the
Grothendieck construction for semilattices. This means, in particular, that any derivation
in the λ-calculus can be uniquely written as a garbage-free prefix followed by garbage.

Keywords: Lambda Calculus, Intersection Types, Derivation Space, Lattice

AGRADECIMIENTOS

A Pablo, por la infinita ayuda y paciencia, y por enseñarme todo lo que sé sobre
cálculo lambda, reescritura, lógica, y teoría de tipos.

A Ale Ríos y Jano, por aceptar ser los jurados y dedicar tiempo a leer y hacer
comentarios detallados sobre la tesis.

Al Departamento de Computación, por hacer posible que se pueda estudiar esta
carrera y fomentar un ambiente oportuno para llevarla a cabo.

A mi familia, por todo el apoyo durante mis estudios.
A mis amigos, de todos lados.

Contents

Introduction i

1 Preliminaries 1
1.1 Order theory . 1
1.2 Rewriting theory . 2
1.3 Lists and multisets . 4
1.4 Typing . 4

2 A distributive λ-calculus 5
2.1 Types . 5
2.2 Syntax . 6
2.3 The calculus . 8
2.4 Basic properties . 11

3 Residual theory 15
3.1 Orthogonality of λ# . 16
3.2 Names and labels . 18
3.3 Stability (and creation) . 21
3.4 Lattices and derivation spaces . 25

4 Simulation of the λ-calculus 31
4.1 Refinements . 31
4.2 Simulation . 32
4.3 Head normal forms . 34
4.4 Simulation residuals . 35

5 Factorization of derivations 43
5.1 Garbage . 43
5.2 Sieving . 46
5.3 Some properties . 47
5.4 Factorization of garbage . 48
5.5 Lattices . 48

6 Conclusions 51

CONTENTS

A Proofs of selected statements 53
A.1 Proof of Lemma 2.8 — Unique typing . 53
A.2 Proof of Lemma 2.17 — Linearity . 54
A.3 Proof of Lemma 2.19 — Subject reduction 55
A.4 Proof of Proposition 2.20 (cont.) — Termination 60
A.5 Proof of Lemma 2.24 — Substitution lemma 61
A.6 Proof of Proposition 2.26 — Strong Permutation 62
A.7 Proof of Lemma 3.18 — Creation . 64
A.8 Proof of Lemma 3.19 — Basic Stability . 66
A.9 Auxiliary lemmas for Section 3.4 — Lattices and Derivation Spaces . . . 72
A.10 Auxiliary lemmas for Section 4.1 — Refinements 74
A.11 Proof of Proposition 4.3 — Simulation . 75
A.12 Proof of Proposition 4.5 — Reverse simulation 77
A.13 Proof of Lemma 4.8 — Head normal forms have refinements 80
A.14 Proof of Proposition 4.9 — Refinability characterizes head normalization 81
A.15 Proof of Lemma 4.15 — Basic cube lemma for simulation residuals . . . 86
A.16 Proof of Proposition 4.17 — Compatibility 91
A.17 Proofs from Section 5.2 — Sieving . 92
A.18 Proofs from Section 5.3 — Some properties 93
A.19 Proof of Proposition 5.21 — Properties of derivation semilattices 100
A.20 Proof of Theorem 5.22 — Factorization . 103

References 109

Introduction

The main concern of this work will be to analyze and understand spaces of computations.
To understand what a space of computations is, we need to introduce the notion of
rewriting system. A rewriting system is a set of objects A and a binary rewriting relation
on A, called→. If a1 → a2 we say that a1 can be rewritten to a2.

For example, the elementary arithmetic (addition and multiplication of natural
numbers) can be seen as a rewriting system, where the objects (called terms in this case)
are given by the following abstract syntax:

t, s ::= t + s | t · s | n

with n ∈N. We write n to mean that we have a term, not only a natural number. The
terms are equipped with three rewriting rules, one that states how to add and two that
say how to multiply:

n + m → n + m
n · t → t + t + ... + t︸ ︷︷ ︸

n times

if n > 0

0 · t → 0

Actually, to be completely formal we should say that the rewriting relation is the
contextual closure of the rules above, which intuitively means that we can apply the rules
anywhere we want in the term. For example, if we had the term 3 + 0 · (4 + 5), we
can apply the first rule to get 3 + 0 · 9, and then the third one to get 3 + 0, which can
be rewritten to 3. But notice that instead of doing the first step we did, we could have
directly applied the third rewrite rule onto our term, which would have yielded 3 + 0,
saving one step.

Given a term t, its reduction graph is the graph that has all reducts of t as nodes, and
edges between two nodes if one can be rewritten to the other.

We could also consider the set of all reductions that start in t, and equip it with an
order relation—usually a derivation is lesser than another derivation if it does less work.
The space of computations of t is that set modulo an equivalence relation—which usually
says whether or not two derivations do the same amount of work. We will use the same
kind of diagrams to represent computation spaces and reduction graphs.

In the example above, the computation space of 3+ 0 · (4+ 5) would be the following.

i

ii INTRODUCTION

3 + 0 · (4 + 5)

''ww
3 + 0 · 9 // 3 + 0

ww3

To illustrate some other notions of rewriting theory, consider the following examples.

0 · (5 + 5)

�� %%
0 0 · 10oo

Notice how the step that performed the sum was not needed, as we could have done
the multiplication directly. We will concentrate in these kinds of phenomena in this
work: steps that do not perform interesting work. Later on, we will call these steps
garbage.

In the next example we will name our steps to make the explanation clearer.

1 · (5 + 5)

Rxx S &&
1 · 10

S′

&&

5 + 5
R′

xx
10

This example allows us to present the notion of residuals. We have two steps that perform
the sum 5 + 5 → 10, R and R′. These steps are formally different (they are different
elements of the rewriting relation), but do the same work. We can formalize this notion:
we will say that R′ is the residual of R after S, i.e., it is what is left of R after S. We
will write this R/S = {R′}. Also notice how there is no “faster” reduction strategy, all
reductions are the same length.

Let us consider a last, slightly more complicated, example.

iii

2 · (5 + 5)

Rxx S))
2 · 10

S′

11

(5 + 5) + (5 + 5)
R1

uu R2))
10 + (5 + 5)

R′2))

(5 + 5) + 10
R′1

uu
10 + 10

T
��

20

Notice here how the residual of R after S is a set of two steps, {R1, R2}. That means that
if we performed S, we need to do those two steps to do the work R alone did.

We would be inclined to guess that a good reduction strategy would be to never
perform a multiplication n · t if t is an unevaluated expression, such that we do not
multiply work. But that strategy fails when we have a 0 as n.

What we want to do in this work is to understand the spaces of computations of
programs, which may have a very complex structure. Consider a side-effect free pro-
gramming language. The possible computations of a tuple (A, B) are rewrite sequences
(A, B) → . . . → (A′, B′). These sequences can always be decomposed as two non-
interfering computations A → . . . → A′ and B → . . . → B′. The reason is that the
sub-expressions A and B cannot interact with each other. Indeed, the space of computa-
tions of (A, B) can be understood as the product of the spaces of A and B. In contrast,
the space of computations of a function application f (A) is not so easy to characterize.
The difficulty is that f may use the value of A zero, one, or possibly many times. For
example, the constant function, const x y = x, does not use its second parameter, while
it uses its first parameter exactly once. The duplication function, dup x = (x, x), on
the other hand, uses its parameter twice.

Another difficulty is that a program may hang, which means it has an infinite rewrite
sequence. For example, the evaluation of the function f x = 1 + (f x) will never
terminate. This did not happen in the elementary arithmetic example above, where we
always arrive to a result. More importantly, a program may finish or not depending on
what rewriting rule we choose in each step.

We hope understanding the spaces of computations of programs may be helpful
to better understand the properties of evaluation strategies, such as call-by-name or call-
by-value, from a quantitative point of view. A better understanding may also suggest
program optimizations, and it should allow to justify that certain program conversions
are sound: e.g. that they do not turn a terminating program into a non-terminating one.

The study of different notions of equivalence of programs [Mor69, BMPR16] may

iv INTRODUCTION

greatly benefit from a better understanding of space of computations, too. Usually,
several notions of observational equivalence may be established, depending of how a
program behaves under an arbitrary context C. For example, a possible definition says
that two terms M and N are observationally equivalent if for any context C, we have
that C〈M〉 has a normal form if and only if C〈N〉 has a normal form. Understanding the
space of computations of M (and N) would be a key tool to reason about the different
notions of observational equivalence.

The pure λ-calculus is the quintessential functional programming language. The
λ-calculus is a rewriting system that can represent all computable functions in a concise
manner. Terms of the λ-calculus can be variables, functions or applications. More
precisely, the set of terms is given by the following grammar:

t, s ::= x | λx.t | t s
And we only have one rewriting rule, the function application (λx.t)s→ t{x := s},

where t{x := s}means to replace every occurrence of x in t with s.
Computations in the λ-calculus have been thoroughly studied since its conception

in the 1930s. The well-known theorem by Church and Rosser [CR36] states that the λ-
calculus is confluent, which means, in particular, that terminating programs have unique
normal forms. Another result by Curry and Feys [CF58] states that computations in the λ-
calculus may be standardized, meaning that they may be converted into a computation in
canonical form. A refinement of this theorem by Lévy [Lév78] asserts that the canonical
computation thus obtained is equivalent to the original one in a strong sense, namely
that they are permutation equivalent. In a series of papers [Mel97, Mel00, Mel02a, Mel02b,
Mel05], Melliès generalized many of these results to the abstract setting of axiomatic
rewrite systems.

Let us discuss “spaces of computations” more precisely. The derivation space of an
object x in some rewriting system is the set of all derivations, i.e. sequences of rewrite
steps, starting from x. In this work, our rewriting system of interest will be the pure
λ-calculus, and we will be interested in finite derivations only. In the λ-calculus, a
transitive relation between derivations may be defined, the prefix order. A derivation ρ is
a prefix of a derivation σ, written ρ v σ, whenever ρ performs less computational work
than σ. Formally, ρ v σ is defined to hold whenever the projection ρ/σ is empty1. For
example, if K = λx.λy.x, the derivation space of the term (λx.xx)(Kz) can be depicted
with the reduction graph below. Derivations are directed paths in the reduction graph,
and ρ is a prefix of σ if there is a directed path from the target of ρ to the target of σ. For
instance, SR2 is a prefix of RS′T′:

(λx.xx)(Kz) R //

S

))

(λx.xx)(λy.z) S′

''
(Kz)(λy.z)

R′2 // (λy.z)(λy.z) T′

$$
(Kz)(Kz)

R1 11

R2 // (λy.z)(Kz)
R′1 55

T // z

(1)

1The notion of projection defined by means of residuals is the standard one, see e.g. [Bar84, Chapter 12]
or [Ter03, Section 8.7]. We will define this more formally in the preliminaries.

v

Remark that the relation v is reflexive and transitive but not anti-symmetric, i.e. it is
a quasi-order but not an order. For example RS′ v SR1R′2 v RS′ but RS′ 6= SR1R′2.
Anti-symmetry may be recovered as usual when in presence of a quasi-order, namely
by working modulo permutation equivalence: two derivations ρ and σ are said to be per-
mutation equivalent, written ρ ≡ σ, if ρ v σ and σ v ρ. Working modulo permutation
equivalence is reasonable because Lévy’s formulation of the standardization theorem
ensures that permutation equivalence is decidable, and each equivalence class has a
canonical representative.

Derivation spaces are known to exhibit various regularities [Lév78, Zil84, Lan94,
Mel96, Lev15, AL13]. In his PhD thesis, Lévy [Lév78] showed that the derivation space
of a term is an upper semilattice: any two derivations ρ, σ from a term t have a least upper
bound ρ t σ, defined as ρ(σ/ρ), unique up to permutation equivalence. On the other
hand, the derivation space of a term t is not an easy structure to understand in general2.
For example, relating the derivation space of an application ts with the derivation spaces
of t and s appears to be a hard problem. Lévy also noted that the greatest lower bound
of two derivations does not necessarily exist, meaning that the derivation space of a
term does not form a lattice in general. And even when it forms a lattice, it may not
necessarily be a distributive lattice, as observed by Laneve [Lan94].

Consider the following counterexample 3, showing that the meet of derivations is
not well-defined in general. Let Ω = (λx.xx)λx.xx, and consider the reduction space of
(λx.(λy.a)(xΩ))(λz.b), where the steps Ui contract Ω:

(λx.(λy.a)(xΩ))(λz.b)

U1
��

S

��

R

��

(λx.(λy.a)(xΩ))(λz.b)

		 ��

U2
��

(λx.(λy.a)(xΩ))(λz.b)

�� ��
U3 ��

(λy.a)((λz.b)Ω)

T
��

... (λx.a)(λz.b)

(λy.a)b

Observe that ST and R do not have a greatest lower bound: ST and R are not comparable,
and neither are S and R. Furthermore, for all n ∈ N we have that U1 . . . Un v R and
U1 . . . Un v ST so the meet R u ST does not exist.

In [Mel97], Melliès showed that derivation spaces in any rewriting system satisfying

2Problem 2 in the RTA List of Open Problems [DJK91] poses the open-ended question of investigating
the properties of “spectra”, i.e. derivation spaces.

3Similar to an example due to Laneve [Lan94].

vi INTRODUCTION

certain axioms may be factorized using two spaces, one of external and one of internal
derivations.

The difficulty to understand derivation spaces is due to three pervasive phenom-
ena of interaction between computations. The first phenomenon is duplication: in the
reduction graph above (1), the step S duplicates the step R, resulting in two copies of
R: the steps R1 and R2. In such situation, one says that R1 and R2 are residuals of R,
and, conversely, R is an ancestor of R1 and R2. The second phenomenon is erasure: in
the same graph (1), the step T erases the step R′1, resulting in no copies of R′1. The third
phenomenon is creation: in the same graph, the step R2 creates the step T, meaning that
T is not a residual of a step that existed prior to executing R2; that is, T has no ancestor.

These three interaction phenomena, especially duplication and erasure, are intimately
related with the management of resources. In this work, we aim to explore the hypothesis
that having an explicit representation of resource management may provide insight
on the structure of derivation spaces.

There are many existing λ-calculi that deal with resource management explicitly
[Bou93, ER03, KL07, KR09], most of which draw inspiration from Girard’s Linear Logic
[Gir87]. In recent years, one family of such formalisms, namely calculi endowed with non-
idempotent intersection type systems, has received some attention [Ehr12, BL13, BKDR14,
BKV17, Kes16, Via17, KRV18]. These type systems are able to statically capture non-
trivial dynamic properties of terms, particularly normalization, while at the same time
being amenable to elementary proof techniques by induction, rather than arguments
based on reducibility. Intersection types were originally proposed by Coppo and Dezani-
Ciancaglini [CD78] to study termination in the λ-calculus. They are characterized by
the presence of an intersection type constructor τ ∩ σ. Non-idempotent intersection type
systems are distinguished from their usual idempotent counterparts by the fact that
intersection is not declared to be idempotent, i.e. τ and τ ∩ τ are not equivalent types.
Rather, intersection behaves like a multiplicative connective in linear logic. Arguments
to functions are typed many times, typically once per each time that the argument will be
used. Non-idempotent intersection types were originally formulated by Gardner [Gar94],
and later reintroduced by de Carvalho [Car07].

In this work, we will use a non-idempotent intersection type system based on
systemW of [BKV17] (called systemH in [BKDR14]). Let us recall its definition. Terms
are as usual in the λ-calculus (t ::= x | λx.t | t t). Types τ, σ, ρ, . . . are defined by the
grammar:

τ ::= α | M → τ M ::= [τi]
n
i=1 with n ≥ 0

where α ranges over one of denumerably many base types, andM represents a multiset
of types. Here [τi]

n
i=1 denotes the multiset containing the types τ1, . . . , τn with their

respective multiplicities. A multiset [τi]
n
i=1 intuitively stands for the (non-idempotent)

intersection τ1 ∩ . . . ∩ τn, and ⊕ stands for disjoint union. Type assignment rules for
systemW are as follows.

vii

Definition 0.1 (SystemW).

var
x : [τ] ` xτ

Γ⊕ (x :M) ` t : τ
→I

Γ ` λx.t :M→ τ

Γ ` t : [σi]
n
i=1 → τ (∆i ` s : σi)

n
i=1 →E

Γ +n
i=1 ∆i ` t s : τ

Observe that the→E rule has n + 1 premises, where n ≥ 0. SystemW enjoys various
properties, nicely summarized in [BKV17].

There are two obstacles to adopting systemW for studying derivation spaces. The
first obstacle is just a matter of presentation—typing derivations use a tree-like notation,
which is cumbersome. One would like to have an alternative presentation based on
proof terms. For example, one would like to write xτ for an application of the var rule,
λx.t for an application of the→I rule, and t[s1, . . . , sn] for an application of the→E rule,
so that, for example, λx.x[α,α]→β[xα, xα] represents the following typing derivation:

var
x : [[α, α]→ β] ` x : [α, α]→ β

var
x : [α] ` x : α

var
x : [α] ` x : α →E

x : [[α, α]→ β, α, α] ` xx : β
→I` λx.xx : [[α, α]→ β, α, α]→ β

The second obstacle is a major one for our purposes: proof normalization in this system is
not confluent. The reason is that applications take multiple arguments, and a β-reduction
step must choose a way to distribute these arguments among the occurrences of the
formal parameters. For instance, the following critical pair cannot be closed:

(λx.y[α]→[α]→β[xα][xα])[z[γ]→α[zγ], z[]→α[]] //

--
y[α]→[α]→β[z[γ]→α[zγ]][z[]→α[]]

y[α]→[α]→β[z[]→α[]][z[γ]→α[zγ]]

The remainder of this work is organized as follows:

• In Chapter 1, we review some standard notions of order and rewriting theory, as
well as some basic notions of the λ-calculus that we will use throughout the work.

• In Chapter 2, we introduce a confluent calculus, λ#, based on system W . The
desirable properties of system W of [BKV17] still hold in λ#. Moreover, λ# is
confluent. We impose confluence forcibly, by decorating sub-trees with distinct
labels, so that a β-reduction step may distribute the arguments in a unique way.

• In Chapter 3, we develop a theory of residuals for the λ#-calculus and prove
that the derivation spaces of its terms have an orderly structure, namely they are
distributive lattices.

• In Chapter 4, we establish a correspondence between derivation spaces in the
λ-calculus and the λ#-calculus via simulation theorems, which defines a morphism
of upper semilattices.

viii INTRODUCTION

• In Chapter 5, we introduce the notion of a garbage derivation. Roughly, a deriva-
tion in the λ-calculus is garbage if it maps to an empty derivation in the λ#-calculus.
This gives rise to an orthogonal notion of garbage-free derivation. The notion of
garbage-free derivation is closely related with the notions of needed step [Ter03,
Section 8.6], typed occurrence of a redex [BKV17], and external derivation [Mel97].
Using this notion of garbage we prove a factorization theorem reminiscent of Mel-
liès’ [Mel97]. The upper semilattice of derivations of a term in the λ-calculus is
factorized using a variant of the Grothendieck construction. Every derivation is
uniquely decomposed as a garbage-free prefix followed by a garbage suffix.

• In Conclusions, we end with a discussion of our results.

Note. Proofs including a ♠ symbol are spelled out in detail in the appendix.

Chapter 1

Preliminaries

1.1 Order theory

We are interested in understanding the derivation spaces of λ-terms. These derivation
spaces, as we briefly mentioned earlier, have an structure that can be seen as an order.
More specifically, the poset we will consider will be the one of derivations, where the
order is given by the amount of work each derivation does.

But the structures we will work with are more than just posets, they have a richer
structure, which we will define now.

An upper semilattice is a poset (i.e., a set A with an order ≤) with a least element or
bottom ⊥ ∈ A, such that for every two elements a, b ∈ A there is a least upper bound or
join (a ∨ b) ∈ A.

A lattice is an upper semilattice with a greatest element or top > ∈ A, and such that
for every two elements a, b ∈ A there is a greatest lower bound or meet (a ∧ b) ∈ A. A
lattice is distributive if ∧ distributes over ∨ and vice versa.

In the introduction we claimed that derivation spaces of λ-terms were upper semilat-
tices, but in general were not lattices.

A morphism of upper semilattices is given by a monotonic function f : A→ B, i.e.
a ≤ b implies f (a) ≤ f (b), preserving the bottom element, i.e. f (⊥) = ⊥, and joins,
i.e. f (a ∨ b) = f (a) ∨ f (b) for all a, b ∈ A. Similarly for morphisms of lattices (and
distributive lattices).

Any poset (A,≤) may be regarded as category whose objects are the elements of
A and morphisms are of the form a ↪→ b for all a ≤ b. The category of posets with
monotonic functions is denoted by Poset. In fact, we view it as a 2-category: given
morphisms f , g : A→ B of posets, there is a 2-cell f ≤ g if f (a) ≤ g(a) for all a ∈ A. (A
2-category is just a category with morphisms between morphisms). This notion is more
technical and will only be used in the last chapter.

1

2 CHAPTER 1. PRELIMINARIES

1.2 Rewriting theory

The λ-calculus is a particular case of a more general mathematical concept, called
rewriting system. Informally, a rewriting system is a set of objects and a set of rules that
let you transform some objects into others.

More formally, an axiomatic rewrite system (cf. [Mel96, Def. 2.1]) is given by a set
of objects Obj, a set of steps Stp, two functions src, tgt : Stp→ Obj indicating the source
and target of each step, and a residual function (/) such that given any two steps
R, S ∈ Stp with the same source, yields a set of steps R/S such that src(R′) = tgt(S)
for all R′ ∈ R/S. Steps are ranged over by R, S, T, A step R′ ∈ R/S is called a
residual of R after S, and R is called an ancestor of R′. Steps are coinitial (resp. cofinal)
if they have the same source (resp. target). A derivation is a possibly empty sequence of
composable steps R1 . . . Rn. Derivations are ranged over by ρ, σ, τ, The functions src
and tgt are extended to derivations (noticing that there is a different empty derivation
for each element in Obj). We use εt to denote the empty derivation with source (and
target) t, and we will often drop the subscript when it is clear from the context.

Composition of derivations is defined when tgt(ρ) = src(σ) and written ρσ. Residu-
als are extended for projecting after a derivation, namely Rn ∈ R0/S1 . . . Sn if and only
if there exist R1, . . . , Rn−1 such that Ri+1 ∈ Ri/Si+1 for all 0 ≤ i ≤ n− 1.

Let M be a set of coinitial steps. A development of M is a (possibly infinite)
derivation R1 . . . Rn . . . such that for every index i there exists a step S ∈ M such that
Ri ∈ S/R1 . . . Ri−1. Informally, a development ofM is a derivation in which we only do
the work that the steps contained inM do. A development is complete if it is maximal.

The definition of an abstract rewriting system is very general, and because of that it
does not give us general properties for systems with such structure. In his PhD thesis,
Melliès gave a set of sufficient properties (which he called axioms) that a rewriting
system should have to behave properly.

An orthogonal axiomatic rewrite system (cf. [Mel96, Sec. 2.3]) has four additional
axioms1:

1. Autoerasure. R/R = ∅ for all R ∈ Stp.
2. Finite Residuals. The set R/S is finite for all coinitial R, S ∈ Stp.
3. Finite Developments. If M is a set of coinitial steps, all developments of M are

finite.
4. Semantic Orthogonality. Let R, S ∈ Stp be coinitial steps. Then there exist a complete

development ρ of R/S and a complete development σ of S/R such that ρ and σ are
cofinal. Moreover, for every step T ∈ Stp such that T is coinitial to R, the following
equality between sets holds: T/Rσ = T/Sρ.

In [Mel96], Melliès develops the theory of orthogonal axiomatic rewrite systems. A
notion of projection ρ/σ may be defined between coinitial derivations, essentially by

setting ε/σ
def
= ε and Rρ′/σ

def
= (R/σ)(ρ′/(σ/R)) where, by abuse of notation, R/σ

1In [Mel96], Autoerasure is called Petit axiome A, Finite Residuals is called Petit axiome B, and Semantic
Orthogonality is called Axiome PERM. We follow the nomenclature of [ABKL14]

1.2. REWRITING THEORY 3

stands for a (canonical) complete development of the set R/σ. 2 Using this notion, one
may define a transitive relation of prefix (ρ v σ), a permutation equivalence relation
(ρ ≡ σ), and the join of derivations (ρ t σ). Some of their properties are summed up in
the figure below:

Summary of properties of orthogonal axiomatic rewrite systems

ε ρ = ρ
ρ ε = ρ

ε/ρ = ε
ρ/ε = ρ

ρ/στ = (ρ/σ)/τ
ρσ/τ = (ρ/τ)(σ/(τ/ρ))

ρ/ρ = ε

ρ v σ
def⇐⇒ ρ/σ = ε

ρ ≡ σ
def⇐⇒ ρ v σ ∧ σ v ρ

ρ t σ
def
= ρ(σ/ρ)

ρ ≡ σ =⇒ τ/ρ = τ/σ
ρ v σ ⇐⇒ ∃τ. ρτ ≡ σ
ρ v σ ⇐⇒ ρ t σ ≡ σ

ρ v σ =⇒ ρ/τ v σ/τ
ρ v σ ⇐⇒ τρ v τσ
ρ t σ ≡ σ t ρ

(ρ t σ) t τ = ρ t (σ t τ)
ρ v ρ t σ

(ρ t σ)/τ = (ρ/τ) t (σ/τ)

Let [ρ] = {σ | ρ ≡ σ} denote the permutation equivalence class of ρ. In an orthogonal
axiomatic rewrite system, the set D(x) = {[ρ] | src(ρ) = x} forms an upper semilattice.
The order [ρ] v [σ] is given by ρ v σ, the join is [ρ] t [σ] = [ρ t σ], and the bottom is
⊥ = [ε].

We need to equip the λ-calculus with a notion of residual if we want it to enjoy the
properties of an arbitrary axiomatic rewrite system. A position is a sequence of positive
integers; ε is the empty sequence and p · q is the concatenation of sequences. If Q is a set
of positions, we write p · Q to mean the result of concatenating p with every position
in Q. We define pos(t) to be the set of positions of t, so by definition: pos(x) = {ε},
pos(ts) = (0 · pos(t)) ∪ (1 · pos(s)), and pos(λx.t) = 0 · pos(t). The sub-term of t in the
position p is called M|p. Given a step t → s in the λ-calculus, we say that the term in
the position q ∈ pos(s) is a descendant of the term in the position p ∈ pos(t) (or simply,
that q is a descendant of p) in the following cases:

1. If the reduction is at the head, t = (λx.u)r → u{x := r}, then q is a descendant of
p if and only if it is the case that:
1.1 q ∈ pos(u) and u|q 6= x with p = 00q, or
1.2 q = q1q2, u|q1 = x and q2 ∈ pos(r), with p = 1q2.

2. If the reduction is under a context, t = C〈u〉 → C〈u′〉 = s, with C|r = �, then q is a
descendent of p if and only if p = rp′, q = rq′, and q′ is a descendant of p′ in the
step u→ u′.

Given a step t→ s, a redex s|q is a residual of a redex t|p if and only if q is a descendant
of p.

The λ-calculus is an example of an orthogonal axiomatic rewrite system [Mel96].
Our structures of interest are the semilattices of derivations from a given term t of the
λ-calculus, written Dλ(t). As usual, β-reduction in the λ-calculus is written t→β s and
defined by the contextual closure of the axiom (λx.t)s→β t{x := s}.

2The projection R/σ essentially stands for the work from R that is left after doing σ.

4 CHAPTER 1. PRELIMINARIES

1.3 Lists and multisets

Throughout this work we will use lists and sets, so we establish here basic definitions
and notations.

Definition 1.1 (Lists and multisets). If A is a sort, we write ~A for the sort of (finite) lists
over A, defined inductively as:

~A ::= ε | A · ~A

We usually write [a1, . . . , an], abbreviated [ai]
n
i=1, to stand for a1 · (a2 · . . . (an · ε)). If ~a

and~b are lists, ~a +~b stands for its concatenation, and |~a| is the length of the list ~a. If
a, b, c, . . . are the names of the meta-variables ranging over a sort A, then~a,~b,~c, . . . are
the names of the meta-variables ranging over lists of A. When there is no possibility
of confusion, we may also write [~a, b,~c] for the list~a + [b] +~c. We write~a ≈ ~b if~a is a
permutation of~b. Observe that ≈ is an equivalence relation.

In some cases we will work with (finite) multisets, which are defined to be lists,
considered modulo arbitrary permutations of their elements and without regard of the
number of repetitions of each element. The notation for operations on lists will be lifted
to operations on multisets. In particular,~a +~b denotes the union of multisets, and |~a|
stands for the cardinal of~a. This notation is chosen to resemble the multiset notation of
existing intersection type systems. Whether we are referring to multisets or lists will be
clear from the context.

1.4 Typing

In the framework of typed calculi, a typing judgment is a statement of the meta-theory
that contains the knowledge that with a given typing context, we can prove that some
term has some type. For example, knowing Γ ` t : τ means that with the typing context
Γ we can prove that t has type τ.

Typing contexts, or contexts for short, ranged over by Γ, ∆, Θ, . . . are (total) functions
from variables to finite multisets of types. We write dom Γ for the multiset of variables x
such that Γ(x) 6= []. We write ∅ for the context such that ∅(x) = [] for every variable x.
The notation Γ + ∆ stands for the sum of contexts, defined as follows:

(Γ + ∆)(x) def
= Γ(x) + ∆(x)

The notation Γ ⊕ ∆ stands for the disjoint sum of contexts, i.e. it stands for Γ + ∆
provided dom Γ∩ dom ∆ = ∅. We also write Γ +n

i=1 ∆i for Γ + ∑n
i=1 ∆i. Moreover, x :M

denotes the context such that (x :M)(x) =M and dom(x :M) = {x}.

Chapter 2

A distributive λ-calculus

In this chapter we present a distributive λ-calculus (λ#), and we prove some basic proper-
ties it enjoys, most importantly confluence and strong normalization.

Terms of the λ#-calculus are typing derivations of a non-idempotent intersection
type system, written using proof term syntax. The underlying type system is a variant
of systemW of [BKDR14, BKV17], the main difference being that λ# uses labels and a
suitable invariant on terms, to ensure that the formal parameters of all functions are in
1–1 correspondence with the actual arguments that they receive.

2.1 Types

We will now present the type system we will work with, which as we said, is a variant
of the system presented in [BKV17].

To make the notation easier, we will write τ1 ∩ ... ∩ τn as the multiset [τ1, . . . , τn].
Recall that we work in a non idempotent environment so we may have repetitions.

Definition 2.1 (Types). Let L = {`, `′, `′′, . . .} be a denumerable set of labels. The sets of
types, ranged over by τ, σ, ρ, . . ., and finite sets of types, ranged over byM,N ,P , . . .,
are given mutually inductively by the following abstract syntax:

τ ::= α` | M `→ τ

M ::= [τi]
n
i=1 for some n ≥ 0

In a type like α` andM `→ τ, the label ` is called the external label.

One remark that deserves mention is that the difference with the systemW at type-
level is that we include labels. Like in systemW , note that it will not be possible for a
term to have multiple types, like the name intersection type system would suggest. Rather,
what happens is that function terms will receive a parameter that can be interpreted as
having several types.

Later we will need to look closely at these types, for which purpose the following
definition will be useful.

5

6 CHAPTER 2. A DISTRIBUTIVE λ-CALCULUS

Definition 2.2. A type τ is said to occur in another type σ if τ � σ holds, where (�) is the
reflexive and transitive closure of the axioms τi � [τ1, . . . , τn]→ σ for all i ∈ {1, . . . , n},
and σ � [τ1, . . . , τn] → σ. This is extended to say that a type τ occurs in a multiset
[σ1, . . . , σn], defined by τ � [σ1, . . . , σn] if τ � σi for some i ∈ {1, . . . , n}, and that a type
τ occurs in a typing context Γ, defined by τ � Γ if τ � Γ(x) for some x ∈ dom Γ.

2.2 Syntax

Generally, intersection type systems are used on the pure λ-calculus. In such envi-
ronment, a term may be typed: for example, in system W , λx.xx can have the type
((α→ β) ∩ α)→ β, but the term Ω = (λx.xx)(λx.xx) cannot be typed.

In contrast, what we will do in this work is define a slightly different calculus, such
that all well-formed terms of that calculus can be typed using the non idempotent
intersection type system defined above.

The informal idea behind the definition of the terms of the calculus is that in an
application, for each type in the domain of the function there will be a different argument.
So if we have a term t with type (τ1 ∩ τ2)→ τ3, we will apply it to a list of arguments,
one with type τ1 and the other with type τ2.

Definition 2.3 (Distributive type system). The set of distributive terms, ranged over by
(t, s, u, . . .) is given by the following abstract syntax:

t ::= xτ | λ`x.t | t~t

Typing rules are defined inductively as follows.

var
x : [τ] ` xτ : τ

Γ⊕ x :M ` t : σ
→I

Γ ` λ`x.t :M `→ σ

Γ ` t : [σ1, . . . , σn]
`→ τ (∆i ` si : σi)

n
i=1 →E

Γ +n
i=1 ∆i ` t[s1, . . . , sn] : τ

Moreover, we introduce a judgment of the form [Γ1, . . . , Γn] ` [t1, . . . , tn] : [τ1, . . . , τn]
with the following rule:

Γi ` ti : τi for all i = 1..n
t-multi

[Γ1, . . . , Γn] ` [t1, . . . , tn] : [τ1, . . . , τn]

The most noticeable feature of these terms is that in applications we do not have an
argument that can be typed in many ways (as we did in systemW). Rather, we have a
different term for each type that the function expects its parameter to be.

Example 2.4. Using integer labels,

` λ1x.x[α
2,α3]

4→β5
[xα3

, xα2
] : [[α2, α3]

4→ β5, α2, α3]
1→ β5

2.2. SYNTAX 7

is a derivable judgment. Its complete derivation is as follows.

var
x : [[α2, α3]

4→ β5] ` x : [α2, α3]
4→ β5

var
x : [α2] ` x : α2

var
x : [α3] ` x : α3

→E
x : [[α2, α3]

4→ β5, α2, α3] ` x[α
2,α3]

4→β5
[xα3

, xα2
] : β5

→I
` λ1x.x[α

2,α3]
4→β5

[xα3
, xα2

] : [[α2, α3]
4→ β5, α2, α3]

1→ β5

Note that writing all the labels can be tiresome (because writing all the labels is
essentially writing a proof that the term is typed), so we will omit or simplify them when
possible.

Correctness

Observe that the definition we gave has a fatal flaw: we cannot uniquely associate argu-
ments with variables in the body of the lambdas. For example, consider the following
term.

(λ1x.y[α
2,α2]

3→α4
[xα2

, xα2
])[aα2

, bα2
]

We do not know which parameter to associate which each x—which parameter goes in
the first x, a or b?

To solve that problem we introduce an invariant that will ensure that problem does
not manifest. We will call that invariant correctness.

Note that the problem is that the function in the application expects two arguments
with exactly the same type. A related problem is that, in the body of the function, the
variable x has the same type twice (remember that in a non idempotent context repetition
matters). In fact, it is enough to ask that those two anomalies do not show up for the
system to work.

We will also ask that the labels of the lambdas do not repeat which will come in
handy later.

Definition 2.5 (Correct term). A multiset of types [τ1, . . . , τn] is sequential if the external
labels of τi and τj are different for all i 6= j. A typing context Γ is sequential if Γ(x) is
sequential for every x ∈ dom Γ. A term t is correct if it is typable and it verifies the
following three conditions:

1. Uniquely labeled lambdas. If λ`x.s and λ`′y.u are sub-terms of t at different positions,
then ` and `′ must be different labels. 1

2. Sequential contexts. If s is a sub-term of t and Γ ` s : τ is derivable, then Γ must be
sequential.

3. Sequential types. If s is a sub-term of t, the judgment Γ ` s : τ is derivable, and

there exists a type such that (M `→ σ � Γ) or (M `→ σ � τ), thenM must be
sequential.

Essentially, correctness says that for any function that appears on the term, its
parameters should be uniquely identifiable.

1This is not strictly necessary for our current purpose, but will be useful later.

8 CHAPTER 2. A DISTRIBUTIVE λ-CALCULUS

Example 2.6. x[α
1]

2→β3
[xα1

] is a correct term. The example we gave above,

(λ1x.y[α
2,α2]

3→α4
[xα2

, xα2
])[aα2

, bα2
]

is not. One problem is that the type of y is not sequential. For a last example, λ1x.λ1y.yα2
is not

a correct term since labels for lambdas are not unique.

Remark 2.7. We will consider T # to be the set of all correct terms. In other words, we will
only consider correct terms during the rest of the work.

Having defined the types and the terms of our system sheds some light on the
resource management capabilities that we claimed it will enjoy: note that we can track
very precisely how (i.e. with which type) a term will be used or a bounded variable will
be evaluated. This will prove very useful to analyze the λ-calculus.

The next lemma shows that a term is uniquely typable: this means that for a given
term there is only one type and typing context that satisfy the typing judgment. More-
over, all proof trees are the same.

Note that for all proof trees to be the same it is crucial that we only consider correct
terms, because otherwise when we apply the rule→E we may have the possibility to
choose between different orders for the parameters.2

Lemma 2.8 (Unique typing). Let t be typable, i.e. suppose that there exist a context Γ and
a type τ such that Γ ` t : τ. Furthermore, suppose that t is correct. Then there is a unique
derivation that types t. In particular, if Γ′ ` t : τ′, then Γ = Γ′ and τ = τ′.

Proof. ♠ By induction on t.

2.3 The calculus

What we want to do know is to give the operational semantics for this calculus. The idea
is straightforward: in order to apply a lambda abstraction to a list of arguments we just
replace each occurrence of the variable bounded by the lambda with the corresponding
argument.

To do that we need to define notation for the type of occurrences of a free variable.
If t is typable, Tx(t) stands for the multiset of types of the free occurrences of x in
t. If t1, . . . , tn are typable, T([t1, . . . , tn]) stands for the multiset of types of t1, . . . , tn.

For example, Tx(x[α
1]

2→β3
[xα1

]) = T([yα1
, z[α

1]
2→β3

]) = [[α1]
2→ β3, α1]. To perform a

substitution t{x := [s1, . . . , sn]} we will require that Tx(t) = T([s1, . . . , sn]).
Let us define exactly what we mean by substitution.

2This implies that a weaker uniqueness result holds for incorrect terms: proof trees are equal modulo
permutations when the rule→E is applied, but as we do not care about incorrect terms we do not need to
consider this.

2.3. THE CALCULUS 9

Definition 2.9 (Substitution). Let t and s1, . . . , sn be correct terms such that Tx(t) =
T([s1, . . . , sn]). The capture-avoiding substitution of x in t by~s = [s1, . . . , sn] is denoted
by t{x :=~s} and defined as follows:

xτ{x := [s]} def
= s

yτ{x := []} def
= yτ if x 6= y

(λ`y.u){x :=~s} def
= λ`y.u{x :=~s} if x 6= y and y 6∈ fv(~s)

u0[uj]
m
j=1{x :=~s} def

= u0{x :=~s0}[uj{x :=~sj}]mj=1

In the last case, (~s0, . . . ,~sm) is a partition of~s such that Tx(uj) = T(~sj) for all j ∈ 0, . . . , m.

For example,

(x[α
1]

2→β3
[xα1

]){x := [y[α
1]

2→β3
, zα1

]} = y[α
1]

2→β3
zα1

and
(x[α

1]
2→β3

[xα1
]){x := [yα1

, z[α
1]

2→β3
]} = z[α

1]
2→β3

yα1
.

Remark 2.10. Substitution is type-directed: arguments [s1, . . . , sn] are propagated through-
out the term so that si reaches the free occurrence of x that has the same type as si.
There exists one such occurrence for each i ∈ {1, . . . , n} because Tx(t) = T([s1, . . . , sn]).
Moreover, the fact that t is correct ensures that such occurrence is unique, since Tx(t) is
sequential. The following lemma formalizes what we just said.

Lemma 2.11 (Substitution is well-defined). If Γ⊕ x :~σ ` t : τ and ~∆ `~s :~σ are derivable,
then Γ +~∆ ` t{x :=~s} : τ is derivable.
Proof. By induction on t, straightforward using the ideas in the last remark.

Substitution as we presented it can be hard to work with in some environments, as
we have to track how substitution terms get distributed over the term they are being
substituted in.

The following alternative definition of substitution deals with this by taking advan-
tage of the fact that substitution is type-directed: it takes all terms all the way down
and does not split them in the application case, but rather “picks” the correct term to
substitute in the base case.

Definition 2.12 (Alternative definition of substitution). Let Γ, x : [τ1, . . . , τn] ` t : σ and
let ∆i ` si : ρi for each i ∈ {1, . . . , m} in such a way that Tx(t) ⊆ T([s1, . . . , sm]) and
[σ1, . . . , σn] is sequential. Let us write~s for [s1, . . . , sm]. Then an alternative definition for
substitution t{{x :=~s}}may be defined as follows:

xτ{{x :=~s}} def
= si where i is the unique index such that

T(si) = τ

yτ{{x :=~s}} def
= yτ if x 6= y

(λ`y.t){{x :=~s}} def
= λ`y.t{{x :=~s}} if x 6= y and there is no capture

(t[ui]
k
i=1){{x :=~s}} def

= t{{x :=~s}}[ui{{x :=~s}}]ki=1.

10 CHAPTER 2. A DISTRIBUTIVE λ-CALCULUS

Moreover, [t1, . . . , tn]{{x :=~s}} stands for [t1{{x :=~s}}, . . . , tn{{x :=~s}}], whenever each
substitution ti{{x :=~s}} is well-defined.

Lemma 2.13. t{x :=~s} = t{{x :=~s′}} whenever Tx(t) = T(~s) and~s is a sub-list of~s′.
Proof. By induction on t.

1. Variable (same), t = xτ . First xτ{x := [s]} = s. Also, xτ{{x := ~s′}} = s, because s is in~s′
and it must be the only one for which the external label is the external label of τ.

2. Variable (different), t = y. On the left hand side, yσ{x := []} = yσ. On the right hand
side, yσ{{x :=~s′}} = yσ.

3. Abstraction, t = λ`y.u. On the left, (λ`y.u){x := ~s} = λ`y.u{x := ~s}. On the right
(λ`y.u){{x :=~s′}} = λ`y.u{{x :=~s′}}. The right-hand side of both equations are the same
by inductive hypothesis.

4. Application, t = r[u1, . . . , un]. On the left side we have that (r[ui]
n
i=1){x := ~s} = r{x :=

~s0}[ui{x :=~si}]ni=1, where~s0 +
n
i=1~si is a permutation of~s, Tx(t) = T(~s0) and Tx(ui) = T(~si)

for all i = {1, ..., n}. On the other hand, ((r[ui]
n
i=1)){{x := ~s′}} = r{{x := ~s′}}[ui{{x :=

~s′}}]ni=1.
Note that for every i ∈ {0, ..., n}, ~si is a sub-list of ~s. Then, by inductive hypothesis,
r{x :=~s0} = r{{x :=~s′}} and ui{x :=~si} = ui{{x :=~s′}}, which is what we wanted.

Lemma 2.14 (Substitution lemma for the alternative notion of substitution). The following
variant of the substitution lemma holds when x 6∈ fv(~u):

t{{x :=~s}}{{y := ~u}} = t{{y := ~u}}{{x :=~s{{y := ~u}}}}

This equation is intended to mean, in particular, that one side is well-defined if and only if the
other side is well-defined.
Proof. Straightforward by induction on t.

Remark 2.15. C〈t〉{{x :=~s}} = C{{x :=~s}}〈t{{x :=~s}}〉.

Definition 2.16 (The λ#-calculus). The λ#-calculus (distributive λ-calculus) is given by
the set of correct typable terms T #. For each label ` ∈ L , we define a reduction relation
`−→# ⊆ T # × T # as follows:

C〈(λ`x.t)~s〉 `−→# C〈t{x :=~s}〉

where C stands for a context. The binary relation→# is the union of all the `−→#:

→#
def
=

⋃
`∈L

`−→#

We sometimes drop the subscript for→#, writing just→, when clear from the context.
The set of contexts is given by the grammar:

C ::= � | λ`x.C | C~t | t[s1, . . . , si−1, C, si+1, . . . , sn]

2.4. BASIC PROPERTIES 11

Contexts can be thought as terms with a single free occurrence of a distinguished variable
�. The notation C〈t〉 stands for the capturing substitution of the occurrence of � in C by
t.

In general an n-hole context is a term C with exactly n ≥ 0 free occurrences of the
distinguished variable �. If C is an n-hole context, C〈t1, . . . , tn〉 stands for the term that
results from performing the substitution of the i-th occurrence of � (from left to right)
by ti. If C is an n-hole context for some n, we say that it is a many-hole context.

2.4 Basic properties

The first lemma is about the shape of the typing context of a given typing judgment.
Specifically, that the typing context will contain x : τ for each free variable xτ that occurs
in the term, and nothing else.

This lemma will be very useful to prove several upcoming results.

Lemma 2.17 (Linearity). Let t ∈ T # be a correct term, and let Γ ` t : τ be the (unique) type
derivation for t. Let x be any variable, and consider the n ≥ 0 free occurrences of the variable x
in the term t, more precisely, write t as t = Ĉ〈xτ1 , . . . , xτn〉, where Ĉ is a context with n-holes
such that x 6∈ fv(Ĉ). Then Γ(x) = {τ1, . . . , τn}.
Proof. ♠ By induction on t.

Remark 2.18. Given that variables are labeled with their types, it is more or less easy to
obtain the type of a given (correct and typable) term. Moreover, Linearity (Lemma 2.17)
shows that it is easy to obtain the context of the typing judgment.

In summary, given a term t that is correct and typable it is straightforward to obtain
its typing judgment Γ ` t : τ. It is also straightforward to find out whether the term is
typable or not—the typability will manifest itself while we try to find τ.

The following property shows that the rewrite rule →# is well-defined and well-
behaved.

Lemma 2.19 (Subject reduction). If Γ ` C〈(λ`x.t)~s〉 : τ then Γ ` C〈t{x := ~s}〉 : τ.
Moreover, correctness is preserved.

Proof. ♠ By induction on C.

Termination

The λ#-calculus happens to be strongly normalizing. This is because substitution is
linear, i.e. the term t{x := [s1, . . . , sn]} uses si exactly once for all i ∈ {1, . . . , n}, hence
→# reduces the number of lambdas of a term in exactly one.

Proposition 2.20 (Termination). There is no infinite reduction t0 →# t1 →# t2 →#

Proof. It suffices to show that there is a function d : T # →N0 compatible with→#, i.e. such that
t→# s implies d(t) > d(s). In particular, we will show that taking d(t) to be the number of λs in

12 CHAPTER 2. A DISTRIBUTIVE λ-CALCULUS

t works. More precisely:

d(xτ)
def
= 0

d(λ`x.t) def
= 1 + d(t)

d(t[s1, . . . , sn])
def
= d(t) +

n

∑
i=1

d(si)

This definition may be extended to contexts, by taking d(�) def
= 0. It is straightforward to show,

by induction on C, that d(C〈t〉) = d(C) + d(t).
Now, to prove the proposition, suppose that

C〈(λ`x.t)~s〉 →# C〈t{x :=~s}〉

We would like to see that d(C〈(λ`x.t)~s〉) > d(C〈t{x :=~s}〉). But

d(C〈(λ`x.t)〉) = d(C) + d((λ`x.t)~s)
= d(C) + d(λ`x.t) + ∑n

i=1 d(si)
= d(C) + 1 + d(t) + ∑n

i=1 d(si)

Moreover
d(C〈t{x :=~s}〉) = d(C) + d(t{x :=~s})

So it suffices to show that 1 + d(t) + ∑n
i=1 d(si) > d(t{x := ~s}). As a matter of fact, a stronger

proposition holds: d(t) + ∑n
i=1 d(si) = d(t{x :=~s}). ♠We can prove this by induction on t.

Corollary 2.21 (Bound for the length of derivations). Let t′ ∈ T # be a correct term. Then
there is a bound for the length of derivations starting at t′.
Proof. This is an immediate consequence of the fact that the distributive lambda-calculus is
strongly normalizing (Proposition 2.20) and finitely branching, by König’s lemma.

Remark 2.22. A possible bound—albeit not very good—is the number of lambdas of the
term. This fact stems from the proof of Proposition 2.20.

Confluence

As we stated in the introduction, the goal of labeling terms and types is that we obtain a
confluent calculus. Confluence means that every two reduction sequences from a term
can be extended to a common reduct. Indeed, the λ#-calculus is confluent, and it is the
purpose of this section to prove so.

First, we need to prove an adaptation of the Substitution Lemma for our calculus,
which is a key tool to prove properties about coinitial steps. The substitution lemma for
the pure lambda calculus [Bar84, Lemma 2.1.16] states that, provided that x 6= y and
x 6∈ fv(u), then t{x := s}{y := u} = t{y := u}{x := s{y := u}}

In our case variables get substituted by a list of terms, so we need to adapt it.
Particularly, the list of terms that will take the place of u needs to be divided up in
several lists: one for the corresponding ys in t, and the rest for the ys in each of the
elements of s, which recall that now will be a list.

2.4. BASIC PROPERTIES 13

Notation 2.23. We extend the substitution operator to work on lists, defining

[ti]
n
i=1{x :=~s} def

= [ti{x :=~si}]ni=1

where (~s1, . . . ,~sn) is a partition of~s such that Tx(ti) = T(~si) for all i ∈ {1, . . . , n}.

Lemma 2.24 (Substitution Lemma). Let x 6= y and x 6∈ fv(~u). If (~u1,~u2) is a partition of ~u
then

t{x :=~s}{y := ~u} = t{y := ~u1}{x :=~s{y := ~u2}}
provided that both sides of the equation are defined. Note: there exists a list ~u that makes the
left-hand side defined if and only if there exist lists ~u1,~u2 that make the right-hand side defined.
Proof. ♠ By induction on t.

Example 2.25. For example, consider the term

t = (λ`x.z[α]→[β]→δ[xα][xβ])[zβ, yα].

We can perform the following substitution (where w, a, b are all variables):

t{z := [w[α]→[β]→δ, yβ]}{y := [aβ, bα]} = (λ`x.w[α]→[β]→δ[xα][xβ])[aβ, bα].

Note that, as we replaced one z by a y, if we wanted to invert the order of the substitutions we
would need to separate the list [aβ, bα] in two:

t{y := [bα]}{z := [w[α]→[β]→δ, yβ]{y := aβ}} = (λ`x.w[α]→[β]→δ[xα][xβ])[aβ, bα].

Although we are going to prove that the λ#-calculus is confluent, actually a strictly
stronger property holds: strong permutation. This property says that if we "open" a
diagram with two (different) steps, we can "close" it with two steps too; and it also gives
us information about which are those closing steps, via their labels. The fact that this
stronger property holds gives us the chance to develop a functorial residual theory, as
we will learn in the next chapter (cf. Full Stability, Lemma 3.20).

Proposition 2.26 (Strong Permutation). If t0
`−→# t1 and t0

`′−→# t2 are different steps, then

there exists a term t3 ∈ T # such that t1
`′−→# t3 and t2

`−→# t3. Diagrammatically,

t0

`′

��

` // t1

`′

��
t2

` // t3.

Proof. Let R : t0
`−→# t1 and S : t0

`′−→# t2 be steps going out from t0, and let us show that the
peak may be closed. The step R is of the form:

R : t0 = C〈(λ`x.t)~s〉 `−→# C〈t{x :=~s}〉 = t1

We proceed by induction on C, and within each case we separate in different cases depending on
where S is located (which is different than R by hypothesis). ♠

14 CHAPTER 2. A DISTRIBUTIVE λ-CALCULUS

The Strong Permutation property may also be called Diamond Property in some
contexts. 3 As a consequence of strong permutation, reduction is sub-commutative, i.e.
(←# ◦ →#) ⊆ (→#

= ◦ ←#
=) where←# denotes (→#)−1 and R= denotes the reflexive

closure of R.
Moreover, it is well-known that sub-commutativity implies confluence, i.e. (←#

∗

◦ →#
∗) ⊆ (→#

∗ ◦ ←#
∗) (cf. [Ter03, Proposition 1.1.10]). Note that the inverse does not

hold, hence confluence is weaker than strong permutation, as we previously stated.

Corollary 2.27 (Confluence). λ# is confluent, i.e., if t0 �# t1 and t0 �# t2, then there exists
a term t3 such that t1 �# t3 and t2 �# t3. Diagrammatically,

t0

����

// // t1

����
t2 // // t3.

3There are also two similar properties, called sub-commutativity and WCR≤1 which are slightly different
properties from strong permutation, but equivalent: as they do not ask for the steps to be different, but
allow the closing steps to be at most one (instead of exactly one).

Chapter 3

Residual theory

In this section we will develop the theory of residuals of the λ#-calculus. We do this as
it will help us to prove that derivation spaces of λ# terms have a very simple structure.
This together with the fact that the λ#-calculus can simulate the λ-calculus in a strong
sense (as we will learn in the next chapter) will make the λ#-calculus a very useful tool
to analyze the pure λ-calculus.

The basic concepts of general rewriting theory were outlined in the preliminaries
(Section 1.2), and we will now concentrate in the specifics of our calculus.

Informally, the residual of a step after another is what is left of a step after executing
another one; it is a set of steps.

Example 3.1. If we consider the term of the pure lambda calculus:

(λx.y)((λz.z)w)

Then there are two steps we can perform (we shall call them R and S).

R : (λx.y)((λz.z)w)→ y
S : (λx.y)((λz.z)w)→ (λx.y)w

The residual of R after S is the step (λx.y)w→ w. On the other hand, the residual of S after R
is the empty set: S was erased by R.

It is interesting to develop a theory of residuals for λ# because residuals allow us to
trace a redex through the reduction of a term. Given that the purpose of λ# is to be able
to track how resources are used in λ-terms, it is crucial to be able to learn how these
resources interact during a reduction.

As it turns out, the theory of residuals of λ# will prove to be powerful enough
to represent meaningful information, but simple enough to have a comprehensible
structure.

15

16 CHAPTER 3. RESIDUAL THEORY

Definition 3.2. If R : t `−→# t′ is a step in the distributive lambda calculus, then:

src(R) def
= t is the source of R

tgt(R) def
= t′ is the target of R

name(R) def
= ` is the name of R

Two steps R and S are coinitial if src(R) = src(S) and cofinal if tgt(R) = tgt(S).

Definition 3.3 (Residuals in the distributive lambda-calculus). Given coinitial steps R, S,
the set R/S of residuals of R after S is defined as follows:

R/S = {R′ | src(R′) = tgt(S) and name(R) = name(R′)}

Remark 3.4. Recall that the name of a step is the label that decorates the lambda reduced
by the step, and that in correct terms all lambdas have pairwise distinct labels. Given
that our calculus has no duplication or erasure (as per the following lemma), names of
steps will be useful to name reductions.

Lemma 3.5 (Cardinality of the set of residuals).

#(R/S) =

{
0 if R = S
1 otherwise

Proof. Recall that, by definition, lambdas in a correct term have pairwise distinct labels. Consider

first the case when R = S. Then R = S : C〈(λ`x.t)~s〉 `−→# C〈t{x :=~s}〉. There is only one lambda
decorated with ` in the source, so there are no lambdas decorated with ` in the target. Hence
R/S = ∅.

On the other hand if, R 6= S, by the Strong Permutation property (Proposition 2.26) there
exists a step R′ ∈ R/S with the same name as R. There are no other lambdas decorated with ` in
the target. Hence R/S = {R′}.

3.1 Orthogonality of λ#

Recall from the preliminaries that some abstract rewriting systems have the property of
being orthogonal. Being orthogonal entails a myriad of properties and results that make
working with orthogonal rewrite systems very pleasant. Informally, in an orthogonal
rewrite system residuals behave and have the properties that one would expect, some of
which are summarized in the table that follows.

ε ρ = ρ
ρ ε = ρ

ε/ρ = ε
ρ/ε = ρ

ρ/στ = (ρ/σ)/τ
ρσ/τ = (ρ/τ)(σ/(τ/ρ))

ρ/ρ = ε

ρ v σ
def⇐⇒ ρ/σ = ε

ρ ≡ σ
def⇐⇒ ρ v σ ∧ σ v ρ

ρ t σ
def
= ρ(σ/ρ)

ρ ≡ σ =⇒ τ/ρ = τ/σ
ρ v σ ⇐⇒ ∃τ. ρτ ≡ σ
ρ v σ ⇐⇒ ρ t σ ≡ σ

ρ v σ =⇒ ρ/τ v σ/τ
ρ v σ ⇐⇒ τρ v τσ
ρ t σ ≡ σ t ρ

(ρ t σ) t τ = ρ t (σ t τ)
ρ v ρ t σ

(ρ t σ)/τ = (ρ/τ) t (σ/τ)

3.1. ORTHOGONALITY OF λ# 17

As we stated in the preliminaries, one must check four axioms in order to prove
that a given system (in this case λ#) is orthogonal: Autoerasure, Finite Residuals, Finite
Developments, and Semantic Orthogonality.

Let’s see why the axiom called Finite Developments is interesting. As stated in
[Mel96], the Axiome FD, or finite developments axiom, asks that for every set of coinitial
stepsM, then all developments ofM are finite.

This axiom is important because suppose we have two coinitial steps R and S, such
that R : t→ s. Then S/R is a set of steps with the same source (s). The idea is that if we
had t and wanted to “execute” both R and S, if we didn’t have finite developments, then
in particular we don’t have finite complete developments, so a reduction that tries to
execute what’s left of S after R may not finish.

The λ#-calculus not only enjoys of finite developments, but we can give the exact
length a complete development of a set of steps will have.

Lemma 3.6 (Finite developments). LetM be a set of coinitial steps. Then the length of every
complete development ofM is precisely the cardinality ofM. In particular, developments are
finite.
Proof. By induction on the cardinality ofM. IfM = ∅, the only complete development of
M is ε and we are done. Otherwise, if ρ is a complete development ofM, it is a non-empty
derivation, i.e. ρ = Rσ where R ∈ M and such that σ is a complete development of M/R.
Since residuals of distinct redexes have distinct names (and hence they are distinct) we have that
M/R =]S∈M(S/R), where] denotes the disjoint union of sets. Moreover, #(S/R) = 1 if and
only if R 6= S by Lemma 3.5, so:

#(M/R) = ΣS∈M#(S/R) = #(M\ {R}) = #(M)− 1

Hence by i.h. the length of σ is #(M)− 1 and we conclude.

Proposition 3.7. The distributive lambda-calculus is an Orthogonal Axiomatic Rewrite System
in the sense of Melliès.
Proof. There are four axioms to check:

1. Autoerasure. Immediate from the cardinality of residuals lemma (Lemma 3.5).
2. Finite Residuals. Immediate from the cardinality of residuals lemma (Lemma 3.5).
3. Finite Developments. Proved in the Finite Developments lemma (Lemma 3.6).
4. Semantic Orthogonality. A consequence of the Strong Permutation property (Proposi-

tion 2.26).

Example 3.8. Next we present an example that will be useful to illustrate some of the upcoming
propositions. Consider the following term:

(λ1x.x[α]→α[xα])[λ2y.yα, (λ3z.zα)[wα]].

What follows is its derivation space, i.e., all possible derivations that have the previous term
as a source.

18 CHAPTER 3. RESIDUAL THEORY

(λ1x.x[α]→α[xα])[λ2y.yα, (λ3z.zα)[wα]]
3
S //

1 R
��

(λ1x.x[α]→α[xα])[λ2y.yα, wα]

1R′
��

(λ2y.yα)((λ3z.zα)[wα])
3
S′ //

2 T
��

(λ2y.yα)[wα]

2 T′

��
(λ3z.zα)[wα]

3
S′′ // wα

Some facts about these derivations:

• R creates T: we cannot perform T until we performed R. We will expand on the
topic of creation later.

• RS′ ≡ SR′. Remember that two derivations ρ, σ are permutation equivalent if
ρ v σ v ρ, i.e. if they perform the same amount of work.

• S/R = {S′} and S/RT = {S′′}. Remember that in λ#, residuals are either empty
or singletons, so we will often skip the curly brackets.

• name(T) = name(T′) = 2.

3.2 Names and labels

The fact that in λ# names of steps are given by labels of lambdas, which by correctness
are pairwise different, and that the calculus has no deletion nor duplication will make
names of steps suitable to name derivations (i.e. series of steps).

Furthermore, giving names to derivations will make them very easy to analyze, as
we will see in this section.

Definition 3.9 (Set of names of a derivation). If ρ is a derivation, its set of names is

names(ρ)
def
= {name(R) | ∃ρ1, ρ2. ρ = ρ1Rρ2}

A more precise way to say that our calculus has no duplication nor deletion is the
following lemma.

Belonging

There are several notions that can define the fact that a step R is performed in a derivation
ρ (where R and ρ are coinitial).

One of this notions is the one that says that whatever R does, is also done by ρ, i.e.,
R/ρ = ∅: there is no more R-related work to do. This is usually written as R v ρ. This
notion can be easily extended to derivations: σ v ρ if σ/ρ = ε.

3.2. NAMES AND LABELS 19

Another (weaker) notion asks that some of the work that R does be done in ρ. This is
the notion of belonging. A step R belongs to a coinitial derivation ρ, written R ∈ ρ, if
and only if some residual of R is contracted along ρ. More precisely, R ∈ ρ if there exist
ρ1, R′, ρ2 such that ρ = ρ1R′ρ2 and R′ ∈ R/ρ1. We write R 6∈ ρ if it is not the case that
R ∈ ρ.

As it turns out, these two notions are equivalent in our calculus, because there is no
deletion nor duplication of redexes.

Lemma 3.10 (Permanence). If R 6∈ ρ then R/ρ is a singleton.
Proof. By induction on ρ. The base case is trivial, so let ρ = Sσ. Note that R 6= S, so by
Lemma 3.5 we have that R/S = S′, where S′ 6∈ σ. So R/Sσ = S′/σ is a singleton by i.h..

Lemma 3.11 (Characterization of belonging). Let R be a step and ρ a coinitial derivation in
the distributive lambda-calculus. Then the following are equivalent:

1. R ∈ ρ,
2. R v ρ,
3. name(R) ∈ names(ρ).

Note: the hypothesis that R and ρ are coinitial is crucial. In particular, (1) and (2) by definition
only hold when R and ρ are coinitial, while (3) might hold even if R and ρ are not coinitial.
Proof. (1 ⇒ 2) Let ρ = ρ1Sσ2 where S is a residual of R. Suppose moreover, without loss of
generality, that ρ1 is minimal, i.e. that R 6∈ ρ1. By Permanence (Lemma 3.10) R/ρ1 is a singleton,
so R/ρ1 = S. This means that R/ρ1Sρ2 = ∅, so indeed R v ρ1Sρ2.

(2⇒ 3) By induction on ρ. If ρ is empty, the implication is vacuously true, so let ρ = Sσ and
consider two sub-cases, depending on whether R = S. If R = S, then indeed the first step of
ρ = Rσ has the same name as R. On the other hand, if R 6= S, then by Lemma 3.5 we have that
R/S = R′, where name(R) = name(R′). Note that R v Sσ so R/S = R′ v σ. By applying the i.h.
we obtain that there must be a step in σ whose name is name(R) = name(R′), and we are done.

(3 ⇒ 1) By induction on ρ. If ρ is empty, the implication is vacuously true, so let ρ = Sσ
and consider two sub-cases, depending on whether name(R) = name(S). If name(R) = name(S)
then R and S must be the same step, since terms are correct, which means that labels decorating
lambdas are pairwise distinct. Hence R ∈ ρ = Rσ. On the other hand, if name(R) 6= name(S),
then R 6= S so by Lemma 3.5 we have that R/S = R′, where name(R) = name(R′). By hypothesis,
there is a step in the derivation ρ = Sσ whose name is name(R), and it is not S, so there must be
at least one step in the derivation σ whose name is is name(R) = name(R′). By i.h. R′ ∈ σ and
then, since R′ is a residual of R, we conclude that R ∈ Sσ, as required.

Name of a reduction

In this subsection we will see why the naming scheme we proposed for steps and
reductions is useful. Recall that the names of a reduction are the set of names of the
steps that form it. What follows is a list of different results that characterize properties
of reductions in terms of its name.

It is immediate to note that when composing two derivations ρ, σ, the set of names
of ρσ results from the union of the names of ρ and σ:

Remark 3.12. names(ρσ) = names(ρ) ∪ names(σ)

20 CHAPTER 3. RESIDUAL THEORY

Indeed, a stronger results holds. Namely, the union is disjoint:

Lemma 3.13. names(ρσ) = names(ρ)] names(σ)

Proof. Let ρ : t�# s. By induction on ρ we argue that the set of labels decorating the lambdas in
s is disjoint from names(ρ). The base case is immediate, so let ρ = Tτ. The step T is of the form:

T : t = C〈(λ`x.u)~r〉 →# C〈u{x :=~r}〉

hence the target of T has no lambdas decorated with the label `. Moreover, the derivation τ is of
the form:

τ : C〈u{x :=~r}〉�# s

and by i.h. the set of labels decorating the lambdas in s is disjoint from names(τ). As a conse-
quence, the set of labels decorating the lambdas in s is disjoint from both names(τ) and {`}. This
completes the proof.

Corollary 3.14 (The length of a derivation equals the number of distinct names along
it). If ρ is a derivation in the distributive lambda-calculus and |ρ| denotes the length of ρ, then
|ρ| = #(names(ρ)).
Proof. Let ρ = R1 . . . Rn. Then by Lemma 3.13, names(ρ) =

⊎n
i=1{name(Ri)} and #(names(ρ)) =

n, as required.

The names of a derivation are coherent and work well with all the usual residual
theory definitions: projections, prefix order, and permutation equivalence.

Lemma 3.15 (Names after a projection). If ρ and σ are coinitial derivations, then names(ρ/σ) =
names(ρ) \ names(σ)

Proof. First we claim that names(ρ/R) = names(ρ) \ {name(R)}. We proceed by induction on ρ.
The base case is immediate, so let ρ = Sσ and consider two sub-cases, depending on whether
R = S. If R = S, then:

names(ρ/R) = names(Rσ/R)
= names(σ)
= names(Rσ) \ {name(R)}

On the other hand if R 6= S, then by Lemma 3.5 we have that R/S = R′ where name(R) =
name(R′) and, similarly, S/R = S′, where name(S) = name(S′). Hence:

names(ρ/R) = names(Sσ/R)
= names((S/R)(σ/(R/S)))
= names(S/R) ∪ names(σ/(R/S))
= names(S′) ∪ names(σ/R′)
= names(S′) ∪ (names(σ) \ {name(R′)} by i.h.
= names(S) ∪ (names(σ) \ {name(R)})
= (names(S) ∪ names(σ)) \ {name(R)} since name(R) 6= name(S)
= names(Sσ) \ {name(R)}
= names(ρ) \ {name(R)}

which completes the claim. To see that names(ρ/σ) = names(ρ) \ names(σ) for an arbitrary
derivation σ, proceed by induction on σ. If σ is empty it is trivial, so consider the case in which

3.3. STABILITY (AND CREATION) 21

σ = Rτ. Then:
names(ρ/Rτ) = names((ρ/R)/τ)

= names(ρ/R) \ names(τ) by i.h.
= (names(ρ) \ {name(R)}) \ names(τ) by the previous claim
= names(ρ) \ ({name(R)} ∪ names(τ))
= names(ρ) \ names(Rτ)

as required.

Proposition 3.16 (Prefixes as subsets). Let ρ, σ be coinitial derivations in the distributive
lambda-calculus. Then ρ v σ if and only if names(ρ) ⊆ names(σ).
Proof. By induction on ρ. The base case is immediate since ε v σ and ∅ ⊆ names(σ) both hold.
So let ρ = Tτ. First note that the following equivalence holds:

Tτ v σ ⇐⇒ T v σ ∧ τ v σ/T (3.1)

Indeed:

• (⇒) Suppose that Tτ v σ. Then, on one hand, T v Tτ v σ. On the other hand, projection
is monotonic, so τ = Tτ/T v σ/T.

• (⇐) Since τ v σ/T we have that Tτ v T(σ/T) ≡ σ(T/σ) = σ since T/σ = ε.

So we have that:
Tτ v σ ⇐⇒ T v σ ∧ τ v σ/T by (3.1)

⇐⇒ name(T) ∈ names(σ) ∧ τ v σ/T by Lemma 3.11
⇐⇒ name(T) ∈ names(σ) ∧ names(τ) ⊆ names(σ/T) by i.h.
⇐⇒ name(T) ∈ names(σ) ∧ names(τ) ⊆ names(σ) \ {name(T)} by Lemma 3.15
⇐⇒ names(Tτ) ⊆ names(σ)

To justify the very last equivalence, the (⇒) direction is immediate. For the (⇐) direction, the
difficulty is ensuring that names(τ) ⊆ names(σ) \ {name(T)} from the fact that names(Tτ) ⊆
names(σ). To see this it suffices to observe that by Lemma 3.13, names(Tτ) is the disjoint union
names(T)] names(τ), which means that name(T) 6∈ names(τ).

Corollary 3.17 (Permutation equivalence in terms of names). Let ρ, σ be coinitial deriva-
tions in the distributive lambda-calculus. Then ρ ≡ σ if and only if names(ρ) = names(σ).
Proof. Immediate since

ρ ≡ σ ⇐⇒ ρ v σ ∧ σ v ρ
⇐⇒ names(ρ) ⊆ names(σ) ∧ names(σ) ⊆ names(ρ) by Proposition 3.16
⇐⇒ names(ρ) = names(σ)

3.3 Stability (and creation)

In this section we will see two important lemmas that guarantee certain properties of
residues after steps or derivations.

The result that we will call full stability can be seen as a functorial extension to the
confluence result: confluence speaks about what happens to terms after two coinitial
derivations, while full stability speaks about what happens to steps after two coinitial
derivations.

22 CHAPTER 3. RESIDUAL THEORY

Creation

The first of this lemmas is creation. We say that a step R is created by another step S if
there is no step R′ coinitial with S such that R ∈ R′/S. What this means is that we were
not able to do what R does before executing S. For example, in Example 3.8 we claimed
that the step T is created by R, which indeed is.

Having a lemma that characterizes creation is relevant because in proofs, it is com-
mon to have edge cases where a new redex is created. A creation lemma can help handle
those edge cases more easily.

The following lemma says that if S creates R, then S follows one of three general
forms.

Lemma 3.18 (Creation). There are three creation cases in the distributive lambda-calculus:
1. Creation case I. C〈(λ`x.xτ) [λ`′y.t]~s〉 →# C〈(λ`′y.t)~s〉 →# C〈t{{y :=~s}}〉.
2. Creation case II. C〈(λ`x.λ`′y.t)~s~u〉 →# C〈(λ`′y.t′)~u〉 →# C〈t′{{y := ~u}}〉, where:

t′ = t{{x :=~s}}

3. Creation case III. C1〈(λ`x.C2〈xτ~t〉)~s〉 →# C1〈C′2〈(λ`′y.u)~t′〉〉 →# C1〈C′2〈u{{y :=
~t′}}〉〉, where:

C2{{x :=~s}} = C′2
xτ{{x :=~s}} = λ`′y.u
~t{{x :=~s}} = ~t′

~s = [~s1, λ`′y.u, ~s2]

Proof. Let R : C〈(λ`x.t)~s〉 →# C〈t{{x := ~s}}〉 be a step, and let S : C〈t{{x := ~s}}〉 →# p another
step such that R creates S. The redex contracted by the step S is below a context C1, so let
C〈t{{x :=~s}}〉 = C1〈(λ`′y.u)~r〉, where (λ`′y.u)~r is the redex contracted by S. We need consider
three cases, depending on the relative positions of the holes of C and C1, namely they may be
disjoint, C may be a prefix of C1, or C1 may be a prefix of C. ♠

Stability

We also would like to prove a property that we call full stability, which is a strong version
of stability in the sense of Lévy [Lev15] (which can in turn be traced back to Berry’s
notion of stability).

Recall that Lévy’s stability states that for any R 6= S, if T1 and T2 have a common
descendant T3, as in the figure below, then they have a common ancestor T0.

T0
OO

R
��

S
��T1oo

S/R �� R/S��

T2 //

T3 ��

3.3. STABILITY (AND CREATION) 23

In the figure above, T1 and T2 have a common descendant T3, which means that
T3 ∈ T1/(S/R) and T3 ∈ T2/(R/S). Informally, this means that T1 and T2 do the same
work, which means that that work is enabled by either performing R or S. The fact that
a system is stable means that we could actually perform the work that T1 and T2 do,
without executing neither R nor S (by doing T0).

Hence, what stability means is that steps are created essentially in a unique way.

Lemma 3.19 (Stability). If R, S are different coinitial steps such that R creates a step T, then
R/S creates the step T/(S/R).

More specifically:

R //
S
��

T //
S/R
��

S/RT
��

R/S
//

T/(S/R)
//

Note: It is easy to see that this is equivalent to stability in the sense of Lévy.

Proof. ♠ Let R : C〈(λ`x.t)~s〉 →# C〈t{x := ~s}〉, let S 6= R be a step coinitial to R, and suppose
that R creates a step T. By induction on the context C we argue that R/S creates T/(S/R).

Next we prove full stability, which is an extension to Lévy’s notion of stability,
from steps to arbitrary reductions. Informally, it says that if we are able to execute
the same step after two completely different derivations, then the step existed before
both reductions—i.e., a step is only created by a single reduction (modulo permutation
equivalence).

Lemma 3.20 (Full stability). Let ρ and σ be coinitial derivations such that names(ρ) ∩
names(σ) = ∅. Let T1, T2, and T3 be steps such that T3 = T1/(σ/ρ) = T2/(ρ/σ). Then there
exists a step T0 such that T1 = T0/ρ and T2 = T0/σ. Diagrammatically:

T0
OO

ρ

����
σ
�� ��T1oo

σ/ρ �� �� ρ/σ����

T2 //

T3 ��

Proof. We first prove the proposition in the particular case in which ρ is a single step, i.e. ρ = R
By induction on σ:

1. Empty, σ = ε. Then T1 = T3 = T2/R, so it suffices to take T0 := T2.
2. Non-empty, σ = S σ′. Recall that permutation diagrams in the distributive lambda-

calculus are square, (i.e. steps always have exactly one residual, except for the trivial case
R/R = ∅, as was proved in Lemma 3.5). Since name(R) 6∈ names(Sσ′), we know that R
is not any of the steps along Sσ′, so in particular R/S and R/Sσ′ are singletons, which

24 CHAPTER 3. RESIDUAL THEORY

means that the situation is the following:

R

��

S

��T1oo

S/R ��

R/S

��

σ′

�� ��

σ′/(R/S) �� �� R/Sσ′��

T2 //

T3

��

Observe that T3 = T1/((S/R)(σ′/(R/S))), so by taking T′1 := T1/(S/R) we have that
T3 = T′1/(σ′/(R/S)). By i.h. on σ′ we have that there exists a step T′2 such that T′1 =
T′2/(R/S) and T2 = T′2/σ′.
To conclude, note that R 6= S and T′1 = T1/(S/R) = T0/(R/S) so by the Stability lemma
(Lemma 3.19) there must exist a step T0 such that T1 = T0/R and T′2 = T0/S. Moreover
T2 = T′2/σ′ = T0/Sσ′, as required.

Having established the previous claim, let us now prove the main statement of the proposition
by induction on ρ.

1. Empty, ρ = ε. Then T2 = T3 = T1/σ so by taking T0 := T1 we conclude.
2. Non-empty, ρ = Rρ′. First observe that, since names(Rρ′) ∩ names(σ) = ∅, we have that

names(R) ∩ names(σ) = ∅ and names(ρ′) ∩ names(σ) = ∅. The situation is the following:

R

��

σ

��
ρ′

����

σ/R

�� �� R/σ��

T2 //

T1oo
σ/Rρ′

�� �� ρ′/(σ/R)����

T3

��

Observe that T3 = T2/((R/σ)(ρ′/(σ/R))), so by taking T′2 := T2/(R/σ) we have that
T3 = T′2/(ρ′/(σ/R)). By Lemma 3.15 we have that names(σ/R) = names(σ) \ {name(R)}
and name(R) 6∈ names(σ), so names(σ/R) = names(σ). In particular, names(ρ′)∩names(σ/R) =
∅ so we may apply the i.h. on ρ′ to conclude that there exists a step T′1 such that T1 = T′1/ρ′

and T′2 = T′1/(σ/R).
To conclude, observe that T′2 = T′1/(σ/R) = T2/(R/σ), where name(R) 6∈ names(σ), so
by the previous claim we have that there is a step T0 such that T0/R = T′1 and T0/σ = T2.
Moreover, T0/Rρ′ = T′1/R = T1 so we are done.

3.4. LATTICES AND DERIVATION SPACES 25

3.4 Lattices and derivation spaces

In this section we are going to consider the derivation spaces of terms in the λ#-calculus
as lattices and prove properties about those lattices.

In a general orthogonal rewrite system, the space of derivations of a term t is the
set {ρ : src(ρ) = t} (usually modulo permutation equivalence), together with the order
relation v. Recall that ρ v σ if and only if ρ/σ = ε.

In the preliminaries we defined a lattice to be partially ordered set with two oper-
ations: join and meet. Given two elements of the lattice, their join is their least upper
bound, and their meet is their greatest lower bound. Notice that those elements have to
be unique.

As a consequence of and axiomatic results [Mel96], derivation spaces of terms of
orthogonal abstract rewrite systems are upper semilattices. This means that they have
joins, but not necessarily meets.

Joins for these systems are given essentially by their confluence property: the join
(or least upper bound) of two reductions ρ, σ is ρ(σ/ρ) (or equivalently σ(ρ/σ)). This
can be rephrased in category theory by saying that the derivation space of terms of
orthogonal abstract rewrite systems have push-outs.

Example 3.21. Laneve’s counterexample from the introduction showed that the meet of deriva-
tions is not well defined for the pure lambda calculus (which is an orthogonal abstract rewrite sys-
tem [Mel96]). Let Ω = (λx.xx)λx.xx, and consider the reduction space of (λx.(λy.a)(xΩ))(λz.b)
where the steps Ui contract Ω:

(λx.(λy.a)(xΩ))(λz.b)

U1
��

S

��

R

��

(λx.(λy.a)(xΩ))(λz.b)

		 ��

U2
��

(λx.(λy.a)(xΩ))(λz.b)

�� ��
U3 ��

(λy.a)((λz.b)Ω)

T
��

... (λx.a)(λz.b)

(λy.a)b

As we pointed out in the introduction, ST and R do not have a greatest lower bound: ST and
R are not comparable, and neither are S and R, and for all n ∈N we have that U1 . . . Un v R
and U1 . . . Un v ST so the meet R u ST does not exist.

Let us write D#(t) for the set of derivations of t in the λ#-calculus, modulo permuta-
tion equivalence. Because of Orthogonality (Proposition 3.7) the set D#(t) armed with

26 CHAPTER 3. RESIDUAL THEORY

v and t is an upper semilattice. Following, we prove that moreover the space D#(t) is
a distributive lattice.

Definition 3.22. A distributive lattice is a lattice (A,≤,∨,∧) such that for all a, b, c ∈ A,
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). That is, each operation
is distributive over the other.

Example 3.23. For example, if X is a set, then (P(X),⊆,∪,∩), its powerset, is a distributive
lattice.

If we want to prove that D#(t) is a distributive lattice, we need to prove that it is
a lattice and that it satisfies the distributivity property. We know that D#(t) is a join
semilattice (or upper semilattice), so to prove that it is a lattice we need to define a meet
that works.

Meets

The informal idea behind the definition below is that the meet of two derivations ρ and
σ will be the work they both have performed.

Proposition 3.24 (Meet of derivations). Let ρ, σ be coinitial derivations in the distributive
lambda-calculus. Then there exists an infimum for ρ, σ with respect to the prefix order v. We
write ρ u σ for the infimum of {ρ, σ} obtained by this construction.
Proof. If ρ and σ are derivations, we say that a step R is a common (to ρ and σ) whenever R ∈ ρ
and R ∈ σ. Define ρ u σ as follows, by induction on the length of ρ:

ρ u σ
def
=

{
ε if there are no common steps to ρ and σ

R((ρ/R) u (σ/R)) if the step R is common to ρ and σ

In the second case of the definition, there might be more than one R common to ρ and σ. We
suppose that one of them is chosen deterministically but make no further assumptions. To see
that this recursive construction is well-defined, note that the length of ρ/R is lesser than the
length of ρ by the fact that projections are decreasing (Lemma A.9). To conclude the construction,
we show that ρ u σ is an infimum, i.e. a greatest lower bound:

1. Lower bound. Let us show that ρ u σ v ρ by induction on the length of ρ. There are two
sub-cases, depending on whether there is a step common to ρ and σ.
If there is no common step, then ρ u σ = ε trivially verifies ρ u σ v ρ.
On the other hand, if there is a common step, we have by definition that ρu σ = R((ρ/R)u
(σ/R)) where R is common to ρ and σ. Recall that projections are decreasing (Lemma A.9)
so |ρ| > |ρ/R|. This allows us to apply the i.h. and conclude:

ρ u σ = R((ρ/R) u (σ/R)) by definition
v R(ρ/R) since by i.h. (ρ/R) u (σ/R) v ρ/R
≡ ρ(R/ρ)
= ρ since R v ρ by Lemma 3.11.

Showing that ρ u σ v σ is symmetric, by induction on the length of σ.

3.4. LATTICES AND DERIVATION SPACES 27

2. Greatest lower bound. Let τ be a lower bound for {ρ, σ}, i.e. τ v ρ and τ v σ, and let us
show that τ v ρ u σ. We proceed by induction on the length of ρ. There are two sub-cases,
depending on whether there is a step common to ρ and σ.
If there is no common step, we claim that τ must be empty. Otherwise we would have
that τ = Tτ′ v ρ so in particular T v ρ and T ∈ ρ by Lemma 3.11. Similarly, T ∈ σ so T is
a step common to ρ and σ, which is a contradiction. We obtain that τ is empty, so trivially
τ = ε v ρ u σ.
On the other hand, if there is a common step, we have by definition that ρu σ = R((ρ/R)u
(σ/R)) where R is common to ρ and σ. Moreover, since τ v ρ and τ v σ, by projecting
along R we know that τ/R v ρ/R and τ/R v σ/R. So:

τ v τ(R/τ)
≡ R(τ/R)
v R((ρ/R) u (σ/R)) since by i.h. τ/R v (ρ/R) u (σ/R)
= ρ u σ by definition

Remark 3.25. The infimum of {ρ, σ} is unique modulo permutation equivalence, i.e. if τ
is an infimum for {ρ, σ} then τ ≡ ρ u σ.

Names of join and meet

Names of derivations will be a helpful tool when computing meets and joins of deriva-
tions, as the next proposition allows us to easily get them by taking the intersection or
union of sets.

Proposition 3.26 (Names of join and meet). The following hold:
1. names(ρ t σ) = names(ρ) ∪ names(σ)
2. names(ρ u σ) = names(ρ) ∩ names(σ)

Proof. Item 1 is easy resorting to the definition of t and Lemma 3.15:

names(ρ t σ) = names(ρ(σ/ρ)) by definition of t
= names(ρ) ∪ names(σ/ρ)
= names(ρ) ∪ (names(σ) \ names(ρ)) by Lemma 3.15
= names(ρ) ∪ names(σ)

For item 2., we first prove the following claim:

Claim. names(ρ/(ρ u σ)) ∩ names(σ/(ρ u σ) = ∅. Proof of the claim. By Lemma A.10 it
suffices to show that (ρ/(ρu σ))u (σ/(ρu σ)) = ε. By contradiction, suppose that there is a step
T common to the derivations ρ/(ρ u σ) and σ/(ρ u σ). Then the derivation (ρ u σ)T is a lower
bound for {ρ, σ}, i.e. (ρ u σ)T v ρ and (ρ u σ)T v σ. Since ρ u σ is the greatest lower bound for
{ρ, σ}, we have that (ρ u σ)T v ρ u σ. But this implies that T v ε, which is a contradiction. This
concludes the proof of the claim.

Note that ρ u σ v ρ, so we have that ρ ≡ (ρ u σ)(ρ/(ρ u σ)), and this in turn implies
that names(ρ) = names((ρ u σ)(ρ/(ρ u σ))) by Corollary 3.17. Symmetrically, names(σ) =

28 CHAPTER 3. RESIDUAL THEORY

names((ρ u σ)(σ/(ρ u σ))). Then:

names(ρ) ∩ names(σ)
= names((ρ u σ)(ρ/(ρ u σ))) ∩ names((ρ u σ)(σ/(ρ u σ)))
= (names(ρ u σ) ∪ names(ρ/(ρ u σ))) ∩ (names(ρ u σ) ∪ names(σ/(ρ u σ)))

by Remark 3.12
= names(ρ u σ) ∪ (names(ρ/(ρ u σ)) ∩ names(σ/(ρ u σ)))

since (A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C) for arbitrary sets A, B, C
= names(ρ u σ)

since (names(ρ/(ρ u σ)) ∩ names(σ/(ρ u σ))) = ∅ by the previous claim

This concludes the proof.

Distributive lattice

Theorem 3.27 (Derivations modulo ≡ form a distributive lattice). Let t ∈ T # be a correct
term. Then derivations modulo ≡ form a lattice D#(t). More precisely, let X be the set of
derivations in the distributive lambda-calculus going out from t, modulo permutation equivalence:

X def
=
{ρ | src(ρ) = t}

≡

Let moreover [ρ] denote the equivalence class of a derivation ρ modulo ≡. Then D#(t) def
= (X,≤

,∧,∨) is a distributive lattice, where:

[ρ] ≤ [σ]
def⇐⇒ ρ v σ

[ρ] ∧ [σ]
def⇐⇒ ρ u σ

[ρ] ∨ [σ]
def⇐⇒ ρ t σ

Proof. It is straightforward to check that ≤ is a partial order, and that [ρ] ∧ [σ] (resp. [ρ] ∨ [σ]) is
the infimum (resp. supremum) of {[ρ], [σ]}.

To see that it is distributive, let us first prove the first distributive law: ([ρ] ∧ [σ]) ∨ [τ] =
([ρ] ∨ [τ]) ∧ ([σ] ∨ [τ]). Let ρ, σ, τ be arbitrary coinitial derivations. The following equality holds
trivially, since (A ∩ B) ∪ C = (A ∪ C) ∩ (A ∪ B) is valid for arbitrary sets A, B, C:

(names(ρ) ∩ names(σ)) ∪ names(τ) = (names(ρ) ∪ names(τ)) ∩ (names(σ) ∪ names(τ))

By Proposition 3.26 this entails:

names((ρ u σ) t τ) = names((ρ t τ) u (σ t τ))

By Corollary 3.17 this in turn implies that:

(ρ u σ) t τ ≡ (ρ t τ) u (σ t τ)

So by definition of ∧,∨ we obtain:

([ρ] ∧ [σ]) ∨ [τ] = ([ρ] ∨ [τ]) ∧ ([σ] ∨ [τ])

The other distributive law, namely ([ρ]∨ [σ])∧ [τ] = ([ρ]∧ [τ])∨ ([σ]∧ [τ]) is proved analogously.

3.4. LATTICES AND DERIVATION SPACES 29

Remark 3.28. The function names that takes a derivation and returns a set of labels is
well-defined for permutation-equivalence classes, as a consequence of Corollary 3.17:

names([ρ])
def
= names(ρ)

Theorem 3.29 (The lattice of derivations is representable as a ring of sets). If t ∈ T # is a
correct term, then names : D#(t)→ P(L) is a monomorphism of lattices, where D#(t) is the
lattice of derivations of t and P(L) is the lattice whose elements are sets of labels ordered by
inclusion, with set intersection and set union as the meet and join operators.
Proof. We are to show that names is monotonic, that it preserves meets and joins, and finally
that it is a monomorphism:

• Monotonic. If [ρ] ≤ [σ] then names(ρ) ⊆ names(σ). This has been proved in Proposi-
tion 3.16.

• Preserves meets. names([ρ] ∧ [σ]) = names(ρ) ∩ names(σ) by Proposition 3.26.

• Preserves joins. names([ρ] ∨ [σ]) = names(ρ) ∪ names(σ) by Proposition 3.26.

• Monomorphism. It suffices to show that names is injective. Indeed, suppose that names([ρ]) =
names([σ]). By Corollary 3.17 we have that ρ ≡ σ, so [ρ] = [σ].

Example 3.30. If we consider the derivation space from Example 3.8, we see that we have 8
derivations modulo permutation equivalence, representable by the powerset of the set of labels
{1, 2, 3}. Some examples:

• ∅ represents the empty derivation, ε.

• {1} represents R.

• {1, 2, 3} represents [RS′T′], which is equal to [RTS′′] and [SR′T′].

• As {1} represents R and {3} represents S, and {1} ∪ {3} = {1, 3}, we know that
R t S = [RS′].

30 CHAPTER 3. RESIDUAL THEORY

Chapter 4

Simulation of the λ-calculus

In this chapter we will focus on establishing a correspondance between the λ-calculus
and the λ#-calculus. Our goal is to be able to prove that we can map derivations in one
calculus to derivations in the other.

First, we will learn how to relate terms from one calculus to terms in the other, via
what we call refinements. Then, we will look at how the derivation spaces of two related
terms are connected. After that we will learn that the fact that a term of the lambda
calculus is related to another in the distributive lambda calculus says that it has a head
normal form. Finally, we will link and combine the residual theories of both calculi.
Notation 4.1. If t is a term of the distributive lambda calculus, we already defined D#(t)
to be its derivation space, which we proved is a distributive lattice. T # is the set of all
(correct) terms.

If s is a term of the pure lambda calculus, we write Dλ(s) to mean the derivation
space of s, which is a join semilattice. T λ is the set of all terms of the pure lambda
calculus.

4.1 Refinements

Definition 4.2 (Refinement). A lambda-term t ∈ T λ is refined by a distributive term
t′ ∈ T #, written t o t′ according to the following inductive definition:

r-var
x o xτ

t o t′
r-lam

λx.t o λ`x.t′
t o t′ s o si for all i = 1..n

r-app
t s o t′[s1, . . . , sn]

We write t′ n t if t o t′. Refinement is also generalized to contexts, by declaring that
� n �.

Note that a term can have more than one refinement. For example, the following
terms refine (λx.xx)y:

(λ1x.x[]
2→α3

[])[y[]
2→α3

] (λ1x.x[α
2,β3]

4→γ5
[xα2

, xβ3
])[y[α

2,β3]
4→γ5

, yα2
, yβ3

]

(λ1x.x[α
2]

3→β4
[xα2

])[y[α
2]

3→β4
, yα2

] (λ1x.x[α
2]

3→β4
[xα2

])[yα2
, y[α

2]
3→β4

]

31

32 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

Also, a term may have no refinements—for example, Ω = (λx.xx)(λx.xx). We leave
this as an exercise to the reader.

The fact that a term doesn’t have a refinement doesn’t imply that sub-terms or terms
that contain it as a sub-term do not have refinements. For example λx.xx is refined by
λ`x.x[]→α[], and (λx.a)Ω is refined by (λ`x.aα)[].

4.2 Simulation

Having defined the correspondance between terms we have to somehow show how that
correspondance is compatible with the notions of reduction in both calculi.

For this, we put forth two simulation results, one that deals with simulating steps of
the λ-calculus in the λ#-calculus, and another that does the reverse.

Proposition 4.3 (Simulation). Let t, s ∈ T λ be lambda-terms and t′ ∈ T # be a distributive
term such that:

t′ n t→β s

then there is a distributive term s′ ∈ T # such that:

t′ �# s′ n s

Diagramatically:

t

o

β // s

o

t′ # // // s′

Proof. ♠ By case analysis. The proof is constructive, and the resulting derivation t′ �# s′ is a
multistep (it is a complete development of a set of coinitial steps).

Example 4.4. The following are simulations of the step x ((λx.x)y)→β x y with→#-steps:

x ((λx.x)y)
β //

o x yo

x[]
1→α2

[] x[]
1→α2

[]

x ((λx.x)y)
β //

o x yo

x[α
1]

2→β3
[(λ4x.xα1

)[yα1
]]

// x[α
1]

2→β3
[yα1

]

x ((λx.x)y)
β //

o x yo

x[α
1,β2]

3→γ4
[(λ5x.xα1

)[yα1
], (λ6x.xβ2

)[yβ2
]]

// // x[α
1,β2]

3→γ4
[yα1

, yβ2
]

Now we want to go the other way: we have t′ n t and t′ �# s′. We would like to get
a term s such that t� s o s′. But that is not possible in general, to see that consider the
following counterexample:

4.2. SIMULATION 33

(λx.xx)((λy.y)a)
β // //

o so

(λ1x.x[α]→β[xα])[(λ2y.y[α]→β)a[α]→β, (λ3y.yα)aα]
// (λ1x.x[α]→β[xα])[a[α]→β, (λ3y.yα)aα]

Note that if s is to be refined by

(λ1x.x[α]→β[xα])[a[α]→β, (λ3y.yα)aα]

then it must be an application, s = s1s2, such that s2 is refined by both a[α]→β and
(λy.yα)aα— but that is impossible, because the first says s2 should be a variable, and the
second says it should be an application. So what we need is to reduce the term in the
lower right part of the diagram until it refines some term s.

The exact statement for what we want is the proposition that follows.

Proposition 4.5 (Reverse simulation). Let t′, s′ ∈ T # be distributive-terms and let t ∈ T λ be
a lambda-term such that:

t o t′ →# s′

then there is a distributive term s′′ ∈ T # and a lambda-term s ∈ T λ such that:

t→β s o s′′

and the step t′ →# s′ is contained in the multistep t′ �# s′′. Diagramatically:

t′

#
��

#

"" ""

n t

β

��

s′

#����
s′′ n s

Proof. ♠ By induction on t′. The proof is constructive.

Example 4.6. In the example above, we needed to apply one more step in order to be able to close
the diagram:

(λ1x.x[α]→β[xα])[(λ2y.y[α]→β)a[α]→β, (λ3y.yα)aα]

#
��

n (λx.xx)((λy.y)a)

β

��

(λ1x.x[α]→β[xα])[a[α]→β, (λ3y.yα)aα]

#
��

(λ1.xx[α]→β[xα])[a[α]→β, aα] n (λx.xx)a

34 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

4.3 Head normal forms

When we defined what a refinement is, we saw that some terms had refinements and
others did not, but the reason behind that was not clear.

In this section we will see that terms that can be refined are exactly the terms that have
a normal form. This is coherent with the fact that typability in systemW characterizes
head normalization [BKV17, Corollary 5.5].

Definition 4.7 (Head normal forms). A term t ∈ T λ of the lambda-calculus is a head
normal form if it is of the form:

t = λx1. . . . λxn.y t1 . . . tm

where y might be or not be among the x1, . . . , xn. Similarly, a term t ∈ T # of the
distributive lambda-calculus is a head normal form if it is of the form:

t = λ`1 x1. . . . λ`n xn.yτ~t1 . . . ~tm

We say that a term has a head normal form if it can be reduced to a head normal form.
The claim that we are putting forward is that a term can be refined if and only if it has a
head normal form.

Note that for terms that are head normal forms this is easy. The idea is that if

λx1. . . . λxn.y t1 . . . tm ∈ T λ

then it is refined by

λ`1 x1. . . . λ`n xn.y[]
1→... n→α1

[] . . . [] ∈ T #

if xi 6= y for every i (otherwise the type of y is slightly different, but the term has the
same shape).

Lemma 4.8. Let t ∈ T λ such that it is in head normal form. Then there exists t′ ∈ T # such
that t o t′.
Proof. Suppose t ∈ T λ is in head normal form. Then t = λx1. . . . λxn.y t1 . . . tm.

We will prove that there exists a correct Γ ` t′ : σ such that t′ n t. To make the proof
easier, we are going to prove something stronger: (a) that there exists such t′, (b) that for every
application in t′ the argument list is empty, and (c) that if xi = y for any i, Γ will be empty,
otherwise it will be a singleton of the form {y : [τ]}.

We proceed by induction on the pair (n, m), that is, by induction on N2 with lexicographic
order. ♠

The claim that terms that are refinable are exactly the ones that have a head normal
form is formally stated as follows.

Proposition 4.9 (Refinability characterizes head normalization). The following are equiva-
lent:

1. There exists t′ ∈ T # such that t′ n t.
2. There exists t′ ∈ T # such that t′ n t and t′ �# λ`1 x1. . . . λ`n xn.yτ[] . . . [].

4.4. SIMULATION RESIDUALS 35

3. There exists a head normal form s such that t�β s, i.e. t has a head normal form.
Proof. ♠ (1 =⇒ 3) relies on Simulation (Proposition 4.3). (2 =⇒ 1) is obvious. (3 =⇒ 2)
uses that head normal forms are refinable, plus a subject expansion lemma. Subject expansion
requires formulating a strongeer property than correctness, invariant by→#-expansion (i.e. by
→#
−1).

Note that, in general, there is no need to refine a head normal form using an empty
lists for all parameters. A head normal form has a corresponding Böhm tree, from
which one can obtain an approximant, λx1. . . . λxn.y Ω Ω . . . Ω [Bar84, DCGd98]. A
finite approximant is essentially any finite prefix of the Böm tree, given by the grammar
A ::= Ω|λx1. . . . λxn.A1 A2 . . . Am. (2 ⇐⇒ 3) from Proposition 4.9 may be generalized
to arbitrary finite approximations. We did not delve into this theory.

4.4 Simulation residuals

Simulation (Proposition 4.3) ensures that every step t →β s can be simulated in λ#

starting from a term t′ n t. Actually, a finer relationship can be established between
the derivation spaces Dλ(t) and D#(t′). For this, we introduce the idea of simulation
residual.

The input data of Proposition 4.3 consists of the term t, the step t →β s, and the
refinement t′ n t. Similarly as for the usual notion of residual, we define notation
to denote the output data of Proposition 4.3, namely the multistep t′ �# s′, and the
refinement s′ n s.

Definition 4.10 (Simulation residuals). Let t′ n t and let R : t →β s be a step. The
constructive proof of Simulation (Proposition 4.3) associates the →β-step R to a pos-

sibly empty set of→#-steps {R1, . . . , Rn} all of which start from t′. We write R/t′ def
=

{R1, . . . , Rn}, and we call R1, . . . , Rn the simulation residuals of R after t′. All the com-
plete developments of R/t′ have a common target, which we denote by t′/R, called the
simulation residual of t′ after R.

Remark 4.11. If t′ n t and R : t→β s, then t′/R ∈ T # and src(Ri) = t′ for all Ri ∈ R/t′.

Recall that, by abuse of notation, R/t′ stands for some complete development of the
set R/t′. By Simulation (Proposition 4.3), the following diagram always holds given
t′ n t→β s:

t
β

R
//

o so

t′ #

R/t′
// // t′/R

Example 4.12 (Examples of simulation residuals). Let R : x ((λx.x)y)→β x y.

0. If t′ = x[]
1→α2

[], then R/t′ = ∅.

1. If t′ = x[α
1]

2→β3
[(λ4x.xα1

)[yα1
]], then R/t′ = {R′}, where R′ : t′ →# x[α

1]
2→β3

[yα1
].

36 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

2. If t′ = (x[α
1,β2]

3→γ4
[(λ5x.xα1

)[yα1
], (λ6x.xβ2

)[yβ2
]]), then R/t′ = {R1, R2} where R1 :

t′ →# t′1 and R2 : t′ →# t′2, where t′1 = x[α
1,β2]

3→γ4
[yα1

, (λ6x.xβ2
)[yβ2

]] and t′2 =

x[α
1,β2]

3→γ4
[(λ5x.xα1

)[yα1
], yβ2

]. Moreover t′/R = t′3, where t′3 = x[α
1,β2]

3→γ4
[yα1

, yβ2
].

Simulation residuals t′/R and R/t′ are defined when R is a single step. Mimicking
the standard extension of residuals for derivations, we extend simulation residuals for
derivations, i.e. t′/ρ and ρ/t′ as follows.

Definition 4.13 (Simulation residuals extended to derivations). If ρ : t�β s is a deriva-
tion and t′ ∈ T # is a correct term such that t′ n t then the simulation residual of t′ after
ρ is defined by induction on ρ as a term t′/ρ ∈ T # such that t′/ρ n s:

• t′/ε
def
= t′

• t′/(Rσ)
def
= (t′/R)/σ

The simulation residual of ρ after t′ is defined by induction on ρ as a derivation ρ/t′

such that ρ/t′ : t′ �# t′/ρ:

• ε/t′ def
= ε

• (Rσ)/t′ def
= (R/t′)(σ/(t′/R))

where, in the right-hand side, the expression R/t′ is an abuse of notation, and it
technically stands for a (canonical) complete development of the multistep R/t′.

The diagram for the inductive case is:

t

o

R //

o

σ // s

o

t′ R/t′ // // t′/R
σ/(t′/R) // // t′/Rσ (t′/R)/σ

This extension of the definition works as expected for compositions, as shown by the
following lemma.

Lemma 4.14 (Simulation residuals and composition). Let ρ, σ be composable derivations
and let t′ n src(ρ). Then:

1. t′/ρσ = (t′/ρ)/σ
2. ρσ/t′ = (ρ/t′)(σ/(t′/ρ))

Proof. Item 1. is by induction on ρ. The interesting case is when ρ is non-empty, i.e. ρ = Rτ.
Then:

t′/Rτσ = (t′/R)/τσ
h.i.
= ((t′/R)/τ)/σ = (t′/Rτ)/σ

as required.
Item 2. is by induction on ρ. The interesting case is when ρ is non-empty, i.e. ρ = Rτ. Then:

Rτσ/t′ = (R/t′)(τσ/(t′/R)) h.i.
= (R/t′)(τ/(t′/R))(σ/((t′/R)/τ)) = (Rτ/t′)(σ/(t′/Rτ))

as required.

4.4. SIMULATION RESIDUALS 37

The result can be summarized by the following diagram.

t

o

ρ // s

o

σ // u

o

t′
ρ/t′ // // t′/ρ

σ/(t′/ρ) // // (t′/ρ)/σ

Cube lemma

The following result resembles the usual Cube Lemma1. It is basically a coherence result
that relates different notions of residuals and checks they work together as expected.

We first enunciate a basic cube lemma that deals with single steps, which we later on
will generalize to arbitrary derivations.

But before that let us explain what the cube lemma does. The situation it speaks
about is as shown in the following diagram.

t
R

��

S

��

o t′

R/t′

xxxx

S/t′

&& &&

S/R
�� ��

R/S
����

t′/R

&& &&

t′/S

αxxxx
t′/(R t S)

In the diagram before, α is a complete development of some set of stepsMα. The
cube lemma reconciles the two possible ways of writingMα. See thatMα can be seen
as projecting R/S on the term t′/S, which would suggestMα = (R/S)/(t′/S). On the
other hand, if we only concentrate on the right hand side of the diagram,Mα may be
seen as simply the residual of R/t′ after S/t′, i.e., (R/t′)/(S/t′). The basic cube lemma
states that this two different ways of seingMα yield the same set of steps.

Lemma 4.15 (Basic cube lemma for simulation residuals). Let R : t→ s and S : t→ u be
coinitial steps, and let t′ ∈ T # be a correct term such that t′ n t. Then the following equality
between sets of coinitial steps holds:

(R/t′)/(S/t′) = (R/S)/(t′/S)

Observe that there are four notions of residual involved here:

(R /(1) t′) /(2) (S /(1) t′) = (R /(3) S) /(1) (t′ /(4) S)

1. Set of simulation residuals of a β-step relative to a correct term.
2. Set of residuals of a #-step after a #-step.

1 Recall that the usual Cube Lemma states that (ρ/σ)/(τ/σ) ≡ (ρ/τ)/(σ/τ); see e.g. [Bar84,
Lemma 12.2.6].

38 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

3. Set of residuals of a β-step after a β-step.
4. Simulation residual of a correct term after a β-step.

Proof. If R = S then it is easy to see that the proposition holds, so we can assume that R 6= S.
Also, note that it is enough to see that names((R/t′)/(S/t′)) = names(((R/S)/(t′/S)), as we
will do that in some cases. We proceed by induction on t. ♠

The following result relates complete developments from both worlds. It will be
useful to prove the generalized version of the cube lemma, and other intermediate
results.

Lemma 4.16 (Simulation residual of a development). LetM be a set of coinitial steps, let ρ
be a complete development ofM, and let t′ ∈ T # be a correct term such that t′ n src(ρ). Then
ρ/t′ is a complete development ofM/t′.

Proof. By induction on depth ofM, i.e. the maximum length of any development ofM.
1. n = 0. Necessarily, ρ = ε andM = ∅. Then ρ/t′ = ε, which is a (complete) development

of an empty set of steps, likeM/t′.
2. Inductive case. In this case, the longest development ofM is non-trivial, soMmust be

non-empty, let it be {R1, . . . , Rn+1} and let ρ be a complete development of it. Without
loss of generality, we may assume that Rn+1 is the first step executed by ρ, followed by
a complete development ofM′ = {R1/Rn+1, . . . , Rn/Rn+1}, which we will call ρ′. Note
that the longest development of M′ (let’s call it σ) is strictly shorter than the longest
development ofM because Rn+1σ is a complete development ofM.
By i.h., ρ′/(t′/Rn+1) is a complete development of

⋃n
i=1

Ri/Rn+1
t′/Rn+1

, which by Lemma 4.15 is

equal to
⋃n

i=1
Ri/t′

Rn+1/t′ . Then, (Rn+1/t′)(ρ′/(t′/Rn+1)) is a complete development ofM/t′

(because by definition it is {R1/t′, . . . , Rn+1/t′}).
But note that ρ/t′ = Rn+1ρ′

t′ = Rn+1
t′

ρ′

t′/Rn+1
so we are done.

Having shown the previous lemma, we are able to prove that the operation of
projecting derivations from the pure λ-calculus to the λ#-calculus is compatible with
permutation equivalence.

Proposition 4.17 (Compatibility). Let ρ ≡ σ be permutation equivalent derivations in the
λ-calculus, and let t′ ∈ T # be a correct term such that t′ n src(ρ). Then:

1. t′/ρ = t′/σ
2. ρ/t′ ≡ σ/t′

Proof. ♠We proceed by induction on the proof that ρ ≡ σ.

Corollary 4.18 (Simulation residuals and prefixes). If ρ v σ then ρ/t′ v σ/t′.

Proof. Since ρ v σ we have that ρτ ≡ σ for some derivation τ. Then by item 2 of Proposition 4.17,
ρτ/t′ ≡ σ/t′, so (ρ/t′)(τ/(t′/ρ)) ≡ σ/t′. This implies that ρ/t′ v σ/t′ as required.

The cube lemma may be generalized for the case in which R and S are arbitrary
derivations:

4.4. SIMULATION RESIDUALS 39

Lemma 4.19 (Generalized cube lemma for simulation residuals). Let ρ : t �β s and
σ : t�β u be coinitial derivations, and let t′ ∈ T # be a correct term such that t′ n t. Then the
following equality between derivations holds:

(ρ/t′)/(σ/t′) ≡ (ρ/σ)/(t′/σ)
Proof. By induction on ρ using Lemma 4.15. We will prove this result in two steps. The first
step will be to prove it in the case where ρ is just one step, i.e.,

(R/t′)/(σ/t′) ≡ (R/σ)/(t′/σ). (2)

We proceed by induction on σ.
1. σ = ε. In this case R/ε = {R}, t′/ε = t′, and ε/t′ = ε, so we end up with the equality we

wanted, R/t′ = R/t′.
2. σ = Sσ′. First, R/(Sσ′) = (R/S)/σ′ = {T/σ′ : T ∈ R/S}. Also, t′/σ = (t′/S)/σ′.

Then, the right hand side of the equation is ((R/S)/σ′)/((t′/S)/σ′), which in reality is
the set {(T/σ′)/((t′/S)/σ′) : T ∈ R/S}, which by inductive hypothesis equals (mod-
ulo permutation equivalence) the set {(T/(t′/S))/(σ′/(t′/S)) : T ∈ R/S}, i.e. the set,
((R/S)/(t′/S))/(σ′/(t′/S)).
In turn, this set, by Lemma 4.15, equals the set ((R/t′)/(S/t′))/(σ′/(t′/S)).
On the other hand, the left side of the equation is (R/t′)/((Sσ′)/t′), which by definition
of simulation residual equals (R/t′)/((S/t′)(σ′/(t′/S))). That last derivation equals the
canonical development of the right hand side of the equation because of the general rule
α/(βγ) ≡ (α/β)/γ.

Now we proceed to prove the full proposition, and we will proceed by inducion on ρ.
1. ρ = ε. In this case both sides of the equation are the empty derivation.
2. ρ = Rρ′. This case can be proven with a series of equalities, in which we will abuse

notation when necessary, writing R/σ to mean a complete canonical development of the
actual residual set.

((Rρ′)/σ)/(t′/σ) = (Rρ′)/σ
t′/σ

= (R/σ)(ρ′/(σ/R))
t′/σ by definition of residual

= R/σ
t′/σ

ρ′/(σ/R)
(t′/σ)/(R/σ)

by definition of simulation residual

≡ R/σ
t′/σ

ρ′/(σ/R)
(t′/R)/(σ/R) by the previous partial result (2)

≡ R/σ
t′/σ

ρ′/(t′/R)
(σ/R)/(t′/R) by inductive hypothesis

≡ R/t′
σ/t′

ρ′/(t′/R)
(σ/R)/(t′/R) by the previous partial result (2)

≡ R/t′
σ/t′

ρ′/(t′/R)
(σ/t′)/(R/t′) by the previous partial result (2)

≡ (R/t′)(ρ′/(t′/R))
σ/t′ by residual properties, in general: γ

β
α

β/γ ≡
γα
β

= (Rρ′)/t′
σ/t′ by definition of simulation residual

Corollary 4.20 (Algebraic Simulation). Let t′ n t. Then the mapping Dλ(t)→ D#(t′) given
by [ρ] 7→ [ρ/t′] is a morphism of upper semilattices.
Proof. We need to check that the morphism is monotonic and that it preserves joins. First, if
ρ v σ then ρτ ≡ σ for some τ. So ρ/t v (ρ/t)(τ/(t/ρ)) = ρτ/t ≡ σ/t by Compatibility (Propo-
sition 4.17).

Secondly, (ρ t σ)/t = ρ(σ/ρ)/t = (ρ/t)((σ/ρ)/(t/ρ)) ≡ (ρ/t)((σ/t)/(ρ/t)) = (ρ/t) t
(σ/t).

40 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

Example 4.21. Let I = λx.x and ∆ = (λ5x.xα2
)[zα2

] and let us write ŷ for y[α
2]

3→[]
4→β5

. The
refinement t′ := (λ1x.ŷ[xα2

][])[∆] n (λx.yxx)(Iz) induces a morphism between the upper
semilattices represented by the following reduction graphs:

(λx.yxx)(Iz)R1

zz
S
$$

y(Iz)(Iz)
S11 ��

S21 // y(Iz)z
S12��

(λx.yxx)z

R2
ppyz(Iz)

S22

// yzz

(λ1x.ŷ[xα2
][])[∆]

R′1
{{

S′
&&

ŷ[∆][]

S′1
,,

(λ1x.ŷ[xα2
][])[zα2

]

R′2
rrŷ[zα2

][]

For example (R1 t S)/t′ = (R1S11S22)/t′ = R′1S′1 = R′1 t S′ = R1/t′ t S/t′. Note that the
step S22 is erased by the simulation: S22/(ŷ[zα2

][]) = ∅. Intuitively, S22 is “garbage” with
respect to the refinement ŷ[zα2

][], because it lies inside an untyped argument.

Example 4.22. We can do a larger example. Consider the term (λx.xx)((λy.ya)(λz.z)), which
is refined by (λ1x.x[])[(λ2y.y[a])[λ3z.z]], among others 2. Let’s take a look at the derivation
space of the distributive term. We use the labels of the steps to name the steps (Rn, R′n, R′′n , . . . are
steps that have the name n).

(λ1x.x[])[(λ2y.y[a])[λ3z.z]]
R1 //

R2
��

(λ2y.y[a])[λ3z.z]][]

R′2
��

(λ1x.x[])[(λ3z.z)[a]]
R′1 //

R3
��

(λ3z.z)[a][]

R′3
��

(λ1x.x[])[a]
R′′1 // a[]

Next, the derivation space of the pure lambda term. We name the steps such that a derivation
below with a step Sn

i maps to the derivation with Rn
i above. The steps with no name are mapped

to the empty derivation above.

(λx.xx)((λy.ya)(λz.z))

S1
ss

S2

,,
((λy.ya)(λz.z))((λy.ya)(λz.z))

S′2
ss ++

(λx.xx)((λz.z)a)

S3

��

S′1oo

((λz.z)a)((λy.ya)(λz.z))

S′3
tt ++

((λy.ya)(λz.z))((λz.z)a)
S′2

ss **
a((λy.ya)(λz.z))

**

((λz.z)a)((λz.z)a)

S′3
ss ++

((λy.ya)(λz.z))a

S′2
tt

a((λz.z)a)

00

((λz.z)a)a

S′3��
(λx.xx)a

S′′1

nnaa

Note that, for example, the derivation S2S3S′′1 maps to the derivation R2R3R′′1 .

2 The fully labeled term is (λ1x.x[]
5→α4

[])[(λ2y([]
5→α4)

3→([]
5→α4).y[a[]

5→α4
])[λ3z.z[]

5→α4
]].

4.4. SIMULATION RESIDUALS 41

Notice how the unlabeled steps in the second diagram correspond to the empty derivation in
the first one. That means something: the unlabeled steps are not necessary if we want to arrive to
the head normal form aΩ, which is “casually” the head normal form represented by a[].

We will study this phenomenon more carefully in the next chapter.

42 CHAPTER 4. SIMULATION OF THE λ-CALCULUS

Chapter 5

Factorization of derivations

As we observed in the two examples at the end of last chapter, when we take a derivation
from the lambda calculus and project it to the distributive lambda calculus, we may end
up with the empty derivation.

Remember that if we have a term t′ ∈ T # that refines a t ∈ T λ, t′ represents in some
way a head normal form of t. Intuitively, derivations in Dλ(t) that map to the empty
derivation in D#(t′) will be derivations that do not do work towards carrying t to the
head normal form represented by t′.

5.1 Garbage

We shall call these derivations that map to the empty derivation garbage.

Definition 5.1 (Garbage). Let t′ n t. A derivation ρ : t �β s is said to be t′-garbage if
and only if ρ/t′ = ε.

Notation 5.2. If the correct term t′ is clear from the context, we will often say that ρ is
garbage, without specifying with respect to which term. In particular, if (ρ · σ) : t�β s
and t′ n t:

• To say that ρ is garbage means that ρ is t′-garbage.

• To say that σ is garbage means that σ is (t′/ρ)-garbage.

Example 5.3. Let (λz.λx.xz)(I I) ∈ T λ, which has the following derivation space.

(λz.λx.xz)(I I)
R

ww

S

((
λx.x(I I)

S′ ((

(λz.λx.xz)I

R′vv
λx.xI

43

44 CHAPTER 5. FACTORIZATION OF DERIVATIONS

The term above may be refined by many terms. Two of those possible refinements are
(λ1z.λ2x.x[])[] 1 and (λ1z.λ2x.x[z])[(λ3y.y)[λ4w.w]] 2. Their derivation spaces are, respec-
tively:

(λ1z.λ2x.x[])[]

��

(λ1z.λ2x.x[z])[(λ3y.y)[λ4w.w]]

tt **
λ2x.x[(λ3y.y)[λ4w.w]]

**

(λ1z.λ2x.x[z])[λ4w.w]

tt
λ2x.x[] λ2x.x[λ4w.w]

Note that the step S is garbage with respect to the first refinement, but not with respect to the
second.

For each t′ n t, the set of t′-garbage derivations forms an ideal of the upper semilattice
Dλ(t). More precisely:

Proposition 5.4 (Properties of garbage). Let t′ n t. Then:
1. If ρ is t′-garbage and σ v ρ, then σ is t′-garbage.
2. The composition ρσ is t′-garbage if and only if ρ is t′-garbage and σ is (t′/ρ)-garbage.
3. If ρ is t′-garbage then ρ/σ is (t′/σ)-garbage.
4. The join ρ t σ is t′-garbage if and only if ρ and σ are t′-garbage.

Proof. We prove each item separately.
1. Let σ v ρ. Then στ ≡ ρ for some τ, so σ/t′ v (σ/t′)(τ/(t′/σ)) = στ/t′ ≡ ρ/t′ by

Compatibility (Proposition 4.17).
2. Note that ρσ/t′ = (ρ/t′)(σ/(t′/ρ)). So ρσ/t′ is empty if and only if ρ/t′ and σ/(t′/ρ) are

empty.
3. Suppose that ρ/t′ = ε. Then (ρ/σ)/(t′/σ) = (ρ/t′)/(σ/t′) by the Cube Lemma (Lemma 4.19).
4. By the Cube Lemma (Lemma 4.19):

(ρtσ)/t′ = ρ(σ/ρ)/t′ = (ρ/t′)((σ/ρ)/(t′/ρ) ≡ (ρ/t′)((σ/t′)/(ρ/t′)) = (ρ/t′)t (σ/t′)

So (ρ t σ)/t′ is empty if and only if ρ/t′ and σ/t′ are empty.

Our aim is to show that given any derivation ρ : t �β s in the λ-calculus and
any t′ n t, there is a unique way of factorizing ρ as ρ1ρ2 where ρ2 is garbage, and
ρ1 “has no garbage”. The notion of garbage of Definition 5.1 is fine for our purposes.
Note, in particular, that the notion of garbage is well-defined modulo permutation
equivalence, i.e. if ρ ≡ σ then ρ is garbage if and only σ is garbage (this is a consequence
of Proposition 4.17).

However, the notion of “having no garbage” is not so easy to pin down, as seen in
the following example.

1 The fully labeled term is (λ1z.λ2x.x[]
3→α4

[])[].
2 The fully labeled term is (λ1z.λ2x.x[[α

5]
4→α5]

2→β6
[z[α

5]
4→α5

])[(λ3y.y[α
5]

4→α5
)[λ4w.wα5

]].

5.1. GARBAGE 45

Example 5.5. Consider the reduction space for (λx.yxx)((λx.x)z). Dotted arrows will corre-
spond to steps that are garbage:

(λx.yxx)((λx.x)z)
R1

uu

S

''
y((λx.x)z)((λx.x)z)

S11

vv

S21

))

(λx.yxx)z

R2nn

yz((λx.x)z)

S22 ((

y((λx.x)z)z

S12uuyzz

Consider moreover the following refinement:

(λ1x.y[α
2]

3→[]
4→β5

[xα2
] [])[(λ6x.xα2

)[zα2
]] n (λx.yxx)((λx.x)z)

It has the following derivation space (letting τ = [α2]
3→ []

4→ β5):

(λ1x.yτ [xα2
] [])[(λ6x.xα2

)[zα2
]]

R′1

tt

S′

**

yτ [(λ6x.xα2
)[zα2

]] []

S′1 **

(λ1x.yτ [xα2
] [])[zα2

]

R′2tt
yτ [zα2

] []

Then we can observe that:

• R1, R2, S, S11, S12 are not garbage.

• S21, S22 are garbage.

In particular, the naïve notion of “having garbage” is not well-defined modulo permutation
equivalence: the derivations R1S11S22 and SR2 are permutation equivalent, but the former
contains a garbage step, while the latter does not.

The following notion of “having no garbage” will be proven to be well-defined
modulo permutation equivalence.

Definition 5.6 (Garbage-free). Let t′ n t. A derivation ρ : t�β s is t′-garbage-free if for
every derivation σ such that σ v ρ:

ρ/σ is (t′/σ)-garbage implies ρ/σ = ε.

46 CHAPTER 5. FACTORIZATION OF DERIVATIONS

Intuitively, what the definition of garbage-free says is that we cannot strip ρ in some
way such that a part is garbage: if we divide ρ in two parts σ and ρ/σ and the second
part is garbage, then it actually was the empty derivation.

For example, in the situation of Example 5.5 the derivation SR2 is not garbage-free,
since R1S11 v SR2 and SR2/R1S11 ≡ S22 which is garbage but non-empty. In contrast,
R1S11 is garbage-free.

Lemma 5.7 (The notion of garbage-free is well-defined modulo permutation equivalence).
Let ρ : t�β s and ρ ≡ σ. Then ρ is t′-garbage-free if and only if σ is t′-garbage-free.
Proof. (⇒) Suppose that ρ is garbage-free, and let us show that σ is garbage-free. Let τ v σ such
that σ/τ is (t′/τ)-garbage. Then τ v ρ and ρ/τ is (t′/τ)-garbage. Then, since ρ is garbage-free,
we have that ρ/τ = ε, which in turn implies that σ/τ = ε. (⇐) Symmetric.

5.2 Sieving

In this subsection, we will characterize garbage-free derivations by giving a procedure–
sieving–that, in some sense, erases all the garbage from a derivation.

Definition 5.8 (Sieving). Let t′ n t where t′ is a correct term, and let ρ : t �β s be an
arbitrary derivation. A step R is coarse for (ρ, t′) if R v ρ and R/t′ 6= ∅.

We define the sieve of ρ with respect to t′, written ρ ↓ t′, as a derivation in the
λ-calculus, going out from t, as follows, considering two cases, depending on whether
there exists a coarse step for (ρ, t′).

• If there are no coarse steps for (ρ, t′). Then (ρ ↓ t′) def
= ε.

• If there exists a coarse step for (ρ, t′). Let R0 the leftmost coarse step. Then:

(ρ ↓ t′) def
= R0((ρ/R0) ↓ (t′/R0))

Note that, in the recursive invocation, the expression is well-formed because
(t′/R0) n src(ρ/R0), which is immediate from Definition 4.10.

This definition is shown to be well-defined (terminating and well behaved) in the
following lemmas.

Lemma 5.9 (Sieving is well-defined). The operation ρ ↓ t′ is well-defined.
Proof. ♠We show that the recursion is well-founded using the measure M(ρ, t′) = |ρ/t′|.

Lemma 5.10 (Sieving is compatible with permutation equivalence). Let ρ ≡ σ. Then
ρ ↓ t′ ≡ σ ↓ t′.
Proof. ♠ By induction on the length of ρ ↓ t′, observing that (R v ρ) ⇐⇒ (R/ρ = ∅) ⇐⇒
(R/σ = ∅) ⇐⇒ (R v σ).

Example 5.11. In Example 5.5, S ↓ t′ = S and SR2 ↓ t′ = R1S11.

In the next section we will prove some further results about sieving.

5.3. SOME PROPERTIES 47

5.3 Some properties

What follows are two results that describe what happens when one executes a garbage
step or garbage derivation. In short, if a garbage derivation creates or duplicates a step
R, then R is garbage. This makes sense, as one should not need to execute garbage in
order to create a “needed” step.

Lemma 5.12 (Garbage only creates garbage). Let R and S be composable steps in the λ-
calculus, and let t′ n src(R). If R creates S and R is t′-garbage, then S is (t′/R)-garbage.
Proof. According to Lévy [Lév78], there are three creation cases in the λ-calculus. We need to
consider those three cases separately. ♠

Lemma 5.13 (Garbage only duplicates garbage). Let R and S be coinitial steps in the λ-
calculus and let t′ n src(R). If R duplicates S, i.e. #(S/R) > 1, and R is t′-garbage, then S is
(t′/R)-garbage.
Proof. ♠ By inspecting how R looks like given that it duplicates S.

We now prove two propositions that give different characterizations for both garbage
and garbage-free derivations. Finally, we give some general and useful properties of the
sieving operation.

Proposition 5.14 (Characterization of garbage). Let ρ : t �β s and t′ n t. Then the
following are equivalent:

1. ρ ↓ t′ = ε.
2. There are no coarse steps for (ρ, t′).
3. The derivation ρ is t′-garbage.

Proof. It is immediate to check that items 1 and 2 are equivalent, by definition of sieving, so we
focus on 2 =⇒ 3 and 3 =⇒ 2. ♠

Proposition 5.15 (Characterization of garbage-free derivations). Let ρ : t�β s and t′ n t.
Then the following are equivalent:

1. ρ is t′-garbage-free,
2. ρ ≡ ρ ↓ t′,
3. ρ ≡ σ ↓ t′ for some derivation σ.

Proof. We prove each direction separately. ♠

Proposition 5.16 (Properties of sieving). Let t′ n t and ρ : t→β
∗ s. Then:

1. ρ ↓ t′ is t′-garbage-free and ρ ↓ t′ v ρ.
2. ρ/(ρ ↓ t′) is (t′/(ρ ↓ t′))-garbage.
3. ρ is t′-garbage if and only if ρ ↓ t′ = ε.
4. ρ is t′-garbage-free if and only if ρ ↓ t′ ≡ ρ.

Proof. We use some technical lemmas spelled out in the appendix (♠).
1. Note that ρ ↓ t′ is t′-garbage-free by Proposition 5.15. Moreover, ρ ↓ t′ v ρ by Lemma A.27.
2. This is precisely Lemma A.31.
3. An immediate consequence of Proposition 5.14.
4. An immediate consequence of Proposition 5.15.

48 CHAPTER 5. FACTORIZATION OF DERIVATIONS

5.4 Factorization of garbage

Notice that now, given two terms t n t′ and a derivation ρ : t � s, we can obtain via
sieving a garbage-free prefix of ρ, namely ρ ↓ t′. The question is if we can somehow get
a garbage derivation σ such that (ρ ↓ t′)σ ≡ ρ.

The answer is yes, as the following theorem states. We could prove it now, but in
the next section we will prove a more interesting generalization of the result, that will
consider not only single derivations but of derivation spaces. When we are done with
that, the following theorem will be a mere corollary.

Theorem 5.17 (Simple factorization of garbage). Let ρ : t�β s and t′ n t. Then there exist
ρ1, ρ2 such that:

1. ρ ≡ ρ1ρ2
2. ρ1 is t′-garbage-free,
3. ρ2 is t′-garbage.

Moreover, ρ1 and ρ2 are unique modulo permutation equivalence, and we have that ρ1 ≡ ρ ↓ t′

and ρ2 ≡ ρ/(ρ ↓ t′).

5.5 Lattices

As we previously said, we want to enunciate a general factorization theorem for deriva-
tion spaces. The factorization will consist in writing any derivation as the concatenation
of two derivations, such that the first one is garbage-free, and the second one is garbage.

This factorization can be considered over derivation spaces because it glues well: the
factorizations of two different derivations will be compatible in a strong sense.

Let us recall why this factorization theorem is important. If we have a term t refined
by another t′, then t′ represents some head normal form s of t, and the fact that a
derivation is garbage with respect to t′ means that it does not contribute to arrive to s.

We introduce the following definitions mostly to fix nomenclature and notation:

Definition 5.18 (Upper semilattices). An upper semilattice is a triple (X,≤,∨) where
X is a set, ≤ is a partial order on X, and there are binary joins x ∨ y for all x, y ∈ X. An
upper semilattice with bottom is an upper semilattice with a bottom element ⊥ ∈ X.
As customary, by abuse of notation, we write X for both the structure and the underlying
set, when clear from the context. We may write ⊥X to emphasize that ⊥ is the bottom
element of X.

A morphism of upper semilattices is a monotonic function f : X → Y (i.e. x ≤ y
implies f (x) ≤ f (y)) preserving joins, that is f (x ∨ y) = f (x) ∨ f (y). A morphism of
upper semilattices with bottom moreover preserves the bottom element, i.e. f (⊥) = ⊥.

Upper semilattices provided with morphisms form a category USL. Upper semi-
lattices with bottom provided with morphisms form a category USLB. Any upper
semilattice may be regarded as a category whose objects are the elements of X, and such
that there is a (unique) morphism x → y if and only if x ≤ y. We write x ↪→ y for such
morphism.

5.5. LATTICES 49

As usual, if X and Y are posets, the set of functions f : X → Y is also a poset with
f ≤ g defined as f (x) ≤ g(x) for all x ∈ X. Thus USL forms a 2-category in which 0-cells
are upper semilattices, 1-cells are morphisms of upper semilattices f : X → Y, and there
is a 2-cell f ⇒ g if and only if f ≤ g.

Definition 5.19 (Lax 2-functor). Let C be a category and D a 2-category. A lax 2-functor
F : C → D is a pair (F1, F2) where F1 : Ob(C) → Ob(D) is a function, and for every
morphism f : X → Y in C ,

F2(f) : F1(X)→ F1(Y) is a 1-cell in D

such that functor laws hold up to 2-cells. We will be interested in the following notion of
lax 2-functor:

1. F2(idX) = idF1(X) for all X ∈ Ob(C).
2. F2(f ◦ g) ≤ F2(f) ◦ F2(g) is a 2-cell for any two morphisms g : X → Y, f : Y → Z

in C .
As usual with functors, we may write F to stand for either F1 or F2, when clear from the
context. Related lax functor definitions can be found in [Str72].

Recall that we will have a factorization for each derivation, and we want to somehow
glue those factorizations such that factorizations behave well under semilattice opera-
tions. That can be done with an adaptation of Grothendieck’s construction for partially
ordered sets.

The Grothendieck construction allows us to perform a “twisted product” between a
structure and a functor from that structure. This is what we want to do because we have
a structure that represents garbage-free derivations from a term, and we have a functor
from that structure to the category of semi-lattices: for every garbage-free derivation ρ
we have a semi-lattice that represents the garbage derivations {σ | src(σ) = tgt(ρ)}.

Definition 5.20 (Grothendieck construction for partially ordered sets). Let A be a poset,
and let B : A → Poset be a mapping associating each object a ∈ A to a poset B(a).
Suppose moreover that B is a lax 2-functor. More precisely, for each a ≤ b in A let
B(a ↪→ b) : B(a)→ B(b) be a monotonic function such that:

1. B(a ↪→ a) = ida for all a ∈ A.
2. B((b ↪→ c) ◦ (a ↪→ b)) ≤ B(b ↪→ c) ◦ B(a ↪→ b) is a 2-cell for all a ≤ b ≤ c in A.

The Grothendieck construction
∫

A B is defined as the poset given by {(a, b) | a ∈ A, b ∈
B(a)} and such that (a, b) ≤ (a′, b′) def⇐⇒ a ≤ a′ and B(a ↪→ a′)(b) ≤ b′.

It is routine to check that
∫

A B is indeed a poset.

Proposition 5.21 (Semilattices of garbage-free and garbage derivations). Let t′ n t. Then:
1. The set F(t′, t) = {[ρ] | src(ρ) = t and ρ is t′-garbage-free} is a finite lattice, with the

order [ρ]E [σ]
def⇐⇒ ρ/σ is (t′/σ)-garbage, the join [ρ]O[σ] = [(ρ t σ) ↓ t′], and the

meet [ρ]M [σ] given by the join of all the [τ] such that [τ]E [ρ] and [τ]E [σ].
2. The set G(t′, t) = {[ρ] | src(ρ) = t and ρ is t′-garbage} is an upper semilattice, with the

structure inherited from Dλ(t).

50 CHAPTER 5. FACTORIZATION OF DERIVATIONS

Proof. ♠ The proof relies on the properties of garbage (Proposition 5.4) and sieving (Proposi-
tion 5.16).

Suppose that t′ n t, and let F def
= F(t′, t) denote the lattice of t′-garbage-free deriva-

tions. Let G : F → Poset be the lax 2-functor G([ρ]) def
= G(t′/ρ, tgt(ρ)) with the action

on morphisms G([ρ] ↪→F [σ]) : G([ρ])→ G([σ]) given by [α] 7→ [ρα/σ]. Then:

Theorem 5.22 (Factorization). The Grothendieck construction
∫
F G is an upper semilattice.

The join is given by (a, b) ∨ (a′, b′) = (aOa′,G(a ↪→F aOa′)(b) t G(a′ ↪→F aOa′)(b′)).
Moreover, the following is an isomorphism of upper semilattices:

Dλ(t) →
∫
F G

[ρ] 7→ ([ρ ↓ t′], [ρ/(ρ ↓ t′)]

∫
F G → Dλ(t)

([ρ], [σ]) 7→ [ρσ]

Proof. ♠ The proof consists in verifying that G is a lax 2-functor, then that
∫
F G is an upper

semilattice, and finally that the mappings above are an isomorphism.

As an immediate consequence of this theorem, any derivation ρ in the λ-calculus
may be decomposed as ρ ≡ ρ1ρ2, where ρ1 is t′-garbage-free and ρ2 is (t′/ρ1)-garbage.
Moreover, ρ1 and ρ2 are unique, modulo permutation equivalence. Note that this is
exactly what we stated in the factorization theorem in last section, Theorem 5.17.

Example 5.23. Let t = (λx.yxx)(Iz) and t′ be as in Example 4.21. The upper semilattice
Dλ(t) can be factorized as

∫
F G as follows. Here posets are represented by their Hasse diagrams:

[ε]

�� ��
[R1]

��

// [R1S21]

��

[S]

xx
[R1S11] // [R1 t S]

'

([ε], [ε])
xx $$

([R1], [ε])
��

// ([R1], [S21])

��

([S], [ε])
uu

([R1S11], [ε]) // ([R1S11], [S22])

Note for example that ([S], [ε]) ≤ ([R1S11], [S22]) because [S]E [R1S11], that is, S/R1S11 =
S22 is garbage, and G([S] ↪→F [R1S11])([ε]) = [S/R1S11] = [S22] v [S22].

Chapter 6

Conclusions

In this thesis we defined a calculus based on non-idempotent intersection types, which
we called λ#. Admittedly, its syntax is complex because of the labeling of variables
and the correctness invariant, which where ad hoc additions so that the calculus was
confluent. However the derivation spaces of this calculus are very simple structures,
they are distributive lattices (Theorem 3.27), and are representable as rings of sets
(Theorem 3.29),

Then we proved that derivation spaces in the λ-calculus can be mapped onto these
simpler derivation spaces, via a strong simulation result (Corollary 4.20). Using this, we
proved how the derivation space of any λ-term that has a head normal form can be fac-
torized as a “twisted product” of garbage-free and garbage derivations (Theorem 5.22).

We think this validates the hypothesis that explicitly representing resource manage-
ment can shed some light on the structure of derivation spaces. We would like to know
what would happen if we changed λ# for another resource calculus, whether or not
similar results can be found.

The Factorization theorem (Theorem 5.22) is reminiscent of Melliès’ [Mel97] external–
internal factorization. It should be possible to establish a formal correspondence between
these notions. As noted by Melliès, any evaluation strategy that always picks external
steps is hypernormalizing. It should be easy to show that this holds for evaluation
strategies picking non-garbage steps, using the terminology of this work.

Open is the question that we posed after Proposition 4.9, to study the relationship
between refinements of a term of the λ-calculus and its approximants. It should not
be hard to prove that there is a correspondence, i.e. that for a given term t and an
approximant A, we can find one refinement of t whose normal form refines a head
normal form of t that corresponds to A.

A related question is the one of whether it is possible to characterize garbage in the
same way we did in this work without using the λ#-calculus. We believe a plausible
way to do this would be to use approximants: instead of defining garbage with respect
to a refinement we define garbage with respect to an approximant. Such a result would
not have any λ# traces in its statement, but λ# may help to prove it easily.

51

52 CHAPTER 6. CONCLUSIONS

Appendix A

Proofs of selected statements

A.1 Proof of Lemma 2.8 — Unique typing

We will prove that given two typings of a term, they are the same.
Proof. By induction on t.

1. Variable, t = xσ. If Γ ` xσ : τ, then the last rule in the derivation must be var so it must
be the case that τ = σ and Γ = {x : [τ]}. The same is true for τ′ and Γ′. Note that the
derivations are equal.

2. Abstraction, t = λy.u. As Γ ` λy.u : τ, then for some [ρ1, . . . , ρn] and τ1 it must be the

case that τ = [ρ1, . . . , ρn]
`→ u1. Given that the last rule in the derivation must be→I, we

know that
Γ⊕ y : [ρ1, . . . , ρn] ` u : τ1

→I
Γ ` λ`y.u : [ρ1, . . . , ρn]

`→ τ1

The same way, there are [ρ′1, . . . , ρ′n] and τ′1 such that

Γ′ ⊕ y : [ρ′1, . . . , ρ′n] ` u : τ′1

But now we can use our inductive hypothesis, that tells us that Γ ⊕ y : [ρ1, . . . , ρn] =
Γ′ ⊕ y : [ρ′1, . . . , ρ′n] and τ1 = τ′1, which implies that Γ = Γ′ and τ = τ′. Moreover, the
inductive hypothesis tells us that the derivations are the same.

3. Application, t = u[r1, . . . , rn]. Given that the last rule in the derivation must be→E, we
know that

Γ0 ` u : [σ1, . . . , σn]
`→ τ (Γi ` ri : σi)

n
i=1 →E

Γ = Γ0 +
n
i=1 Γi ` u[r1, . . . , rn] : τ

The same way,

Γ′0 ` u : [σ′1, . . . , σ′n]
`′→ τ′

(
Γ′i ` ri : σ′i

)n
i=1 →E

Γ′ = Γ′0 +
n
i=1 Γ′i ` u[r1, . . . , rn] : τ′

Using the inductive hypothesis for u, we get that Γ0 = Γ′0 and [σi]
n
i=1

`→ τ = [σ′j]
n
j=1

`′→ τ′.
In particular, τ = τ′. The inductive hypothesis also tells us that the derivations are the
same.

53

54 APPENDIX A. PROOFS OF SELECTED STATEMENTS

Lastly, using the inductive hypothesis n times for each ri, we get that Γi = Γ′i (given that
the derivations are the same), so adding everything we can see that Γ0 +

n
i=1 Γi = Γ′0 +

n
i=1 Γ′i,

i.e. Γ = Γ′ (and more generally that the derivations are the same).

A.2 Proof of Lemma 2.17 — Linearity

Let t ∈ T # be a correct term, and Γ ` t : τ its (unique) type derivation. Let x be
any variable, and consider the n ≥ 0 free occurrences of the variable x in the term t,
more precisely, write t as t = Ĉ〈xτ1 , . . . , xτn〉, where Ĉ is a context with n-holes such that
x 6∈ fv(Ĉ). We will prove that Γ(x) = {τ1, . . . , τn}.
Proof. By induction on t.

1. Variable (same), t = xτ . By uniqueness of derivations, we have that {x : {τ}} ` xτ : τ.
Also, Ĉ = � and t = Ĉ〈xσ〉. And we also have that Γ(x) = {τ}, so we are done.

2. Variable (different), t = yτ . By uniqueness of derivations, we have that {y : {τ}} ` yτ : τ.
Also, Ĉ = yτ (that is, Ĉ does not have any holes) and t = Ĉ. And we also have that
Γ(x) = ∅, so we are done.

3. Abstraction, t = λy.u. By uniqueness of derivations, we have that the derivation of t is
the following.

Γ⊕ y : [ρ1, . . . , ρn] ` u : τ1
→I

Γ ` λ`y.u : [ρ1, . . . , ρn]
`→ τ1

Given that u is a subterm of t, it is correct. So we may use the inductive hypothesis, which
tells us that there is a context Ĉ1 such that u = Ĉ1〈xτ1 , . . . , xτn〉 (where x 6∈ fv(Ĉ)) and
(Γ⊕ y : [ρ1, . . . , ρn])(x) = {τ1, . . . , τn}.
Then, we take Ĉ to be λ`y.Ĉ1. Note that x 6∈ fv(Ĉ), and also that Γ(x) = (Γ ⊕ y :
[ρ1, . . . , ρn])(x) = {τ1, . . . , τn}.

4. Application, t = u[r1, . . . , rn]. By uniqueness of derivations, we have that the derivation
of t is the following.

Γ0 ` u : [σ1, . . . , σn]
`→ τ (Γi ` ri : σi)

n
i=1 →E

Γ = Γ0 +
n
i=1 Γi ` u[r1, . . . , rn] : τ

Given that u and all ri are subterms of t, they are correct; so can use inductive hypothesis on
them. By inductive hypothesis on u, we get that u = Ĉ0〈xτ0,0 , . . . , xτ0,m0 〉 (where x 6∈ fv(Ĉ0))
and Γ0(x) = {τ0,0, . . . , τ0,m0}. On the other hand, by inductive hypothesis on ri, we get
that ri = Ĉi〈xτi,0 , . . . , xτi,mi 〉 (where x 6∈ fv(Ĉi)) and Γi(x) = {τi,0, . . . , τi,mi}.
If we take Ĉ to be Ĉ0[Ĉ1, . . . , Ĉn], we have that x 6∈ fv(Ĉ) and

t = u[r1, . . . , rn]

= Ĉ0〈xτ0,0 , . . . , xτ0,n0 〉[Ĉ1〈xτ1,0 , . . . , xτ1,m1 〉, . . . Ĉn〈xτn,0 , . . . , xτn,mn 〉]
= (Ĉ0[Ĉ1, . . . , Ĉn])〈xτ0,0 , . . . , xτ0,n0 , . . . , xτn,0 , . . . , xτn,mn 〉

A.3. PROOF OF LEMMA 2.19 — SUBJECT REDUCTION 55

To end the proof, we check the condition on the context.

Γ(x) = (Γ0 +
n
i=1 Γi)(x)

= Γ0(x) +n
i=1 Γi(x)

= {τ0,0, . . . , τ0,m0}+
n
i=1 {τi,0, . . . , τi,mi}

= {τ0,0, . . . , τ0,m0 , . . . , τn,0, . . . , τn,mn}

A.3 Proof of Lemma 2.19 — Subject reduction

We are to prove that if C〈(λ`x.t)~s〉 is correct then C〈t{x :=~s}〉 is correct, and, moreover,
that their unique typings are under the same typing context and have the same type. We
need a few auxiliary results:

Lemma A.1. If~s is a permutation of ~u, then t{x :=~s} = t{x := ~u}.
Proof. By induction on t.

Lemma A.2. If t is correct, then any subterm of t is correct.
Proof. Note, by definition of correctness (Definition 2.5), that if t is a correct abstraction t = λ`x.s
then s is correct, and if t is a correct application t = s[u1, . . . , un] then s and u1, . . . , un are correct.
This allows us to conclude by induction on t.

Lemma A.3 (Relevance). If Γ ` t : τ and x ∈ dom Γ then x ∈ fv(t).
Proof. By induction on t.

Definition A.4. Λ(t) stands for the multiset of labels decorating the lambdas of t:

Λ(xτ)
def
= []

Λ(λ`x.t) def
= [`] + Λ(t)

Λ(t[si]
n
i=1)

def
= Λ(t) +n

i=1 Λ(si)

For example, Λ((λ1x.x[α
2]

3→α2
)[λ3x.xα2

]) = [1, 3].

Lemma A.5. Let t, s1, . . . , sn be correct terms. Then Λ(t{x := [si]
n
i=1}) = Λ(t) +n

i=1 Λ(si).
Proof. By induction on t.

To prove Lemma 2.19, we first show that substitution preserves typing, and then that
it preserves correctness.

Substitution preserves typing

More precisely, let us show that if Γ ` C〈(λ`x.t)~s〉 : τ is derivable, then Γ ` C〈t{x :=
~s}〉 : τ is derivable. By induction on the context C.

1. Empty, C = �. By induction on t.

56 APPENDIX A. PROOFS OF SELECTED STATEMENTS

1.1 Variable (same), t = xτ,~s = [s]. We have that x : [τ] ` xτ : τ and ∆ ` s : σ
are derivable, so we are done.

1.2 Variable (different), t = yτ, y 6= x,~s = []. We have that y : [τ] ` yτ : τ is
derivable, so we are done.

1.3 Abstraction, t = λ`y.u. Let Γ ⊕ x : [σi]
n
i=1 ` λ`x.u : M `→ τ be derivable

and ∆i ` si : σi be derivable for all i = 1..n. By inversion of the →I rule,
we have that Γ⊕ y : M⊕ x : [σi]

n
i=1 ` u : τ is derivable, so by i.h. (Γ⊕ y :

M) +n
i=1 ∆i ` u{x := [si]

n
i=1} : τ is derivable. Observe that y 6∈ fv(si) so

y 6∈ dom ∆i by Lemma A.3. Hence the previous judgment can be written as
(Γ +n

i=1 ∆i)⊕ y : M ` u{x := [si]
n
i=1} : τ. Applying the→I rule we obtain

Γ +n
i=1 ∆i ` λ`y.u{x := [si]

n
i=1} :M `→ τ as required.

1.4 Application, t = u[rj]
m
j=1. Let Γ ⊕ x : [σi]

n
i=1 ` u[rj]

m
j=1 : τ be derivable

and ∆i ` si : σi be derivable for all i = 1..n. By inversion of the →E rule,
the multiset of types [σi]

n
i=1 may be partitioned as [σi]

n
i=1 = ∑m

j=0Mj, and
the typing context Γ may be partitioned as Γ = ∑m

j=0 Γj in such a way that

Γ0 ⊕ x : M0 ` u : [ρj]
m
j=1

`→ τ is derivable and Γj ⊕ x : Mj ` rj : ρj is
derivable for all j = 1..m. Consider a partition (~s0, . . . ,~sj) of the list~s such
that for every j = 0..m we have T(~sj) =Mj. Observe that this partition exists
since T(~s0 + . . . +~sj) = T(~s) = ∑m

j=0Mj = [σi]
n
i=1 = Tx(t).

Moreover, let Θj = ∑i:si∈~sj
∆i for all j = 0..m. By i.h. we have that Γ0 + Θ0 `

u{x :=~s0} : [ρj]
m
j=1

`→ τ is derivable and Γj +Θj ` rj{x :=~sj} : ρj is derivable
for all j = 1..m. Applying the →E rule we obtain that ∑m

j=0 Γj + ∑m
j=0 Θj `

u[rj]{x := ∑m
j=0~sj} : τ is derivable. By definition of Γ0, . . . , Γm and Θ0, . . . , Θm

this judgment equals Γ +n
i=1 ∆i ` u[rj]{x := ∑m

j=0~sj} : τ. By definition of
~s0, . . . ,~sm and Lemma A.1 this in turn equals Γ +n

i=1 ∆i ` u[rj]{x :=~s} : τ, as
required.

2. Under an abstraction, C = λ`′y.C′. Straightforward by i.h..
3. Left of an application, C = C′~u. Straightforward by i.h..
4. Right of an application, C = u[~r1, C′,~r2]. Straightforward by i.h..

Substitution preserves correctness

More precisely, let us show that if C〈(λ`x.t)~s〉 is correct then C〈t{x :=~s}〉 is correct. By
induction on C:

1. Empty, C = �. Let~s = [s1, . . . , sn]. Observe that if (λ`x.t)[s1, . . . , sn] is correct then:

• [c1] Γ⊕ x : [σi]
n
i=1 ` t : τ and ∆i ` si : σi are derivable for all i = 1..n,

• [c2] t, s1, . . . , sn are correct,

• [c3] there are no free occurrences of x among s1, . . . , sn,

• [c4] all the lambdas occurring in t, s1, . . . , sn have pairwise distinct labels,

• [c5] Γ +n
i=1 ∆i is a sequential context.

A.3. PROOF OF LEMMA 2.19 — SUBJECT REDUCTION 57

Condition [c1] holds by inversion of the typing rules, condition [c2] holds
by Lemma A.2, condition [c3] holds by Barendregt’s convention, and conditions
[c4] and [c5] hold because the source term is supposed to be correct.
By induction on t, we check that if (λ`x.t)[s1, . . . , sn] is correct, then t{x := ~s} is
correct.
1.1 Variable (same), t = xτ,~s = [s]. Note that t{x :=~s} = s. Conclude by [c2].
1.2 Variable (different), t = yτ, ~s = [] with x 6= y. Note that t{x := ~s} = yτ.

Conclude by [c2].

1.3 Abstraction, t = λ`′y.u. Then τ =M `′→ ρ and by inversion Γ⊕ y :M ` u : ρ
is derivable. Note that (λ`x.u)~s is correct, so by i.h. u{x :=~s} is correct. The
variable y does not occur free in~s, so (Γ⊕ y :M) +n

i=1 ∆i = (Γ +n
i=1 ∆i)⊕ (y :

M). Let us check that λ`′y.u{x :=~s} is correct:
1.3.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating different

lambdas of λ`′y.u{x := ~s}, and let us show that `1 6= `2. There are two
subcases, depending on whether one of the labels decorates the outermost
lambda:

1.3.1.1 If `1 or `2 decorates the outermost lambda. Suppose without loss of
generality that `1 = `′ is the label decorating the outermost lambda.
Then by Lemma A.5, there are two cases: either `2 decorates a lambda
of u, or `2 decorates a lambda of some term in the list~s. If `2 decorates
a lambda of u, then `1 6= `2 since we knew that λ`′y.u was a correct
term by [c2]. If `2 decorates a lambda of some term in the list~s, then
`1 6= `2 by condition [c4].

1.3.1.2 If `1 and `2 do not decorate the outermost lambda. Then `1 and `2
decorate different lambdas of the term u{x :=~s}, and we conclude
by i.h..

1.3.2 Sequential contexts. Let t′ be a subterm of λ`′x.u{x :=~s}. If t′ is a subterm
of u{x :=~s}, we conclude by i.h.. Otherwise t′ is the whole term and the
context is Γ +n

i=1 ∆i, which is sequential by hypothesis [c5].
1.3.3 Sequential types. Let t′ be a subterm of λ`′x.u{x := ~s}. If t′ is a subterm

of u{x :=~s}, we conclude by i.h.. Otherwise t′ is the whole term. Then
Γ +n

i=1 ∆i ` t′ : τ is derivable, since we have already shown that substitu-

tion preserves typing. LetN `′′→ φ be a type such thatN `′′→ φ � Γ+n
i=1 ∆i

or N `′′→ φ � τ, and let us show that N is sequential. In the first case, i.e.

if N `′′→ φ � Γ +n
i=1 ∆i holds, then either N `′′→ φ � Γ or N `′′→ φ � ∆i for

some i = 1..n, and we have that N is sequential because all the terms

t, s1, . . . , sn are correct by [c2]. In the second case, i.e. if N `′′→ φ � τ
holds, then we have that N is sequential because t is correct by [c2].

1.4 Application, t = u~r. Let~r = [r1, . . . , rm]. Note that (λ`x.u)~s0 is correct and
(λ`x.rj)~sj is correct for all j = 1..m, which means that we may apply the i.h.
in all these cases. Let us show that u[rj]

m
j=1{x :=~s} is correct:

58 APPENDIX A. PROOFS OF SELECTED STATEMENTS

1.4.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating different
lambdas of u[rj]

m
j=1{x := ~s}, and let us show that `1 6= `2. Observe

that the term u[rj]
m
j=1{x := ~s} = u{x := ~s0}[rj{x := ~sj}]mj=1 has m + 1

immediate subterms, namely u{x :=~s0} and rj{x :=~sj} for each j = 1..m.
We consider two subcases, depending on whether `1 and `2 decorate
two lambdas in the same immediate subterm or in different immediate
subterms.

1.4.1.1 The labels `1 and `2 decorate the same immediate subterm. That
is, `1 and `2 both decorate lambdas in u{x := ~s0} or both decorate
lambdas in some rj{x := ~sj} for some j = 1..m. Then we conclude,
since both u{x :=~s0} and the rj{x :=~sj} are correct by i.h..

1.4.1.2 The labels `1 and `2 decorate different subterms. Let r0 := u. Then
we have that `1 decorates a lambda in rj{x :=~sj} for some j = 0..m
and `2 decorates a lambda in rk{x :=~sk} for some k = 0..m, j 6= k. By
Lemma A.5, `1 decorates a lambda in rj or a lambda in a term of the
list~sj, and similarly `2 decorates a lambda in rk or a lambda in a term
of the list~sk. This leaves four possibilities, which are all consequence
of [c4].

1.4.2 Sequential contexts. Similar to item 1.3.2.
1.4.3 Sequential types. Similar to item 1.3.3.

2. Under an abstraction, C = λ`′y.C′. Note that Γ ` λ`′y.C′〈t{x := ~s}〉 : M `′→ τ is
derivable. Let us check the three conditions to see that λ`′y.C′〈t{x :=~s}〉 is correct:
2.1 Uniquely labeled lambdas. Any two lambdas in C′〈t{x := ~s}〉 have different

labels by i.h.. We are left to check that `′ does not decorate any lambda in
C′〈t{x :=~s}〉. Let `1 be a label that decorates a lambda in C′〈t{x :=~s}〉. Then
we have that `1 decorates a lambda in C′, or it decorates a lambda in t{x :=~s}.
By what we proved in item 1 this in turn means that it decorates a lambda in
t or a lambda in some of the terms of the list~s. In any of these cases we have
that `1 6= `′ since λ`′y.C′〈(λ`x.t)~s〉 is correct.

2.2 Sequential contexts. Let t′ be a subterm of λ`′y.C′〈t{x :=~s}〉 and let us check
that its typing context is sequential. If t′ is a subterm of C′〈t{x := ~s}〉 we
conclude by i.h.. We are left to check the property for t′ being the whole term,
i.e. that Γ is sequential. By i.h., Γ⊕ y :M is sequential, which implies that Γ
is sequential.

2.3 Sequential types. Let t′ be a subterm of λ`′y.C′〈t{x :=~s}〉 and let us check that,

if N `′′→ ρ is any type occurring in the typing context or in the type of t′, then
N is sequential. If t′ is a subterm of C′〈t{x :=~s}〉 we conclude by i.h.. We are
left to check the property for t′ being the whole term.

If N `′′→ ρ � Γ, then N `′′→ ρ � Γ⊕ y : N which is the type of C′〈t{x := ~s}〉,
so by i.h. N is sequential.

If N `′′→ ρ �M `′′→ τ, there are three subcases:
2.3.1 If N = M, then note that M is sequential because Γ ⊕ y : M is the

A.3. PROOF OF LEMMA 2.19 — SUBJECT REDUCTION 59

typing context of C′〈t{x :=~s}〉, which is sequential by i.h..

2.3.2 If N `′′→ ρ � σ where σ is one of the types ofM, then N `′′→ ρ �M `′′→ τ
which is the typing context of C′〈t{x := ~s}〉, and we conclude for this
term has sequential types by i.h..

2.3.3 If N `′′→ ρ � τ, note that τ is the type of C′〈t{x :=~s}〉, and we conclude
for this term has sequential types by i.h..

3. Left of an application, C = C′~u. Note that Γ ` C′〈t{x := ~s}〉 : [σj]
m
j=1

`′→ τ is
derivable. Moreover the list of arguments is of the form ~u = [u1, . . . , um] where all
the uj are correct and ∆j ` uj : σj is derivable for all j = 1..m. Then Γ +m

j=1 ∆j `
C′〈t{x :=~s}〉[uj]

m
j=1 : τ is derivable. Let us check the three conditions to see that

C′〈t{x :=~s}〉[uj]
m
j=1 is correct:

3.1 Uniquely labeled lambdas. Let `1 and `2 be two labels decorating different
lambdas in C′〈t{x :=~s}〉[uj]

m
j=1. There are three subcases.

3.1.1 If `1 and `2 both decorate lambdas in the subterm C′〈t{x := ~s}〉 then
`1 6= `2 since C′〈t{x :=~s}〉 is correct by i.h..

3.1.2 If `1 and `2 both decorate lambdas somewhere in [u1, . . . , um] then `1 6= `2
since C′〈t〉[u1, . . . , um] is correct by hypothesis.

3.1.3 If `1 decorates a lambda in C′〈t{x :=~s}〉 and `2 decorates a lambda in one
of the terms uj for some j = 1..m, then note that `1 must either decorate
a lambda in C′ or a lambda in t{x := ~s}. By what we proved in item 1
this in turn means that it decorates a lambda in t or a lambda in some of
the terms of the list~s. In any of these cases we have that `1 6= `2 since
C′〈(λ`x.t)~s〉[uj]

m
j=1 is correct by hypothesis.

3.2 Sequential contexts. Let t′ be a subterm of C′〈t{x :=~s}〉[uj]
m
j=1 and let us show

that its typing context is sequential. If t′ is a subterm of C′〈t{x := ~s}〉 we
conclude by i.h.. If t′ is a subterm of one of the uj for some j = 1..m, we
conclude using that uj is correct by hypothesis. It remains to check that the
whole term is correct, i.e. that Γ +m

j=1 ∆j is sequential. Observe that Γ +m
j=1 ∆j

is also the typing context of C′〈(λ`x.t)~s〉[uj]
m
j=1, which is correct by hypothesis.

3.3 Sequential types. Let t′ be a subterm of C′〈t{x := ~s}〉[uj]
m
j=1 and let us show

if N `′→ ρ is a type that occurs in the typing context or in the type of t′, then
N is sequential. If t′ is a subterm of C′〈t{x := ~s}〉 we conclude by i.h.. If t′

is a subterm of one of the uj for some j = 1..m, we conclude using that uj is
correct by hypothesis. We are left to check the property for t′ being the whole
term.
If N `′→ ρ � Γ +m

j=1 ∆j, we conclude by observing that Γ +m
j=1 ∆j is also the

typing context of C′〈(λ`x.t)~s〉[uj]
m
j=1, which is correct by hypothesis, so it has

sequential types.

Similarly, if N `′→ ρ � τ, we conclude by observing that τ is also the type of
C′〈(λ`x.t)~s〉[uj]

m
j=1.

60 APPENDIX A. PROOFS OF SELECTED STATEMENTS

4. Right of an application, C = u[~r1, C′,~r2]. Similar to item 3.

A.4 Proof of Proposition 2.20 (cont.) — Termination

We wanted to prove that d(t) + ∑n
i=1 d(si) = d(t{x :=~s}), where d counts the number

of lambdas of its paramter.
Proof. We proceed by induction on t.

• Variable (same). t = xτ . Then,~s = [s] and xτ{x := [s]} = s. So what we want to show is
true:

d(xτ) + d(s) = d(s)

• Variable (different). t = yτ 6= x. Then,~s = [] and yτ{x := []} = yτ . So:

d(yτ) + 0 = d(yτ)

• Abstraction. t = λ`y.r. Then, (λ`y.r){x :=~s} = λ`y.r{x :=~s}.
By inductive hypothesis on r and~s, we have that d(r) + ∑n

i=1 d(si) = d(r{x := ~s}), but
that is what we needed, because

d(λ`y.r) +
n

∑
i=1

d(si) = 1 + d(r) +
n

∑
i=1

d(si) = 1 + d(r{x :=~s}) = d(λ`y.r{x :=~s})

• Application. t = u[ri]
n
i=1. Then,

u[ri]
n
i=1{x :=~s} = u{x :=~s0}[ri{x :=~si}]ni=1

where~s0 +
n
i=1~si is a permutation of~s such that Tx(u) = T(~s0) and Tx(ri) = T(~si) for all

i ∈ {1, . . . , n}. Let l(i) = |~si|.
By inductive hypothesis

– on u and~s0, we have that d(u) + ∑
l(0)
j=1 d(~s0,j) = d(u{x :=~s0})

– on ri and~si (for all i ∈ {1, . . . , n}), we have that d(ri) + ∑
l(i)
j=1 d(~si,j) = d(ri{x :=~si})

Note that~s = ∑n
i=0 ∑

l(i)
j=1~si,j.

Using all that we can finally show what we wanted:

d(u[ri]
n
i=1) + d(~s) = d(u) +

n

∑
i=1

d(ri) +
n

∑
i=0

l(i)

∑
j=1

d(~si,j)

= d(u) +
l(0)

∑
j=1

d(~s0,j) +
n

∑
i=1

d(ri) +
n

∑
i=1

l(i)

∑
j=1

d(~si,j)

= d(u) +
l(0)

∑
j=1

d(~s0,j) +
n

∑
i=1

(
d(ri) +

l(i)

∑
j=1

d(~si,j)

)

= d(u{x :=~s0}) +
n

∑
i=1

d(ri{x :=~si})

= d(u{x :=~s0}[ri{x :=~si}]ni=1)

= d(u[ri]
n
i=1{x :=~s})

A.5. PROOF OF LEMMA 2.24 — SUBSTITUTION LEMMA 61

A.5 Proof of Lemma 2.24 — Substitution lemma

We want to prove that if x 6= y and x 6∈ fv(~u), then

t{x :=~s}{y := ~u} = t{y := ~u1}{x :=~s{y := ~u2}}
where ~u is a permutation of ~u1 + ~u2.

Recall that the equation above requires that both sides be defined; in particular
|~u1| = #y(t) and |~u2| = #y(~s). When read from left to right, the equation means that
given ~u, it can always be written as some permutation of ~u1 + ~u2. When read from right
to left, it means that given ~u1 and ~u2, taking ~u to be any permutation of ~u1 +~u2 verifies
the equality.
Proof. By induction on t.

1. Variable (same, first case) t = x. Then~s = [s] and ~u1 = [], so ~u2 = ~u.
Firstly,

x{x :=~s}{y := ~u} = s{y := ~u}

Also,

x{y := []}{x := [s]{y := ~u}} = x{x := [s]{y := ~u}}
= x{x := [s{y := ~u}]}
= s{y := ~u}

2. Variable (same, second case) t = y. Then~s = [], so ~u = [u].
Firstly,

y{x := []}{y := [u]} = y{y := [u]}
= u

Also,

y{y := [u]}{x := []{y := []}} = u{x := []{y := []}}
= u{x := []}
= u

3. Variable (different) t = z. Then~s = [] and ~u = [].
Firstly,

z{x := []}{y := []} = z{y := []}
= z

Also,

z{y := []}{x := []{y := []}} = z{x := []{y := []}}
= z{x := []}
= z

62 APPENDIX A. PROOFS OF SELECTED STATEMENTS

4. Abstraction, t = λ`z.r.

(λ`z.r){x :=~s}{y := ~u} = (λ`z.r{x :=~s}){y := ~u}
= λ`z.r{x :=~s}{y := ~u}
h.i.
= λ`z.r{y := ~u1}{x :=~s{y := ~u2}}
= (λ`z.r{y := ~u1}){x :=~s{y := ~u2}}
= (λ`z.r){y := ~u1}{x :=~s{y := ~u2}}

5. Application, t = r[r1, . . . , rn].

(r[r1, . . . , rn]){x :=~s}{y := ~u} = (r{x :=~s0}[ri{x :=~si}]ni=0){y := ~u}

= r{x :=~s0}{y := ~u0}[ri{x :=~si}{y := ~ui}]ni=0
h.i.
= r{y := ~u0,1}{x :=~s0{y := ~u0,2}}[ri{y := ~ui,1}{x :=~si{y := ~ui,2}}]ni=0

= (r{y := ~u0,1}[ri{y := ~ui,1}]ni=0){x :=
n

∑
i=0

~si{y := ~ui,2}}

Because ∑n
i=0~si is a permutation of ~s and we can perform the substitution of each ~ui,2

simultaneously, defining ~v2 as ∑n
i=0 ~ui,2, the last term can be rewritten to:

(r{y := ~u0,1}[ri{y := ~ui,1}]ni=0){x :=~s{y := ~v2}}
Lastly, if we define ~v1 to be ∑n

i=0 ~ui,1, we get the desired term:

(r[r1, . . . , rn]){y := ~v1}{x :=~s{y := ~v2}}
To conclude observe that ~v1 +~v2 is indeed a permutation of ~u; indeed:

~v1 +~v2 = (∑n
i=0 ~ui,1) + (∑n

i=0 ~ui,2)
≈ ∑n

i=0 ~ui,1 + ~ui,2
≈ ∑n

i=0 ~ui by i.h. on each index i = 0..n
= ~u

A.6 Proof of Proposition 2.26 — Strong Permutation

Let us extend the operation of substitution to operate on contexts by declaring that
Tx(�) = [] and �{x := []} = �. We need two auxiliary lemmas:

Lemma A.6 (Substitution lemma for contexts). If both sides of the equation are defined and
(~s1,~s2) is a partition of~s then C〈t〉{x :=~s} = C{x := ~s1}〈t{x :=~s2}〉.
Proof. The proof is similar to the Substitution Lemma, by induction on C.

Lemma A.7 (Reduction inside a substitution). Let 1 ≤ i ≤ n and si
`→ s′i. Then:

t{x := [s1, . . . , si−1, si, si+1, . . . , sn]}
`→ t{x := [s1, . . . , si−1, s′i, si+1, . . . , sn]}

.

A.6. PROOF OF PROPOSITION 2.26 — STRONG PERMUTATION 63

Proof. Straightforward by induction on s.

The proof of Proposition 2.26 proceeds as follows. Let R : t0
`−→# t1 and S : t0

`′−→# t2
be coinitial steps, and let us show that the diagram may be closed. The step R is of

the form t0 = C〈(λ`x.t)~s〉 `−→# C〈t{x := ~s}〉 = t1. Recall that R 6= S by hypothesis. We
proceed by induction on C.

1. Empty context, C = �. Then R : t0 = (λ`x.t)~s `−→# t{x := ~s} = t1. There are two
subcases, depending on whether the pattern of S is inside t or inside~s:
1.1 The pattern of S is in t. Using Lemma A.6, the situation is:

(λ`x.C〈(λ`′y.r)~u〉)~s
` ��

`′ // (λ`x.C〈r{y := ~u}〉)~s
` ��

C〈(λ`′y.r)~u〉{x :=~s} C〈r{y := ~u}〉{x :=~s}

C{x :=~s1}〈(λ`′y.r{x :=~s2})~u{x :=~s3}〉
`′ ��

C{x :=~s1}〈r{y := ~u}{x :=~s4}〉

C{x :=~s1}〈r{x :=~s2}{y := ~u{x :=~s3}}〉

where (~s1,~s2,~s3) and (~s1,~s4) are partitions of~s. Note that (~s2,~s3) is a partition
of ~s4, so it suffices to show that r{y := ~u}{x := ~s4} = r{x := ~s2}{y :=
~u{x :=~s3}}, which is an immediate consequence of the Substitution Lemma
(Lemma 2.24).

1.2 The pattern of S is inside~s. In this case,~s = [~s1, C〈(λ`′y.r)~u〉,~s2].

(λ`x.t)[~s1, C〈(λ`′y.r)~u〉,~s2]

` ��

`′ // (λ`x.t)[~s1, r{y := ~u},~s2]

` ��
t{x := [~s1, C〈(λ`′y.r)~u〉,~s2]} `′ // t{x := [~s1, r{y := ~u},~s2]}

The arrow of the bottom of the diagram exists as a consequence of Lemma A.7.
2. Under an abstraction, C = λ`′′y.C′. Straightforward by i.h..
3. Left of an application, C = C′~u. There are three subcases, depending on whether

the redex S is at the root, to the left of the application, or to the right of the
application.
3.1 The pattern of S is at the root. Then C′〈(λ`′x.t)~s〉 must have a lambda at

the root, so it is of the form λ`′y.C′′′〈(λ`x.t)~s〉. Hence, the starting term
is (λ`′y.C′′′〈(λ`x.t)~s〉)~u. The symmetric case has already been studied in
item 1.1.

3.2 The pattern of S is inside C′. Straightforward by i.h..
3.3 The pattern of S is inside ~u. It is immediate to close the diagram since the

64 APPENDIX A. PROOFS OF SELECTED STATEMENTS

steps are at disjoint positions:

C′〈(λ`x.t)~s〉[~u1, C′′〈(λ`′y.r)~p〉,~u2]

` ��

`′ // C′〈(λ`x.t)~s〉[~u1, C′′〈r{y := ~p}〉,~u2]

` ��
C′〈t{x :=~s}〉[~u1, C′′〈(λ`′y.r)~p〉,~u2]

`′ // C′〈t{x :=~s}〉[~u1, C′′〈r{y := ~p}〉,~u2]

4. Right of an application, C = r[u1, . . . , ui−1, C′, ui+1, . . . , un]. There are four sub-
cases, depending on whether the redex S is at the root, to the left of the application
(that is, inside r), or to the right of the application (that is, either inside C′ or uj for
some j).
4.1 The pattern of S is at the root. Then r has a lambda at the root, i.e. it is of

the form λ`′y.u. Hence the starting term is (λ`′y.u)[u1:i−1, C′〈(λ`x.t)s〉, ui+1:n].
The symmetric case has already been studied in item 1.2.

4.2 The pattern of S is inside r. The steps are disjoint, so it is immediate.
4.3 The pattern of S is inside uj for some j 6= i. The steps are disjoint, so it is

immediate.
4.4 The pattern of S is inside C′. Straightforward by i.h..

A.7 Proof of Lemma 3.18 — Creation

Proof. We wanted to check that the cases of creation in the distributive lambda-calculus were
1. Creation case I. C〈(λ`x.xτ) [λ`′y.t]~s〉 →# C〈(λ`′y.t)~s〉 →# C〈t{{y :=~s}}〉.
2. Creation case II. C〈(λ`x.λ`′y.t)~s~u〉 →# C〈(λ`′y.t′)~u〉 →# C〈t′{{y := ~u}}〉, where:

t′ = t{{x :=~s}}

3. Creation case III. C1〈(λ`x.C2〈xτ~t〉)~s〉 →# C1〈C′2〈(λ`′y.u)~t′〉〉 →# C1〈C′2〈u{{y := ~t′}}〉〉,
where:

C2{{x :=~s}} = C′2
xτ{{x :=~s}} = λ`′y.u
~t{{x :=~s}} = ~t′

~s = [~s1, λ`′y.u, ~s2]

We supposed that R : C〈(λ`x.t)~s〉 →# C〈t{{x :=~s}}〉 was a step, and S : C〈t{{x :=~s}}〉 →# p
was another step such that R creates S. We said that the redex contracted by the step S is below a
context C1, and C〈t{{x :=~s}}〉 = C1〈(λ`′y.u)~r〉, where (λ`′y.u)~r is the redex contracted by S.

We are to consider three cases, depending on the relative positions of the holes of C and C1,
namely they may be disjoint, C may be a prefix of C1, or C1 may be a prefix of C:

1. If the holes of C and C1 are disjoint. Then there is a two-hole context Ĉ such that

C = Ĉ〈�, (λ`′y.u)~r〉 C1 = Ĉ〈t{{x :=~s}},�〉

So the situation is the following:

Ĉ〈(λ`x.t)~s, (λ`′y.u)~r〉 →# Ĉ〈t{{x :=~s}}, (λ`′y.u)~r〉 →# Ĉ〈t{{x :=~s}}, u{{y := r}}〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S. So this
case is impossible.

A.7. PROOF OF LEMMA 3.18 — CREATION 65

2. If C is a prefix of C1. Then there exists a context C2 such that C1 = C〈C2〉, and we have that
t{{x :=~s}} = C2〈(λ`′y.u)~r〉. We consider two subcases, depending on whether the position
of the hole C2 lies inside the term t, or it reaches a free occurrence of x in t and “jumps” to
one of the arguments in the list~s.

2.1 If the position of the hole of C2 lies in t. More precisely, there is a context C′2 and a
term t′ such that:

t = C′2〈t′〉
C2 = C′2{{x :=~s}}

(λ`′y.u)~r = t′{{x :=~s}}

We consider three further subcases for the term t′: it cannot be an abstraction, so it
may be a variable xτ , or an application. Besides, if it is an application, the head may
be a variable xτ or an abstraction.

2.1.1 Variable, i.e. t′ = xτ . Then the list~s may be split as~s = [~s1, (λ`′y.u)~r, ~s2], and
the situation is:

C〈(λ`x.C′2〈xτ〉)[~s1, (λ`′y.u)~r, ~s2]〉 →# C〈C2〈(λ`′y.u)~r〉〉 →# C〈C2〈u{{y :=~r}}〉〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S.
So this case is impossible.

2.1.2 Application of a variable, i.e. t′ = xτ ~r′. Observe that, since (λ`′y.u)~r = t′{{x :=
~s}}, we have that~r = ~r′{{x :=~s}}, and the list~s may be split as~s = [~s1, λ`′y.u, ~s2].
The situation is:

C〈(λ`x.C′2〈xτ ~r′〉)[~s1, λ`′y.u, ~s2]〉 →# C〈C2〈(λ`′y.u)~r〉〉 →# C〈C2〈u{{y :=~r}}〉〉

and we are in the situation of Creation case III.
2.1.3 Application of an abstraction, i.e. t′ = (λ`y.u′)~r′. Observe that, since (λ`′y.u)~r =

t′{{x :=~s}}, we have that ~u = ~u′{{x :=~s}} and~r = ~r′{{x :=~s}}. Then the situa-
tion is:

C〈(λ`x.C′2〈(λ`y.u′)~r′〉)~s〉 →# C〈C2〈(λ`y.u)~r〉〉 →# C〈C2〈u{{z :=~r}}〉〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S.
So this case is impossible.

2.2 If the position of the hole of C2 “jumps” through a free occurrence of x. More
precisely, there exist C3, τ, ~s1, ~s2, and C4 such that:

t = C3〈xτ〉 ~s = [~s1, C4〈(λ`′y.u)~r〉, ~s2]

in such a way that T(C4〈(λ`′y.u)~r〉) = Tx(xτ), and C2 = C3{{x :=~s}}〈C4〉. Hence the
situation is:

C〈(λ`x.C3〈xτ〉)[~s1, C4〈(λ`′y.u)~r〉, ~s2]〉
→# C〈C3{{x :=~s}}〈C4〈(λ`′y.u)~r〉〉〉
→# C〈C3{{x :=~s}}〈C4〈u{{y :=~r}}〉〉〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S. So
this case is impossible.

3. If C1 is a prefix of C. Then there exists a context C2 such that C = C1〈C2〉. This means
that C2〈t{{x :=~s}}〉 = (λ`′y.u)~r. We consider three subcases, depending on whether C2 is
empty, or the hole of C2 lies to the left or to the right of the application.

66 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3.1 Empty, C2 = �. Then C = C1 so C is a prefix of C1. We have already considered this
case.

3.2 Left, C2 = C′2~r. Then the step R is of the form:

R : C1〈C′2〈(λ`x.t)~s〉~r〉 →# C1〈C′2〈t{{x :=~s}}〉~r〉

in particular we know that C′2〈t{{x :=~s}}〉 = λ`′y.u. There are two cases, depending
on whether C′2 is empty or non-empty.

3.2.1 Empty, C′2 = � Then we have that t{{x :=~s}} = λ`′y.u. We consider two further
subcases, depending on whether t is an occurrence of the variable x.

3.2.1.1 If t = xτ for some type τ. Then the list~s must be of the form [λ`′y.u] where
the external label of τ is precisely `′. Then the situation is:

C1〈(λ`x.xτ)[λ`′y.u]~r〉 →# C1〈(λ`′y.u)~r〉 →# C1〈u{{y :=~r}}〉

and we are in the situation of Creation case I.
3.2.1.2 If t 6= xτ for any type τ. Then t must be an abstraction, namely t = λ`′y.u′

where u′{{x :=~s}} = u. The situation is:

C1〈(λ`x.λ`′y.u′)~s~r〉 →# C1〈(λ`′y.u′{{x :=~s}})~r〉 →# C1〈u′{{x :=~s}}{{y :=~r}}〉

and we are in the situation of Creation case II.
3.2.2 Non-empty, C′2 6= � Then necessarily C′2 must be an abstraction, namely C′2 =

λ`′y.C′′2 . The situation is:

C1〈(λ`′y.C′′2 〈(λ`x.t)~s〉)~r〉 →# C1〈(λ`′y.C′′2 〈t{{x :=~s}}〉)~r〉
→# C1〈C′′2 〈t{{x :=~s}}〉{{y :=~r}}〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S.
So this case is impossible.

3.3 Right, C2 = (λ`′y.u)[~r1, C′2,~r2]. The situation is:

C1〈(λ`′y.u) [~r1, C′2〈(λ`x.t)~s〉,~r2]〉 →# C1〈(λ`′y.u) [~r1, C′2〈t{{x :=~s}}〉,~r2]〉
→# C1〈u{{y := [~r1, C′2〈t{{x :=~s}}〉,~r2]}}〉

Observe that S has an ancestor S0, contradicting the hypothesis that R creates S. So
this case is impossible.

A.8 Proof of Lemma 3.19 — Basic Stability

We are to prove that if R, S are different coinitial steps such that R creates a step T, then
R/S creates the step T/(R/S).

An auxiliary lemma can be found at the end of the section
Proof. Let R : C〈(λ`x.t)~s〉 →# C〈t{x :=~s}〉, let S 6= R be a step coinitial to R, and suppose that R
creates a step T. We proceed by induction on the context C we argue that R/S creates T/(S/R).

1. Empty context, C = �. Then R : (λ`x.t)~s →# t{{x := ~s}}. There are two cases for S,
depending on whether it is internal to t or internal to one of the arguments of the list~s.

A.8. PROOF OF LEMMA 3.19 — BASIC STABILITY 67

1.1 If S is internal to t. Then t = C1〈Σ〉 where Σ is the redex contracted by S. Let Σ′

denote the contractum of Σ. Then the situation is:

(λ`x.C1〈Σ〉)~s
R //

S
��

C1〈Σ〉{{x :=~s}}

S/R
��

T //

(λ`x.C1〈Σ′〉)~s
R/S // C1〈Σ′〉{{x :=~s}}

T/(S/R)//

By Creation (Lemma 3.18), T must be created by case III, since there are no applica-
tions surrounding the subterm contracted by R. This means that C1〈Σ〉 = C2〈xτ ~u〉
where, moreover,~s may be split as [~s1, λ`′y.r,~s2] in such a way that `′ is the external
label of τ.
We consider three subcases, depending on whether the contexts C1 and C2 are disjoint,
C1 is a prefix of C2, or C2 is a prefix of C1.

1.1.1 If C1 and C2 are disjoint. Then there is a two-hole context Ĉ such that

Ĉ〈�, xτ~u〉 = C1 Ĉ〈Σ,�〉 = C2

Given any term, context, or list of terms X let us write X∗ to denote X{{x :=~s}}.
Then the situation is:

(λ`x.Ĉ〈Σ, xτ~u〉)~s R //

S
��

Ĉ∗〈Σ∗, (λ`′y.r)~u∗〉

S/R
��

T // Ĉ∗〈Σ∗, r{{y := ~u}}〉

(λ`x.Ĉ〈Σ′, xτ~u〉)~s R/S // Ĉ∗〈Σ′∗, (λ`′y.r)~u∗〉
T/(S/R)// Ĉ∗〈Σ′∗, r{{y := ~u∗}}〉

Then it is indeed the case that R/S creates T/(S/R).
1.1.2 If C1 is a prefix of C2. Then C2 = C1〈C′2〉 which means that Σ = C′2〈xτ~u〉. Recall

that Σ is a redex, so let us write Σ = (λ`′′z.p)~q. We consider two further
subcases, depending on whether the hole of C′2 lies to the left or to the right
of the application (observe that it cannot be at the root since λ`′′z.p is not a
variable).
• If the hole of C′2 lies to the left of (λ`′′z.p)~q. More precisely, we have that
C′2 = (λ`′′z.C′′2)~q and p = C′′2 〈xτ~u〉. Given any term, context, or list of terms
X let us write X∗ to denote X{{x :=~s}}. Then the situation is:

(λ`x.C1〈(λ`′′ z.C′′2 〈x
τ~u〉)~q〉)~s

R //

S

��

C∗1 〈(λ
`′′ z.C′′2

∗〈(λ`′ y.r)~u∗〉)~q∗〉

S/R

��

T // C∗1 〈(λ`′′ z.C′′2
∗〈r{{y := ~u∗}}〉)~q∗〉

(λ`x.C1〈C′′2 〈x
τ~u〉{{z := ~q}}〉)~s

R/S // C∗1 〈C′′2 ∗〈(λ`′ y.r)~u∗〉{{z := ~q∗}}〉
T/(S/R)// C∗1 〈C′′2 ∗〈r{{y := ~u∗}}〉{{z := ~q∗}}〉

and it is indeed the case that R/S creates T/(S/R). Observe that we use
the Substitution lemma (Lemma A.6).

• If the hole of C′2 lies to the right of (λ`′′z.p)~q. More precisely, we have that
C′2 = (λ`′′z.p)[~q1, C′′2 ,~q2] and~q = [~q1, C′′2 〈xτ ~u〉,~q2]. Given any term, context,
or list of terms X let us write X∗ to denote X{{x :=~s}}.
Moreover, by the parameter/argument correspondence (Lemma A.8) there
is exactly one free occurrence of z in p whose type coincides with the type

68 APPENDIX A. PROOFS OF SELECTED STATEMENTS

of C′′2 〈xτ ~u〉. Let p = C3〈zσ〉 where the hole of C3 marks the position of
such occurrence. Observe that C3〈zσ〉{{z := ~q}} = C3{{z := ~q}}〈C′′2 〈xτ ~u〉〉.
Observe that:

C3〈zσ〉{{z := ~q∗}} = C3{{z := ~q∗}}〈(C′′2 〈xτ ~u〉)∗〉
= C3{{z := ~q∗}}〈C′′2

∗〈(λ`′y.r)~u∗〉)〉

Moreover, if we write C′3 for the context C3{{z := ~q}}, then we have that

(C′3)
∗ = (C3{{z := ~q}})∗

= C∗3{{z := ~q∗}} by the Substitution lemma (Lemma A.6)

Then the situation is as follows:

(λ`x.C1〈(λ`′′z.C3〈zσ〉)~q〉)~s R //

S
��

C∗1〈(λ`′′z.C∗3〈zσ〉)~q∗〉

S/R
��

T //

(λ`x.C1〈C′3〈C′′2 〈xτ ~u〉〉〉)~s R/S // C∗1〈(C′3)∗〈C′′2
∗〈(λ`′y.r)~u∗〉〉〉

T/(S/R)//

Observe that the names of the steps T and T/(S/R) are both `′, which
means that indeed R/S creates T/(S/R).

1.1.3 If C2 is a prefix of C1. Then C1 = C2〈C′1〉 which means xτ ~u = C′1〈Σ〉. Since Σ is a
redex, C′1 must be of the form xτ [~u1, C′′1 ,~u2] and ~u = [~u1, C′′1 〈Σ〉,~u2]. Given any
term, context, or list of terms X let us write X∗ to denote X{{x := ~s}}. Then the
situation is:

(λ`x.C2〈xτ [~u1 , C′′1 〈Σ〉,~u2]〉)~s
R //

S

��

C∗2 〈(λ
`′ y.r)[~u∗1 , C′′1

∗〈Σ∗〉,~u∗2]〉

S/R

��

T // C∗2 〈r{{y := [~u∗1 , C′′1
∗〈Σ∗〉,~u∗2]}}〉

(λ`x.C2〈xτ [~u1 , C′′1 〈Σ
′〉,~u2]〉)~s

R/S // C∗2 〈(λ`′ y.r)[~u∗1 , C′′1
∗〈Σ′∗〉,~u∗2]〉

T/(S/R)// C∗2 〈r{{y := [~u∗1 , C′′1
∗〈Σ′∗〉,~u∗2]}}〉

Note that indeed R/S creates T/(S/R).
1.2 If S is internal to~s. Then~s = [~s1, C1〈Σ〉,~s2] where Σ is the redex contracted by S. Let

Σ′ denote the contractum of Σ. Then the situation is:

(λ`x.t) [~s1, C1〈Σ〉,~s2]
R //

S
��

t{{x := [~s1, C1〈Σ〉,~s2]}}

S/R
��

T //

(λ`x.t) [~s1, C1〈Σ′〉,~s2]
R/S // t{{x := [~s1, C1〈Σ′〉,~s2]}}

T/(S/R)//

By Creation (Lemma 3.18), T must be created by case III, since there are no appli-
cations surrounding the subterm contracted by R. This means that t = C2〈xτ ~u〉,
and there is a term in the list [~s1, C1〈Σ〉,~s2] of the form λ`′y.r such that `′ is also the
external label of the type τ. There are two subcases, depending on whether such
term is C1〈Σ〉 or a different term in the list [~s1, C1〈Σ〉,~s2].

1.2.1 If λ`′y.r = C1〈Σ〉. Note that C1 cannot be empty, since this would imply that
λ`′y.r = Σ; however Σ is a redex, and in particular an application, so this cannot
be the case. Hence the context C1 must be non-empty, i.e. C1 = λ`′y.C′1 with

A.8. PROOF OF LEMMA 3.19 — BASIC STABILITY 69

r = C′1〈Σ〉. Given any term, context, or list of terms X let us write X∗ to denote
X{{x := [~s1,~s2]}}. Then the situation is:

(λ`x.C2〈xτ ~u〉)[~s1, λ`′y.C′1〈Σ〉,~s2]
R //

S
��

C∗2〈(λ`′y.C′1〈Σ〉)~u∗〉

S/R
��

T //

(λ`x.C2〈xτ ~u〉)[~s1, λ`′y.C′1〈Σ′〉,~s2]
R/S // C∗2〈(λ`′y.C′1〈Σ′〉)~u∗〉

T/(S/R)//

Note that indeed R/S creates T/(S/R).
1.2.2 If λ`′y.r 6= C1〈Σ〉. Then λ`′y.r is either one of the terms in the list~s1 or one of

the terms in the list~s2. Given any term, context, or list of terms X let X∗ denote
X{{x := [~s1, C1〈Σ〉~s2]}} and let X† denote X{{x := [~s1, C1〈Σ′〉~s2]}}. The situation is
as follows:

(λ`x.C2〈xτ ~u〉) [~s1, C1〈Σ〉,~s2]
R //

S
��

C∗2〈(λ`′y.r)~u∗〉

S/R
��

T // C∗2〈r{{y := ~u∗}}〉

(λ`x.C2〈xτ ~u〉) [~s1, C1〈Σ′〉,~s2]
R/S // C†

2〈(λ`′y.r)~u†〉
T/(S/R)// C†

2〈r{{y := ~u†}}〉

Note that indeed R/S creates T/(S/R).
2. Under an abstraction, C = λ`y.C′. Let ∆ be the redex contracted by R, and let ∆′ denote its

contractum. The step R is of the form λ`y.C′[∆]→# λ`y.C′[∆′]. The steps S and T cannot
be located at the root of the term since the root of the term is not an application. Hence the
positions of S and T are necessarily internal to the outermost abstraction, i.e. the situation
is as follows:

λ`y.C′[∆] R //

S
��

λ`y.C′[∆′]

S/R
��

T // λ`y.s

λ`y.u
R/S // λ`y.u′

T/(S/R) // λ`y.u′′

Consider the diagram without the outermost abstraction, where R′, S′, and T′ are the steps
isomorphic to R, S, and T respectively:

C′[∆] R′ //

S′

��

C′[∆′]

S′/R′
��

T′ // s

u
R′/S′ // u′

T′/(S′/R′)// u′′

Note that R′ creates T′, so by i.h. R′/S′ creates T′/(S′/R′). Hence we conclude that R/S
creates T/(S/R), as required.

3. Left of an application, C = C′~u. Let ∆ be the redex contracted by R, and let ∆′ denote its
contractum. The step R is of the form C′〈∆〉~u →# C′〈∆′〉~u. We consider three subcases,
according to Creation (Lemma 3.18), depending on whether T is created by the creation
case I, II, or III.

3.1 Creation case I. Then C′ is empty and ∆ has the following particular shape: ∆ =

(λ`x.xτ)[λ`′y.r]. The step S can be either internal to the subterm r, or internal to one

70 APPENDIX A. PROOFS OF SELECTED STATEMENTS

of the subterms in the list ~u. If S is internal to r, let r′ denote the term that results
from r after the step S. Then the situation is:

(λ`x.xτ)[λ`′y.r]~u R //

S
��

(λ`′y.r)~u

S/R
��

T // r{{y := ~u}}

(λ`x.xτ)[λ`′y.r′]~u
R/S // (λ`′y.r′)~u

T/(S/R) // r′{{y := ~u}}

Note that indeed R/S creates T/(S/R), as required. If, on the other hand, S is
internal to ~u, the situation is similar.

3.2 Creation case II. Then C′ is empty and ∆ has the following particular shape: ∆ =

(λ`x.λ`′y.r)~s. The step S can be either internal to r, internal to~s, or internal to ~u. If
S is internal to r, let r′ denote the term that results from r after the step S. Then the
situation is:

(λ`x.λ`′y.r)~s~u R //

S
��

(λ`′y.r{{x :=~s}})~u

S/R
��

T // r{{x :=~s}}{{y := ~u}}

(λ`x.λ`′y.r′)~s~u
R/S // (λ`′y.r′{{x :=~s}})~u

T/(S/R)// r′{{x :=~s}}{{y := ~u}}

Note that indeed R/S creates T/(S/R), as required. If, on the other hand, S is
internal to~s or ~u, the situation is similar.

3.3 Creation case III. Recall that the step R is of the form R : C′〈∆〉~u→# C′〈∆′〉~u. Since
the step T is created by creation case III, it does not take place at the root of C′[∆′]~u,
but rather it is internal to C′[∆′]. We consider three subcases, depending on whether
the step S takes place at the root, to the left of the application or to the right of the
application.

3.3.1 If S takes place at the root. Then C′〈∆〉 is an abstraction, so C′ cannot be empty,
i.e. we have that C′ = λ`′y.C′′. Moreover, since T is created by Creation case III,
we have that ∆ has the following specific shape: ∆ = (λ`x.C2〈xτ~r〉)~s where
~s = [~s1, λ`′′z.p,~s2] and such that `′′ is the external label of τ.
Given any term, context, or list of terms X let X∗ denote X{{x := ~s}} and let X†

denote X{{y := ~u}}. Note also that by the Substitution lemma (Lemma A.6) we
have that X†{{x :=~s†}} = X∗†. Then the situation is the following:

(λ`′y.C′′〈(λ`x.C2〈xτ~r〉)~s〉)~u R//

S
��

(λ`′y.C′′〈C∗2〈(λ`′′z.p)~r∗〉〉)~u

S/R
��

T// (λ`′y.C′′〈C∗2〈p{{z :=~r∗}}〉〉)~u

C′′†〈(λ`x.C†
2〈xτ~r†〉)~s†〉 R/S // C′′†〈C∗2

†〈(λ`′′z.p†)~r∗†〉〉
T/(S/R)// C′′†〈C∗2

†〈p†{{z :=~r∗†}}〉〉

Note that, indeed, R/S creates T/(S/R).
3.3.2 If S is internal to C′〈∆〉. Observe that in such case all three steps R, S, and T are

internal to the left of the application. Then situation is:

C′〈∆〉~u R //

S
��

C′〈∆′〉~u

S/R
��

T // r~u

p~u
R/S // p′ ~u

T/(S/R) // p′′ ~u

A.8. PROOF OF LEMMA 3.19 — BASIC STABILITY 71

and we may conclude by i.h., similarly as in item 2 of this lemma.
3.3.3 If S is internal to ~u. Then the situation is:

C′〈∆〉~u R //

S
��

C′〈∆′〉~u

S/R
��

T // p~u

C′〈∆〉~r R/S // C′〈∆′〉~r
T/(S/R) // p~r

It is immediate to note in this case that R/S creates T/(S/R), since the two-step
sequences RT and (R/S)(T/(S/R)) are both isomorphic to C′〈∆〉 →# C′〈∆′〉 →#
p, only going below different contexts.

4. Right of an application, C = u[~r1, C′,~r2]. Let ∆ be the redex contracted by R, and let ∆′

denote its contractum. The step R is of the form u[~r1, C′〈∆〉,~r2] →# u[~r1, C′〈∆′〉,~r2]. We
consider three subcases, depending on whether the step S takes place at the root, to the
left of the application, or to the right of the application.

4.1 If S takes place at the root. Then u is an abstraction u = λ`′y.u′. Moreover, by the
parameter/argument correspondence (Lemma A.8), there is a free occurrence of y in
u′ whose type is also the type of the argument C′〈∆〉. Let us write u′ as u′ = C1〈yτ〉,
where the hole of C1 marks the position of such occurrence. Given any term, context,
or list of terms X let X∗ denote X{{x :=~r1,~r2}}. Then we have that the situation is:

(λ`′y.C1〈yτ〉)[~r1, C′〈∆〉,~r2]
R //

S
��

(λ`′y.C1〈yτ〉)[~r1, C′〈∆′〉,~r2]

S/R
��

T // (λ`′y.C1〈yτ〉)[~r1, p,~r2]

C∗1〈C′〈∆〉〉
R/S // C∗1〈C′〈∆′〉〉

T/(S/R) // C∗1〈p〉

It is then immediate to note that R/S creates T/(S/R), since the two-step sequences
RT and (R/S)(T/(S/R)) are both isomorphic to C′〈∆〉 →# C′〈∆′〉 →# p, only going
below different contexts.

4.2 If S is internal to the left of the application. Then the situation is:

u[~r1, C′〈∆〉,~r2]
R //

S
��

u[~r1, C′〈∆′〉,~r2]

S/R
��

T // u[~r1, p,~r2]

u′[~r1, C′〈∆〉,~r2]
R/S // u′[~r1, C′〈∆′〉,~r2]

T/(S/R)// u′[~r1, p,~r2]

Then since RT and (R/S)(T/(S/R)) are isomorphic, it is immediate to conclude,
similarly as in item 3.3.3 of this lemma.

4.3 If S is internal to the right of the application. We consider two further subcases,
depending on whether S is internal to the argument C′〈∆〉, or otherwise.

4.3.1 If S is internal to the argument C′〈∆〉. Then the situation is:

u[~r1, C′〈∆〉,~r2]
R //

S
��

u[~r1, C′〈∆′〉,~r2]

S/R
��

T // u[~r1, p,~r2]

u[~r1, q,~r2]
R/S // u[~r1, q′,~r2]

T/(S/R) // u[~r1, q′′,~r2]

and we may conclude by i.h., similarly as in item 2 of this lemma.

72 APPENDIX A. PROOFS OF SELECTED STATEMENTS

4.3.2 If S is not internal to the argument C′〈∆〉. Then it is either internal to~r1 or to
~r2. If it is internal to~r1, the situation is:

u[~r1, C′〈∆〉,~r2]
R //

S
��

u[~r1, C′〈∆′〉,~r2]

S/R
��

T // u[~r1, p,~r2]

u[~r′1, C′〈∆〉,~r2]
R/S // u[~r′1, C′〈∆′〉,~r2]

T/(S/R)// u[~r′1, p,~r2]

Then since RT and (R/S)(T/(S/R)) are isomorphic, it is immediate to conclude,
similarly as in item 3.3.3 of this lemma.

Lemma A.8 (Parameter/argument correspondence). If (λ`x.t)[s1, . . . , sn] is a correct
term then there are exactly n free occurrences of x in t. More precisely, t can be written as
Ĉ〈xτ1 , . . . , xτn〉 where Ĉ is an n-hole context and type τi is the type of si for all 1 ≤ i ≤ n.
Proof. Consider the (unique) type derivation for (λ`x.t)[s1, . . . , sn]. The last rule must be:

Γ, x : [σ1, . . . , σn] ` t : τ
→I

Γ ` λ`x.t : [σ1, . . . , σn]
`→ τ

∆i ` si : σi for all i = 1..n

→E
Γ +n

i=1 ∆i ` (λ`x.t)[s1, . . . , sn] : τ

It is then easy to conclude by resorting to Linearity Lemma 2.17.

A.9 Auxiliary lemmas for Section 3.4 — Lattices and Deriva-
tion Spaces

Below the reader can find some auxiliary lemmas used in the proofs of the main results
in Section 3.4.

Lemma A.9 (Projections are decreasing). Let R ∈ ρ. Then |ρ| = 1 + |ρ/R|.
Proof. Observe that R v ρ by Lemma 3.11. So ρ ≡ R(ρ/R), which gives us that:

|ρ| = #names(ρ) by Corollary 3.14
= #names(R(ρ/R)) by Corollary 3.17, since ρ ≡ R(ρ/R)
= #(names(R)] names(ρ/R) by Lemma 3.13
= 1 + #names(ρ/R)
= 1 + |ρ/R| by Corollary 3.14

Lemma A.10 (Properties of disjoint derivations). Let ρ, σ be coinitial derivations. Then the
following are equivalent:

1. names(ρ) ∩ names(σ) = ∅.
2. ρ u σ = ε.
3. There is no step common to ρ and σ.

In this case we say that ρ and σ are disjoint.

A.9. AUXILIARY LEMMAS FOR SECTION 3.4 — LATTICES AND DERIVATION SPACES73

Proof. The implication (1 =⇒ 2) is immediate since if we suppose that ρ u σ is non-empty
then the first step of ρ u σ is a step T such that T ∈ ρ and T ∈ σ. By Characterization of
belonging (Lemma 3.11), this means that name(T) ∈ names(ρ) ∩ names(σ), contradicting the fact
that name(T) and names(ρ) are disjoint.

The implication (2 =⇒ 3) is immediate by definition of ρ u σ.
Let us check that the implication (3 =⇒ 1) holds. By the contrapositive, suppose that

names(ρ) and names(σ) are not disjoint, and let us show that there is a step common to ρ and
σ. Since names(ρ) ∩ names(σ) 6= ∅, we know that the derivation ρ can be written as ρ = ρ1Rρ2
where name(R) ∈ names(σ). Without loss of generality we may suppose that R is the first step in
ρ with that property, i.e. that names(ρ1) ∩ names(σ) = ∅. Moreover, let us write σ as σ = σ1Sσ2
where name(R) = name(S).

Observe that the name of R does not appear anywhere along the sequence of steps ρ1, i.e.
that name(R) 6∈ names(ρ1), as a consequence of the fact that no names are ever repeated in any
sequence of steps (Lemma 3.13). This implies that name(S) 6∈ names(ρ1/σ1). Indeed:

name(S) = name(R) 6∈ names(ρ1) ⊇ names(ρ1) \ names(σ1) =
(Lemma 3.15) names(ρ1/σ1)

This means that S is not erased by the derivation ρ1/σ1. More precisely, S/(ρ1/σ1) is a singleton.
Symmetrically, R/(σ1/ρ1) is a singleton. Moreover, name(S/(ρ1/σ1)) = name(S) = name(R) =

name(R/(σ1/ρ1)) so we have that S/(ρ1/σ1) = R/(σ1/ρ1). The situation is the following, where
names(ρ1) ∩ names(σ1) = ∅:

ρ1

����

σ1

�� ��ρ2oooo Roo

σ1/ρ1 �� �� ρ1/σ1����

S // σ2 // //

R/(σ1/ρ1)=S/(ρ1/σ1)

��

By Full stability (Lemma 3.20) this means that there exists a step T such that T/ρ1 = R and
T/σ1 = S. Then T ∈ ρ1Rρ2 = ρ and also T ∈ σ1Sσ2 = σ so T is common to ρ and σ, by which
we conclude.

Lemma A.11. Let ρ and σ be coinitial derivations. Then names(ρ u σ) ⊆ names(ρ).
Proof. By induction on the length of ρ u σ:

1. Empty, ρ u σ = ε. Then names(ρ u σ) = ∅ ⊆ names(ρ) is immediate.
2. Non-empty, ρ u σ = T(ρ/T u σ/T), where T is a step common to ρ and σ. Then since T

is common to ρ and σ, we have that name(T) ∈ names(ρ). Moreover, by i.h. names(ρ/T u
σ/T) ⊆ names(ρ/T). So:

names(ρ u σ) = {name(T)} ∪ names(ρ/T u σ/T)
⊆ names(ρ) ∪ names(ρ/T)
= names(ρ) ∪ (names(ρ) \ {name(T)} by Lemma 3.15
= names(ρ)

as required.

74 APPENDIX A. PROOFS OF SELECTED STATEMENTS

A.10 Auxiliary lemmas for Section 4.1 — Refinements

Lemma A.12 (Refinement of a substitution). If t′ n t and s′i n s for all 1 ≤ i ≤ n then
t′{x := [s′1, . . . , s′n]} n t{x := s}.
Proof. By induction on t.

1. Variable (same), t = x. In this case, t′ = x. Then, [s′i]
n
i=1 = [s′] and x{x := [s′]} = s′,

which by hypothesis refines s = x{x := s}.
2. Variable (different), t = y. In this case t′ = y. Then, [s′i]

n
i=1 = [] and y{x := []} = y,

which refines y = y{x := s}.
3. Abstraction, t = λy.r. In this case t′ = λ`y.r′, where r o r′.

Also (λy.r){x := s} = λy.r{x := s}, and (λ`y.r′){x := [s′1, . . . , s′n]} = λ`y.r′{x :=
[s′1, . . . , s′n]}. By inductive hypothesis r′{x := [s′1, . . . , s′n]} n r{x := s}, so we are done.

4. Application, t = ru. In this case t′ = r′[u′1, . . . , u′n], where r o r′ and u o u′i.
Also, (ru){x := s} = r{x := s}u{x := s} and (r′[u′1, . . . , u′n]){x := ~s} = r′{x :=
~s0}ui{x :=~si}.
But by inductive hypothesis r{x := s} o r′{x :=~s0} and u{x := s} o ui{x :=~si} for all
i ∈ {1, . . . , n}, so we are done.

Lemma A.13 (Refinement of a context). The following are equivalent, which relates refinement
and contexts:

1. t′ n C〈s〉,
2. t′ is of the form C′〈s′1, . . . , s′n〉, where C′ is an n-hole context such that C′ n C and s′i n s

for all 1 ≤ i ≤ n. Note that n might be 0, in which case C′ is a term.
Moreover, in the implication (1 =⇒ 2), the decomposition is unique, i.e. the context C′, number
of holes n ≥ 0, and terms s′1, . . . , s′n are the unique possible such objects.
Proof. Remark that, in general, if C′ n t, where C′ is a many-hole context and t is a term, then C′

must be actually a 0-hole context. This can be easily checked by induction on C′. We prove each
direction separately:

• (1 =⇒ 2) By induction on C.
1. Empty, C = �. Then t′ n s. Taking C′ = � and s′1 := t′, we have that t′ = C′〈s′1〉.

Moreover, the decomposition is unique.
2. Abstraction, C = λx.C1. Then t′ must be of the form λ`x.u′ where u′ n C〈s〉. By

i.h., write u′ as u′ = C′1〈s′1, . . . , s′n〉 where C′1 n C1 and s′i n s for all 1 ≤ i ≤ n.
Taking C′ := λ`x.C′1 we conclude. By i.h. the decomposition is unique for s′, so the
decomposition is also unique for t′.

3. Left of an application, C = C1 u. Then t′ must be of the form r′[u′1, . . . , u′m] with
r′ n C1〈s〉 and u′i n u for all 1 ≤ i ≤ m. By i.h., write r′ as r′ = C′1〈s′1, . . . , s′n〉 with
C′1 n C1 and s′i n s for all 1 ≤ i ≤ n. Taking C′ := C′1 [u

′
1, . . . , u′m] we conclude. By i.h.

the decomposition is unique for r′, so the decomposition is also unique for t′.
4. Right of an application, C = u C1. Then t′ must be of the form u′ [r′1, . . . , r′m] where

u′ n u and r′i n C1〈s〉 for all 1 ≤ i ≤ m. By i.h., we can write each of the r′i as
r′i = C′(1,i)〈s

′
(i,1), . . . , s′(i,ki)

〉 where C′(1,i) is a context of ki holes such that C′(1,i) n C1 and
s′(i,j) n s for all 1 ≤ i ≤ m and all 1 ≤ j ≤ ki. Taking C′ = u′[C′(1,1), . . . , C′(1,m)] as a
context with m = ∑n

i=1 ki holes we conclude. By i.h. the decomposition fo reach u′i is
unique, so the decomposition is also unique for t′.

A.11. PROOF OF PROPOSITION 4.3 — SIMULATION 75

• (2 =⇒ 1) By induction on C.

1. Empty, C = �. Then C′ = � and s′1 = t′, so we are done.
2. Abstraction, C = λx.C1. Then C′ = λ`x.C′1 where C′1 n C1. By i.h. C′1〈s′1, . . . , s′n〉 n

C1〈s〉, so t′ = λ`x.C′1〈s′1, . . . , s′n〉 n λx.C1〈s〉.
3. Left of an application, C = C1 u. Then C′ = C′1 [u

′
1, . . . , u′m] where C′1 n C1〈s〉

and u′i n u for all 1 ≤ i ≤ m. Note that the u′i are terms (i.e. they are 0-hole
contexts), by the previous remark. Then by i.h., C′1〈s′1, . . . , s′n〉 n C1〈s〉, so t′ =
C′1〈s′1, . . . , s′n〉[u′1, . . . , u′m] n C1〈s〉 u.

4. Right of an application, C = u C1. Then C′ = u′[C′(1,1), . . . , C′(1,m)] where u′ n u
and C′(1,j) n C1 for all 1 ≤ j ≤ m. Note that u′ is a term (i.e. it is a 0-hole con-
text), by the previous remark. Moreover, for each 1 ≤ j ≤ m, the context C′(1,j)
is a context with k j ≥ 0 holes, in such a way that ∑m

j=1 k j = n. Let us split the
list [s′1, . . . , s′n] in m lists, such that the j-th list has k j elements, i.e. [s′1, . . . , s′n] =
[s′(1,1), . . . , s′(1,k1)

, . . . , s′(m,1), . . . , s′(m,km)]. By i.h., for each 1 ≤ j ≤ m we have that
C′(1,j)〈s

′
(j,1), . . . , s′(j,kj)

〉 n C1〈s〉. So:

t′ = u′[C′(1,1)〈s
′
(1,1), . . . , s′(1,k1)

〉, . . . , C′(1,m)〈s
′
(m,1), . . . , s′(j,km)〉] n u C1〈s〉

which concludes the proof.

Lemma A.14 (Contexts refined by terms may be filled). Suppose that t′ n C where t′ is a
term (with no holes). Then t′ n C〈X〉 for any term or context X.

Proof. By induction on C.
1. Empty, C = �. This case is impossible, since it implies t′ = �.
2. Abstraction, C = λx.C′. Then t′ = λ`x.t′′ where t′′ n C′. By i.h., t′′ n C′〈X〉 so t′ = λ`x.t′′ n

λx.C′〈X〉 = C〈X〉.
3. Left of an application, C = C′ s. Then t′ = t′′ [s′1, . . . , s′n] with t′′ n C′ and s′i n s for all

1 ≤ i ≤ n. By i.h., t′′ n C′〈X〉 so t′ = t′′ [s′1, . . . , s′n] n C′〈X〉 s = C〈X〉.
4. Right of an application, C = C′ s. Then t′ = s′ [t′′1 , . . . , t′′n] with s′ n s and t′′i n C′ for all

1 ≤ i ≤ n. By i.h. t′′i n C′〈X〉 for all 1 ≤ i ≤ n, so t′ = s′ [t′′1 , . . . , t′′n] n s C′〈X〉 = C〈X〉.

A.11 Proof of Proposition 4.3 — Simulation

We want to prove that if t, s ∈ T λ and t′ ∈ T # be a distributive term such that t′ n t→β s,
then there is a distributive term s′ ∈ T # such that t′ �# s′ n s.
Proof. Let t = C〈(λx.p)q〉 → C〈p{x := q}〉 = s. We proceed by induction on C.

1. Empty context, C = �. Then t = (λx.p)q→ p{x := q} = s. Then t′ = (λ`x.p′)[q′1, . . . , q′n],
for some `, p′ n p and q′i n q.
We can do the step t′ →# p′{x := [q′1, . . . , q′n]}. We choose s′ to be the latter term, which by
Lemma A.12 refines s.

2. Under an abstraction, C = λy.C′. Then t = λy.C′〈(λx.p)q〉 → λy.C′〈p{x := q}〉 = s. If
t′ n t, then t′ = λ`y.r, with r n C′〈(λx.p)q〉.

76 APPENDIX A. PROOFS OF SELECTED STATEMENTS

By inductive hypothesis, there is a term r′ such that

C′〈(λx.p)q〉

o

β // C′〈p{x := q}〉

o

r # // // r′

Then,

λy.C′〈(λx.p)q〉

o

β // λy.C′〈p{x := q}〉
o

λ`y.r # // // λ`y.r′

3. Left of an application, C = C′u. Then t = C′〈(λx.p)q〉u → C′〈p{x := q}〉u = s. If t′ n t,
then t′ = r[u′1, . . . , u′n], with r n C′〈(λx.p)q〉 and u′i n u.
By inductive hypothesis, there is a term r′ such that

C′〈(λx.p)q〉

o

β // C′〈p{x := q}〉

o

r # // // r′

Then,

C′〈(λx.p)q〉u

o

β // C′〈p{x := q}〉u

o

r[u′1, . . . , u′n]
// // r′[u′1, . . . , u′n]

4. Right of an application, C = uC′. Then t = uC′〈(λx.p)q〉 → uC′〈p{x := q}〉 = s. If t′ n t,
then t′ = u′[u′1, . . . , u′n], with u′ n u and u′i n C′〈(λx.p)q〉.
We can apply the inductive hypothesis to every u′i, obtaining

C′〈(λx.p)q〉

o

β // C′〈p{x := q}〉

o

u′i
// // u′′i

Then,

u C′〈(λx.p)q〉

o

β // u C′〈p{x := q}〉

o

u′ [u′1, . . . , u′n]
// // u′ [u′′1 , . . . , u′′n]

A.12. PROOF OF PROPOSITION 4.5 — REVERSE SIMULATION 77

Because

u′[u′1, . . . , u′i−1, u′i, u′i+1, . . . , u′n]�# u′[u′′1 , . . . , u′i−1, u′i, u′i+1, . . . , u′n]
�# . . .

�# u′[u′′1 , . . . , u′′i−1, u′i, u′i+1, . . . , u′n]

�# u′[u′′1 , . . . , u′′i−1, u′′i , u′i+1, . . . , u′n]

�# u′[u′′1 , . . . , u′′i−1, u′′i , u′′i+1, . . . , u′n]
�# . . .

�# u′[u′′1 , . . . , u′′i−1, u′′i , u′′i+1, . . . , u′′n]

A.12 Proof of Proposition 4.5 — Reverse simulation

We repeat the statement of reverse simulation in its entirety.
Let t′, s′ ∈ T # be distributive-terms and let t ∈ T λ be a lambda-term such that:

t o t′ →# s′

then there is a distributive term s′′ ∈ T # and a lambda-term s ∈ T λ such that:

t→β s o s′′

and the step t′ →# s′ is contained in the multistep t′ �# s′′. Diagramatically:

t′

#
��

#

"" ""

n t

β

��

s′

#����
s′′ n s

Proof. By induction on t′.
1. Variable t′ = x. This case cannot happen because a variable cannot be reduced.
2. Abstraction, t′ = λ`y.r′. In this case t = λy.r, where r o r′. Also, we have that t′ →# s′, so

then necessarily s′ = λ`y.r′1 where r′ →# r′1.
Then, by inductive hypothesis we have that

r′

#
��

#

!! !!

n r

β

��

r′1

#
����

r′′1 n r1

78 APPENDIX A. PROOFS OF SELECTED STATEMENTS

So adding a lambda at the beggining of every term in the diagram we get our desired
result

λ`y.r′

#
��

#

n λy.r

β

��

λ`y.r′1

#
����

λ`y.r′′1 n λy.r1

3. Application, t′ = u′[r′1, . . . , r′m]. In this case we have several subcases, depending on where
the reduction step is done. It can be done inside u′, inside a r′i for some i ∈ {1, . . . , m}, or
in the head of the term (in the case that u′ is a lambda). Let R : t′ →# s′ be the name of the
step.
Also, t = ur, such that u o u′ and r o r′i for all i ∈ {1, . . . , m}.

3.1 R is inside u′. So then u′ →# u′1, and by inductive hypothesis we have that

u′

#
��

#

!! !!

n u

β

��

u′1

#
����

u′′1 n u1

So adding the arguments at the end of every term in the diagram we get our desired
result

u′[r′i]
m
i=1

#
��

#

n ur

β

��

u′1[r
′
i]

m
i=1

#
����

u′′1 [r
′
i]

m
i=1 n u1r

3.2 R is inside r′i for some i ∈ {1, . . . , m}. We have that r′i →# r′i,1, so by inductive
hypothesis

r′i

#
��

#

!! !!

n r

β

��

r′i,1

#
����

r′′i,1 n r1

A.12. PROOF OF PROPOSITION 4.5 — REVERSE SIMULATION 79

Now, we would like to reduce the rest of the r′j to something that refines r1. Luckily,
we can do that using simulation.
As for every j 6= i we have that r′j n r and r →β r1 then because of simulation we get
the following diagram for every j 6= i.

r

o

β // r1

o

r′j
// // r′j,1

Using all those reductions we obtained, we can construct the following diagram,
which proves what we wanted.

u′[r′0, . . . , r′i−1, r′i , r′i+1, . . . , r′m]

#
��

n ur

β

��

u′[r′0, . . . , r′i−1, r′i,1, r′i+1, . . . , r′m]

#
����

u′[r′0,1, . . . , r′i−1, r′i,1, r′i+1, . . . , r′m]

#����
...

#
����

u′[r′0,1, . . . , r′i−1,1, r′i,1, r′i+1, . . . , r′m]

#
����

u′[r′0,1, . . . , r′i−1,1, r′′i,1, r′i+1, . . . , r′m]

#
����

u′[r′0,1, . . . , r′i−1,1, r′′i,1, r′i+1,1, . . . , r′m]

#����
...

#
����

u′[r′0,1, . . . , r′i−1,1, r′′i,1, r′i+1,1, . . . , r′m,1] n ur1

80 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3.3 R is at the root. In this case u′ = λ`x.s, and we have the following diagram.

(λ`x.s′)[r′1, . . . , r′n]

#
��

n (λx.s)r

β

��
s′{x := [r′1, . . . , r′n]} s{x := r}

But s′{x := [r′1, . . . , r′n]} n s{x := r} because of Lemma A.12, so we are done.

A.13 Proof of Lemma 4.8 — Head normal forms have refine-
ments

We had a term t ∈ T λ that is in head normal form, i.e. t = λx1. . . . λxn.y t1 . . . tm.
We wanted to prove that:

• there exists t′ ∈ T # such that t′ n t,

• for every application in t′ the argument list is empty, and

• if xi = y for any i, Γ will be empty, otherwise it will be a singleton of the form
{y : [τ]}.

Proof. We proceed by induction on the pair (n, m), that is, by induction on N2 with lexicographic
order.

1. Base (0, 0). In this case t = y, so we can simply choose t′ to be yτ .
2. Inductive step. We want to see that the property holds for (n, m) > (0, 0) given that it

holds for all (n′, m′) < (n, m). Here there are two cases, either n = 0 or n > 0.
2.1 n = 0. We have that t = y t1 . . . tm, m ≥ 1. Let s = y t1 . . . tm−1. By inductive

hypothesis, there exists a correct term s′ that refines s.
We can suppose, without loss of generality, that s′ = yτ~t1 . . . ~tm−1, where each
element of~ti refines ti. If s′ wasn’t like that, it simply would not refine s. If m = 1,
then s′ = y and the type of y is τ.
If m > 1, the inductive hypothesis tells us that all~ti are empty, so s′ = y[]1 . . . []m−1
(we number them to make it more clear which is which). Because of Unique typ-
ing, the type of y has to be []1 → . . . → []m−1 → τ1, where τ1 is the type of s′.
Diagramatically,

{y : []1 → . . .→ []m−1 → τ1} ` y[]1→...→[]m−1→τ1 []1 . . . []m−2 : []m−1 → τ1
→E

{y : []1 → . . .→ []m−1 → τ1} ` y[]1→...→[]m−1→τ1 []1 . . . []m−1 : τ1

Now, we can give a typing derivation for the following term, if we consider a
derivation very similar to the last one but where τ1 has been replaced by []→ τ2.

{y : []1 → . . .→ []m−1 → []→ τ2} ` y[]1→...→[]m−1→[]→τ2 []1 . . . []m−1 : []→ τ2
→E

{y : []1 → . . .→ []m−1 → []→ τ2} ` y[]1→...→[]m−1→[]→τ2 []1 . . . []m−1 [] : τ2

Let t′ = y[]1→...→[]m−1→[]→τ2 []1 . . . []m−1 [].

A.14. PROOF OF PROPOSITION 4.9 — REFINABILITY CHARACTERIZES HEAD NORMALIZATION81

Note that the derivation fo t′ can be completed very easily in the same way that s′
was done, and it’s easy to check that t′ is correct (contexts are sequential, there are no
lambdas, and types are sequential, because the derivation is essentially the same that
the one of s′). Moreover, t′ refines t, so we are done.

2.2 n > 0. We have that t = λx1. . . . λxn.y t1 . . . tm. Let s = λx2. . . . λxn.y t1 . . . tm. By
inductive hypothesis, there is a term Γ ` s′ : τ that refines s. The same way as before,
we know that s′ = λ`2 x2. . . . λ`n xn.y [] . . . [].
Let t′ = λ`x1.s′, where ` is fresh. If x1 = y and x1 6= xi for all 1 < i ≤ n, then ` is the
external label of y, and in any other case it is a fresh label. Here to make the proof
tidier we will divide in two new cases, depending on whether x1 = y and x1 6= xi
for all 1 < i ≤ n, or not.

2.2.1 x1 = y and x1 6= xi for all 1 < i ≤ n. In this case, by inductive hypothesis Γ
must be a singleton {y : τ1}.

{y : τ1} ` s′ : τ
→I

∅ ` λ`x1.s′ : [τ1]
`→ τ

We have that t′ n t, and that the derivation of t′ has sequential types and
contexts, because by inductive hypothesis s′ does. Finally, t′ has pairwise
distinct labels in all lambdas because s′ does and ` was chosen to be a fresh
label.

2.2.2 x1 6= y or x1 = xi for some 1 < i ≤ n.

{y : τ1} ` s′ : τ
→I

{y : τ1} ` λ`x1.s′ : [] `→ τ

Like in the previous case, we have that t′ n t, and that the derivation of t′ has
sequential types and contexts, because by inductive hypothesis s′ does, and that
t′ has pairwise distinct labels in all lambdas because s′ does and ` was chosen to
be a fresh label.

A.14 Proof of Proposition 4.9 — Refinability characterizes head
normalization

Before proving Proposition 4.9, we need a few auxiliary results.

Lemma A.15 (→#-normal forms refine head normal forms). Let t′ ∈ T # be a→#-normal
form and t′ n t. Then t is a head normal form.
Proof. Observe, by induction on t′ that if t′ ∈ T # is a→#-normal form, it must be of the form
λ`1 x1. . . . λ`n xn.yτ~s1 . . .~sm, as it cannot have a subterm of the form (λ`′z.u)~r. Then

λ`1 x1. . . . λ`n xn.yτ~s1 . . .~sm n t

. So t is of the form λx1. . . . λxn.ys1 . . . sn, that is, t is a head normal form.

The following lemma is an adaptation of Subject Expansion in [BKV17].

82 APPENDIX A. PROOFS OF SELECTED STATEMENTS

Lemma A.16 (Subject Expansion). If Γ ` C〈t{x :=~s}〉 : τ is derivable, then Γ ` C〈(λ`x.t)~s〉 :
τ is derivable.
Proof. The proof proceeds by induction on C, and the base case by induction on t, similar to the
proof that substitution preserves typing in the proof of Subject Reduction (Section A.3).

Correctness is not necessarily preserved by →#-expansion. We need a stronger
invariant, strong sequentiality, that will be shown to be preserved by expansion under
appropiate conditions:

Definition A.17 (Subterms and free subterms). The set of subterms sub(t) of a term t is
formally defined as follows:

sub(xτ)
def
= {xτ}

sub(λ`x.t) def
= {λ`x.t} ∪ sub(t)

sub(t[si]
n
i=1)

def
= {t[si]

n
i=1} ∪ sub(t) ∪ ∪n

i=1sub(si)

The set of free subterms sub◦(t) of a term t is defined similarly, except for the abstraction
case, which requires that the subterm in question do not include occurrences of bound
variables:

sub◦(xτ)
def
= {xτ}

sub◦(λ`x.t) def
= {λ`x.t} ∪ {u ∈ sub◦(t) | x 6∈ fv(u)}

sub◦(t[si]
n
i=1)

def
= {t[si]

n
i=1} ∪ sub◦(t) ∪ ∪n

i=1sub
◦(si)

Definition A.18 (Strong sequentiality). A term t is strongly sequential if it is correct
and, moreover, for every subterm s ∈ sub(t) and any two free subterms s1, s2 ∈ sub◦(s)
lying at disjoint positions of s, the types of s1 and s2 have different external labels.

Example A.19. The following examples illustrate the notion of strong sequentiality:
1. The term t = (λ1x.yα2

)[] is strongly sequential. Note that t and yα2
have the same type,

namely α2, but they do not occur at disjoint positions.
2. The term t = (λ1x.xα2

)[yα2
] is strongly sequential. Note that xα2

and yα2
both have type

α2, but they are not simultaneously free subterms of the same subterm of t.

3. The term t = λ1y.x[α
2]

3→[α2]
4→β5

[yα2
][zα2

] is not strongly sequential, since yα2
and zα2

have

the same type and they are both free subterms of x[α
2]

3→[α2]
4→β5

[yα2
][zα2

] ∈ sub(t).

Lemma A.20 (Refinement of a substitution: decomposition). If u′ n t{x := s} and u′ is
strongly sequential, then u′ is of the form t′{x := [s′i]

n
i=1}. Moreover, given a fresh label `, the

term (λ`x.t′)[s′i]
n
i=1 is strongly sequential, t′ n t and s′i n s for all i = 1..n.

Proof. By induction on t.
1. Variable (same), t = x. Then u′ n s. Let τ be the type of u′. Taking t′ := xτ n x we

have that (λ`x.xτ)[u′] is strongly sequential. Regarding strong sequentiality, observe that
xτ and u′ have the same type, but they are not simultaneously the free subterms of any
subterm of (λ`x.xτ)[u′].

2. Variable (different), t = y 6= x. Then u′ n y, so u′ is of the form yτ . Taking t′ := yτ we
have that (λ`x.yτ)[] is strongly sequential.

A.14. PROOF OF PROPOSITION 4.9 — REFINABILITY CHARACTERIZES HEAD NORMALIZATION83

3. Abstraction, t = λy.r. Then u′ n λy.r{x := s} so u′ is of the form λ`′y.u′′ where u′′ n
r{x := s}. By i.h., u′′ is of the form r′{x := [s′i]

n
i=1} where (λ`x.r′)[s′i]

n
i=1 is strongly

sequential, r′ n r and s′i n s for all i = 1..n. Taking t′ := λ`′y.r′, we have that t′ = λ`′y.r′ n
λy.r = t. Moreover, the term (λ`x.t′)[si]

n
i=1 = (λ`x.λ`′y.r′)[si]

n
i=1 is strongly sequential.

Typability is a consequence of Subject Expansion (Lemma A.16). The remaining properties
are:

3.1 Uniquely labeled lambdas. The multiset of labels decorating the lambdas of (λ`x.λ`′y.r′)[si]
n
i=1

is given by Λ((λ`x.λ`′y.r′)[si]
n
i=1) = [`, `′] + Λ(r′) +n

i=1 Λ(si). It suffices to check
that this multiset has no repeats. The label ` is assumed to be fresh, so it occurs
only once. By i.h., u′′ = r′{x := [s′i]

n
i=1}, so using Lemma A.5 we have Λ(u′) =

Λ(λ`′y.u′) = [`′] + Λ(u′′) = [`′] + Λ(r′{x := [s′i]
n
i=1}) = [`′] + Λ(r′) +n

i=1 Λ(s′i).
Moreover, the term u′ = λ`′y.u′′ is correct, so this multiset has no repeats.

3.2 Sequential contexts. Let q be a subterm of (λ`x.λ`′y.r′)[s′i]
n
i=1. If q is a subterm of r′ or

a subterm of s′i for some i = 1..n we conclude by i.h. since (λ`x.r′)[s′i]
n
i=1 is known

to be correct. Moreover, if Γ⊕ x :M⊕ y : N is the typing context for r′, the typing
contexts of λ`′y.r′ and λ`x.λ`′y.r′ are respectively Γ⊕ x : M and Γ, which are also
sequential. Finally, if ∆i is the typing context for s′i, for each i = 1..n, the typing
context for (λ`x.r′)[s′i]

n
i=1 is of the form Γ +n

i=1 ∆i + y : N , and it is sequential by i.h..
Hence the typing context for the whole term is Γ +n

i=1 ∆i, and it is sequential.

3.3 Sequential types. Let q be a subterm (λ`x.λ`′y.r′)[s′i]
n
i=1, and let P `′′→ ρ be a type that

occurs in the typing context or the type of q. As in the previous case, we have that
Γ⊕ x : [σi]

n
i=1 ⊕ y : N ` r′ : τ is derivable and ∆i ` s′i : σi is derivable for all i = 1..n.

Moreover, they are correct by i.h., so if q is a subterm of r′ or a subterm of some s′i,
we are done. There are three cases left for q:

3.3.1 Case q = λ`′y.r′. The typing context is Γ⊕ x : [σi]
n
i=1 and the type N `′→ τ.

3.3.2 Case q = λ`x.λ`′y.r′. The typing context is Γ and the type [σi]
n
i=1

`→ N `′→ τ.

3.3.3 Case q = (λ`x.λ`′y.r′)[si]
n
i=1. The typing context is Γ and the type N `′→ τ.

In all three cases, if P `′′→ ρ occurs in the typing context or the type of q, then P can
be shown to be sequential using the i.h..

3.4 Strong sequentiality. Let q ∈ sub((λ`x.λ`′y.r′)[si]
n
i=1) be a subterm, and let q1, q2 ∈

sub◦(q) be free subterms lying at disjoint positions of q. We argue that the types of q1
and q2 have different external labels. Consider the following five possibilities for q1:

3.4.1 Case q1 = (λ`x.λ`′y.r′)[si]
n
i=1. Impossible since q2 must be at a disjoint position.

3.4.2 Case q1 = λ`x.λ`′y.r′. Then the external label of the type of q1 is the label `,
which is fresh, so it cannot coincide with the type of any other subterm.

3.4.3 Case q1 = λ`′y.r′. Then q2 must be a subterm of si for some i = 1..n. Note that q
must be the whole term, and n > 0, so there is at least one free occurrence of x
in λ`′y.r′. This means that q1 6∈ sub◦(q), so this case is impossible.

3.4.4 Case q1 is a subterm of r′. If q2 is also a subterm of r′, we conclude since by i.h.
(λ`x.r′)[s′i]

n
i=1 is strongly sequential. Otherwise, q2 is a subterm of si for some

i = 1..n, and we also conclude by i.h..
3.4.5 Case q1 is a subterm of si for some i = 1..n. If q2 is a subterm of sj for some

j = 1..n, we conclude since by i.h. (λ`x.r′)[s′i]
n
i=1 is strongly sequential. If q2 is

any other subterm, note that the symmetric case has already been considered in

84 APPENDIX A. PROOFS OF SELECTED STATEMENTS

one of the previous cases.
4. Application, t = rp. Then u′ n (rp){x := s}, so it is of the form u′0[u

′
j]

m
j=1 where u′0 n

r{x := s} and u′j n p{x := s} for all j = 1..m. By i.h. we have that u′0 is of the form
r′{x := ~s0} and for all j = 1..m the term u′j is of the form p′j{x := ~sj}, where r′ n r and

p′j n p for all j = 1..m. Moreover, the length of the list~sj is k j and~sj = [s(j)
i]

kj
i=1 for all

j = 0..m, and we have that s(j)
i n s for all j = 0..m, i = 1..k j. By i.h. we also know that

(λ`x.r′)~s0 is strongly sequential and (λ`x.p′j)~sj is strongly sequential for all j = 1..m.
Let t′ := r′[p′j]

m
j=1, let n := ∑m

j=0 k j, and let [s′1, . . . , s′n] := ∑m
j=0~sj. Note that t′ = r′[p′j]

m
j=1 n

rp = t and s′i n s for all i = 1..n.
Moreover, we have to check that u′ = t′{x := [s′1, . . . , s′n]}. To prove this, note that t′{x :=
[s′1, . . . , s′n]} = (r′[p′j]

m
j=1){x := [s′1, . . . , s′n]}. Suppose that the multiset T([s′1, . . . , s′n]) were

sequential. Then the list of terms [s′1, . . . , s′n] would be partitioned as (~u0, . . . ,~um) where ~uj
is a permutation of~sj for all j = 0..m, and we would have indeed:

t′{x := [s′1, . . . , s′n]} = (r′[p′j]
m
j=1){x := [s′1, . . . , s′n]}

= r′{x := ~u0}[p′j{x := ~uj}]mj=1) by T([s′1, . . . , s′n]) sequential
= r′{x :=~s0}[p′j{x :=~sj}]mj=1)

= r′{x :=~s0}[p′j{x :=~sj}]mj=1) by Lemma A.1
= u′0[u

′
j]

m
j=1 = u′ by i.h.

To see that T([s′1, . . . , s′n]) is sequential, note that for every i 6= j, the terms s′i and s′j are free
subterms of u′ and they lie at disjoint positions of u′. Since u′ is strongly sequential, the
types of s′i and s′j have different external labels. Hence T([s′1, . . . , s′n]) is sequential.

To conclude, we are left to check that (λ`x.t′)[s′1, . . . , s′n] is strongly sequential:
4.1 Uniquely labeled lambdas. The multiset of labels decorating the lambdas of (λ`x.t′)[s′1, . . . , s′n]

is given by Λ((λ`x.t′)[s′1, . . . , s′n]) = [`] + Λ(t′) +n
i=1 Λ(s′i). It suffices to check that

this multiset has no repeats. The label ` is assumed to be fresh, so it occurs only once.
We have already argued that u′ = t′{x := [s′1, . . . , s′n]}, so using Lemma A.5 we have
Λ(u′) = Λ(t′) +n

i=1 Λ(s′i). Moreover u′ is correct, so this multiset has no repeats.

4.2 Sequential contexts. Suppose that Γ0 ⊕ x : M0 ` r′ : [ρj]
m
j=1

`′→ τ is derivable,
Γj ⊕ x :Mj ` p′j : ρj is derivable for all j = 1..m, and ∆i ` s′i : σi is derivable for all
i = 1..n. Note that ∑m

j=0Mj = [σi]
n
i=1.

Let q be a subterm of (λ`x.r′[p′j]
m
j=1)[s

′
1, . . . , s′n]. Consider four cases for q:

4.2.1 Case q = (λ`x.r′[p′j]
m
j=1)[s

′
1, . . . , s′n]. The typing context is ∑m

j=0 Γj + ∑n
i=1 ∆i.

By Subject Expansion (Lemma A.16) the typing context of (r′[p′j]
m
j=1){x :=

[s′1, . . . , s′n]} = u′ is also ∑m
j=0 Γj + ∑n

i=1 ∆i and u′ is correct by hypothesis. So
∑m

j=0 Γj + ∑n
i=1 ∆i is sequential.

4.2.2 Case q = λ`x.r′[p′j]
m
j=1. The typing context is ∑m

j=0 Γj, which is sequential be-
cause ∑m

j=0 Γj + ∑n
i=1 ∆i is sequential.

4.2.3 Case q = r′[p′j]
m
j=1. The typing context is ∑m

j=0 Γj⊕ x : [σi]
n
i=1, which is sequential

because ∑m
j=0 Γj is sequential and, moreover, [σi]

n
i=1 = T([σ′1, . . . , σ′n]) which we

have already shown to be sequential.
4.2.4 Otherwise. Then q is a subterm of r′, a subterm of p′j for some j = 1..m, or a

A.14. PROOF OF PROPOSITION 4.9 — REFINABILITY CHARACTERIZES HEAD NORMALIZATION85

subterm of some s′i for some i = 1..n. Then we conclude since by i.h. (λ`x.r′)~s0

and all the (λ`x.p′j)~sj are strongly sequential.

4.3 Sequential types. Let q be a subterm of (λ`x.r′[p′j]
m
j=1)[s

′
1, . . . , s′n]. We claim that if

N `′′→ φ occurs in the context or in the type of q, then N is sequential. The proof is
similar as for subcase .

4.4 Strong sequentiality. Let q ∈ sub((λ`x.r′[p′j]
m
j=1)[s

′
1, . . . , s′n]) be a subterm, and let

q1, q2 ∈ sub◦(q) be free subterms lying at disjoint positions of q. We claim that the
types of q1 and q2 have different external labels. The proof is similar as for subcase .

Lemma A.21 (Backwards Simulation). Let t, s ∈ T λ be λ-terms and let s′ ∈ T # be a strongly
sequential term such that t→β s and s′ n s. Then there exists a strongly sequential term t′ ∈ T #

such that:

to

β // so
t′ # // // s′

Proof. Let t = C〈(λx.u)r〉 →β C〈u{x := r}〉 = s. The proof proceeds by induction on C.
1. Empty, C = �. By Lemma A.20 we have that s′ is of the form u′{x := [r′1, . . . , r′n]} where

u′ n u and r′i n r for all i = 1..n. Moreover, taking ` to be a fresh label, (λ`x.u′)[r′1, . . . , r′n]
is strongly sequential and (λ`x.u′)[r′1, . . . , r′n] n (λx.u)r.

2. Under an abstraction, C = λx.C′. Straightforward by i.h..
3. Left of an application, C = C′ u Straightforward by i.h..
4. Right of an application, C = u C′ Then t = u r→β u p = s where r →β p and s′ n s. Then

s′ is of the form u′[p′1, . . . , p′n] where p′i n p for all i = 1..n. By i.h., for all i = 1..n we have
that there exist r′1, . . . , r′n such that:

ro

β // po

r′i
// // p′i

So we have: u ro

β // upo

u′[r′i]
n
i=1

// // u′[p′i]
n
i=1

Moreover, u′[r′i]
n
i=1 is strongly sequential, which can be concluded from the facts that

u′[p′i]
n
i=1 is strongly sequential by hypothesis, r′i is strongly sequential for all i = 1..n by

i.h., and r′i and p′i have the same types by Subject Expansion (Lemma A.16).

To prove Proposition 4.9 recall that it states that the following are equivalent:
1. There exists t′ ∈ T # such that t′ n t.
2. There exists t′ ∈ T # such that t′ n t and t′ →#

∗ λ`1 x1. . . . λ`n xn.yτ[] . . . [].
3. There exists a head normal form s such that t→β

∗ s.
Let us prove the chain of implications 1 =⇒ 3 =⇒ 2 =⇒ 1:

• (1 =⇒ 3) Let t′ n t. By Strong Normalization (Proposition 2.20), reduce
t′ →#

∗ s′ to normal form. We claim that there exists a term s such that t →β
∗ s

and s′ n s. Observe that, since λ# is strongly normalizing (Proposition 2.20) and
finitely branching, König’s lemma ensures that there is a bound for the length of
→#-derivations going out from a term t′ ∈ T #. (Alternatively, according to the

86 APPENDIX A. PROOFS OF SELECTED STATEMENTS

proof of Strong Normalization in Proposition 2.20, the bound may be explicitly
taken to be the number of lambdas in t′). Call this bound the weight of t′.

We proceed by induction on the weight of t′. If the derivation is empty, we are done
by taking s := t. If the derivation is non-empty, it is of the form t′ →# u′ →#

∗ s′.
By Simulation (Proposition 4.3) there exist terms u and u′′ such that u′ →#

∗ u′′ n u
and t→β u. Since the λ#-calculus is confluent (Proposition 2.26) and s′ is a normal
form, we have that u′′ �# s′. Note that the weight of t′ is strictly larger than the
weight of u′′, so by i.h. there exists s such that u→β

∗ s and s′ n s:

to

β // uo
β // // so

t′ # // u′ # // //

#
>> >>u′′ # // // s′

Finally, since s′ is a→#-normal form and s′ n s, Lemma A.15 ensures that s is a
head normal form, as required.

• (2 =⇒ 1) Obvious.

• (3 =⇒ 2) Let t →β
∗ s be a derivation to head normal form. We claim that

there exists t′ ∈ T # such that t′ is strongly sequential, and the normal form
of t′ is of the form λ`1 x1. . . . λ`n xn.yτ[] . . . []. By induction on the length of the
derivation t →β

∗ s. If the derivation is empty, t = s is a head normal form and
we conclude by Lemma 4.8, observing that the constructed term t′ n t is strongly
sequential. If the derivation is non-empty, conclude using the i.h. and Backwards
Simulation (Lemma A.21).

A.15 Proof of Lemma 4.15 — Basic cube lemma for simulation
residuals

We are to prove that if R : t→ s and S : t→ u are coinitial steps, and t′ ∈ T # is a correct
term such that t′ n t. Then the following equality between sets of coinitial steps holds:

(R/t′)/(S/t′) = (R/S)/(t′/S)

Recall that there are four notions of residual involved:

(R /(1) t′) /(2) (S /(1) t′) = (R /(3) S) /(1) (t′ /(4) S)

1. Set of simulation residuals of a β-step relative to a correct term.
2. Set of residuals of a #-step after a #-step.
3. Set of residuals of a β-step after a β-step.
4. Simulation residual of a correct term after a β-step.

An auxiliary lemma is proven afterwards.

A.15. PROOF OF LEMMA 4.15 — BASIC CUBE LEMMA FOR SIMULATION RESIDUALS87

Proof. If R = S then it is easy to see that the proposition holds, so we can assume that R 6= S.
Also, note that it is enough to see that names((R/t′)/(S/t′)) = names(((R/S)/(t′/S)), as we
will do that in some cases. We proceed by induction on t.

1. Variable t = x. This case is trivial (there are no steps with a variable as a source).
2. Abstraction, t = λx.u. In this case we have R : λx.u → λx.u1 and S : λx.u → λx.u2. It

also must be the case that:

• t′ = λ`x.u′,

• R/t′ : λ`x.u′ → λ`x.u′1, and

• S/t′ : λ`x.u′ → λ`x.u′2.

Where u′ n u, u′1 n u1, and u′2 n u2. Note that using all that we can apply the inductive
hypothesis on u (taking R and S to be the same steps but restricted to u). The inductive
hypothesis yields that (R/u′)/(S/u′) = (R/S)/(u′/S), which we can trivially extend to
(R/t′)/(S/t′) = (R/S)/(t′/S), because there aren’t any other subterms in t′ that may
contain redexes other than u′.

3. Application, t = pq. We will look at several cases, depending on where R and S are
located.

3.1 R is at the root. So we have that t = (λx.r)q, and R : (λx.r)q→ r{x := q}.
3.1.1 S is in r. In this case r = C〈(λy.u)v〉.

(λx.C〈(λy.u)v〉)q R //

S

,,o
C◦〈(λy.u◦)v◦〉

(λx.C〈u{y := v}〉)q

(λ`x.C′〈(λ`1 y.u1)v1, . . . , (λ`n y.un)vn〉)~q
R/t′ //

S/t′

++ ++

C′◦〈(λ`1 y.u◦1)v
◦
1 , . . . , (λ`n y.u◦n)v◦n〉)

(λ`x.C′〈u1{y := v1}, . . . , u1{y := v1}〉)~q

Note that (R/t′)/(S/t′) is a set comprised of only one element, and that element
is the step that reduces the lambda labeled with `. Note that R/S also happens to
have only one element, (λx.C〈u{y := v}〉)q→ C◦〈u◦{y := v◦}〉, and is easy to
see that the simulation of that step onto (λ`x.C′〈u1{y := v1}, . . . , u1{y := v1}〉)~q
yields the step that reduces the `-lambda, i.e., the desired step.

3.1.2 S is in q. In this case q = C〈(λy.u)v〉, so t = (λx.r)C〈(λy.u)v〉. Also, by
Lemma A.13, t′must be of the form (λ`x.r′)[Ci〈(λ`i,1 y.ui,1)vi,1, . . . , (λ`i,mi y.ui,mi)vi,mi , 〉]

n
i=1.

(λx.r)C〈(λy.u)v〉 R //

S

))

r{x := C〈(λy.u)v〉}

(λx.r)C〈u{y := v}〉

Note that (R/t′)/(S/t′), as before, is a set comprised of only one element and
that element is the step that reduces the lambda labeled with `, and has source

88 APPENDIX A. PROOFS OF SELECTED STATEMENTS

t′/S = (λ`x.r′)[Ci〈ui,1{y := vi,1}, . . . , ui,mi{y := vi,mi}〉]
n
i=1. Note that R/S also

happens to have only one element, ((λx.r)C〈u{y := v}〉 → r{x := C〈u{y :=
v}〉}) and is easy to see that the simulation of that step onto t′/S yields the step
that reduces the `-lambda, i.e., the desired step.

3.2 R is in p. We separate in cases depending on where S is located.
3.2.1 S is at the root. Here we have that p = λx.C〈(λy.u)v〉, hence the following

diagram.

(λx.C〈(λy.u)v〉)q
R //

S

**o

(λx.C〈u{y := v}〉)q

C◦〈(λy.u◦)v◦〉
R/S // C◦〈u◦{y := v◦}〉

(λ`x.C′〈(λ`1 y.u1)v1 , . . . , (λ`n y.un)vn〉)~q
R/t′// //

S/t′

**

(λ`x.C′〈u1{y := v1}, . . . , un{y := vn}〉)~q

C′◦〈(λ`1 y.u◦1)v
◦
1 , . . . , (λ`n y.u◦n)v◦n〉

(R/t′)/(S/t′)// // C′◦〈u◦1{y := v◦1}, . . . , u◦n{y := v◦n}〉

As seen in the diagram, names((R/t′)/(S/t′)) = {`1, . . . , `n}. But the lambda
reduced by R/S is refined by each λ`i y.ui, then names((R/S)/(t′/S)) = {`1, . . . , `n},
proving that the two sets are the same.

3.2.2 S is in p. This case is summarized by the following diagram.

pq R //

S

''o

rq

sq

p′~q R //

S

&&

r′~q

s′~q

By inductive hypothesis, restricting R and S to p, we obtain (R/p′)/(S/p′) =
(R/S)/(p′/S), which we can extend to t′, yielding the desired result.

3.2.3 S is in q. Again, we can summarize this case with a diagram.

C〈(λx.u)v〉q
R //

S

**o

C〈u{x := v}〉q

C〈(λx.u)v〉s
R/S // C〈u{x := v}〉s

C′〈(λ`1 x.u1)v1 , . . . , (λ`n x.un)vn〉~q
R/t′// //

S/t′

** **

C′〈u1{x := v1}, . . . , u1{x := v1}〉~q

C′〈(λ`1 x.u1)v1 , . . . , (λ`n x.un)vn〉~s
(R/t′)/(S/t′)// // C′〈u1{x := v1}, . . . , u1{x := v1}〉~s

A.15. PROOF OF LEMMA 4.15 — BASIC CUBE LEMMA FOR SIMULATION RESIDUALS89

We know that (λ`i x.ui)vi
R/S = ui{x := vi}. Then by Lemma A.22, C′〈(λ`1 x.u1)v1, . . . , (λ`n x.un)vn〉/(R/S)

equals C′〈u1{x := v1}, . . . , u1{x := v1}〉.
In other words, tgt((R/S)/(t′/S)) = tgt((R/t′)/(S/t′)), which is enough be-
cause their sources are the same by hypothesis.

3.3 R is in q. As before, we separate in cases depending on where S is located.
3.3.1 S is at the root. Then p = λx.s and t = (λx.s)C〈(λx.u)v〉.

(λx.s)C〈(λy.u)v〉
R //

S

**

o

(λx.s)C〈u{y := v}〉

s{x := C〈(λy.u)v〉}
R/S // // s{x := C〈u{y := v}〉}

(λ`x.s′)[Ci〈(λ
`i,j y.ui,jvi,j)〉

mi
j=1]

n
i=1

R/t′ // //

S/t′

))

(λ`x.s′)[Ci〈ui,j{y := vi,j}〉
mi
j=1]

n
i=1

s′{x := [Ci〈(λ
`i,j y.ui,jvi,j)〉

mi
j=1]

n
i=1}

(R/t′)/(S/t′)// s′{x := [Ci〈ui,j{y := vi,j}〉
mi
j=1]

n
i=1}

First, note that R/S has as many elements as xs in s, in other words, S may
erase or multiply R. Some of those xs are refined in t′ (the number is exactly n,
i.e., the cardinality of the argument of the application).
Also, for each step in R/S, using Lemma A.22, we know that its projection onto
t′/S yields the steps with name {ei,1, . . . , ei,mi}. Hence,

names((R/S)/(t′/S)) = ∪n
i=1{ei,1, . . . , ei,mi} = names((R/t′)/(S/t′))

3.3.2 S is in p. This case can be summarized using a diagram.

pq R //

S

**o

pr

sq
S/R // sr

p′[q1, . . . , qn]
R/t′ // //

S/t′

))))

p′[r1, . . . , rn]

s′[q1, . . . , qn]
(S/t′)/(R/t′) // // s′[r1, . . . , rn]

And can be solved in a similar manner to 3.2.3., using the same reasoning for
each element of the argument of the application.

90 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3.3.3 S is in q. The situation is as follows.

pq R //

S

**o

pr

ps

p′[q1, . . . , qn]
R/t′ // //

S/t′

))))

p′[r1, . . . , rn]

p′[s1, . . . , sn]

By inductive hypothesis, we know that for each i ∈ {1, . . . , n}, (R/S)/(qi/S) =
(R/qi)/(S/qi).
The diagram also shows that names((R/t′)/(S/t′)) =

⋃n
i=1 names((R/qi)/(S/qi)),

because we have to execute those steps and the calculus has no erasure or dupli-
cation.
Finally, by Lemma A.22, names((R/S)/(t′/S)) =

⋃n
i=1 names((R/S)/(qi/S)),

so we can join all previous equalities, and obtain names((R/S)/(t′/S)) =
names((R/t′)/(S/t′)).

Lemma A.22 (Simulation of contexts). Let C′ be an n-hole context in T # and C be a context
in T λ. Also let t1, . . . , tn ∈ T # and t ∈ T λ such that ti n t for each i ∈ {1, . . . , n}, C′ n C,
and C′〈t1, . . . , tn〉 n C〈t〉. Also, let R : C〈t〉 → C〈s〉.

Then, C′〈t1, . . . , tn〉/R = C′〈t1/R, . . . , tn/R〉, and names(R/C′〈t1, . . . , tn〉) =
⋃n

i=1 names(R/ti).
Proof. By induction on C.

1. C = �. There is nothing to check here, as the result is trivially true: t1/R = t1/R and
names(R/t1) =

⋃1
i=1 names(R/ti).

2. C = λx.C′′. This case is straighforward using the inductive hypothesis.
3. C = rC′′. Using Lemma A.13 this case reduces to the following diagram.

rC′′〈t〉

o

R // rC′′〈s〉

r[C1〈t1,1, . . . , t1,m1〉, . . . , Cn〈tn,1, . . . , tn,mn〉]

By inductive hypothesis, Ci〈ti,1, . . . , ti,mi 〉/R = Ci〈ti,1/R, . . . , ti,mi /R〉 and names(R/Ci〈ti,1, . . . , ti,mi 〉) =⋃n
i=1 names(R/ti).

Finally, by the construction of the simulation,

r[C1〈t1,1, . . . , t1,m1〉, . . . , Cn〈tn,1, . . . , tn,mn〉]/R = r[C1〈t1,1, . . . , t1,m1〉/R, . . . , Cn〈tn,1, . . . , tn,mn〉/R]

and

names(R/(r[C1〈t1,1, . . . , t1,m1〉, . . . , Cn〈tn,1, . . . , tn,mn〉])) =
n⋃

i=1

names(R/C1〈ti,1, . . . , ti,mi 〉)

which finishes our proof.

A.16. PROOF OF PROPOSITION 4.17 — COMPATIBILITY 91

4. C = C′′r. This case is straightforward using the inductive hypothesis.

A.16 Proof of Proposition 4.17 — Compatibility

We are to prove that the operation of taking simulation residuals on two derivations
of the lambda calculus is compatible with permutation equivalence. With symbols, if
ρ ≡ σ then ρ/t′ ≡ σ/t′.

We first prove the result for complete developments and then for arbitrary deriva-
tions.

Lemma A.23 (Compatibility for developments). LetM be a set of coinitial steps, and let ρ
and σ be complete developments ofM, and let t′ ∈ T # be a correct term such that t′ n src(ρ).
Then ρ/t′ ≡ σ/t′.
Proof. This is an immediate consequence of Lemma 4.16, since ρ/t′ and σ/t′ are both complete
developments ofM/t′, hence permutation equivalent.

Proposition A.24 (Compatibility). Let ρ ≡ σ be permutation equivalent derivations in the
λ-calculus, and let t′ ∈ T # be a correct term such that t′ n src(ρ). Then:

1. t′/ρ = t′/σ
2. ρ/t′ ≡ σ/t′

Proof. Recall that permutation equivalence is defined as the reflexive and transitive closure
of the permutation axiom τ1Rστ2 ≡ τ1Sρτ2, where τ1 and τ2 are arbitrary derivations, σ is a
complete development of S/R, and ρ is a complete development of R/S [Mel96]. We prove each
item separately:

1. For item 1., we proceed by induction on the derivation that ρ ≡ σ. Reflexivity and
transitivity are trivial, so we concentrate on the permutation axiom itself. The interesting
case is the permutation axiom. Let τ1Rστ2 ≡ τ1Sρτ2, where τ1 and τ2 are arbitrary
derivations, σ is a complete development of S/R, and ρ is a complete development of R/S,
and let us show that t′/τ1Rστ2 = t′/τ1Sρτ2. By Lemma 4.14 we have that:

t′/τ1Rστ2 = ((t′/τ1)/Rσ)/τ2 and t′/τ1Sρτ2 = ((t′/τ1)/Sρ)/τ2

so, without loss of generality, it suffices to show that the following holds for an arbitrary
term s′ ∈ T #:

s′/Rσ = s′/Sρ

Note that, by definition of simulation residual, the derivations below have the indicated
sources and targets:

Rσ/s′ : s′ → s′/Rσ
Sρ/s′ : s′ → s′/Sρ

Moreover:

Rσ/s′ = (R/s′)(σ/(s′/R))
≡ (R/s′)((S/R)/(s′/R)) by Lemma A.23
≡ (R/s′)((S/s′)/(R/s′)) by the basic cube lemma (Lemma 4.15)
≡ (S/s′)((R/s′)/(S/s′)) since A(B/A) ≡ B(A/B) holds in general
≡ (S/s′)((R/S)/(s′/S)) by the basic cube lemma (Lemma 4.15)
= (S/s′)(ρ/(s′/S)) by Lemma A.23
= Sρ/s′

92 APPENDIX A. PROOFS OF SELECTED STATEMENTS

So Rσ/s′ and Sρ/s′ are permutation equivalent. In particular, they have the same target,
so s′/Rσ = s′/Sρ as required.

2. The proof of item 2. is also by induction on the derivation that ρ ≡ σ. Let τ1Rστ2 ≡ τ1Sρτ2,
where τ1 and τ2 are arbitrary derivations, σ is a complete development of S/R, and ρ
is a complete development of R/S, and let us show that τ1Rστ2/t′ = τ1Sρτ2/t′. By
Lemma 4.14 we have that:

τ1Rστ2/t′ = (τ1/t′)(Rσ/s′)(τ2/u′) and τ1Sρτ2/t′ = (τ1/t′)(Sρ/s′)(τ2/u′′)

where s′ = t′/τ1, u′ = s′/τ1Rσ, and u′′ = s′/τ1Sρ.
In a manner similar as before, we can prove that Rσ/s′ ≡ Sρ/s′. And, with that and Item
1, we can see that u′ = u′′, hence (τ2/u′) ≡ (τ2/u′′), which finishes the proof.

A.17 Proofs from Section 5.2 — Sieving

Proof of Lemma 5.9 — Sieving is well-defined

The operation ρ ↓ t′ is well-defined.
Proof. Proving this amounts to showing that the recursion scheme is well-founded. It suffices
to show that there is a measure M ranging over the non-negative integers such that M(ρ, t′) >
M(ρ/R0, t′/R0) whenever R0 is the leftmost coarse step for (ρ, t′). Indeed, if we define:

M(ρ, t′) def
= |ρ/t′|

where |ρ/t′| stands for the length of the derivation ρ/t′ in the distributive lambda-calculus, then
we may conclude by checking that the following inequality holds:

|ρ/t′| > |(ρ/R0)/(t′/R0)|

First observe that R0 v ρ so, by Corollary 4.20, R0/t′ v ρ/t′ and, by Proposition 3.16,
names(R0/t′) v names(ρ/t′). Then we have:

|ρ/t′| = #names(ρ/t′) by Corollary 3.14
> #(names(ρ/t′) \ names(R0/t′)) since R0/t′ 6= ∅ and names(R0/t′) ⊆ names(ρ/t′)
= #names((ρ/t′)/(R0/t′)) by Lemma 3.15
= #names((ρ/R0)/(t′/R0)) by Corollary 3.17 and Lemma 4.19
= |(ρ/R0)/(t′/R0)| by Corollary 3.14

Proof of Lemma A.33 — Sieving is compatible with permutation equivalence

Let ρ ≡ σ. Then ρ ↓ t′ ≡ σ ↓ t′.
Proof. First observe that, given two permutation equivalent derivations ρ and σ, a step R is
coarse for (ρ, t′) if and only if R is coarse for (σ, t′), since:

(R v ρ) ⇐⇒ (R/ρ = ∅) ⇐⇒ (R/σ = ∅) ⇐⇒ (R v σ)

We proceed by induction on the length of ρ ↓ t′. There are two cases, depending on whether
there is a coarse step for (ρ, t′).

A.18. PROOFS FROM SECTION 5.3 — SOME PROPERTIES 93

1. If there are no coarse steps for (ρ, t′). Then there are no coarse steps for (σ, t′), so ρ ↓ t′ =
ε = σ ↓ t′.

2. If there exists a coarse step for (ρ, t′). Let R0 be the leftmost coarse step for (ρ, t′). By the
preceding observation, R0 is also the leftmost coarse step for (σ, t′).
Note also that ρ/R0 ≡ σ/R0, as a consequence of the well-known properties of permuta-
tion equivalence. Moreover, the length of (ρ/R0) ↓ (t′/R0) is shorter than the length of
ρ ↓ t′, so by i.h., (ρ/R0) ↓ (t′/R0) = (σ/R0) ↓ (t′/R0). To conclude the proof, note that:

ρ ↓ t′ = R0((ρ/R0) ↓ (t′/R0))
h.i.
= R0((σ/R0) ↓ (t′/R0)) = σ ↓ t′

A.18 Proofs from Section 5.3 — Some properties

Lemma A.25 (Different redexes have disjoint simulation residuals). If R 6= S, then
names(R/t′) and names(S/t′) are disjoint.
Proof. Let R : C〈(λx.r)s〉 → C〈r{x := s}〉. We proceed by induction on C.

1. C = �. We have that R : (λx.r)s → r{x := s}. Furthermore, t′ = (λ`x.r′)~s and t′/R =
r′{x :=~s}, hence names(R/t′) = {`}. Now there are two cases depending on where S is
located.

1.1 S is in r. So r = Cr〈(λy.u)v〉. Now, S : (λx.Cr〈(λy.u)v〉)s → (λx.Cr〈u{y := v}〉)s.
That implies that t′ = (λ`x.C′r〈(λ`1 y.u1)v1, . . . , (λ`n y.un)vn〉)~s, and, in turn, the simu-
lated step yields t′/S = (λ`x.C′r〈u1{y := v1}, . . . , un{y := vn}〉)~s, so names(S/t′) =
{`1, . . . , `n}, which does not contain ` because labels are pairwise distinct.

1.2 S is in s. So s = Cs〈(λy.u)v)〉. Like before, S : (λx.r)Cs〈(λy.u)v〉 → (λx.r)Cs〈u{y :=
v}〉. By Lemma A.13 we have that

t′ = (λ`x.r′)[C′s〈(λ`i,1 y.ui,1)vi,1, . . . , (λ`i,mi y.ui,mi)vi,mi 〉]
n
i=1

then names(S/t′) =
⋃n

i=1{`i,1, . . . , `i,mi}, which does not contain ` because labels are
pairwise distinct.

2. C = λz.C1. This case is straightforward by inductive hypothesis.
3. C = p C1. Now we have that R : p C1〈(λy.u)v〉 → p C1〈u{y := v}〉. And we can again

separate in cases depending on where S is.
3.1 S is in p. What that means is that S : p C1〈(λy.u)v〉 → q C1〈(λy.u)v〉. Using the same

reasoning as before, we know that t′ = p′[C′1,i〈(λ`i,1 y.ui,1)vi,1, . . . , (λ`i,mi y.ui,mi)vi,mi 〉]
n
i=1.

As S/t′ only reduces lambdas in p′, and S/t′ only reduces lambdas on the argument
list of the application, the set of names are disjoint.

3.2 S is in C1〈(λy.u)v〉. This case is straightforward by inductive hypothesis.
4. C = C1 p. In this case R : C1〈λy.u)v〉 p→ C1〈u{y := v}〉 p, and we will, once again, divide

in two cases, depending on where the redex S is located.
4.1 S is in C1〈(λy.u)v〉. This case is straightforward by inductive hypothesis.
4.2 S is in p. More precisely, what we have is that S : C1〈(λy.u)v〉 p → C1〈(λy.u)v〉 q.

Moreover, t′ = C1〈(λ`1 y.u1)v1, . . . , (λ`m y.um)vm〉[p1, . . . , pn]. Hence, names(R/t′) =
{`1, . . . , `m}. Also, S/t′ only reduces lambdas in the terms p1, ..., pn, which must be
different than the ones reduced by R/t′ because lambda labels are pairwise distinct.

94 APPENDIX A. PROOFS OF SELECTED STATEMENTS

A set of steps and a disjoint derivation have disjoint simulation residuals

Lemma A.26 (A set of steps and a disjoint derivation have disjoint simulation residuals).
LetM be a set of coinitial steps such that no residuals of any step inM are contracted along a
derivation σ. Then names(M/t′) and names(σ/t′) are disjoint.
Proof. We proceed by induction on σ. If σ is empty, it is immediate, so suppose that σ = Tτ.
Note that T 6∈ M, since residuals of redexes inM are never contracted in the derivation Tτ.
This implies that names(M/t′) ∩ names(T/t′) = ∅ by Lemma A.26. Moreover, this means that:

names(M/t′) = names(M/t′) \ names(T/t′) since they are disjoint sets
= names((M/t′)/(T/t′)) by Lemma 3.15
= names((M/T)/(t′/T)) by Corollary 3.17 and Lemma 4.19

Then:

names(M/t′) ∩ names(σ/t′) = names(M/t′) ∩ names(Tτ/t′)
= names(M/t′) ∩ names((T/t′)(τ/(t′/T)))
= (names(M/t′) ∩ names(T/t′))∪

(names(M/t′) ∩ names(τ/(t′/T)))
= names(M/t′) ∩ names(τ/(t′/T))

since names(M/t′) ∩ names(T/t′) is empty
= names((M/T)/(t′/T)) ∩ names(τ/(t′/T))
= ∅ by i.h.

To justify the last step, observe that residuals of redexes in the setM/T may not be contracted
along the derivation τ, since this would imply that a residual of a redex in the setM is contracted
along the derivation Tτ, contradicting the hypothesis.

Proof of Proposition 5.14 — Characterization of garbage

Let ρ : t�β s and t′ n t. The following are equivalent:
1. ρ ↓ t′ = ε.
2. There are no coarse steps for (ρ, t′).
3. The derivation ρ is t′-garbage.

Proof. It is immediate to check that items 1 and 2 are equivalent, by definition of sieving, so let
us prove 2 =⇒ 3 and 3 =⇒ 2:

• (2 =⇒ 3) We prove the contrapositive, namely that if ρ is not garbage, there is a coarse
step for (ρ, t′). Suppose that ρ is not garbage, i.e. ρ/t′ 6= ε. Then by Proposition 5.4 we
have that ρ can be written as ρ = ρ1Rρ2 where all the steps in ρ1 are garbage and R is not
garbage. By the fact that garbage only creates garbage (Lemma 5.12) the step R has an
ancestor R0, i.e. R ∈ R0/ρ1. Moreover, since garbage only duplicates garbage (Lemma 5.13)
we have that R0/ρ1 = R. Given that R is not garbage, we have that:

(R0/t′)/(ρ1/t′) = (R0/ρ1)/(t′/ρ1) by Lemma 4.19
= R/(t′/ρ1)
6= ∅

Since (R0/t′)/(ρ1/t′) 6= ∅, in particular, R0/t′ 6= ∅, which means that R0 is not garbage.
Moreover, R0 v ρ1Rρ2 = ρ. So R0 is coarse for (ρ, t′).

A.18. PROOFS FROM SECTION 5.3 — SOME PROPERTIES 95

• (3 =⇒ 2) Let ρ be garbage, suppose that there is a coarse step R for (ρ, t′), and let us
derive a contradiction. Since R is coarse for (ρ, t′), we have that R v ρ, so R/t′ v ρ/t′ by
Corollary 4.20. But ρ/t′ is empty because ρ is t′-garbage, that is, R/t′ v σ/t′ = ε, which
means that R is also t′-garbage. This contradicts the fact that R is coarse for (ρ, t′).

Proof of Proposition 5.15 — Characterization of garbage-free derivations

Let ρ : t�β s and t′ n t. The following are equivalent:
1. ρ is t′-garbage-free.
2. ρ ≡ ρ ↓ t′.
3. ρ ≡ σ ↓ t′ for some derivation σ.

Proof. Let us prove 1 =⇒ 2 =⇒ 3 =⇒ 1:

• (1 =⇒ 2) Suppose that ρ is t′-garbage-free, and let us show that ρ ≡ ρ ↓ t′ by induction
on the length of ρ ↓ t′.

If there are no coarse steps for (ρ, t′), By Proposition 5.14, any derivation with no coarse
steps is garbage. So ρ is t′-garbage. Since ρ is garbage-free, this means that ρ = ε. Hence
ρ = ε = ρ ↓ t′, as required.

If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step. Note that ρ ≡
R0(ρ/R0) since R0 v ρ. Moreover, we claim that ρ/R0 is (t′/R0)-garbage-free. Let
σ v ρ/R0 such that (ρ/R0)/σ is garbage with respect to the term (t′/R0)/σ = t′/R0σ,
and let us show that (ρ/R0)/σ is empty. Note that:

R0σ v R0(ρ/R0) since σ v ρ/R0
≡ ρ as already noted

Moreover, we know that the derivation ρ/R0σ = (ρ/R0)/σ is (t′/R0σ)-garbage. So,
given that ρ is t′-garbage-free, we conclude that ρ/R0σ = ε, that is (ρ/R0)/σ = ε, which
completes the proof of the claim that ρ/R0 is (t′/R0)-garbage-free. We conclude as follows:

ρ ≡ R0(ρ/R0) as already noted
≡ R0((ρ/R0) ↓ (t′/R0)) by i.h. since ρ/R0 is (t′/R0)-garbage-free
≡ ρ ↓ t′ by definition of sieving

• (2 =⇒ 3) Obvious, taking σ := ρ.

• (3 =⇒ 1) Let ρ ≡ σ ↓ t′. Let us show that ρ is garbage-free by induction on the length of
σ ↓ t′.

If there are no coarse steps for (σ, t′), then ρ ≡ σ ↓ t′ = ε, which means that ρ = ε. Observe
that the empty derivation is trivially garbage-free.

If there exists a coarse step for (σ, t′), let R0 be the leftmost such step. Then ρ ≡ σ ↓ t′ =
R0((σ/R0) ↓ (t′/R0)). To see that ρ is t′-garbage-free, let τ v ρ such that ρ/τ is garbage,
and let us show that ρ/τ is empty. We know that ρ/τ is of the following form (modulo
permutation equivalence):

ρ/τ ≡ R0((σ/R0) ↓ (t′/R0))

τ
=

(
R0

τ

)(
(σ/R0) ↓ (t′/R0)

τ/R0

)

96 APPENDIX A. PROOFS OF SELECTED STATEMENTS

That is, we know that the following derivation is (t′/τ)-garbage, and it suffices to show
that it is empty: (

R0

τ

)(
(σ/R0) ↓ (t′/R0)

τ/R0

)
Recall that, in general, AB is garbage if and only if A and B are garbage (Proposition 5.4).
Similarly, AB is empty if and only if A and B are empty. So it suffices to prove the two
following implications:

(A) If R0/τ is garbage, then it is empty.
(B) If ((σ/R0) ↓ (t′/R0))/(τ/R0) is garbage, then it is empty.

Let us check that each implication holds:

– (A) Suppose that R0/τ is (t′/τ)-garbage, and let us show that R0/τ is empty. Know-
ing that the derivation R0/τ is garbage means that (R0/τ)/(t′/τ) = ∅. Since R0
is the leftmost step coarse for (σ, t′), by Lemma A.29 we have that #(R0/τ) ≤ 1. If
R0/τ is empty we are done, since this is what we wanted to prove.
The remaining possibility is that R0/τ be a singleton. We argue that this case is
impossible. Note that for every prefix τ1 v τ, the set R0/τ1 is also a singleton,
since otherwise it would be empty, as a consequence of Lemma A.29. So we may
apply Lemma A.30 and conclude that, since R0 is not t′-garbage then R0/τ is not
(t′/τ)-garbage. This contradicts the hypothesis.

– (B) Suppose that ((σ/R0) ↓ (t′/R0))/(τ/R0) is garbage with respect to the term
(t′/R0)/(τ/R0), and let us show that it is empty. Since (σ/R0) ↓ (t′/R0) is a shorter
derivation than σ ↓ t′, we may apply the i.h. we obtain that (σ/R0) ↓ (t′/R0) is
(t′/R0)-garbage-free. Moreover, the following holds:

τ/R0 v ρ/R0 ≡ (σ/R0) ↓ (t′/R0)

So, by definition of (σ/R0) ↓ (t′/R0) being garbage-free, the fact that the derivation
((σ/R0) ↓ (t′/R0))/(τ/R0) is garbage implies that it is empty, as required.

Proof of Proposition 5.16 — Properties of sieving

To prove Proposition 5.16 we first prove various auxiliary results.

Lemma A.27 (The sieve is a prefix). Let ρ : t�β s and t′ n t. Then ρ ↓ t′ v ρ.
Proof. By induction on the length of ρ ↓ t′. There are two cases, depending on whether there
exists a coarse step for (ρ, t′).

1. If there are no coarse steps for (ρ, t′). Then trivially ρ ↓ t′ = ε v ρ.
2. If there exists a coarse step for (ρ, t′). Let ρ0 be the leftmost coarse step for (ρ, t′). Then:

ρ ↓ t′ = R0((ρ/R0) ↓ (t′/R0))
v R0(ρ/R0) by i.h.
≡ ρ(R0/ρ) since A(B/A) ≡ B(A/B) in general
= ρ since R0 v ρ as R0 is coarse for (ρ, t′)

A.18. PROOFS FROM SECTION 5.3 — SOME PROPERTIES 97

Lemma A.28 (Garbage only interacts with garbage). The following hold:
1. Garbage only creates garbage. Let R and S be composable steps in the λ-calculus, and

let t′ n src(R). If R creates S and R is t′-garbage, then S is (t′/R)-garbage.
2. Garbage only duplicates garbage. Let R and S be coinitial steps in the λ-calculus

and let t′ n src(R). If R duplicates S, i.e. #(S/R) > 1, and R is t′-garbage, then S is
(t′/R)-garbage.

Proof. We prove each item separately:
1. According to Lévy [Lév78], there are three creation cases in the λ-calculus. We consider

the three possibilities for R creating S:

1.1 Case I, C〈(λx.x)(λy.s)u〉 R−→β C〈(λy.s)u〉 S−→β C〈s{y := u}〉. Then by Lemma A.13,
the term t′ is of the form C′〈∆1, . . . , ∆n〉 where C′ is an n-hole context such that
C′ n C〈� u〉 and ∆i n (λx.x)(λy.s) for all 1 ≤ i ≤ n. Since R is garbage, we know
that actually n = 0. So t′ n C〈� u〉 and R/t′ : t′ �# t′ = t′/R in zero steps. Hence
t′ n C〈(λy.s)u〉, so by Lemma A.13, the term t′ can be written in a unique way as
C′′〈Σ1, . . . , Σm〉, where C′′ is an m-hole context such that C′′ n C〈� u〉 and Σi n λy.s
for all 1 ≤ i ≤ m. Since the decomposition is unique and t′ n C〈� u〉, we conclude
that m = 0. Hence S is (t′/R)-garbage.

1.2 Case II, C〈(λx.λy.s) u r〉 R−→β C〈(λy.s{x := u}) r〉 S−→β C〈s{x := u}{y := r}〉. Then
by Lemma A.13, the term t′ is of the form C′〈∆1, . . . , ∆n〉where C′ is an n-hole context
such that C′ n C〈� r〉 and ∆i n (λx.λy.s) u for all 1 ≤ i ≤ n. Since R is garbage, we
know that actually n = 0. So t′ n C〈� r〉 and R/t′ : t′ �# t′ = t′/R in zero steps.
Hence t′ n C〈(λy.s{x := u}) r〉, so by Lemma A.13, the term t′ can be written in a
unique way as C′′〈Σ1, . . . , Σn〉, where C′′ is an m-hole context such that C′′ n C〈� r〉
and Σi n λy.s{x := u} for all 1 ≤ i ≤ m. Since the decomposition is unique and
t′ n C〈� r〉, we conclude that m = 0. Hence S is (t′/R)-garbage.

1.3 Case III, C1〈(λx.C2〈x s〉) (λy.u)〉 R−→β C1〈Ĉ2〈(λy.u) ŝ〉〉 S−→β C1〈Ĉ2〈u{y := ŝ}〉〉, where
Ĉ2 = C2{x := λy.u} and t̂ = t{x := λy.u}. Then by Lemma A.13, the term t′
is of the form C′〈∆1, . . . , ∆n〉 where C′ is an n-hole context such that C′ n C1 and
∆i n (λx.C2〈x s〉) (λy.u) for all 1 ≤ i ≤ n. Since R is garbage, we know that
actually n = 0. So t′ n C1 and R/t′ : t′ �# t′ = t′/R in zero steps. Hence
t′ n C1〈Ĉ2〈(λy.u) ŝ〉〉, so by Lemma A.13, the term t′ can be written in a unique way
as C′′〈Σ1, . . . , Σm〉, where C′′ n C1 and Σi n Ĉ2〈(λy.u) ŝ〉 for all 1 ≤ i ≤ m. Since
the decomposition is unique and t′ n C1, we conclude that m = 0. Hence S is
(t′/R)-garbage.

2. Since R duplicates S, the redex contracted by S lies inside the argument of R, that is, the
source term is of the form C1〈(λx.t)C2〈(λy.s)u〉〉where the pattern of R is (λx.t)C2〈(λy.s)u〉,
and the pattern of S is (λy.s)u. By Lemma A.13, the term t′ is of the form C′〈∆1, . . . , ∆n〉
where C′ is an n-hole context such that C′ n C and ∆i n (λx.t)C2〈(λy.s)u〉 for all 1 ≤ i ≤ n.
Since R is garbage, we know that n = 0. By Lemma A.13, the term t′ can be written as
C′′〈Σ1, . . . , Σm〉 where C′′ n C1〈(λx.t)C2〉 and Σi n (λy.s)u for all 1 ≤ i ≤ m. Note that
t′ n C1 so t′ n C1〈(λx.t)C2〉, as can be checked by induction on C1. Since the decomposition
is unique, this means that m = 0, and thus S is garbage.

Lemma A.29 (The leftmost coarse step has at most one residual). Let R0 be the leftmost
coarse step for (ρ, t′), and let σ v ρ. Then #(R0/σ) ≤ 1.
Proof. By induction on the length of σ. The base case is immediate. For the inductive step, let
σ = Sτ v ρ. Then in particular S v ρ. We consider two cases, depending on whether R0 = S.

98 APPENDIX A. PROOFS OF SELECTED STATEMENTS

1. Equal, R0 = S. Then R0/σ = R0/R0τ = ∅ and we are done.
2. Non-equal, R0 6= S. First we argue that R0/S has exactly one residual R1 ∈ R0/S. To see

this, we consider two further cases, depending on whether S is t′-garbage or not:
2.1 If S is not t′-garbage. Then S v ρ and S/t′ = ∅, so S is coarse for (ρ, t′). Since R0 is

the leftmost coarse step, this means that R is to the left of S. So R0 has exactly one
residual R1 ∈ R0/S.

2.2 If S is t′-garbage. Let us write the term t as t = C〈(λx.s)u〉, where (λx.s)u is the
pattern of the redex S. By Lemma A.13 the term t′ is of the form t′ = C′[∆1, . . . , ∆n],
where C′ is a many-hole context such that C′ n C and ∆i n (λx.s)u for all 1 ≤ i ≤ n.
We know that S is garbage, so n = 0 and t′ = C′ is actually a 0-hole context (i.e. a
term). On the other hand, R0 is coarse for (ρ, t′), so in particular it is not t′-garbage.
This means that the pattern of the redex R0 cannot occur inside the argument u of
the redex S. So S does not erase or duplicate R, i.e. R0 has exactly one residual
R1 ∈ R0/S.

Now we have that R0/Sτ = R1/τ. We are left to show that #(R0/Sτ) ≤ 1. Let us show
that we may apply the i.h. on R1. More precisely, observe that τ v ρ/S since Sτ v ρ. To
apply the i.h. it suffices to show that R1 is coarse for (ρ/S, t′/S). Indeed, we may check
the two conditions for the definition that R1 is coarse for (ρ/S, t′/S).

2.1 Firstly, R1 = R0/S v ρ/S holds, as a consequence of the fact that R0 v ρ.
2.2 Secondly, we may check that R1 is not (t′/S)-garbage. To see this, i.e. that R1/(t′/S)

is non-empty, we check that names(R1/(t′/S)) is non-empty.

names(R1/(t′/S)) = names((R0/S)/(t′/S)) by definition of R1
= names((R0/t′)/(S/t′)) by Lemma 4.19
= names(R0/t′) \ names(S/t′) by Lemma 3.15
= names(R0/t′)

For the last step, note that names(R0/t′) and names(S/t′) are disjoint, since R0 6= S.
Applying the i.h., we obtain that #(R0/Sτ) = #(R1/τ) ≤ 1.

Lemma A.30. Let R be a step, let ρ a coinitial derivation, and let t′ n src(R). Suppose that
R is not t′-garbage, and that R/ρ1 is a singleton for every prefix ρ1 v ρ. Then R/ρ is not
(t′/ρ)-garbage.
Proof. By induction on ρ. The base case, when ρ = ε, is immediate since we know that R is not
garbage. For the inductive step, suppose that ρ = Sσ. We know that R/S is a singleton, so let
R1 = R/S. Note that R1/(t′/S) = (R/S)/(t′/S) = (R/t′)/(S/t′) by Lemma 4.19. We know
that R/t′ is non-empty, because R is not garbage. Moreover, names(R/t′) and names(S/t′) are
disjoint since R 6= S. So #names((R/t′)/(S/t′)) = names(R/t′) by Lemma 3.15. This means that
the set R1/(t′/S) is non-empty, so R1 is not (t′/S)-garbage . By i.h. we obtain that R1/σ is not
((t′/S)/σ)-garbage, which means that (R/Sσ)/(t′/Sσ) 6= ∅, i.e. that R/Sσ is not garbage, as
required. To be able to apply the i.h., observe that if σ1 is a prefix of σ, then Sσ1 is a prefix of ρ, so
the fact that R has a single residual after Sσ1 implies that the step R1 = R/S has a single residual
after σ1.

Lemma A.31 (The projection after a sieve is garbage). Let ρ : t �β s and t′ n t. Then
ρ/(ρ ↓ t′) is (t′/(ρ ↓ t′))-garbage.
Proof. By induction on the length of ρ ↓ t′.

If there are no coarse steps for (ρ, t′), then ρ ↓ t′ = ε. Moreover, by Proposition 5.14, a
derivation with no coarse steps is garbage. So ρ/(ρ ↓ t′) = ρ is garbage, as required.

A.18. PROOFS FROM SECTION 5.3 — SOME PROPERTIES 99

If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step, and let σ = ρ/R0 and
s′ = t′/R0. Then:

ρ/(ρ ↓ t′) = ρ/(R0((ρ/R0) ↓ (t′/R0)) by definition
= (ρ/R0)/((ρ/R0) ↓ (t′/R0))
= σ/(σ ↓ s′)

By i.h., σ/(σ ↓ s′) is (s′/(σ ↓ s′))-garbage. That is:

σ/(σ ↓ s′)
s′/(σ ↓ s′)

= ε

Unfolding the definitions of σ and s′ we have that:

(ρ/R0)/((ρ/R0) ↓ (t′/R0))

(t′/R0)/((ρ/R0) ↓ (t′/R0))
= ε

Equivalently:
ρ/R0((ρ/R0) ↓ (t′/R0))

t′/R0((ρ/R0) ↓ (t′/R0))
= ε

Finally, by definition of sieve,
ρ/(ρ ↓ t′)
t′/(ρ ↓ t′)

= ε

which means that ρ/(ρ ↓ t′) is (t′/(ρ ↓ t′))-garbage, as required.

Lemma A.32 (Sieving trailing garbage). Let ρ and σ be composable derivations, and let
t′ n src(ρ). If σ is (t′/ρ)-garbage, then ρσ ↓ t′ = ρ ↓ t′.
Proof. By induction on the length of ρ ↓ t′. There are two cases, depending on whether there
exists a coarse step for (ρ, t′).

1. If there are no coarse steps for (ρ, t′). Then by Proposition 5.14, the derivation ρ is t′-
garbage. Recall that the composition of garbage is again garbage (Proposition 5.4), so ρσ is
t′-garbage. Resorting to Proposition 5.14 we obtain that ρσ ↓ t′ = ε = ρ ↓ t′, as required.

2. If there exists a coarse step for (ρ, t′). Let R0 be the leftmost coarse step for (ρ, t′). Then
since R0 v ρ also R0 v ρσ, so R0 is a coarse step for (ρσ, t′). In particular, since there exists
at least one coarse step for (ρσ, t′), let S0 be the leftmost such step. We argue that R0 = S0.
We consider two cases, depending on whether S0 is coarse for (ρ, t′):

2.1 If S0 is coarse for (ρ, t′). Then R0 and S0 are both simultaneously coarse for (ρ, t′)
and for (ρσ, t′). Note that R0 cannot be to the left of S0, since then S0 would not be
the leftmost coarse step for (ρσ, t′). Symmetrically, S0 cannot be to the left of R0,
since then R0 would not be the leftmost coarse step for (ρ, t′). Hence R0 = S0 as
claimed.

2.2 If S0 is not coarse for (ρ, t′). We argue that this case is impossible. Note that S0 v ρσ
but it is not the case that S0 v ρ, so S0/ρ is not empty. Note also that S0/ρ v σ, so
by Corollary 4.20 we have that (S0/ρ)/(t′/ρ) v σ/(t′/ρ). Moreover, σ/(t′/ρ) = ε
is empty because σ is (t′/ρ)-garbage. This means that (S0/ρ)/(t′/ρ) = ε. Then we
have the following chain of equalities:

∅ = names((S0/ρ)/(t′/ρ))
= names((S0/t′)/(ρ/t′)) by Corollary 3.17 and Lemma 4.19
= names(S0/t′) \ names(ρ/t′) by Lemma 3.15
= names(S0/t′)

100 APPENDIX A. PROOFS OF SELECTED STATEMENTS

To justify the last step, start by noting that no residual of S0 is contracted along the
derivation ρ. Indeed, if S0 had a residual, then ρ = ρ1S1ρ2 where S1 ∈ S0/ρ. But
recall that S0 is the leftmost coarse step for (ρσ, t′) and ρ1 v ρσ, so it has at most
one residual (Lemma A.29). This means that S0/ρ1 = S1, so S0/ρ = ∅, which is a
contradiction. Given that no residuals of S0 are contracted along the derivation ρ, we
have that the sets names(S0/t′) and names(ρ/t′) are disjoint which justifies the last
step by resorting to Lemma A.26.
According to the chain of equalities above, we have that names(S0/t′) = ∅. This
means that S0 is t′-garbage. This in turn contradicts the fact that S0 is coarse for
(ρσ, t′), confirming that this case is impossible.

We have just claimed that R0 = S0. Then:

ρσ ↓ t′ = R0((ρσ/R0) ↓ (t′/R0))
by definition of sieving

= R0(((ρ/R0)(σ/(R0/ρ))) ↓ (t′/R0))
= R0((ρ/R0) ↓ (t′/R0))

by i.h. since σ/(R0/ρ) is garbage by Proposition 5.4
= ρ ↓ t′

by definition of sieving

which concludes the proof.

A.19 Proof of Proposition 5.21 — Properties of derivation semi-
lattices

To prove Proposition 5.21 we need a few auxiliary lemmas:

Lemma A.33. Let ρ ≡ σ. Then ρ ↓ t′ = σ ↓ t′.
Proof. Observe that, given two permutation equivalent derivations ρ and σ, a step R is coarse
for (ρ, t′) if and only if R is coarse for (σ, t′), since (R v ρ) ⇐⇒ (R/ρ = ∅) ⇐⇒ (R/σ =
∅) ⇐⇒ (R v σ). Using this observation, the proof is straightforward by induction on the
length of ρ ↓ t′.

Lemma A.34 (Sieving trailing garbage). Let ρ and σ be composable derivations, and let
t′ n src(ρ). If σ is (t′/ρ)-garbage, then ρσ ↓ t′ = ρ ↓ t′.
Proof. By induction on the length of ρ ↓ t′. If there are no coarse steps for (ρ, t′), then by
Proposition 5.14, the derivation ρ is t′-garbage, so ρσ is t′-garbage by Proposition 5.4. Resorting
to Proposition 5.14 we obtain that ρσ ↓ t′ = ε = ρ ↓ t′, as required.

If there exists a coarse step for (ρ, t′), let R0 be the leftmost such step. Then since R0 v ρ also
R0 v ρσ, so R0 is a coarse step for (ρσ, t′). In particular, since there exists at least one coarse
step for (ρσ, t′), let S0 be the leftmost such step. We argue that R0 = S0. We consider two cases,
depending on whether S0 is coarse for (ρ, t′):

1. If S0 is coarse for (ρ, t′). Then R0 and S0 are both simultaneously coarse for (ρ, t′) and for
(ρσ, t′). Note that R0 cannot be to the left of S0, since then S0 would not be the leftmost
coarse step for (ρσ, t′). Symmetrically, S0 cannot be to the left of R0, since then R0 would
not be the leftmost coarse step for (ρ, t′). Hence R0 = S0 as claimed.

A.19. PROOF OF PROPOSITION 5.21 — PROPERTIES OF DERIVATION SEMILATTICES101

2. If S0 is not coarse for (ρ, t′). We argue that this case is impossible. Note that S0 v ρσ
but it is not the case that S0 v ρ, so S0/ρ is not empty. Note also that S0/ρ v σ, so
by Corollary 4.20 we have that (S0/ρ)/(t′/ρ) v σ/(t′/ρ). Moreover, σ/(t′/ρ) = ε is
empty because σ is (t′/ρ)-garbage. This means that (S0/ρ)/(t′/ρ) = ε. Then we have the
following chain of equalities:

∅ = names((S0/ρ)/(t′/ρ))
= names((S0/t′)/(ρ/t′)) by Corollary 3.17 and Lemma 4.19
= names(S0/t′) \ names(ρ/t′) by Lemma 3.15
= names(S0/t′)

To justify the last step, start by noting that no residual of S0 is contracted along the
derivation ρ. Indeed, if S0 had a residual, then ρ = ρ1S1ρ2 where S1 ∈ S0/ρ. But recall
that S0 is the leftmost coarse step for (ρσ, t′) and ρ1 v ρσ, so it has at most one residual
(Lemma A.29). This means that S0/ρ1 = S1, so S0/ρ = ∅, which is a contradiction.
Given that no residuals of S0 are contracted along the derivation ρ, we have that the sets
names(S0/t′) and names(ρ/t′) are disjoint which justifies the last step.
According to the chain of equalities above, we have that names(S0/t′) = ∅. This means
that S0 is t′-garbage. This in turn contradicts the fact that S0 is coarse for (ρσ, t′), confirming
that this case is impossible.

We have just claimed that R0 = S0. Then we conclude as follows:

ρσ ↓ t′ = R0((ρσ/R0) ↓ (t′/R0))
= R0(((ρ/R0)(σ/(R0/ρ))) ↓ (t′/R0))
= R0((ρ/R0) ↓ (t′/R0)) by i.h., as σ/(R0/ρ) is garbage by Proposition 5.4
= ρ ↓ t′

Now we can proceed to check the two items of Proposition 5.21.
Proof. We check that the set F(t′, t) forms a finite lattice and th set G(t′, t) forms an upper
semilattice.

1. The set F(t′, t) forms a finite lattice. Let us check all the conditions:
1.1 Partial order. First let us show that E is a partial order.

1.1.1 Reflexivity. It is immediate that [ρ]E [ρ] holds since ρ/ρ = ε is garbage.
1.1.2 Antisymmetry. Let [ρ]E [σ]E [ρ]. This means that ρ/σ and σ/ρ are garbage.

Then:

ρ ≡ ρ ↓ t′ since ρ is garbage-free, by Proposition 5.15
≡ ρ(σ/ρ) ↓ t′ since σ/ρ is garbage, by Lemma A.34
≡ σ(ρ/σ) ↓ t′ since A(B/A) ≡ B(A/B), by Lemma A.33
≡ σ ↓ t′ since ρ/σ is garbage, by Lemma A.34
≡ σ since σ is garbage-free, by Proposition 5.15

Since ρ ≡ σ we conclude that [ρ] = [σ], as required.
1.1.3 Transitivity. Let [ρ]E [σ]E [τ] and let us show that [ρ]E [τ]. Note that ρ/σ and

σ/τ are garbage. By the fact that the projection of garbage is garbage (Proposi-
tion 5.4) the derivation (ρ/σ)/(σ/τ) is garbage. The composition of garbage is
also garbage (Proposition 5.4), so we have that (σ/τ)((ρ/σ)/(σ/τ)) is garbage.
In general the following holds:

ρ/τ v (ρ/τ)((σ/τ)/(ρ/τ)) since A v AB in general
≡ (σ/τ)((ρ/τ)/(σ/τ)) since A(B/A) ≡ B(A/B) in general
≡ (σ/τ)((ρ/σ)/(τ/σ)) since A(B/A) ≡ B(A/B) in general

102 APPENDIX A. PROOFS OF SELECTED STATEMENTS

So since any prefix of a garbage derivation is garbage (Proposition 5.4) we
conclude that ρ/τ is garbage. This means that [ρ]E [τ], as required.

1.2 Finite. Let us check that F(t′, t) is a finite lattice, i.e. that it has a finite number of
elements. Recall that F(t′, t) is the set of equivalence classes [ρ] where ρ is t′-garbage-
free.
On one hand, recall that the λ#-calculus is finitely branching and strongly normaliz-
ing (Proposition 2.20). So by König’s lemma the set of→#-derivations starting from t′
is bounded in length. More precisely, there is a constant M such that for any s′ ∈ T #

and any derivation ρ : t′ →#
∗ s′ we have that the length |ρ| is bounded by M.

On the other hand, let F = {ρ | ρ is t′-garbage-free and ρ ↓ t′ = ρ}. Consider the
mapping ϕ : F(t′, t)→ F given by [ρ] 7→ ρ ↓ t′, and note that:
• ϕ does not depend on the choice of representative, that is, if [ρ] = [σ] then

ϕ([ρ]) = ρ ↓ t′ = σ ↓ t′ = ϕ([σ]). This is a consequence of Lemma A.33.
• ϕ is a well-defined function, that is ϕ([ρ]) ∈ F. This is because ϕ([ρ]) = ρ ↓ t′ is

t′-garbage-free by Proposition 5.16. Moreover, we have that ϕ([ρ]) ↓ t′ = ([ρ] ↓
t′) ↓ t′ = [ρ] ↓ t′ = ϕ([ρ]), which is also a consequence of Lemma A.33, and the
fact that [ρ] ↓ t′ ≡ ρ (Proposition 5.16).

• ϕ is injective. Indeed, suppose that ϕ([ρ]) = ϕ([σ]), that is, ρ ↓ t′ = σ ↓ t′. Then
ρ ≡ ρ ↓ t′ = σ ↓ t′ ≡ σ by Proposition 5.16 since ρ and σ are t′-garbage-free.
Hence [ρ] = [σ].

Since ϕ : F(t′, t) → F is injective, it suffices to show that F is finite to conclude
that F(t′, t) is finite. Recall that the λ-calculus is finitely branching, so the number
of derivations of a certain length is finite. To show that F is finite, it suffices to
show that the length of derivations in F is bounded by some constant. Let ρ be a
derivation in F. We have that ρ = ρ ↓ t′. By construction of the sieve, none of the
steps of ρ ↓ t′ are garbage. That is ρ = ρ ↓ t′ = R1 . . . Rn where for all i we have that
Ri/(t′/R1 . . . Ri−1) 6= ∅. So we have that the length of ρ/t′ is greater than the length
of ρ for all ρ ∈ F:

|ρ/t′| =
n

∑
i=1
| R/(t′/R1 . . . Ri−1)︸ ︷︷ ︸

6=∅

| ≥ n = |ρ|

As a consequence given any→β-derivation ρ ∈ F we have that |ρ| ≤ |ρ/t′| ≤ M.
This concludes the proof that F(t′, t) is finite.

1.3 Bottom element. As the bottom element take ⊥(F(t′ ,t)) := [ε]. Observe that this is
well-defined since ε is t′-garbage-free. Moreover, let us show that⊥(F(t′ ,t)) is the least
element. Let [ρ] be an arbitrary element of F(t′, t) and let us check that⊥(F(t′ ,t))E [ρ].
This is immediate since, by definition, ⊥(F(t′ ,t)) E [ρ] if and only if ε/ρ is garbage.
But ε/ρ = ε is trivially garbage.

1.4 Join. Let [ρ], [σ] be arbitrary elements of F(t′, t), and let us check that [ρ]O[σ] is the
join. First observe that [ρ]O[σ] is well-defined i.e. that (ρ t σ) ↓ t′ is t′-garbage-free,
which is an immediate consequence of Proposition 5.15. Moreover, it is indeed the
least upper bound of {[ρ], [σ]}:

1.4.1 Upper bound. Let us show that [ρ]E [ρ]O[σ]; the proof for [σ] is symmetrical.
We must show that ρ/((ρ t σ) ↓ t′) is garbage. Note that ρ v ρ t σ, so in
particular ρ/((ρ t σ) ↓ t′) v (ρ t σ)/((ρ t σ) ↓ t′). Given that any prefix
of a garbage derivation is garbage (Proposition 5.4), it suffices to show that
(ρ t σ)/((ρ t σ) ↓ t′) is garbage. This is a straightforward consequence of the
fact that projecting after a sieve is garbage (Lemma A.31).

A.20. PROOF OF THEOREM 5.22 — FACTORIZATION 103

1.4.2 Least upper bound. Let [ρ], [σ]E [τ], and let us show that [ρ]O[σ]E [τ]. We
know that ρ/τ and σ/τ are garbage, and we are to show that ((ρ t σ) ↓ t′)/τ is
garbage. Note that (ρt σ) ↓ t′ v ρt σ as a consequence of the fact that the sieve
is a prefix (Lemma A.27). So in particular ((ρ t σ) ↓ t′)/τ v (ρ t σ)/τ. Given
that any prefix of a garbage derivation is garbage (Proposition 5.4), it suffices to
show that (ρ t σ)/τ is garbage. But (ρ t σ)/τ ≡ ρ/τ t σ/τ so we conclude by
the fact that the join of garbage is garbage (Proposition 5.4).

1.5 Top element. Since F(t′, t) is finite, its elements are {[τ1], . . . , [τn]}. It suffices to take
> := [τ1]O . . .O[τn] as the top element.

1.6 Meet. Let [ρ], [σ] ∈ F(t′, t). Note that the set L = {[τ] ∈ F(t′, t) | [τ]E [ρ] and [τ]E
[σ]} is finite because, as we have already proved, the set F(t′, t) is itself finite. Then
L = {[τ1], . . . , [τn]}. Take [ρ]M [σ] := [τ1]O . . .O[τn]. It is straightforward to show
that [ρ]M [σ] thus defined is the greatest lower bound for {[ρ], [σ]}.

2. The set G(t′, t) forms an upper semilattice. The semilattice structure of G(t′, t) is inher-
ited from Dλ(t). More precisely, [ρ] v [σ] is declared to hold if ρ v σ, the bottom element
is [ε], and the join is [ρ] t [σ] = [ρ t σ]. Let us check that this is an upper semilattice:

2.1 Partial order. The relation (v) is a partial order on G(t′, t) because it is already a
partial order in Dλ(t).

2.2 Bottom element. It suffices to note that the empty derivation ε : t→β
∗ t is t′-garbage,

so [ε] ∈ G(t′, t) is the least element.
2.3 Join. By Proposition 5.4 we know that if ρ and σ are t′-garbage then ρtσ is t′-garbage,

so [ρ] t [σ] is indeed the least upper bound of {[ρ], [σ]}.

A.20 Proof of Theorem 5.22 — Factorization

We need a few auxiliary lemmas:

Lemma A.35 (Garbage-free/garbage decomposition). Let ρ : t �β s and t′ n t. Then
there exist ρ1, ρ2 such that:

1. ρ ≡ ρ1ρ2
2. ρ1 is t′-garbage-free,
3. ρ2 is t′-garbage.

Moreover, ρ1 and ρ2 are unique modulo permutation equivalence, and we have that ρ1 ≡ ρ ↓ t′

and ρ2 ≡ ρ/(ρ ↓ t′).
Proof. Let us prove that said decomposition exists and that it is unique:

• Existence. Take ρ1 := ρ ↓ t′ and ρ2 := ρ/(ρ ↓ t′). Then we may check the three conditions
in the statement:

1. Recall that ρ ↓ t′ v ρ holds by Lemma A.27, so:

ρ1ρ2 = (ρ ↓ t′)(ρ/(ρ ↓ t′))
≡ ρ((ρ ↓ t′)/ρ) since A(B/A) ≡ B(A/B) holds in general
≡ ρ since ρ ↓ t′ v ρ

as required.
2. The derivation ρ1 = ρ ↓ t′ is t′-garbage-free. This is as an immediate consequence of

Proposition 5.15, namely the result of sieving is always garbage-free.

104 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3. The derivation ρ2 = ρ/(ρ ↓ t′) is garbage. This is an immediate consequence of
Lemma A.31, namely projection after a sieve is always garbage.

• Uniqueness, modulo permutation equivalence. Let ρ ≡ σ1, σ2 where σ1 is t′-garbage-free,
and σ2 is t′-garbage. Then we argue that σ1 ≡ ρ1 and σ2 ≡ ρ2.
Since ρ1ρ2 ≡ ρ ≡ σ1σ2 and sieving is compatible with permutation equivalence (Lemma A.33)
we have that ρ1ρ2 ↓ t′ ≡ σ1σ2 ↓ t′. By Lemma A.34, we know that trailing garbage does
not affect sieving, hence ρ1 ↓ t′ ≡ σ1 ↓ t′. Moreover, ρ1 and σ1 are garbage-free, which by
Proposition 5.15 means that ρ1 ≡ σ1. This means that ρ1 is unique, modulo permutation
equivalence. Finally, since ρ1ρ2 ≡ σ1σ2 and ρ1 ≡ σ1, we have that ρ1ρ2/ρ1 ≡ σ1σ2/σ1, that
is ρ2 ≡ σ2. This means that ρ2 is unique, modulo permutation equivalence.

Lemma A.36. Let t′ n src(ρ) = src(σ). Then [(ρ t σ) ↓ t′] = [ρ ↓ t′]O[σ ↓ t′].
Proof. Let:

α := ρ/(ρ ↓ t′)
β := σ/(σ ↓ t′)
γ := (α/((σ ↓ t′)/(ρ ↓ t′))) t (β/((ρ ↓ t′)/(σ ↓ t′)))

Note that α and β are garbage by Lemma A.31 and hence γ is also garbage, as a consequence of
the facts that the join of garbage is garbage and that the projection of garbage is garbage (Propo-
sition 5.4). Remark that, in general, AB t CD ≡ (A t C)(B/(C/A) t D/(A/C)). Then the
statement of this lemma is a consequence of the following chain of equalities:

[(ρ t σ) ↓ t′] = [((ρ ↓ t′)α t (σ ↓ t′)β) ↓ t′] by Lemma A.35
= [((ρ ↓ t′) t (σ ↓ t′))γ ↓ t′] by the previous remark
= [((ρ ↓ t′) t (σ ↓ t′)) ↓ t′] by Lemma A.34
= [ρ ↓ t′]O[σ ↓ t′] by definition of O

To prove Theorem 5.22, let us check that
∫
F G is well-defined, that it is an upper

semilattice, and finally that Dλ(t) '
∫
F G are isomorphic as upper semilattices.

Proof. 1. The Grothendieck construction
∫
F G is well-defined. This amounts to checking

that G is indeed a lax 2-functor:
1.1 The mapping G is well-defined on objects. Note that G([ρ]) = G(t′/ρ, tgt(ρ)),

which is a poset. Moreover, the choice of the representative ρ of the equivalence class
[ρ] does not matter, since if ρ and σ are permutation equivalent derivations, then
t′/ρ = t′/σ (by Proposition 4.17) and tgt(ρ) = tgt(σ).

1.2 The mapping G is well-defined on morphisms. Let us check that given [ρ], [σ] ∈ F
such that [ρ]E [σ] then G([ρ] ↪→F [σ]) : G([ρ])→ G([σ]) is a morphism of posets, i.e.
a monotonic function.
First, we can see that it is well-defined, since if [α] ∈ G([ρ]) then we have that
the image G([ρ])([α] ↪→F [σ]) = [ρα/σ] is an element of G([σ]), since ρα/σ =
(ρ/σ)(α/(σ/ρ)) is garbage, as it is the composition of garbage derivations (Propo-
sition 5.4): the derivation ρ/σ is garbage since [ρ] E [σ] (by definition), and the
derivation α/(σ/ρ) is garbage since α is garbage (Proposition 5.4). Moreover, the
choice of representative does not matter, since if ρ1 ≡ ρ2 and σ1 ≡ σ2 and α1 ≡ α2
then ρ1α1/σ1 ≡ ρ2α2/σ2.
We are left to verify that G([ρ] ↪→F [σ]) is monotonic. Let [α], [β] ∈ G([ρ]) such that
[α] v [β], and let us show that G([ρ] ↪→F [σ])([α]) v G([ρ] ↪→F [σ])([β]). Indeed,
α v β, so ρα/σ = (ρ/σ)(α/(σ/ρ)) v (ρ/σ)(β/(σ/ρ)) = ρβ/σ.

A.20. PROOF OF THEOREM 5.22 — FACTORIZATION 105

1.3 Identity. Let [ρ] ∈ F . Let us check that G([ρ] ↪→F [ρ]) = idG([ρ]) is the identity
morphism. Indeed, if [α] ∈ G([ρ]), then G([ρ] ↪→F [ρ])([α]) = [ρα/ρ] = [α].

1.4 Composition. Let [ρ], [σ], [τ] ∈ F such that [ρ]E [σ]E [τ]. Let us check that there is a
2-cell G(([σ] ↪→F [τ]) ◦ ([ρ] ↪→F [σ])) v G([σ] ↪→F [τ]) ◦ G([ρ] ↪→F [σ]). Note that
([σ] ↪→F [τ]) ◦ ([ρ] ↪→F [σ]) : [ρ]E [τ] is a morphism in the upper semilattice F seen
as a category. Moreover, since it is a semilattice, there a unique morphism [ρ]E [τ],
namely [ρ] ↪→F [τ], so we have that ([σ] ↪→F [τ]) ◦ ([ρ] ↪→F [σ]) = [ρ] ↪→F [τ].
Now if [α] ∈ G[ρ], then:

G(([σ] ↪→F [τ]) ◦ ([ρ] ↪→F [σ]))([α]) = G([ρ] ↪→F [τ])([α])
= ρα/τ
v (ρα/τ)((σ/ρα)/(τ/ρα))
= ρα(σ/ρα)/τ
≡ σ(ρα/σ)/τ since A(B/A) ≡ B(A/B)
= G([σ] ↪→F [τ])(ρα/σ)
= (G([σ] ↪→F [τ]) ◦ G([ρ] ↪→F [σ]))([α])

so G(([σ] ↪→F [τ]) ◦ ([ρ] ↪→F [σ])) v G([σ] ↪→F [τ]) ◦ G([ρ] ↪→F [σ]) as required.
2. The Grothendieck construction

∫
F G is an upper semilattice.

2.1 Partial order. Recall that
∫
F G is always poset with the order given by (a, b) ≤ (a′, b′)

if and only if aE a′ and G(a ↪→F a′)(b) v b′.
2.2 Bottom element. We argue that (⊥F ,⊥G(⊥F)) is the bottom element. Let ([ρ], [σ]) ∈∫

F G. Then clearly ⊥F E [ρ]. Moreover, G([⊥F] ↪→F [ρ])(⊥G) = [ε/ρ] = [ε] v [σ].
2.3 Join. Let us show that (a, b) ∨ (a′, b′) = (aOa′,G(a ↪→F (aOa′))(b) t G(a′ ↪→F

(aOa′))(b′)). is the least upper bound of {(a, b), (a′, b′)}.
2.3.1 Upper bound. Let us show that (a, b) ≤ (a, b) ∨ (a′, b′). Recall that (a, b) ∨

(a′, b′) = (aOa,G(a ↪→F (a ∨ a′))(b) t G(a′ ↪→F (aOa′))(b′)). First, we have
aE aOa′. Moreover, G(a ↪→F (aOa′))(b) v G(a ↪→F (a ∨ a′))(b) t G(a′ ↪→F
(aOa′))(b′), as required.

2.3.2 Least upper bound. Let (a, b) = ([ρ], [σ]) and (a′, b′) = ([ρ′], [σ′]). Moreover, let
([ρ′′], [σ′′]) be an upper bound, i.e. an element such that ([ρ], [σ]) ≤ ([ρ′′], [σ′′])
and ([ρ′], [σ′]) ≤ ([ρ′′], [σ′′]). Let us show that ([ρ], [σ])∨ ([ρ′], [σ′]) ≤ ([ρ′′], [σ′′]).
First note that [ρ]E [ρ′′] and [ρ′]E [ρ′′] so [ρ]O[ρ′]E [ρ′′].
Moreover, we know that [ρσ/ρ′′] = G([ρ] ↪→ [ρ′′])([σ]) v [σ′′] and [ρ′σ′/ρ′′] =
G([ρ′] ↪→ [ρ′′])([σ′]) v [σ′′]. Let α := (ρ t ρ′) ↓ t′. First we claim that
α v ρσ t ρ′σ′. Indeed, α = (ρ t ρ′) ↓ t′ v ρ t ρ′ by Lemma A.27, and it is
easy to check that ρ t ρ′ v ρσ t ρ′σ′. What we have to check is the following
inequality:

G([α] ↪→ [ρ′′])(G([ρ] ↪→ [α])([σ]) t G([ρ′] ↪→ [α])([σ′])) v [σ′′]

Indeed:

G([α] ↪→ [ρ′′])(G([ρ] ↪→ [α])([σ]) t G([ρ′] ↪→ [α])([σ′]))
= [α((ρσ/α) t (ρ′σ′/α))/ρ′′]
= [α((ρσ t ρ′σ′)/α)/ρ′′] since A/C t B/C ≡ (A t B)/C
= [(ρσ t ρ′σ′)(α/(ρσ t ρ′σ′))/ρ′′] since A(B/A) ≡ B(A/B)
= [(ρσ t ρ′σ′)/ρ′′] since α v ρσ t ρ′σ′

= [ρσ/ρ′′ t ρ′σ′/ρ′′] since A/C t B/C ≡ (A t B)/C
v [σ′′] since [ρσ/ρ′′] v [σ′′], [ρ′σ′/ρ′′] v [σ′′]

106 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3. There is an isomorphism Dλ(t) '
∫
F G of upper semilattices. As stated, the isomor-

phism is given by:

ϕ : Dλ(t) →
∫
F G

[ρ] 7→ ([ρ ↓ t′], [ρ/(ρ ↓ t′)])

ψ :
∫
F G → Dλ(t)
([ρ], [σ]) 7→ [ρσ]

Note that ϕ and ψ are well-defined mappings, since their value does not depend on the
choice of representative, due, in particular, to the fact that sieving is compatible with
permutation equivalence (Lemma A.33). Let us check that ϕ and ψ are morphisms of
upper semilatices, and that they are mutual inverses:

3.1 ϕ is a morphism of upper semilattices. Let us check the three conditions:
3.1.1 Monotonic. Let [ρ] v [σ] in Dλ(t), and let us show that the following inequality

holds:

ϕ([ρ]) = ([ρ ↓ t′], [ρ/(ρ ↓ t′)]) ≤ ([σ ↓ t′], [σ/(σ ↓ t′)]) = ϕ([σ])

We check the two conditions (by definition of
∫
F G):

3.1.1.1 On the first hand, [ρ ↓ t′]E [σ ↓ t′] since

(ρ ↓ t′)/(σ ↓ t′) v ρ/(σ ↓ t′) since ρ ↓ t′ v ρ by Lemma A.27
v σ/(σ ↓ t′) since ρ v σ by hypothesis

Note that this is garbage by Lemma A.31. So by Proposition 5.4, (ρ ↓
t′)/(σ ↓ t′) is also garbage, as required.

3.1.1.2 On the other hand, let us show that G([ρ ↓ t′] ↪→F [σ ↓ t′])([ρ/(ρ ↓ t′)]) v
σ/(σ ↓ t′). In fact:

G([ρ ↓ t′] ↪→F [σ ↓ t′])([ρ/(ρ ↓ t′)]) = [(ρ ↓ t′)(ρ/(ρ ↓ t′))/(σ ↓ t′)]
by definition

= [ρ/(σ ↓ t′)]
by Lemma A.35

v [σ/(σ ↓ t′)]
since ρ v σ

3.1.2 Preserves bottom. By definition: ϕ(⊥Dλ(t)) = ([ε ↓ t′], [ε/(ε ↓ t′)]) = ([ε], [ε]) =
(⊥F ,⊥G(⊥F)).

3.1.3 Preserves joins. Let [ρ], [σ] ∈ Dλ(t), and let us show that ϕ([ρ] t [σ]) =
ϕ([σ]) ∨ ϕ([σ]). Indeed, note that:

ϕ([ρ] t [σ]) = (α, β)

where
α = [(ρ t σ) ↓ t′]
β = [(ρ t σ)/((ρ t σ) ↓ t′)]

and

ϕ([ρ]) ∨ ϕ([σ]) = ([ρ ↓ t′], [ρ/(ρ ↓ t′)]) ∨ ([σ ↓ t′], [σ/(σ ↓ t′)]) = (α′, β′)

A.20. PROOF OF THEOREM 5.22 — FACTORIZATION 107

where

α′ = [ρ ↓ t′]O[σ ↓ t′]
β′ = G([ρ ↓ t′] ↪→F α)([ρ/(ρ ↓ t′)]) t G([σ ↓ t′] ↪→F α)([σ/(σ ↓ t′)])

It suffices to show that α = α′ and β = β′. Let us show each separately:
3.1.3.1 Proof of α = α′. The equality α = [(ρ t σ) ↓ t′] = [ρ ↓ t′]O[σ ↓ t′] = α′ is an

immediate consequence of Lemma A.36.
3.1.3.2 Proof of β = β′. Note that:

β′ = G([ρ ↓ t′] ↪→F α′)([ρ/(ρ ↓ t′)]) t G([σ ↓ t′] ↪→F α′)([σ/(σ ↓ t′)])
= [(ρ ↓ t′)(ρ/(ρ ↓ t′))/α′ t (σ ↓ t′)(σ/(σ ↓ t′))/α′]
= [ρ/α′ t σ/α′] by Lemma A.35
= [(ρ t σ)/α′] since A/C t B/C ≡ (A t B)/C
= [(ρ t σ)/((ρ t σ) ↓ t′)] since α′ = α = (ρ t σ) ↓ t′
= β

as required.
3.2 ψ is a morphism of upper semilattices. Let us check the three conditions:

3.2.1 Monotonic. Let ([ρ1], [σ1]) ≤ ([ρ2], [σ2]) in
∫
F G and let us show that ψ([ρ1], [σ1]) v

ψ([ρ2], [σ2]) in Dλ(t). Indeed, we know that G([ρ1] ↪→F [ρ2])([σ1]) v [σ2], that
is to say ρ1σ1/ρ2 v σ2. Then:

ρ1σ1/ρ2σ2 = (ρ1σ1/ρ2)/σ2 = ε

which means that ρ1σ1 v ρ2σ2. This immediately implies that ψ([ρ1], [σ1]) v
ψ([ρ2], [σ2]).

3.2.2 Preserves bottom. The bottom element ⊥(
∫
F G)

is defined as (⊥F ,⊥G(⊥F)), that
is ([ε], [ε]). Therefore ψ(⊥(

∫
F G)

) = [ε] = ⊥Dλ(t).
3.2.3 Preserves joins. Let ([ρ1], [σ1]) and ([ρ2], [σ2]) be elements of

∫
F G, and let us

show that ψ(([ρ1], [σ1]) ∨ ([ρ2], [σ2])) = ψ([ρ1], [σ1]) t ψ([ρ2], [σ2])).
Let:

α := (ρ1 t ρ2) ↓ t′

First we claim that α v ρ1σ1 t ρ2σ2. This is because by Lemma A.27 we know
that α = (ρ1 t ρ2) ↓ t′ v ρ1 t ρ2. Moreover, it is easy to check that ρ1 t ρ2 v
ρ1σ1 t ρ2σ2. Using this fact we have:

ψ(([ρ1], [σ1]) ∨ ([ρ2], [σ2]))
= ψ([α],G([ρ1] ↪→F [α])([σ1]) t G([ρ2] ↪→F [α])([σ2]))
= ψ([α], [(ρ1σ1/α) t (ρ2σ2/α)])
= ψ([α], [(ρ1σ1 t ρ2σ2)/α])

since A/C t B/C v (A t B)/C
= [α((ρ1σ1 t ρ2σ2)/α)]
= [(ρ1σ1 t ρ2σ2)(α/(ρ1σ1 t ρ2σ2))]
= [ρ1σ1 t ρ2σ2]

since α v ρ1σ1 t ρ2σ2, so α/(ρ1σ1 t ρ2σ2) = ε
= ψ([ρ1], [σ1]) t ψ([ρ2], [σ2]))

as required.

108 APPENDIX A. PROOFS OF SELECTED STATEMENTS

3.3 Left inverse: ψ ◦ ϕ = id. Let [ρ] ∈ Dλ(t). Then by Lemma A.35:

ψ(ϕ([ρ])) = ψ([ρ ↓ t′], [ρ/(ρ ↓ t′)]) = [(ρ ↓ t′)(ρ/(ρ ↓ t′))] = [ρ]

3.4 Right inverse: ϕ ◦ψ = id. Let ([ρ], [σ]) ∈
∫
F G. Note that ρ is t′-garbage-free and σ is

t′-garbage, so by Lemma A.34 and Proposition 5.15 we know that ρσ ↓ t′ = ρ ↓ t′ ≡ ρ.
Hence:

ϕ(ψ([ρ], [σ])) = ϕ([ρσ]) = ([ρσ ↓ t′], [ρσ/(ρσ ↓ t′)]) = ([ρ], [ρσ/ρ]) = ([ρ], [σ])

Bibliography

[ABKL14] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi.
A nonstandard standardization theorem. volume 49, pages 659–670, New
York, NY, USA, January 2014. ACM. 2

[AL13] Andrea Asperti and Jean-Jacques Levy. The Cost of Usage in the λ-Calculus.
In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS ’13, pages 293–300, Washington, DC, USA, 2013.
IEEE Computer Society. v

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier,
1984. iv, 12, 35, 37

[BKDR14] Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. The
inhabitation problem for non-idempotent intersection types. In IFIP Interna-
tional Conference on Theoretical Computer Science. LNCS 8705, pages 341–354.
Springer, 2014. vi, 5

[BKV17] Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent
intersection types for the lambda-calculus. Logic Journal of the IGPL, 25(4):431–
464, 2017. vi, vii, viii, 5, 34, 81

[BL13] Alexis Bernadet and Stéphane Jean Lengrand. Non-idempotent intersection
types and strong normalisation. Logical Methods in Computer Science, Volume
9, Issue 4, 2013. vi

[BMPR16] Flavien Breuvart, Giulio Manzonetto, Andrew Polonsky, and Domenico
Ruoppolo. New Results on Morris’s Observational Theory: The Benefits of
Separating the Inseparable. Volume 52, Issue 15:1–18, 2016. iii

[Bou93] Gérard Boudol. The lambda-calculus with multiplicities. In CONCUR’93,
pages 1–6. Springer, 1993. vi

[Car07] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD
thesis, Ecole Doctorale Physique et Sciences de la Matière (Marseille), 2007.
vi

109

110 BIBLIOGRAPHY

[CD78] Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment
for lambda-terms. Arch. Math. Log., 19(1):139–156, 1978. vi

[CF58] H.B. Curry and R. Feys. Combinatory Logic. Number 1 in Combinatory Logic.
North-Holland Publishing Company, 1958. iv

[CR36] Alonzo Church and J Barkley Rosser. Some properties of conversion. Trans-
actions of the American Mathematical Society, 39(3):472–482, 1936. iv

[DCGd98] Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Ugo de’Liguoro. In-
tersection Types, λ-models, and Böhm Trees, volume 2 of MSJ Memoirs, pages
45–97. The Mathematical Society of Japan, Tokyo, Japan, 1998. 35

[DJK91] Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. Open
problems in rewriting. In International Conference on Rewriting Techniques and
Applications, pages 445–456. Springer, 1991. v

[Ehr12] Thomas Ehrhard. Collapsing non-idempotent intersection types. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 16. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2012. vi

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus.
Theoretical Computer Science, 309(1):1–41, 2003. vi

[Gar94] Philippa Gardner. Discovering needed reductions using type theory. In
Theoretical Aspects of Computer Software, pages 555–574. Springer, 1994. vi

[Gir87] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.
vi

[Kes16] Delia Kesner. Reasoning about call-by-need by means of types. In Interna-
tional Conference on Foundations of Software Science and Computation Structures,
pages 424–441. Springer, 2016. LNCS 9634. vi

[KL07] Delia Kesner and Stéphane Lengrand. Resource operators for λ-calculus.
Information and Computation, 205(4):419–473, 2007. vi

[KR09] Delia Kesner and Fabien Renaud. The prismoid of resources. In Mathematical
Foundations of Computer Science 2009, pages 464–476, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg. vi

[KRV18] Delia Kesner, Alejandro Ríos, and Andrés Viso. Call-by-need, neededness
and all that. In Foundations of Software Science and Computation Structures,
pages 241–257, Cham, 2018. Springer International Publishing. vi

[Lan94] Cosimo Laneve. Distributive evaluations of λ-calculus. Fundamenta Informat-
icae, 20(4):333–352, 1994. v

BIBLIOGRAPHY 111

[Lév78] Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD
thesis, Université de Paris 7, 1978. iv, v, 47, 97

[Lev15] Jean-Jacques Levy. Redexes are stable in the λ-calculus. 27:1–13, 07 2015. v,
22

[Mel96] Paul-André Melliès. Description Abstraite des Systèmes de Réécriture. PhD
thesis, Université Paris 7, 1996. v, 2, 3, 17, 25, 91

[Mel97] Paul-André Melliès. A factorisation theorem in rewriting theory. In Category
Theory and Computer Science, 7th International Conference, CTCS ’97, Santa
Margherita Ligure, Italy, September 4-6, 1997, Proceedings, pages 49–68, 1997. iv,
v, viii, 51

[Mel00] Paul-André Melliès. Axiomatic rewriting theory II: the λσ-calculus enjoys
finite normalisation cones. J. Log. Comput., 10(3):461–487, 2000. iv

[Mel02a] Paul-André Melliès. Axiomatic rewriting theory VI: Residual theory revisited.
In Sophie Tison, editor, Rewriting Techniques and Applications, 13th International
Conference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002, Proceedings,
volume 2378 of Lecture Notes in Computer Science, pages 24–50. Springer, 2002.
iv

[Mel02b] Paul-André Melliès. Axiomatic rewriting theory VI: Residual theory revisited.
In Rewriting techniques and applications, pages 5–11. Springer, 2002. iv

[Mel05] Paul-André Melliès. Axiomatic rewriting theory I: A diagrammatic standard-
ization theorem. In Processes, Terms and Cycles: Steps on the Road to Infinity,
Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, pages
554–638, 2005. iv

[Mor69] James Hiram Morris. Lambda-Calculus Models of Programming Languages. PhD
thesis, Massachusetts Institute of Technology, 1969. iii

[Str72] Ross Street. Two constructions on Lax functors. Cahiers de Topologie et
Géométrie Différentielle Catégoriques. 1972. 49

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003. iv, viii, 14

[Via17] Pierre Vial. Non-Idempotent Typing Operators, Beyond the Lambda-Calculus. PhD
thesis, Université Paris 7, december 2017. vi

[Zil84] Marisa Venturini Zilli. Reduction Graphs in the Lambda Calculus. Theor.
Comput. Sci., 29:251–275, 1984. v

	Introduction
	Preliminaries
	Order theory
	Rewriting theory
	Lists and multisets
	Typing

	A distributive -calculus
	Types
	Syntax
	The calculus
	Basic properties

	Residual theory
	Orthogonality of #
	Names and labels
	Stability (and creation)
	Lattices and derivation spaces

	Simulation of the -calculus
	Refinements
	Simulation
	Head normal forms
	Simulation residuals

	Factorization of derivations
	Garbage
	Sieving
	Some properties
	Factorization of garbage
	Lattices

	Conclusions
	Proofs of selected statements
	Proof of Lemma ?? — Unique typing
	Proof of Lemma ?? — Linearity
	Proof of Lemma ?? — Subject reduction
	Proof of Proposition ?? (cont.) — Termination
	Proof of Lemma ?? — Substitution lemma
	Proof of Proposition ?? — Strong Permutation
	Proof of Lemma ?? — Creation
	Proof of Lemma ?? — Basic Stability
	Auxiliary lemmas for Section ?? — Lattices and Derivation Spaces
	Auxiliary lemmas for Section ?? — Refinements
	Proof of Proposition ?? — Simulation
	Proof of Proposition ?? — Reverse simulation
	Proof of Lemma ?? — Head normal forms have refinements
	Proof of Proposition ?? — Refinability characterizes head normalization
	Proof of Lemma ?? — Basic cube lemma for simulation residuals
	Proof of Proposition ?? — Compatibility
	Proofs from Section ?? — Sieving
	Proofs from Section ?? — Some properties
	Proof of Proposition ?? — Properties of derivation semilattices
	Proof of Theorem ?? — Factorization

	References

